

TO-220 ITO-220

Pin Definition: 1. Gate

2. Drain 3. Source

TSM9N90 900V N-Channel Power MOSFET

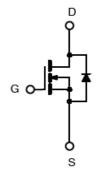
PRODUCT SUMMARY

V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)
900	1.4 @ V _{GS} =10V	9

General Description

The TSM9N90 N-Channel enhancement mode Power MOSFET is produced by planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency switch mode power supply, electronic lamp ballast based on half bridge.

Features


- Low R_{DS(ON)} 1.4Ω (Max.)
- Low gate charge typical @ 65nC (Typ.)
- Improve dv/dt capability

Ordering Information

Part No.	Package	Packing
TSM9N90CZ C0G	TO-220	50pcs / Tube
TSM9N90CI C0G	ITO-220	50pcs / Tube

Note: "G" denote for Halogen Free Product

Block Diagram

N-Channel MOSFET

Absolute Maximum Rating (Ta = 25°C unless otherwise noted)

Parameter		Symbol	TO-220	ITO-220	Unit	
Drain-Source Voltage		V _{DS}	9	V		
Gate-Source Voltage		V _{GS}	±	V		
Continuous Drain Current	$Tc = 25^{\circ}C$	- I _D -	9	9 *		
	$Tc = 100^{\circ}C$		5.7	5.7 *	A	
Pulsed Drain Current *		I _{DM}	36	36 *	А	
Peak Diode Recovery dv/dt (Note 3)		dv/dt	4	V		
Single Pulse Avalanche Energy (Note 2)		E _{AS}	857		mJ	
Avalanche Current (Repetitive) (Note 1)		I _{AR}	9		А	
Repetitive Avalanche Energy (Note 1)		E _{AR}	29		mJ	
Power Dissipation	$Tc = 25^{\circ}C$	- P _D	290	48	W	
	Derate above 25°C		2.32	0.38	°C/W	
Operating Junction Temperature		TJ	150		°C	
Storage Temperature Range		T _{STG}	-55 to +150		°C	

* Limited by maximum junction temperature

Thermal Performance

Parameter	Symbol	TO-220	ITO-220	Unit	
Thermal Resistance - Junction to Case	RƏ _{JC}	0.43 2.6		00000	
Thermal Resistance - Junction to Ambient	RƏ _{JA}	62.5		°C/W	

Notes: Surface mounted on FR4 board t \leq 10sec

Electrical Specifications (Tc = 25°C unless otherwise noted)

Parameter	Conditions	Symbol	Min	Тур	Мах	Unit
Static						
Drain-Source Breakdown Voltage	$V_{GS} = 0V, I_{D} = 250uA$	BV_{DSS}	900			V
Drain-Source On-State Resistance	$V_{GS} = 10V, I_D = 4.5A$	R _{DS(ON)}		1.13	1.4	Ω
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \text{uA}$	V _{GS(TH)}	2.0		4.0	V
Zero Gate Voltage Drain Current	$V_{DS} = 900V, V_{GS} = 0V$	I _{DSS}			10	uA
Gate Body Leakage	$V_{GS} = \pm 30V, V_{DS} = 0V$	I _{GSS}			±100	nA
Forward Transconductance	$V_{DS} = 30V, I_{D} = 4.5A$	g _{fs}		10		S
Diode Forward Voltage	$I_{S} = 9A, V_{GS} = 0V$	V_{SD}			1.5	V
Dynamic ^b						
Total Gate Charge		Qg		65		nC
Gate-Source Charge	$V_{DS} = 720V, I_D = 9A,$	Q_gs		11		
Gate-Drain Charge	– V _{GS} = 10V	Q_gd		23		
Input Capacitance		C _{iss}		2324		
Output Capacitance	$V_{DS} = 25V, V_{GS} = 0V,$ f = 1.0MHz	C _{oss}		184		pF
Reverse Transfer Capacitance		C _{rss}		29		
Switching ^c					-	
Turn-On Delay Time		t _{d(on)}		61		
Turn-On Rise Time	$V_{GS} = 10V, I_D = 9A,$ $V_{DD} = 450V, R_G = 25\Omega$	t _r		49		
Turn-Off Delay Time		t _{d(off)}		318		nS
Turn-Off Fall Time		t _f		100		
Reverse Recovery Time	$V_{GS} = 0V, I_{S} = 9A,$	t _{fr}		470		nS
Reverse Recovery Charge	dI _F /dt = 100A/us	Q _{fr}		4.9		uC

Notes:

1. Repetitive Rating: Pulse Width Limited by Maximum Junction Temperature

2. Max Rating E_{AS} Test Condition: V_{DD} = 50V, I_{AS}=9A, L=20mH, R_G=25 Ω , Starting T_J=25 $^{\circ}$ C

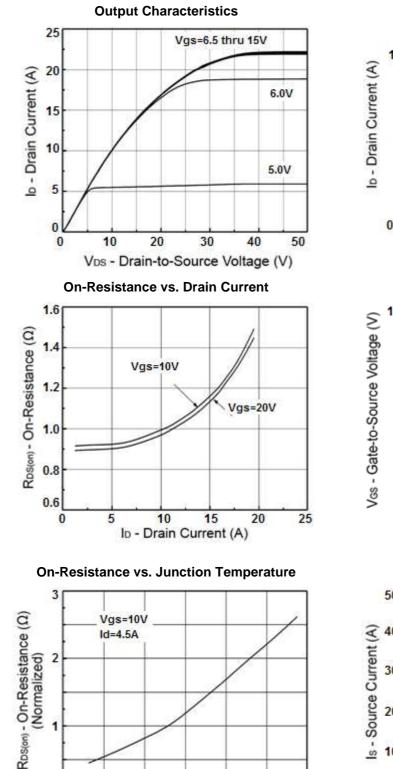
3. Guaranteed 100% E_{AS} Test Condition: V_{DD} = 50V, I_{AS}=9A, L=1mH, R_G=25 Ω , Starting T_J=25 $^{\circ}$ C

4. $I_{SD} \leq 9A$, di/dt $\leq 200A/uS$, $V_{DD} \leq BV$, Starting $T_J=25^{\circ}C$

5. Pulse test: pulse width \leq 300uS, duty cycle \leq 2%

6. b For design reference only, not subject to production testing.

7. c Switching time is essentially independent of operating temperature.


1

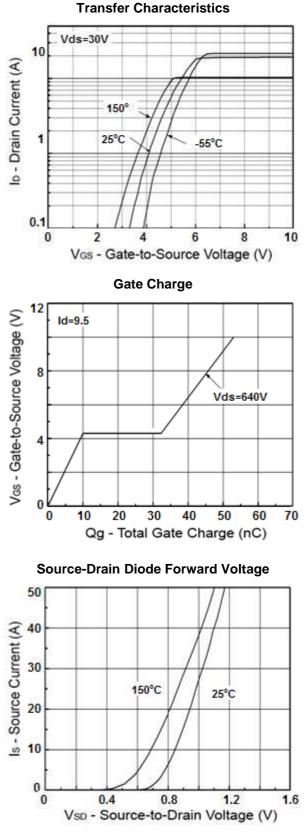
0 -60

-40

0

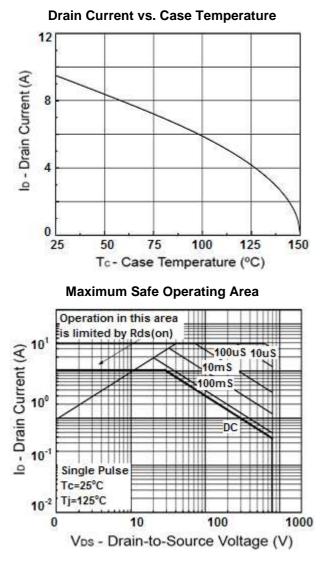
TSM9N90 900V N-Channel Power MOSFET

40

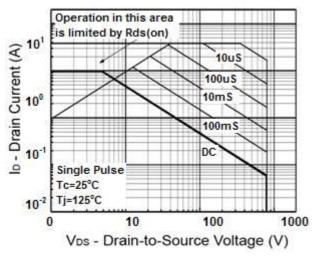

Tj - Junction Temperature (°C)

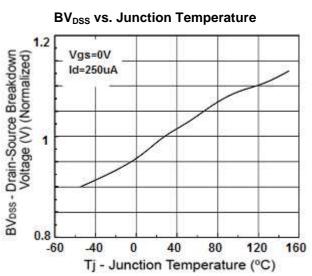
80

120

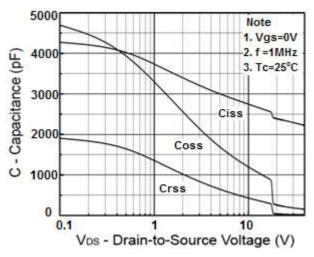

160

Electrical Characteristics Curve (Tc = 25°C, unless otherwise noted)

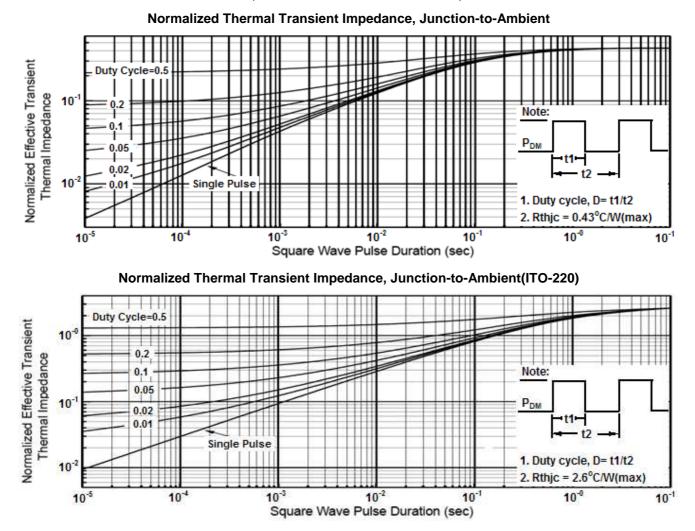




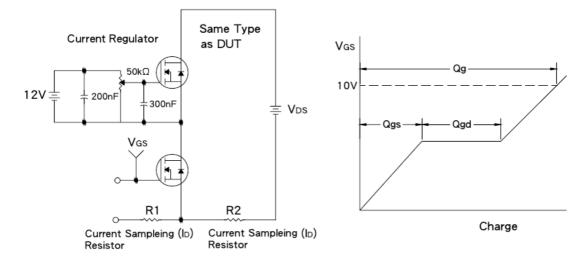
Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)



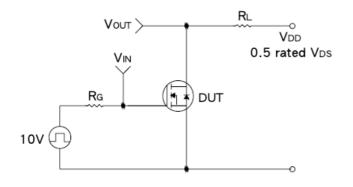
Maximum Safe Operating Area (ITO-220)

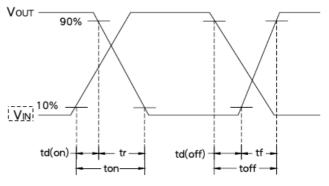


Capacitance vs. Drain-Source Voltage

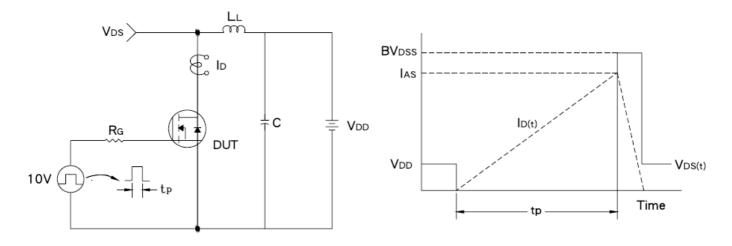


Electrical Characteristics Curve (Ta = 25°C, unless otherwise noted)

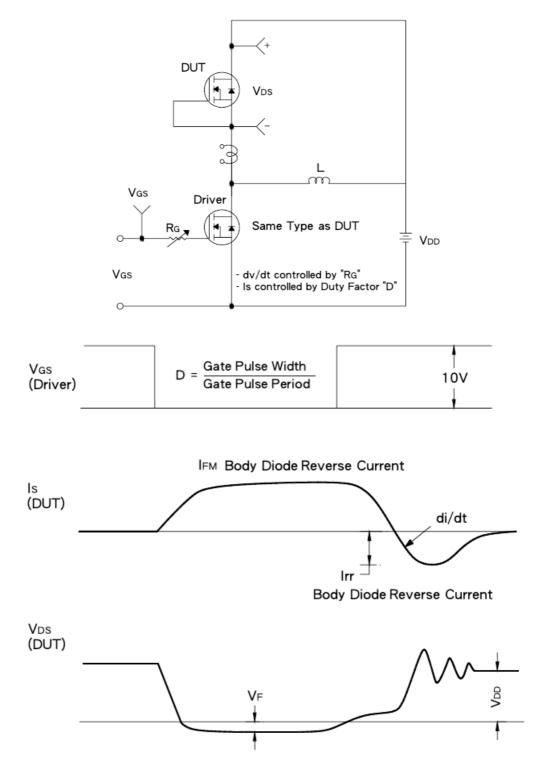




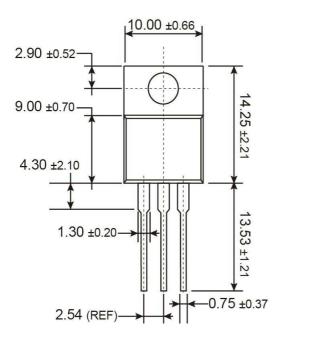
Gate Charge Test Circuit & Waveform

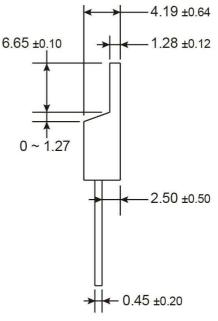


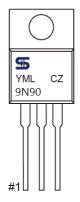
Resistive Switching Test Circuit & Waveform



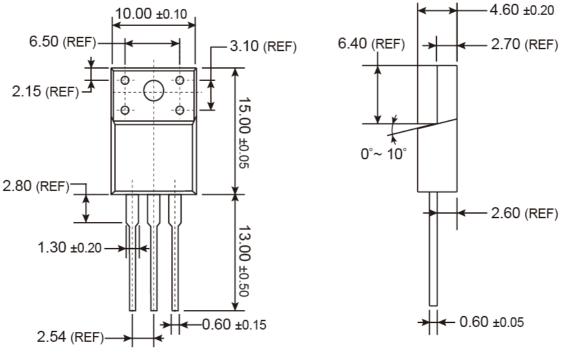
E_{AS} Test Circuit & Waveform



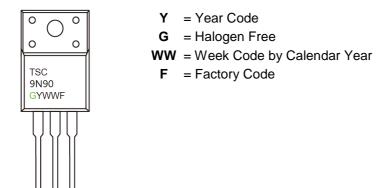

Diode Reverse Recovery Time Test Circuit & Waveform


TO-220 Mechanical Drawing

Unit: Millimeters


Marking Diagram

- Y = Year Code
- M = Month Code
 - (A=Jan, B=Feb, C=Mar, D=Apl, E=May, F=Jun, G=Jul, H=Aug, I=Sep, J=Oct, K=Nov, L=Dec)
 - Month Code for Halogen Free Product
 (O=Jan, P=Feb, Q=Mar, R=Apl, S=May, T=Jun, U=Jul, V=Aug, W=Sep, X=Oct, Y=Nov, Z=Dec)
- L = Lot Code


ITO-220 Mechanical Drawing

Unit: Millimeters

Marking Diagram

#1

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.