20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

3N246

TELEPHONE: (973) 376-2922 (212) 227-6005

FAX: (973) 376-8960

MINIATURE INTEGRAL DIODE ASSEMBLIES

... with silicon rectifier chips interconnected and encapsulated into voidless rectifier bridge circuits.

- High Resistance to Shock and Vibration
- High Dielectric Strength
- **Built-In Printed Circuit Board Stand-Offs**
- UL Recognized
- RO_{JA} = 60°C/W

MAXIMUM RATINGS Rating (Per Diode)	Symbol	3N246	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRAM VRWM VR	50	Volts
DC Output Voltage Resistive Load Capacitive Load	Vdc Vdc	. 32 50	Valts Volts
Sine Wave RMS Input Voltage	VR(RMS)	35	Volts
Average Rectified Forward Current Isingle phase bridge operation, resistive load, 60 Hz, TA = 75°C)	10	,1.0	Amp
Non-Repetitive Peak Surge Current (Preceded and followed by rated current and voltage, T _A = 75°C)	^I FSM	30 (for 1 cycle) ———	Amp
Operating and Storage Junction Temperature Range	T _{J:} T _{stg}	-55 to +150	°С

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Per Diode) (ip = 1.57 Amp, T _J = 25 ⁰ C)	٧F	1.15	1.3	Volts
Reverse Current (Per Diode) (Rated V _R , T _A = 25°C)	1 _R	-	10	μΑ

MECHANICAL CHARACTERISTICS

CASE: Transfer Molded Plastic POLARITY: Terminal-designation on case Pin 1 (+) for DC output

Pin 4 (-) for DC output Pins 2 and 3 (AC) for AC input

MOUNTING POSITION: Any WEIGHT: 1.8 grams (approx) TERMINALS: Readily solderable connections, corrosion resistant.

SINGLE-PHASE **FULL-WAVE BRIDGE**

1.0 AMPERE 50-1000 VOLTS

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless otherwise noted.)

Characteristic		Symbol	Min	Max	Unit
Common Source Power Gain		Gps			d B
(VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz)	3N211	-ps	24	, 35	45
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211	1	29	37	ļ
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N213		27	35	
$(V_{DD} = 18 \text{ Vdc}, f_{LO} = 245 \text{ MHz}, f_{RF} = 200 \text{ MHz})$	3N212	G _c (6)	21	28	
Bandwidth		BW		1	MHz
(VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz)	3N211		5.0	12	,,,,,,
(VDD = 18 Vdc, fLO = 245 MHz, fRF = 200 MHz)	3N212		4.0	7.0	
$(V_{DD} = 24 \text{ Vdc}, V_{GG} = 6.0 \text{ Vdc}, f = 45 \text{ MHz})$	3N211,213		3.5	6.0	
Gain Control Gate-Supply Voltage(5)		VGG(GC)			Vdc
$(V_{DD} = 18 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 200 \text{ MHz})$	3N211	33(30)		- 2.0	Vac
$(V_{DD} = 24 \text{ Vdc}, \Delta G_{DS} = -30 \text{ dB}, f = 45 \text{ MHz})$	2N211.213	1		± 1.0	

⁽¹⁾ Measured after five seconds of applied voltage.
(2) All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage limiting

⁽²⁾ All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate-voltage annual network is functioning properly.
(3) Pulse Test: Pulse Width = 300 μs, Duty Cycle ≤ 2.0%.
(4) This parameter must be measured with bias voltages applied for less than 5 seconds to avoid overheating. The signal is applied to gate 1 with gate 2 at ac ground.
(5) ΔGps is defined as the change in Gps from the value at VGG = 7.0 Volts (3N211) and VGG = 8.0 Volts (3N213).
(6) Power Gain Conversion. Amplitude at input from local oscillator is adjusted for maximum Gc.