

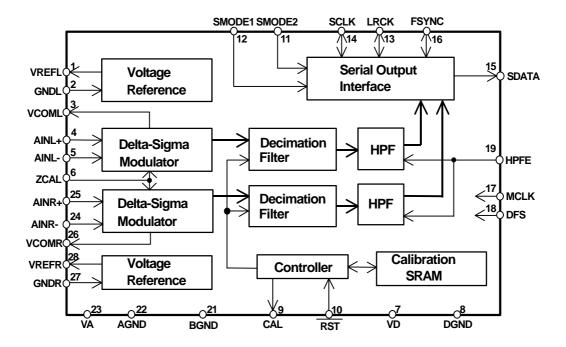
AK5393

Enhanced Dual Bit ΔΣ 96kHz 24-Bit ADC

概要

AK5393は108kHzまでのサンプリングレートに対応す &4ビット,128倍オーバサンプリング2ch A/Dコンバータです。 変調器には新開発のエンハンスト・デュアルビット方式を採用、従来のシングルビット方式の優れた低歪み特性に加えて、さらに広いダイナミックレンジを実現しています。AK5393のアナログ入力は完全差動形式になっており、ハイエンドのディジタルオーディオ信号処理アプリケーションに最適です。またAK5393の電源はアナログ5V、ディジタル3.3Vに対応しており、容易に3.3VのロジックICとI/F可能です。

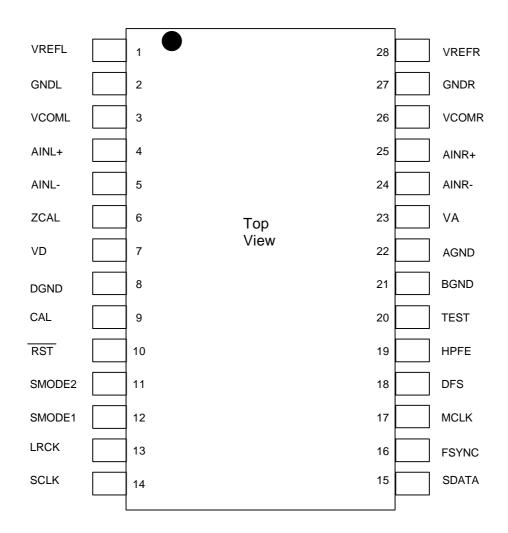
特長


- □ サンプリングレート: 1kHz~108kHz
- □ 完全差動入力
- ☐ S/(N+D): 105dB
- ☐ DR: 117dB
- ☐ S/N: 117dB
- □ 高性能直線位相ディジタルフィルタ内蔵

通過域: 0~21.768kHz (@fs=48kHz)

通過域リップル: 0.001dB

阻止域減衰量: 110dB


- □ HPFとオフセットキャリプレーション内蔵
- □ 電源電圧: 5V ± 5%(アナログ), 3~5.25V(ディジタル)
- □ 消費電力: 470mW
- □ パッケージ 28ピンSOP
- □ AK5392ピン互換

■ オーダリングガイド

AK5393-VS -10~+70°C 28pin SOP AKD5393 AK5393 Evaluation Board

■ ピン配置

■ AK5392との互換性

	AK5392	AK5393
Pin 18	CMODE	DFS
fs (max)	54kHz	108kHz
MCLK (DFS ="L"@fs=48kHz)	256fs/384fs	256fs
MCLK (DFS ="H"@fs=96kHz)	対応しない	128fs

ピン配置

No.	Pin Name	I/O	Function
1	VREFL	О	Lch基準電圧出力ピン, 3.75V
			GNDLとの間に10μFの電解コンデンサと0.1μFのセラミックコンデンサ
			を接続します。
2	GNDL	-	Lch基準グランドピン, 0V
3	VCOML	О	Lchコモン電圧ピン, 2.75V
4	AINL+	I	Lchアナログ正入力ピン
5	AINL-	I	Lchアナログ負入力ピン
6	ZCAL	I	ゼロキャリブレーションピン
			オフセットキャリブレーションに使う基準信号を選択します。
			"L": VCOML, VCOMR "H":アナログ入力ピン (AINL ± ,AINR ±)
	110		
7	VD	-	ディジタル部 電源ピン,3.3V
8	DGND	-	ディジタル部 グランドピン
9	CAL	О	キャリブレーションステータスピン
			"H"のときオフセットキャリブレーション中を示します。
			RST ピンが"H"になるとキャリブレーションが開始され、
			DFS ="L"時には8704LRCKサイクル後"L"になります。
			DFS ="H"時には17408LRCKサイクル後"L"になります。
10	RST	I	リセットピン
			"L"のときディジタル部がパワーダウンされます。"H"になる
			とオフセットキャリブレーションが開始されます。電源投入時
			一度はキャリブレーションを起動して下さい。
11	SMODE2	I	シリアルインタフェースモード選択ピン
12	SMODE1	I	MSBファースト, 2'sコンプリメント SMODE2 SMODE1 MODE LRCK
			SMODE2 SMODE1 MODE LRCK L Slave mode : 前詰め : H/L
			L H Master mode : 疑似I ² S : H/L
			H L Slave mode : I^2S : L/H
			H H Master mode : I ² S : L/H
13	LRCK	I/O	L/Rチャネル選択クロックピン
			SMODE1="H"のとき、リセット時はSMODE2="L"では"H"で、
			SMODE2="H"では"L"です。

14	SCLK	I/O	シリアルデータクロックピン
17	SCER	1/0	このピンの立ち下がりで出力データが1ビット出力されます。
			Slave mode:
			48fs以上のクロックが必要です。
			Master mode:
			128fs(DFS ="L")、64fs(DFS ="H")のクロックが出力されます。
			リセット時は"L"です。
15	SDATA	О	シリアルデータ出力ピン
			MSBファースト, 2'sコンプリメント。リセット時は"L"です。
16	FSYNC	I/O	フレーム同期クロックピン
			Slave mode:
			"H"のときSDATAの出力がイネーブルされます。I ² SモードではDon't
			careです。
			Master mode:
			2fsのクロックが出力されます。リセット時は"L"です。
17	MCLK	I	マスタクロック入力ピン
			256fs at DFS ="L", 128fs at DFS ="H"
18	DFS	I	倍速サンプリングモード選択ピン
			"L": 通常速
			"H": 倍速
19	HPFE	I	HPFイネーブルピン
			"L": OFF
			"H": ON
20	TEST	I	テストピン (pull-down pin)
			GNDに接続して下さい。
21	BGND	-	基板グランドピン, 0V
22	AGND	-	アナログ部 グランドピン, 0V
23	VA	-	アナログ部 電源ピン, 5V
24	AINR-	I	Rchアナログ正入力ピン
25	AINR+	I	Rchアナログ負入力ピン
26	VCOMR	0	Rchコモン電圧ピン, 2.75V
27	GNDR	-	Rch基準グランドピン , 0V
28	VREFR	0	Rch基準電圧出力ピン, 3.75V
			GNDRとの間に10μFの電解コンデンサと0.1μFのセラミックコンデンサ
			を接続し ます。

注)全てのディジタル入力ピンはオープンにしないで下さい。

絶対最大定格

(AGND,BGND,DGND=0V; Note 1)

Parameter	Symbol	min	max	Units
Power Supplies: Analog	VA	-0.3	6.0	V
Digital	VD	-0.3	6.0	V
BGND-DGND (Note 2)	ΔGND	-	0.3	V
Input Current, Any Pin Except Supplies	IIN	-	±10	mA
Analog Input Voltage	VINA	-0.3	VA+0.3	V
Digital Input Voltage	VIND	-0.3	VD+0.3	V
Ambient Temperature (power applied)	Ta	-10	70	°C
Storage Temperature	Tstg	-65	150	°C

Notes: 1. 電圧は全てグランドピンに対する値です。

2. AGND, BGND, DGNDは、同じアナロググランドに接続して下さい。

注意:この値を超えた条件で使用した場合、ICを破壊することがあります。

また通常の動作は保証されません。

推奨動作条件

(AGND,BGND,DGND=0V; Note 1)

Parameter		Symbol	min	typ	max	Units
Power Supplies:	Analog	VA	4.75	5.0	5.25	V
(Note 3)	Digital	VD	3.0	3.3	5.25	V

Notes: 1. 電圧は全てグランドピンに対する値です。

3. VAとVD間の電源立ち上げシーケンスを考慮する必要はありません。

本データシートに記載されている条件以外のご使用に関しては、当社では責任負いかねますので十分ご注意下さい。

アナログ特性

(特記なき場合はTa=25 ; VA=5.0V; VD=3.3V; AGND,BGND,DGND=0V; fs=48kHz; 信号周波数=1kHz; 24ピット出力測定帯域=10Hz~20kHz)

Parameter			min	typ	max	Units
Resolution					24	Bits
Analog Input Ch	aracteristics:					
S/(N+D)	fs=48kHz	-1dBFS	98	105		dB
		-20dBFS	-	94		dB
		-60dBFS	-	54		dB
	fs=96kHz	-1dBFS	96	103		dB
	BW=40kHz	-20dBFS	-	85		dB
		-60dBFS	-	45		dB
Dynamic Range ((-60dBFS with A-V	Veighted)	112	117		dB
S/N (A-We	eighted)		112	117		dB
Interchannel Isola	tion		110	120		dB
Interchannel Gain	Mismatch			0.1	0.5	dB
Gain Drift					150	ppm/°C
Offset Error	after calibration, H	PF=OFF		±200	±1000	LSB ₂₄
8	after calibration, H	PF=ON		±1		LSB ₂₄
Offset Drift	(HI	PF=OFF)	-	±10	-	LSB ₂₄ /°C
Offset Calibration	Range (H	PF=OFF)		±50		mV
Input Voltage (A	AIN+)-(AIN-)		±2.3	±2.45	±2.6	V
Input Impedance			2.4	4		kΩ
Power Supplies						
Power Supply Cur	rrent					
VA				90	130	mA
VD (fs	VD (fs=48kHz; DFS ="L")			6	9	mA
(fs:	=96kHz; DFS ="H	')		9	14	mA
Power Dissipation	1			470	680	mW
Power Supply Rej	ection (Note 4)		70		dB

Notes: 4. 電源電圧に対し周波数1kHz、振幅20mVppの正弦波を加算入力した場合、 その入力振幅に対する出力振幅の減衰量で規定します。

ディジタルフィルタ特性(fs=48kHz)

(Ta=25°C; VA=5.0V±5%; VD=3.0~5.25V; fs=48kHz, DFS ="L")

Parameter			Symbol	min	typ	max	Units
ADC Digital Filter(Deci	mation LPF):					
Passband	(1)	Note 5)	PB	0		21.768	kHz
Stopband	(1)	Note 5)	SB	26.232			kHz
Passband Ripple			PR			±0.001	dB
Stopband Attenuation	ion (Note 6)		SA	110			dB
Group Delay Distortion			ΔGD		0		us
Group Delay	(N	Note 7)	GD		38.7		1/fs
ADC Digital Filter(HPF	·):						
Frequency response	(Note 5)	-3dB	FR		1.0		Hz
		-0.1dB			6.5		Hz

ディジタルフィルタ特性(fs=96kHz)

(Ta=25°C; VA=5.0V±5%; VD=3.0~5.25V; fs=96kHz, DFS ="H")

Parameter		Symbol	min	typ	max	Units	
ADC Digital Filter(D							
Passband	(Note	e 5)	PB	0		43.536	kHz
Stopband	(Note	e 5)	SB	52.464			kHz
Passband Ripple			PR			±0.003	dB
Stopband Attenuation	Stopband Attenuation (Note 8)		SA	110			dB
Group Delay Distortio	n		ΔGD		0		us
Group Delay	(Note	: 7)	GD		38.8		1/fs
ADC Digital Filter(H							
Frequency response	(Note 5)	-3dB	FR		2.0		Hz
		-0.1dB			13.0		Hz

- Notes: 5. 通過域、阻止域の周波数は fs (システムサンプリングレート)に比例します。
 - $6.~\mathrm{fs}$ = $48\mathrm{KHz}$ のときアナログ変調器は $6.144\mathrm{MHz}$ でアナログ入力をサンプリングします。サンプリング周波数の整数倍の帯域 (n x $6.144\mathrm{MHz}$ ± $21.768\mathrm{kHz}$;n= $0,1,2,3\cdots$) では入力信号はディジタルフィルタによって減衰されません。
 - 7. ディジタルフィルタによる演算遅延で、アナログ信号が入力されてから両チャネルの24ビットデータが出力レジスタにセットされるまでの時間です。HPF: ONのときは40.7/fs(DFS = "L"), 40.8/fs(DFS = "H") typ.です。
 - 8. fs=96KHzのときアナログ変調器は6.144MHzでアナログ入力をサンプリングします。サンプリング周波数の整数倍の帯域 (n x 6.144MHz ± 43.536 kHz ;n= $0,1,2,3\cdots$) では入力信号はディジタルフィルタによって減衰されません。

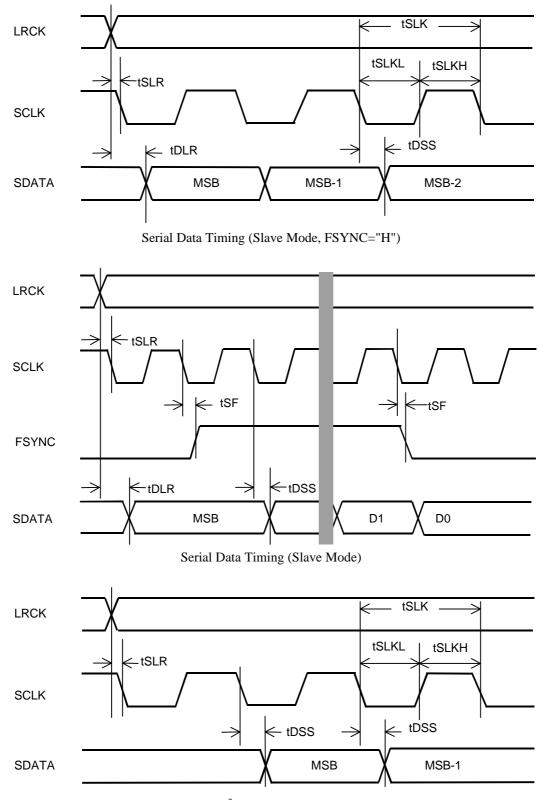
DC特性

 $(Ta=25^{\circ}C; VA=5.0V\pm5\%; VD=3.0 \sim 5.25V)$

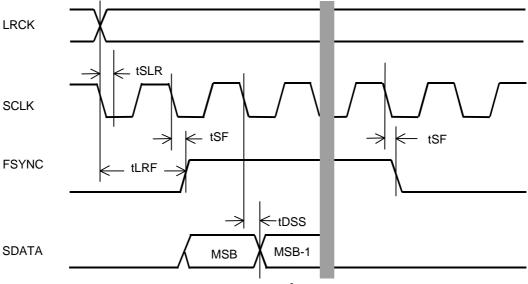
Parameter	Symbol	min	typ	max	Units
High-Level Input Voltage	VIH	70% VD	-	-	V
Low-Level Input Voltage	VIL	-	-	30% VD	V
High-Level Output Voltage Iout=-20µA	VOH	VD-0.1	-	-	V
Low-Level Output Voltage Iout=20µA	VOL	-		0.1	V
Input Leakage Current	Iin	-	=	±10	μA

SWITCHING CHARACTERISTICS

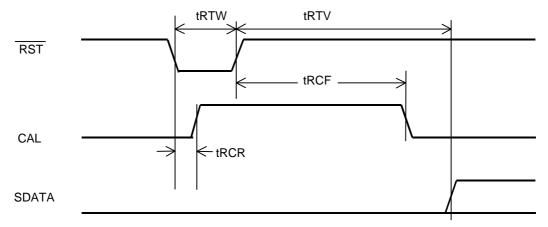
 $(Ta=25^{\circ}C; VA=5.0V\pm5\%; VD=3.0 \sim 5.25V; C_L=20pF)$


Parameter	Symbol	min	typ	max	Units
Control Clock Frequency					
Master Clock 256fs:	fCLK	0.256	12.288	13.824	MHz
Pulse width Low	tCLKL	29			ns
Pulse width High	tCLKH	29			ns
Serial Data Output Clock (SCLK)	fSLK		6.144	6.912	MHz
Channel Select Clock (LRCK)	fs	1	48	108	kHz
duty cycle		25		75	%
Serial Interface Timing (Note 9)					
Slave Mode(SMODE1="L")					
SCLK Period	tSLK	144.7			ns
SCLK Pulse width Low	tSLKL	65			ns
Pulse width High	tSLKH	65			ns
SCLK falling to LRCK Edge (Note 10)	tSLR	-45		45	ns
LRCK Edge to SDATA MSB Valid	tDLR			45	ns
SCLK falling to SDATA Valid	tDSS			45	ns
SCLK falling to FSYNC Edge	tSF	-45		45	ns
Master Mode(SMODE1="H")					
SCLK Frequency (DFS ="L")	fSLK		128fs		Hz
SCLK Frequency (DFS ="H")	fSLK		64fs		Hz
duty cycle			50		%
FSYNC Frequency	fFSYNC		2fs		Hz
duty cycle			50		%
SCLK falling to LRCK Edge	tSLR	-20		20	ns
LRCK Edge to FSYNC rising	tLRF		1		tslk
SCLK falling to SDATA Valid	tDSS			45	ns
SCLK falling to FSYNC Edge	tSF	-20		20	ns
Reset/Calibration timing					
RST Pulse width	tRTW	150			ns
RST falling to CAL rising	tRCR			50	ns
RST rising to CAL falling (Note 11)	tRCF		8704		1/fs
RST rising to SDATA Valid (Note 11)	tRTV		8960		1/fs

Notes: 9. シリアルデータインタフェースの項を参照して下さい。


^{10.} この規格値はLRCKのエッジとSCLKの" "が重ならないように規定しています。

^{11.} RST を立ち上げてからのLRCKクロックの" "の回数です。規格値はマスタモードでの値。 スレーブモードでは1-LRCKクロック(1/fs)長くなります。また、DFS ="H"時は tRCF=17408,tRTV=17920になります。


■ タイミング波形

Serial Data Timing (I²S Slave Mode, FSYNC = Don't Care)

Serial Data Timing (Master Mode & I²S Master Mode, DFS ="L")

Reset & Calibration Timing

機能説明

■ システムクロック

AK5393に必要とされるクロックは、MCLK, LRCK(fs), SCLKです。MCLKとLRCKは同期する必要がありますが位相を合わせる必要はありません。通常速モード(DFS ="L")ではMCLKは256fsで、倍速モード(DFS="H")ではMCLKは128fsです。表 1 に標準のオーディオレートに対してAK5393に必要とされる各クロックの周波数を示します。

AK5393ではLRCKクロックによる位相検出回路を内蔵しているため、動作中に各クロックの周波数変更等で内部タイミングがずれた場合は自動的にリセットがかかり、位相合わせが行われます。そのため電源投入時以外は外部からリセットをかける必要はありません。

パワーダウン時(RST ="L")以外は、各外部クロック (MCLK, SCLK, LRCK) を止めてはいけません。これらのクロックが供給されない場合、内部にダイナミックなロジックを使用しているため、過電流が流れ、動作が異常になる可能性があります。

Speed	Normal(DFS ="L")	Double(DFS ="H")
LRCK (max)	54kHz	108kHz
SCLK	~128fs	~64fs
MCLK	256fs	128fs

表1.システムクロック

fs	MCLK	SCLK
32.0kHz	8.1920MHz	4.0960MHz
44.1kHz	11.2896MHz	5.6448MHz
48.0kHz	12.2880MHz	6.1440MHz
96.0kHz	12.2880MHz	6.1440MHz

表2.システムクロック周波数例

■ シリアルデータインタフェース

AK5393は4種類のデータフォーマットが SMODE2,SMODE1ピンで選択できます。データの出力チャネルは LRCKクロックで決まり、fsのレートで両チャネルのデータが出力されます。A/D変換データはSCLKに同期してSDATAピンからSMODE2,SMODE1ピンの設定に従って出力されます。出力データのフォーマットは2'sコンプリメント、MSBファーストです。

Figure	SMODE2	SMODE1	Mode	LRCK
Figure 1	L	L	Slave Mode	Lch = H, Rch =L
Figure 2	L	Н	Master Mode	Lch =H, Rch =L
Figure 3	Н	L	I ² S Slave Mode	Lch =L, Rch =H
Figure 4	Н	Н	I ² S Master Mode	Lch =L, Rch =H

表3.シリアルインタフェース

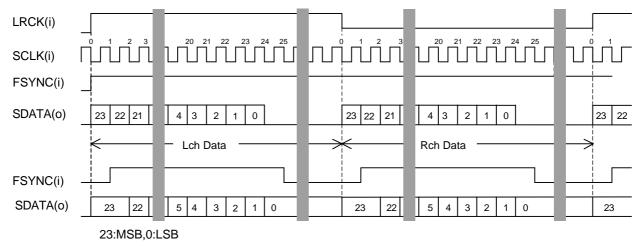


図1.データタイミング(スレーブモード)

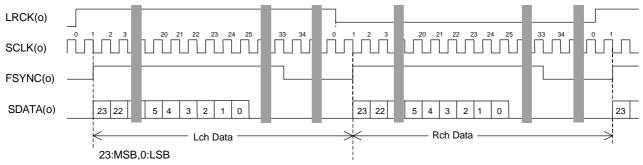


図2.データ出力タイミング(マスターモード、 DFS ="L" 時)

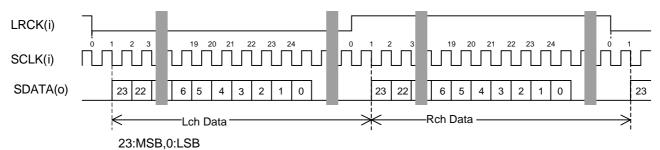


図3. データ出力タイミング (I2S スレーブモード時, FSYNC: Don't care.)

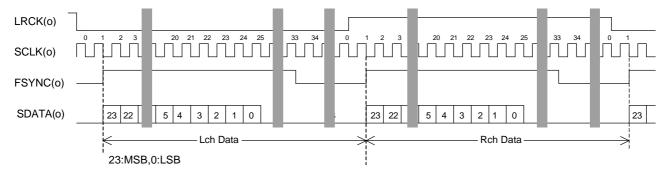


図4.データ出力タイミング(I²Sマスターモード、DFS ="L"時)

M0038-J-04 2000/4

■ オフセットキャリブレーション

RST ピンを"L"にすると、ディジタル部のみパワーダウンモードになります。"H"になるとオフセットキャリブレーションが開始されます。オフセットキャリブレーションは電源投入時必ず一度起動して下さい。

オフセットキャリブレーション中は各チャネルの入力を測定し、オフセット補正用のデータとしてキャリブレーションメモリに記録されます。キャリブレーション後のデータはこのオフセット値を差し引いた値で補正され出力されます。キャリブレーション中の入力はZCALのレベルによってアナログ入力ピン(AIN+/-)か、VCOMピンのどちらかで与えられます。ZCALが"H"のときはアナログ入力ピンの電圧が測定され、"L"のときはVCOMピンの電圧が測定されます。CAL出力はキャリブレーション中"H"です。

■ ディジタルHPF

AK5393はDCオフセットキャンセルのためにディジタルHPFも内蔵します。HPFのfcは、fs=48kHz 時1Hzになっており、周波数応答はfsに比例します。

システム設計

システム接続例を図5に示します。具体的な回路と測定例については評価用ボード(AKD5393)を参照して下さい。

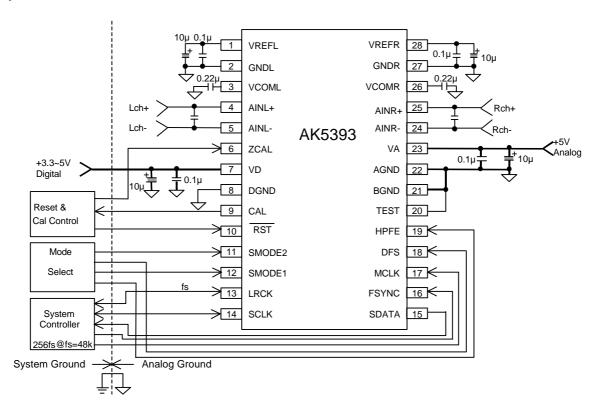
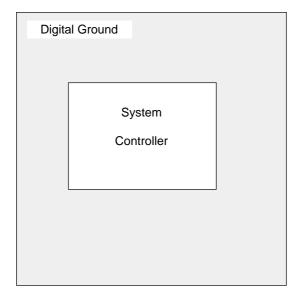



図5.システム接続例

Notes:

- LRCK = fs, SCLK = 64fs.
- VAとVDの配線は、レギュレータ等の低インピーダンスから分けて下さい。
- AGND, BGND, DGND は同じアナロググランドに接続して下さい。
- プルダゥスグルアップピン以外の入力はオープンにしないで下さい。

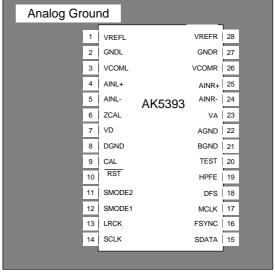


図6.グランドレイアウト

1. グランドと電源のデカップリング

電源とグランドの取り方には十分注意して下さい。アナロググランドとディジタルグランドは分けて配線しPCボード上の電源に近いところで接続して下さい。小容量のデカップリングコンデンサはなるべく電源ピンの近くに接続して下さい。

2. 内蔵基準電圧源とVCOM

A/D変換の基準電圧はVREFL/Rピンの電圧とGNDL/Rピンの電圧の差です。GNDL/RはAGNDに接続し、VREFL/Rピンには高周波ノイズを除去するために0.1μFのセラミックコンデンサと10μF以下の電解コンデンサをVREFL/RとGNDL/R間に接続して下さい。特にセラミックコンデンサはピンにできるだけ近づけて接続して下さい。さらにディジタル信号、特にクロックは変調器へのカップリングをさけるためVREFL/Rピンからできるだけ離して下さい。また、VREFL/Rピンから電流をとってはいけません。

VCOMはアナログ信号のコモン電圧として使われます。このピンには高周波ノイズを除去するために 0.22μ FのセラミックコンデンサをAGNDとの間にピンにできるだけ近づけて接続して下さい。さらにディジタル信号、特にクロックは変調器へのカップリングをさけるためVCOMピンからできるだけ離して下さい。また、VCOMピンから電流をとってはいけません。

3. アナログ入力

アナログ入力信号は各チャンネルの差動入力ピンから変調器に入力されます。入力電圧はAIN+とAIN-の差の電圧になります。入力レンジは ± 2.45 Vpp(typ)です。AK5393はAGNDからVAまでの電圧を入力することができます。出力コードのフォーマットは2'sコンプリメント (2の補数)で正のフルスケール以上の入力電圧に対しては7FFFFH(@24bit)、負のフルスケール以下に対しては800000H(@24bit)、無入力時の理想値は000000H(@24bit)です。DCオフセットはオフセットキャリブレーションを実行することでキャンセルされます。

AK5393は128fs(6.144MHz @fs=48kHz,DFS="L")でアナログ入力をサンプリングします。ディジタルフィルタは、128fsの整数倍を除く阻止域以上のノイズを全て除去します。ほとんどのオーディオ信号では128fs付近に大きなノイズをもつことはありませんので簡単なRCフィルタで128fs付近のノイズを十分減衰させることができます。

AK5393のアナログ電源電圧は \pm 5Vになっており、アナログ入力ピン(AIN \pm /-)には、VA \pm 0.3V以上、AGND-0.3V以下の電圧と \pm 10mA以上の電流を入力してはいけません。過大電流の流入は内部の保護回路の破壊、さらにはラッチアップを引き起こし、ICの破壊に至ります。従って、周辺のアナログ回路の電源電圧が、 \pm 15V等の場合はアナログ入力ピンを絶対最大定格以上の信号から保護する必要があります。

図7は入力バッファ回路例です。反転・反転回路によるゲイン-10dBの差動入力回路です。AIN+/-間の10nFは、変調器のクロックフィードスルーを取るためのコンデンサです。また、 22Ω とあわせて約360kHzのカットオフをもつLPFになっています。前段アンプは約370kHzのカットオフをもつLPFになっています。この例では内部オフセットのみをセルフキャリブレーションでキャンセルしています。詳細は評価ボードを参照して下さい。

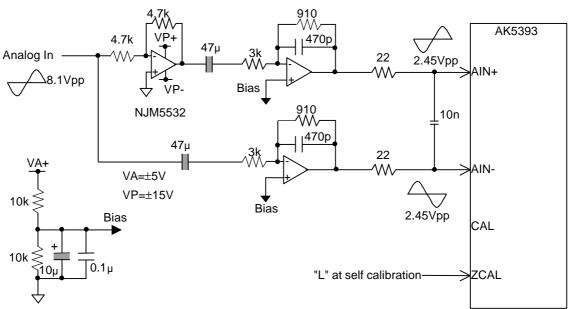


図7. 入力バッファ回路例 1

図 8はAK5393のアナログ入力回路例2 (1^{st} order HPF; fc=0.66Hz,表4 1^{st} order LPF; fc=590kHz, gain=-14dB,表5)です。シングルエンドで入力する場合は差動入力する場合に比べて反転バッファが一つ増えます。(図ではシングルエンドの場合は JP1, JP2ショート、差動の場合はJP1, JP2オープン)。この回路の入力レベルは +/-12.4Vppです。 (AK5393: +/-2.45Vpp Typ.).

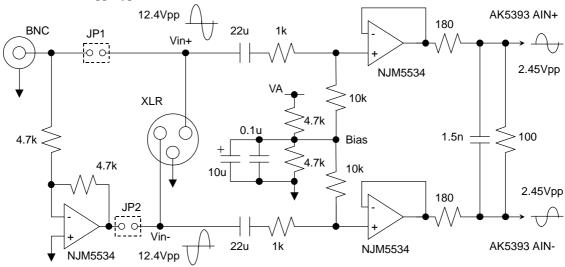
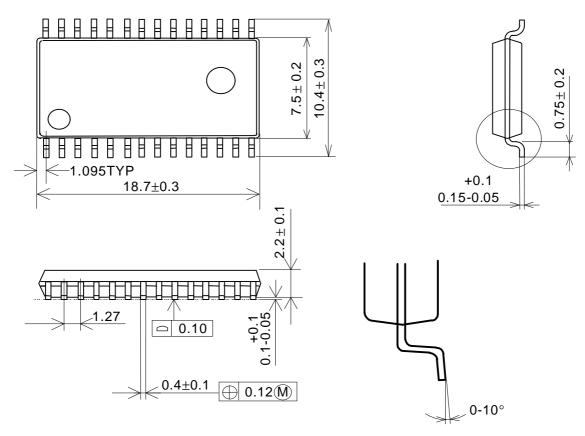


図8. 入力バッファ回路例 2

fin	1Hz	10Hz
Frequency Response	-1.56dB	-0.02dB

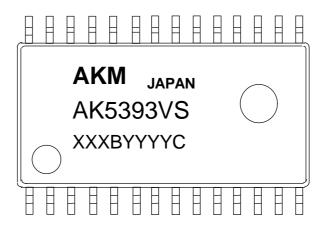

表4. Frequency Response of HPF

fin	20kHz	40kHz	6.144MHz
Frequency Response	-0.005dB	-0.02dB	-15.6dB

表5. Frequency Response of LPF

パッケージ

28pin SOP (Unit: mm)


■ 材質・メッキ仕様

パッケージ材質: エポキシ系樹脂

リードフレーム材質:銅

リードフレーム処理:半田メッキ

マーキング仕様

XXXBYYYYC の内容

XXXB: ロット番号 (X: 数字, B: 英字)YYYYC: 製造時期 (Y: 数字, C: 英字)

重要な注意事項 -

- 本書に記載された製品、及び、製品の仕様につきましては、製品改善のために予告なく変更することがあります。従いまして、ご使用を検討の際には、本書に掲載した情報が最新のものであることを弊社営業担当、あるいは弊社特約店営業担当にご確認下さい。
- 本書に掲載された情報・図面の使用に起因した第三者の所有する特許権、工業所有権、その他の権利に 対する侵害につきましては、当社はその責任を負うものではありませんので、ご了承下さい。
- 本書記載製品が、外国為替及び、外国貿易管理法に定める戦略物資役務を含む)に該当する場合、輸出する際に同法に基づく輸出許可が必要です。
- 医療機器、安全装置、航空宇宙用機器、原子力制御用機器など、その装置 機器の故障や動作不良が、 直接または間接を問わず、生命、身体、財産等へ重大な損害を及ぼすことが通常予想されるような極めて 高い信頼性を要求される用途に弊社製品を使用される場合は、必ず事前に弊社代表取締役の書面による 同意をお取り下さい。
- この同意書を得ずにこうした用途に弊社製品を使用された場合、弊社は、その使用から生ずる損害等の責任を一切負うものではありませんのでご了承下さい。
- お客様の転売等によりこの注意事項の存在を知らずに上記用途に弊社製品が使用され、その使用から損害等が生じた場合は全てお客様にてご負担または補償して頂きますのでご了承下さい