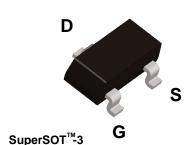
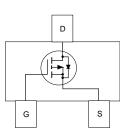


General Description


This P-Channel 2.5V specified MOSFET uses a rugged gate version of Fairchild's advanced PowerTrench process. It has been optimized for power management applications with a wide range of gate drive voltage (2.5V - 12V).


Applications

- Power management
- Load switch
- Battery protection

Features

- -20 V, -1.5 A. $R_{DS(ON)} = 125 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 190 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$
- Fast switching speed
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- SuperSOTTM -3 provides low R_{DS(ON)} and 30% higher power handling capability than SOT23 in the same footprint

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

Symbol		Parameter		Ratings	Units	
V _{DSS}	Drain-Sourc	rce Voltage		-20	V	
V _{GSS}	Gate-Source	rce Voltage		±12	V	
ID	Drain Current – Continuous (Note 1a)		(Note 1a)	-1.5		
		 Pulsed 		-10		
P _D	Maximum Power Dissipation		(Note 1a)	0.5	W	
			(Note 1b)	0.46		
			(11010-110)	01.10		
T _J , T _{STG}	Operating a	nd Storage Junction T	. ,	-55 to +150	۵°	
Therma	I Charact	0	emperature Range		°C	
	I Charact	eristics	Ambient (Note 1a)	-55 to +150		
Therma _{RθJA} RθJC Packag	I Charact	sistance, Junction-to-A	Ambient (Note 1a)	-55 to +150 250	°C/W	

FDN308P

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = -250 \mu\text{A}$	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A,Referenced to 25° C		-13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = -16 \text{ V}, V_{\text{GS}} = 0 \text{ V}$			-1	μA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 12 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -12 \text{ V} \qquad V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.6	-1.0	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS}=-4.5 \ V, & I_{D}=-1.5 \ A \\ V_{GS}=-2.5 \ V, & I_{D}=-1.3 \ A \\ V_{GS}=-4.5 \ V, \ I_{D}=-1.5 \ T_{J}{=}125^{\circ}C \end{array} $		86 136 114	125 190 178	mΩ
I _{D(on)}	On-State Drain Current	$V_{GS} = -4.5 V$, $V_{DS} = -5 V$	-5			А
g fs	Forward Transconductance	$V_{DS} = -5 V$, $I_D = -1.5 A$		12		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V},$		341		pF
Coss	Output Capacitance	f = 1.0 MHz		83		pF
C _{rss}	Reverse Transfer Capacitance			43		pF
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -10 V$, $I_D = -1 A$,		8	16	ns
t _r	Turn–On Rise Time	$V_{GS} = -4.5 \text{ V}, R_{GEN} = 6 \Omega$		10	20	ns
t _{d(off)}	Turn–Off Delay Time			12	22	ns
t _f	Turn–Off Fall Time			8	16	ns
Qg	Total Gate Charge	$V_{DS} = -10V, \qquad I_D = -1.5 \ A,$		3.8	5.4	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		0.8		nC
Q _{gd}	Gate-Drain Charge			1.0		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
ls	Maximum Continuous Drain-Source	e Diode Forward Current			-0.42	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_{S} = -0.42$ (Note 2)		-0.7	-1.2	V

Notes:

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

Î

 \mathcal{X}

a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width $\leq 300~\mu s,$ Duty Cycle $\leq 2.0\%$

http://www.twtysemi.com