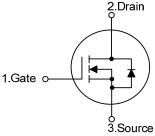


## UNISONIC TECHNOLOGIES CO., LTD

UTT200N03 Power MOSFET

# 200A, 30V N-CHANNEL POWER MOSFET

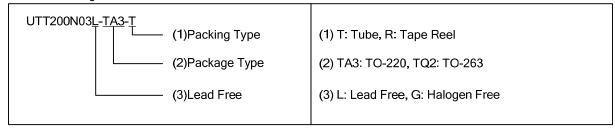
#### ■ DESCRIPTION


The UTC **UTT200N03** is a N-channel MOSFET using UTC's advanced technology to provide customers with a minimum on-state resistance and superior switching performance.

The UTC **UTT200N03** is generally applied in DC to DC convertor or synchronous rectification

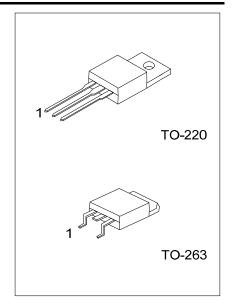
#### ■ FEATURES

- \* Fast Switching
- \* 100% Avalanche Tested
- \* High Power and Current Handling Capability
- \* RoHS Compliant


#### ■ SYMBOL



### ■ ORDERING INFORMATION


| Ordering Number  |                  | Doolsons | Pin | Doolsing |   |           |  |
|------------------|------------------|----------|-----|----------|---|-----------|--|
| Lead Free        | Halogen Free     | Package  | 1   | 2        | 3 | Packing   |  |
| UTT200N03L-TA3-T | UTT200N03G-TA3-T | TO-220   | G   | D        | S | Tube      |  |
| UTT200N03L-TQ2-T | UTT200N03G-TQ2-T | TO-263   | G   | D        | S | Tube      |  |
| UTT200N03L-TQ2-R | UTT200N03G-TQ2-R | TO-263   | G   | D        | S | Tape Reel |  |

Note: Pin Assignment: G: Gate D: Drain S: Source



#### ■ MARKING INFORMATION





<u>www.unisonic.com.tw</u> 1 of 5

#### ■ ABSOLUTE MAXIMUM RATINGS [T<sub>C</sub>=25°C, unless otherwise noted (Note 6)]

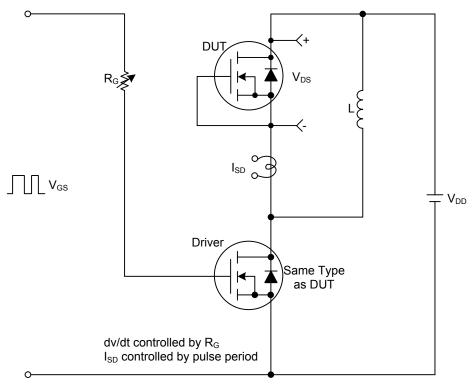
| PARAMETER                               |                      | SYMBOL            | RATINGS  | UNIT |  |
|-----------------------------------------|----------------------|-------------------|----------|------|--|
| Drain-Source Voltage                    |                      | $V_{	extsf{DSS}}$ | 30       | V    |  |
| Gate-Source Voltage                     |                      | $V_{GSS}$         | ±20      | V    |  |
| Drain Current                           | Continuous           | I <sub>D</sub>    | 200      | Α    |  |
|                                         | Pulsed (Note 1)      | I <sub>DM</sub>   | 800      | Α    |  |
| Single Pulsed Avalanche Energy (Note 2) |                      | E <sub>AS</sub>   | 864      | mJ   |  |
| Power Dissipation                       | T <sub>C</sub> =25°C | Ъ                 | 178      | W    |  |
| Power Dissipation                       | Derate above 25°C    | $P_D$             | 1.43     | W/°C |  |
| Junction Temperature                    |                      | TJ                | -55~+150 | °C   |  |
| Storage Temperature                     |                      | T <sub>STG</sub>  | -55~+150 | °C   |  |

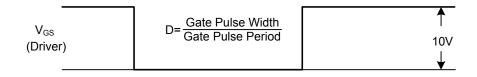
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

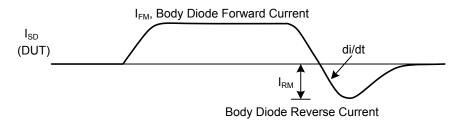
#### ■ THERMAL CHARACTERISTICS

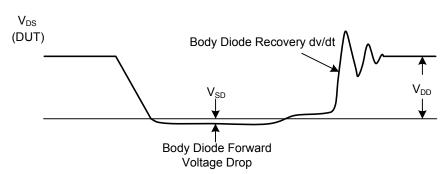
| PARAMETER           | SYMBOL        | RATINGS | UNIT |  |
|---------------------|---------------|---------|------|--|
| Junction to Ambient | $\theta_{JA}$ | 62.5    | °C/W |  |
| Junction to Case    | $\theta_{JC}$ | 0.7     | °C/W |  |

#### ■ ELECTRICAL CHARACTERISTICS (T<sub>C</sub>=25°C, unless otherwise noted)


| DADAMETED                                       |                  | 0)////DOI           | TEGT COMPLETIONS                                                                            | N 41N I | T)/D | 14437 | LINIT |  |
|-------------------------------------------------|------------------|---------------------|---------------------------------------------------------------------------------------------|---------|------|-------|-------|--|
| PARAMETER                                       |                  | SYMBOL              | TEST CONDITIONS                                                                             | MIN     | TYP  | MAX   | UNIT  |  |
| OFF CHARACTERISTICS                             |                  |                     | <del>,</del>                                                                                |         |      |       |       |  |
| Drain-Source Breakdown Voltage                  |                  | $BV_{DSS}$          | I <sub>D</sub> =250μA, V <sub>GS</sub> =0V, T <sub>C</sub> =25°C                            |         |      |       | V     |  |
| Drain-Source Leakage Current                    |                  | I <sub>DSS</sub>    | V <sub>DS</sub> =30V, V <sub>GS</sub> =0V                                                   |         |      | 10    | μΑ    |  |
| Gate- Source Leakage Current                    | Forward          | I <sub>GSS</sub>    | V <sub>GS</sub> =+20V, V <sub>DS</sub> =0V                                                  |         |      | +100  | nA    |  |
|                                                 | Reverse          |                     | V <sub>GS</sub> =-20V, V <sub>DS</sub> =0V                                                  |         |      | -100  | nΑ    |  |
| ON CHARACTERISTICS                              |                  |                     |                                                                                             |         |      |       |       |  |
| Gate Threshold Voltage                          |                  | $V_{GS(TH)}$        | $V_{DS}=V_{GS}, I_{D}=250\mu A$ 1.0                                                         |         |      | 3.0   | V     |  |
| Static Drain-Source On-State Resistance         |                  | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =80A                                                   |         |      | 2.6   | mΩ    |  |
| DYNAMIC PARAMETERS                              |                  |                     |                                                                                             |         | -    |       |       |  |
| Input Capacitance                               | nput Capacitance |                     | V <sub>GS</sub> =0V, V <sub>DS</sub> =25V, f=1.0MHz                                         |         | 5490 | 7300  | pF    |  |
| Output Capacitance                              |                  | C <sub>ISS</sub>    |                                                                                             |         | 1220 | 1620  | pF    |  |
| Reverse Transfer Capacitance                    |                  | $C_{RSS}$           |                                                                                             |         | 155  | 233   | pF    |  |
| SWITCHING PARAMETERS                            |                  |                     |                                                                                             |         |      |       |       |  |
| Total Gate Charge                               |                  | $Q_G$               |                                                                                             |         | 200  | 350   | nC    |  |
| Gate to Source Charge                           |                  | $Q_GS$              | V <sub>GS</sub> =10V, V <sub>DS</sub> =25V, I <sub>D</sub> =100A                            |         | 11   |       | nC    |  |
| Gate to Drain Charge                            |                  | $Q_GD$              |                                                                                             |         | 40   |       | nC    |  |
| Turn-ON Delay Time                              |                  | $t_{D(ON)}$         | V <sub>DD</sub> =30V, I <sub>D</sub> =0.5A, R <sub>GEN</sub> =4.7Ω,<br>V <sub>GS</sub> =10V |         | 70   | 110   | ns    |  |
| Rise Time                                       |                  | $t_R$               |                                                                                             |         | 200  | 300   | ns    |  |
| Turn-OFF Delay Time                             |                  | $t_{D(OFF)}$        |                                                                                             |         | 1600 | 2000  | ns    |  |
| Fall-Time                                       |                  | t <sub>F</sub>      |                                                                                             |         | 700  | 1200  | ns    |  |
| SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS |                  |                     |                                                                                             |         |      |       |       |  |
| Maximum Body-Diode Continuous Current           |                  | I <sub>S</sub>      |                                                                                             |         |      | 200   | Α     |  |
| Maximum Body-Diode Pulsed Current               |                  | I <sub>SM</sub>     |                                                                                             |         |      | 800   | Α     |  |
| Drain-Source Diode Forward Voltage              |                  | $V_{SD}$            | I <sub>S</sub> =100A, V <sub>GS</sub> =0V                                                   |         |      | 1.3   | V     |  |

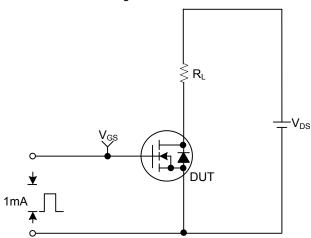

Note: 1. Repetitive Rating: Pulse width limited by maximum junction temperature


- 2. L = 3mH,  $I_{AS}$  = 24A,  $V_{DD}$  = 30V,  $R_{G}$  = 25 $\Omega$ , Starting  $T_{J}$  = 25 $^{\circ}C$
- 3. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%
- 4. Essentially independent of operating temperature

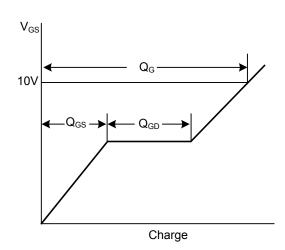

#### ■ TEST CIRCUITS AND WAVEFORMS

#### Peak Diode Recovery dv/dt Test Circuit & Waveforms

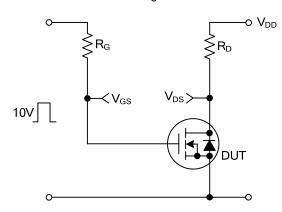




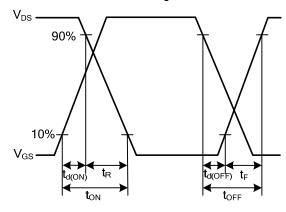


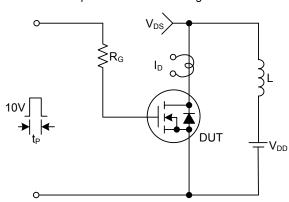

#### ■ TEST CIRCUITS AND WAVEFORMS(Cont.)


Gate Charge Test Circuit

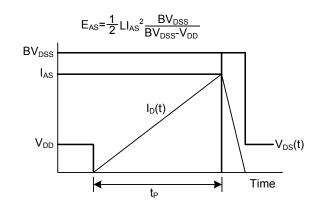



Gate Charge Waveforms

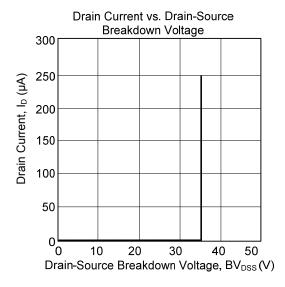


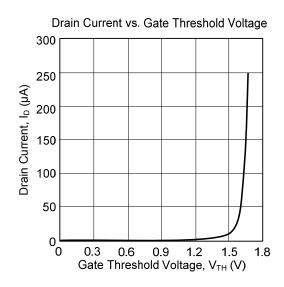

Resistive Switching Test Circuit

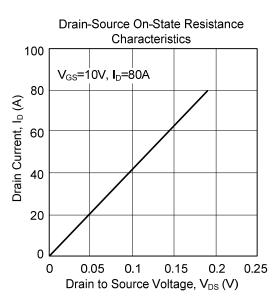


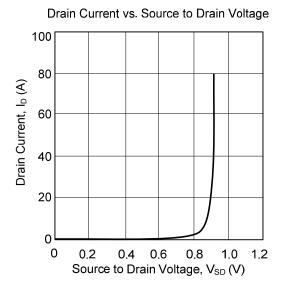

Resistive Switching Waveforms




Unclamped Inductive Switching Test Circuit





Unclamped Inductive Switching Waveforms




#### ■ TYPICAL CHARACTERISTICS









UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.