

256 Bit Military

X2444M

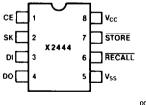
16 x 16 Bit

Nonvolatile Static RAM

FEATURES

- Ideal for use with Single Chip Microcomputers
 - -Static Timing
 - -Minimum I/O Interface
 - —Serial Port Compatible (COPS™. 8051)
 - -Easily Interfaces to Microcontroller Ports
 - -Minimum Support Circuits
- Software and Hardware Control of Nonvolatile Functions
 - -- Maximum Store Protection
- TTL Compatible
- 16 x 16 Organization
- Low Power Dissipation
 - -Active Current: 25 mA Typical
 - -Store Current: 15 mA Typical
 - -Standby Current: 15 mA Typical
 - —Sleep Current: 10 mA Typical
- 8 Pin Mini-DIP Package

DESCRIPTION

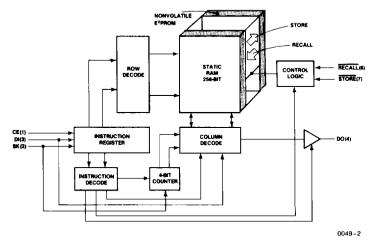

The Xicor X2444 is a serial 256 bit NOVRAM featuring a static RAM configured 16 x 16, overlaid bit for bit with a nonvolatile E²PROM array. The X2444 is fabricated with the same reliable N-channel floating gate MOS technology used in all Xicor 5V nonvolatile memories.

The Xicor NOVRAM design allows data to be transferred between the two memory arrays by means of software commands or external hardware inputs. A store operation (RAM data to E²PROM) is completed in 10 ms or less and a recall operation (E²PROM data to RAM) is completed in 2.5 µs or less.

Xicor NOVRAMs are designed for unlimited write operations to RAM, either from the host or recalls from E2PROM and a minimum 100,000 store operations. Data retention is specified to be greater than 100 years.

COPS™ is a trademark of National Semiconductor Corp

PIN CONFIGURATION



0049-1

PIN NAMES

CE	Chip Enable
SK	Serial Clock
DI	Serial Data In
DO	Serial Data Out
RECALL	Recall
STORE	Store
V _{CC}	+ 5V
V _{SS}	Ground

FUNCTIONAL DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Temperature Under Bias65°C to +135°C Storage Temperature -65°C to +150°C
Voltage on any Pin with
Respect to Ground
D.C. Output Current
Lead Temperature
(Soldering, 10 Seconds)300°C

*COMMENT

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and the functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

D.C. OPERATING CHARACTERISTICS

 $T_A = -55^{\circ}C$ to $+125^{\circ}C$, $V_{CC} = +5V \pm 10\%$, unless otherwise specified.

Symbol	Parameter	Limits		Units	Conditions	
, arameter	T di diliotoi	Min.	Max.		Jonations	
Icc	Power Supply Current		25	mA	All Inputs = V_{CC} , $I_{I/O} = 0 \text{ mA}$	
I _{SL}	Sleep Current		10	mA		
I _{SB}	Standby Current		15	mA	CE = V _{IL}	
I _{STO}	Store Current		15	mA		
ILI	Input Load Current		10	μА	V _{IN} = V _{CC}	
I _{LO}	Output Leakage Current		10	μА	V _{OUT} = V _{CC}	
V_{IL}	Input Low Voltage	-1.0	0.8	V		
V_{IH}	Input High Voltage	2.0	V _{CC} + 1.0	V		
VoL	Output Low Voltage		0.4	٧	I _{OL} = 2.4 mA	
V _{OH}	Output High Voltage	2.4		V	$I_{OH} = -0.8 \text{ mA}$	

CAPACITANCE $T_A = 25^{\circ}C_1 f = 1.0 \text{ MHz}, V_{CC} = 5V$

Symbol	Test	Max.	Units	Conditions
C _{I/O} (1)	Input/Output Capacitance	8	pF	V _{I/O} = 0V
C _{IN} (1)	Input Capacitance	6	pF	$V_{IN} = 0V$

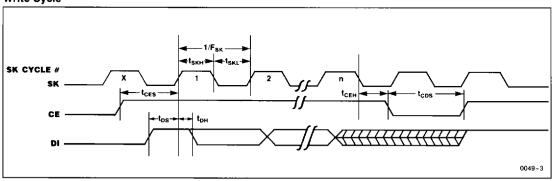
A.C. CONDITIONS OF TEST

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5V
Output Load	1 TTL Gate and C _L = 100 pF

Note: (1) This parameter is periodically sampled and not 100% tested.

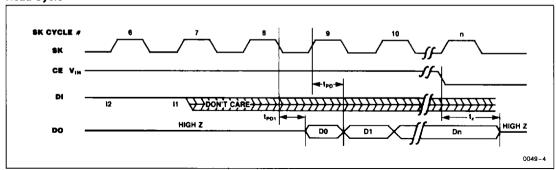
NONVOLATILE OPERATIONS

Operation	STORE	RECALL	INST	WRITE ENABLE LATCH	Previous RECALL
Hardware Recall	1	0	NOP(2)	X	Х
Software Recall	1	1	RCL	X	х
Hardware Store	0	1	NOP(2)	SET	True
Software Store	1	1	STO	SET	True


A.C. CHARACTERISTICS

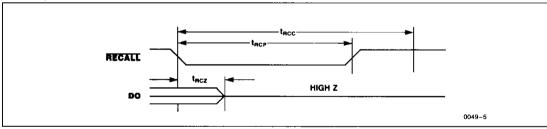
 $T_A = -55^{\circ}C$ to $\pm 125^{\circ}C$, $V_{CC} = \pm 5V \pm 10\%$, unless otherwise specified.

Read and Write Cycle Limits


Symbol	Parameter	Min.	Max.	Units
F _{SK}	SK Frequency		1.0	MHz
t _{SKH}	SK Positive Pulse Width	0.4		μs
tskl	SK Negative Pulse Width	0.4		μs
t _{DS}	Data Setup Time	0.4		μs
t _{DH}	Data Hold Time	0.08		μs
t _{PD1}	SK to Data 0 Valid		375	ns
tpD	SK _ to Data Valid		375	ns
tZ	Chip Enable to Output High Z		1.0	μs
t _{CES}	Chip Enable Setup	0.8		μs
t _{CEH}	Chip Enable Hold	0.4		μs
tcds	Chip Deselect	0.8		μs

Write Cycle

Note: (2) NOP designates when the X2444 is not currently executing an instruction.


Read Cycle

Array Recall Cycle Limits

Symbol	Parameter	Min.	Max.	Units
trcc	Recall Cycle Time	2.5		μs
tRCP	Recall Pulse Width ⁽³⁾	1.0		μs
t _{RCZ}	Recall to Output High Z		0.5	μs

Recall Cycle

Note: (3) Recall rise time must be $<10~\mu s$.

Store Cycle Limits

Symbol	Parameter	Min.	Typ.(4)	Max.	Units
t _{ST}	Store Time		5	10	ms
t _{STP}	Store Pulse Width	0.2			μs
t _{STZ}	Store To Output High Z			1.0	μs
V _{CC}	Store Inhibit		3		v

Hardware Store

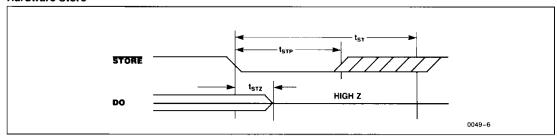
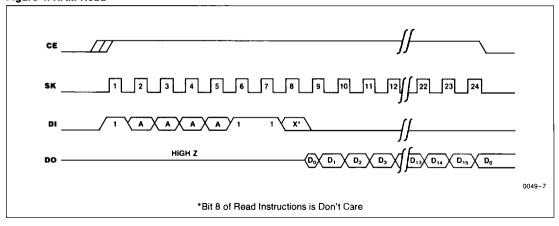



Figure 1: RAM Read

Note: (4) Typical values are for $T_A = 25^{\circ}C$ and nominal supply voltage.

Figure 2: RAM Write

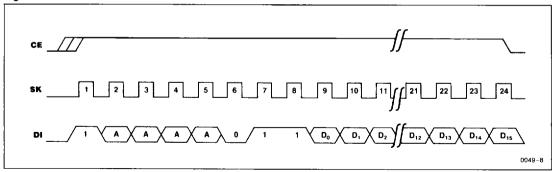
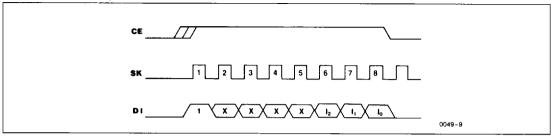



Figure 3: Non-Data Operations

TABLE 1: INSTRUCTION SET

Instruction	Format, I ₂ I ₁ I ₀	Operation
WRDS (Figure 3)	1XXXX000	Reset Write Enable Latch (Disables writes and stores)
STO (Figure 3)	1XXXX001	Store RAM Data in E ² PROM
SLEEP (Figure 3)	1XXXX010	Enter SLEEP Mode
WRITE (Figure 2)	1AAAA011	Write Data into RAM Address AAAA
WREN (Figure 3)	1XXXX100	Set Write Enable Latch (Enables writes and stores)
RCL (Figure 3)	1XXXX101	Recall E2PROM Data into RAM
READ (Figure 1)	1AAAA11X	Read Data from RAM Address AAAA

X = Don't Care A = Address Bit

PIN DESCRIPTIONS

Chip Enable (CE)

The Chip Enable input must be HIGH to enable all read/write operations. CE LOW resets the instruction register and places the X2444 in the standby low power mode.

Serial Clock (SK)

The Serial Clock input is used to clock all data into and out of the device

Data In (DI)

Data In is the serial data input.

Data Out (DO)

Data Out is the serial data output. It is in the high impedance state except during data output cycles in response to a READ instruction.

STORE

STORE LOW will initiate an internal transfer of data from RAM to E²PROM.

RECALL

RECALL LOW will initiate an internal transfer of data from E2PROM to RAM

DEVICE OPERATION

The X2444 contains an 8-bit instruction register. It is accessed via the DI input, with data being clocked in on the rising edge of SK. CE must be HIGH during the entire data transfer operation.

Table 1 contains a list of the instructions and their operation codes. The most significant bit (MSB) of all instructions is a one, bits 6 through 3 are either RAM address (A) or don't care (X) and bits 2 through 0 are the operation codes. The X2444 requires the instruction to be shifted in with the MSB first.

After CE is HIGH, the X2444 will not begin to interpret the data stream until a one has been shifted in on DI. Therefore, CE may be brought HIGH with SK running and DI LOW. DI must then go HIGH to indicate the start condition of an instruction before the X2444 will begin any action.

In addition, the SK clock is totally static. The user can completely stop the clock and data shifting will be stopped. Restarting the clock will resume shifting of data

WRDS and WREN

Internally the X2444 contains a "write enable" latch. This latch must be set for either writes to the RAM or store operations to the E²PROM. The WREN instruction sets the latch and the WRDS instruction resets the latch, disabling *both* RAM writes and E²PROM stores. The write enable latch is automatically reset on power-up.

SLEEP

The SLEEP instruction removes power from the RAM, placing the X2444 in a very low power quiescent state. Data in the RAM is lost once a SLEEP instruction is issued; however, data from the last store operation is retained in the E²PROM. The sleep mode can be exited by either a software or hardware recall operation.

RCL and RECALL

Either the RCL instruction or a LOW on the RECALL input will initiate a transfer of E²PROM data into RAM. A recall operation must be performed after a power-up before any store or RAM write operation can be enabled. This recall operation and the recall recovery from the sleep mode guarantees a known state of data in RAM. Both recall operations set an internal "previous recall" latch which must be set to enable any write or store operations.

STO and STORE

Either the STO instruction or a LOW on the STORE input will initiate the transfer of data from RAM to E2PROM. In order to safeguard against unwanted store operations, the following conditions must be true:

- 1. STO instruction issued or STORE input is LOW;
- The internal write enable latch must be set (WREN instruction issued);
- 3. The "previous recall" latch must be set.

Once the store cycle is initiated, all other device functions are inhibited. Upon completion of the store cycle, the write enable latch is reset.

WRITE

The write instruction contains the 4 bit address of the word to be written. The write instruction is immediately followed by the 16-bit word to be written. CE must remain HIGH during the entire operation. If CE is brought LOW prematurely (after the instruction but before 16 bits of data are transferred), the instruction register will be reset and the data that was shifted in will be written to RAM. If CE is kept HIGH for more than 24 SK clock cycles (8-bit instruction plus 16-bit data) the data already shifted in will be overwritten.

READ

The read instruction contains the 4 bit address of the word to be accessed. Unlike the other six instructions, I_0 is a "don't care" for the read instruction. This provides two advantages. In a design that ties both DI and DO together, the absence of an eighth bit in the instruction allows the host time to convert an I/O line from an output to an input. Secondly, it allows for valid data output during the ninth SK clock cycle.

D0, the first bit output during a read operation, is truncated. That is, it is internally clocked by the falling edge of the eighth SK clock; whereas, all succeeding bits are clocked by the rising edge of SK (refer to Read Cycle Diagram).

WRITE PROTECTION

The X2444 provides three hardware and software write protection mechanisms to prevent inadvertent stores of unknown data.

Power-Down Condition

(when "write enable" latch and "previous recall" latch are not in the reset state):

 Write Inhibit—Holding either RECALL LOW, CE LOW or STORE HIGH during power-down will prevent an inadvertent store.

Power-Up Condition

 Write Enable Latch—Upon power-up the "write enable" latch is in the reset state, disabling any store operation.

Unknown Data Store

 Previous Recall Latch—The "previous recall" latch must be reset after power-up and after exiting the sleep mode. It may be reset only by performing a recall operation, which assures that data in all RAM locations is valid

LOW POWER MODES

The X2444 provides two power conservation modes. When CE is LOW, non-critical internal devices are powered-down, placing the device in the standby power mode. Entering the sleep mode removes power from the entire RAM array, placing the device in a very low power guiescent state (sleep mode).

ENDURANCE

The endurance specification of a device is characterized by the predicted first bit failure to occur in the entire memory (device or system) array rather than the average or typical value for the array. Since endurance is limited by the number of electrons trapped in the oxide by data changes, Xicor NOVRAMs are designed to minimize the number of changes an E2PROM bit cell undergoes during store operations. Only those bits in the E2PROM that are different from their corresponding location in RAM will be "cycled" during a nonvolatile store. This characteristic reduces unnecessary cycling of any of the rest of the bits in the array, thereby increasing the potential endurance of each bit and increasing the potential endurance of the entire array. Reliability data documented in RR504, the Xicor Reliability Report on Endurance, and additional reports are available from Xicor.

Part Number	Store Cycles	Data Changes Per Bit
X2444M	100,000	10,000

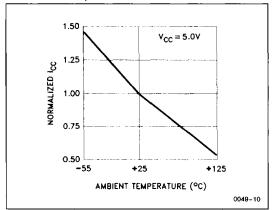
SYSTEM CONSIDERATIONS

Power-Down Data Protection

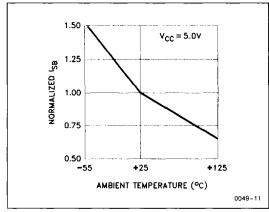
Because the X2444 is a 5V only nonvolatile memory device it may be susceptible to inadvertent writes to the E²PROM array during power-down cycles. Power-up cycles are not a problem because the previous recall latch and write enable latch are reset, preventing any possible corruption of E²PROM data.

If the STORE and RECALL pins are tied to V_{CC} through a pullup resistor and only software store operations are performed to initiate stores, there is little likelihood of an inadvertent store. However, if these two lines are under microprocessor control, positive action should be employed to negate the possibility of these control lines bouncing and generating an unwanted

store. The safest method is to issue the WRDS command after a write sequence and also following store operations. Note: an internal store may take up to 10 ms; therefore, the host microprocessor should delay 10 ms after initiating the store prior to issuing the WRDS command.


Power-On Recall

The X2444 performs a power-on recall that transfers the E²PROM contents to the RAM array. Although the data may be read from the RAM array, this recall does not reset the previous recall latch. During this power-on recall operation, all commands are ignored. Therefore, the host should delay any operation with the X2444 a minimum 2.5 μ s (t_{RCC}) after V_{CC} is stable.


SYMBOL TABLE

WAVEFORM	INPUTS Must be steady	OUTPUTS Will be steady
	May change from Low to High	Will change from Low to High
	May change from High to Low	Will change from High to Low
XXXXX	Don't Care: Changes Allowed	Changing : State Not Known
⋙ ⋘	N/A	Center Line is High Impedance

Normalized Active Supply Current vs. Ambient Temperature

Normalized Standby Supply Current vs. Ambient Temperature

