

High Speed Switching Applications

• Small package

TY Semicondutor[®]

- Low on resistance : $R_{on} = 0.8 \Omega (max) (@V_{GS} = 4 V)$
 - : $R_{on} = 1.2 \Omega (max) (@V_{GS} = 2.5 V)$
- Low gate threshold voltage

Maximum Ratings (Ta = 25°C) (Q1, Q2 Common)

Characteristics		Symbol	Rating	Unit	
Drain-Source voltage		V _{DS}	20	V	
Gate-Source voltage		V _{GSS}	±12	V	
Drain current	DC	I _D	400	mA	
	Pulse	I _{DP}	800		
Drain power dissipation (Ta = 25° C)		P _D (Note1)	300	mW	
Channel temperature		T _{ch}	150	°C	
Storage temperature range		T _{stg}	-55~150	°C	

Note1: Total rating, mounted on FR4 board (25.4 mm \times 25.4 mm \times 1.6 t, Cu Pad: 0.32 mm $^2 \times$ 6)

Handling Precaution

When handling individual devices (which are not yet mounting on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

SSM6N05FU

Marking

Electrical Characteristics (Ta = 25°C) (Q1, Q2 common)

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS}=\pm 12~V,~V_{DS}=0$	_		±1	μA
Drain-Source breakdown voltage		V (BR) DSS	$I_D = 1 \text{ mA}, V_{GS} = 0$	20			V
Drain cut-off current		I _{DSS}	$V_{DS} = 20 \text{ V}, \text{ V}_{GS} = 0$	_		1	μA
Gate threshold voltage		V _{th}	$V_{DS} = 3 \text{ V}, \text{ I}_{D} = 0.1 \text{ mA}$	0.6		1.1	V
Forward transfer admittance		Y _{fs}	$V_{DS} = 3 \text{ V}, \text{ I}_{D} = 200 \text{ mA} \qquad (\text{Note2})$	350			mS
Drain-Source ON resistance		R _{DS (ON)}	$I_D = 200 \text{ mA}, V_{GS} = 4 \text{ V} \qquad (\text{Note2})$	_	0.6	0.8	Ω
			$I_D = 200 \text{ mA}, V_{GS} = 2.5 \text{ V}$ (Note2)	_	0.85	1.2	
Input capacitance		C _{iss}		_	22		pF
Reverse transfer capacitance		C _{rss}	$V_{DS} = 3 \text{ V}, \text{ V}_{GS} = 0, \text{ f} = 1 \text{ MHz}$	_	9		pF
Output capacitance		C _{oss}		—	21		pF
Switching time	Turn-on time	t _{on}	$V_{DD} = 3 V, I_D = 100 mA,$	V, I _D = 100 mA,	60		- ns
	Turn-off time	t _{off}	$V_{GS} = 0 \sim 2.5 V$		70		

Note2: Pulse test

Switching Time Test Circuit

(a) Test circuit

(b) V_{IN}

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is $I_D = 100 \ \mu A$ for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} . (Relationship can be established as follows: V_{GS} (off) $< V_{th} < V_{GS}$ (on))

Please take this into consideration for using the device. $V_{\rm GS}$ recommended voltage of 2.5 V or higher to turn on this product.