

ACE1632B N-Channel Enhancement Mode Field Effect Transistor

Description

ACE1613B uses advanced trench technology to provide excellent $R_{DS(ON)}$. This device particularly suits for low voltage application such as power management of desktop computer or notebook computer power management, DC/DC converter.

This device has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced high-efficiency isolated DC-DC converters for Telecom and Computer application. It is also intended for any application with low gate charge drive requirements.

Features

- VDS =60V, I_D=18A, V_{GS} 20V
- Rds(on)<40m Ω @V_{GS}=10V

Absolute Maximum Ratings

Parameter		Symbol	Max	Unit	
Drain-Source Voltage		V _{DSS}	60	V	
Gate-Source Voltage		V_{GSS}	±20	V	
Maximum Drain Current	Continuous		18	A	
	Pulsed	۱D	45		
Continuous Power Dissipation (large heatsick)		PD	110	W	
Operating Temperature / Storage Temperature		T_J/T_{STG}	-55/150	°C	

Packaging Type

Ordering information

Electrical Characteristics

 $T_A\!\!=\!\!25^\circ\!\!\mathbb{C}$, unless otherwise specified.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Off characteristics									
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} =0V, I _D =250uA	60			V			
Gate Leakage Current	I _{GSS}	$V_{DS}=0V, V_{GS}=\pm 20V$			±100	nA			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =60V, V _{GS} =0V			1	uA			
On characteristics ^b									
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS}$, $I_{DS}=250$ uA	1.1	1.5	2.9	V			
Drain-Source On-Resistance	R _{DS(ON)}	V_{GS} =10V, I_{D} =10A		35	40	mΩ			
		V _{GS} =4.5V, I _D =5A		42	50				
Forward Transconductance	gfs*	V _{DS} =15V,I _D =10A		20		S			
Switching characteristics ^b									
Total Gate Charge	Qg			50		nC			
Gate-Source Charge	Q _{gs}	V _{DS} =48V, V _{GS} =10V, I _D =18A		20					
Gate-Drain Charge	Q _{gd}			15					
Turn-On Delay Time	t _{d(on)}	V_{GS} =10V, V_{DS} =30V, I_{D} =10A, R_{GEN} =4.7 Ω ,		45		ns			
Turn-On Rise Time	tr			22					
Turn-Off Delay Time	t _{d(off)}			42					
Turn- Off Rise Time	t _f			13					
Dynamic characteristics									
Input Capacitance	C _{iss}	V _{DS} =10V, V _{GS} =0V f=1MHz		1000		рF			
Output Capacitance	C _{oss}			200					
Reverse Transfer Capacitance	C _{rss}			100					
Drain-source diode characteristics and maximum ratings ^b									
Drain-source diode forward voltage	V_{SD}	V_{GS} =0V, I_{S} =18A ⁽²⁾			1.3	V			

ACE1632B N-Channel Enhancement Mode Field Effect Transistor

Note:

- 1. $R_{\theta JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta JA}$ is determined by the user's board design.
- 2. Pulse Test: Pulse Width ${\leq}\,300\mu s,$ Duty Cycle ${\leq}\,2.0\%$

Typical Performance Characteristics (N-Channel)

ACE1632B N-Channel Enhancement Mode Field Effect Transistor

Typical Performance Characteristics

Fig7. On-Resistance vs. Gate-Source Voltage

Fig8. Gata Threshold Voltage vs Temperature

ACE1632B N-Channel Enhancement Mode Field Effect Transistor

Packing Information

TO-252

Notes

ACE does not assume any responsibility for use as critical components in life support devices or systems without the express written approval of the president and general counsel of ACE Electronics Co., LTD. As sued herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and shoes failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ACE Technology Co., LTD. http://www.ace-ele.com/