

SPI Real-Time Clock/Calendar with Integrated Backup Power

Features

- Ultra low power Real Time Clock with Integrated rechargeable EnerChip[™] solid state battery, power-fail detect and automatic switchover, providing greater than 6 days of RTC backup
- 5mm x 5mm x 1.4mm QFN package is the smallest commercially available RTC having integrated backup power
- Temperature-compensated charge control
- Integrated EnerChip™ recharged at VDD > 2.5V
- SMT assembly lead-free reflow solder tolerant
- Counters for hundredths, seconds, minutes, hours, date, month, year, century, and weekday based on a 32.768 kHz oscillator
- Automatic leap year calculation
- · Alarm capability on all counters
- · 2 general purpose outputs
- 64 bytes of RAM
- Advanced crystal calibration to ± 2 ppm
- Advanced RC calibration to ± 16 ppm
- Automatic calibration of RC oscillator to crystal oscillator
- SPI-bus (up to 400kHz)
- Eco-friendly, RoHS compliant tested

Applications

- Power bridging to provide uninterruptible RTC function during exchange of main batteries.
- Consumer appliances that have real-time clocks; provides switchover power from main supply to backup battery.
- Ultra Low Power Timers using only 35nA can be implemented with the CBC34813
- Wireless sensors and RFID tags and other powered, low duty cycle applications.
- Business and industrial systems such as: network routers, point-of-sale terminals, singleboard computers, test equipment, multi-function printers, industrial controllers, and utility meters.
 - · Time keeping application
 - Battery powered devices
 - Metering
 - · High duration timers
 - Daily alarms
 - Low standby power applications

5mm x 5mm x 1.4mm 16-pin QFN Package

General Description

The EnerChip RTC CBC34813-M5C combines a Real-Time Clock (RTC) and calendar optimized for low power applications with an integrated rechargeable solid state backup battery and all power management functions. The EnerChip RTC ensures a seamless transition from main power to backup power in the event of power loss. The integrated power management circuit ensures thousands of charge-discharge cycles from the integrated EnerChip and manages battery charging, discharge cutoff, power switchover, and temperature compensation to maximize the service life of the device. The CBC34813 provides greater than 6 days of backup time in the event main power is interrupted. The integrated EnerChip recharges quickly, has extremely low self-discharge, is non-flammable, and RoHScompliant. The EnerChip is charged automatically anytime VDD is above 2.5V.

Data is transferred serially via an SPI-bus. Alarm and timer functions provide the option to generate a wake-up signal on an interrupt pin.

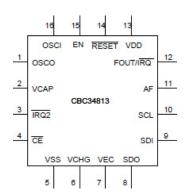


Figure 1: CBC34813 Pin-out Diagram

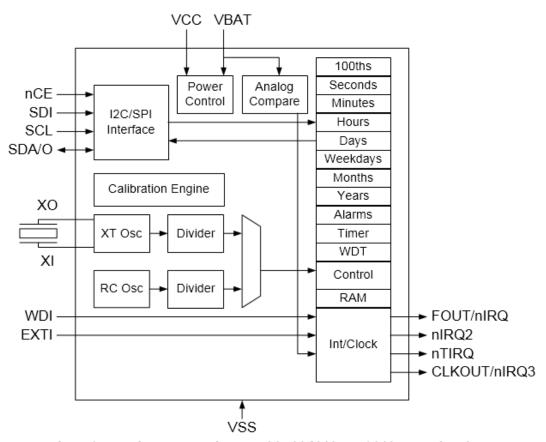


Figure 2: Functional Block Diagram of CBC34813 (AM0813) Real-Time Clock

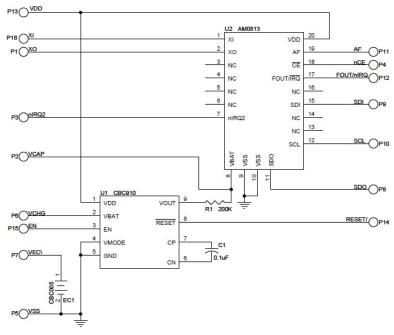


Figure 3: Internal Schematic of CBC34813 EnerChip RTC

CBC34813 Input/Output Descriptions

Pin Number	Label	Description
1	хо	Crystal output
2	VCAP	External capacitor connection to supply switchover current at cold temp. (optional)
3	nIRQ2	Interrupt 2 / Output
4	nCE	RTC SPI chip select
5	VSS	Ground
6	VCHG	4.1V (typical) charging source - connect to VBAT and/or optional EnerChip(s)
7	VEC	Positive terminal of integrated thin film battery - connect to only to VCHG via PCB trace
8	SD0	SPI-bus data output
9	SDI	SPI-bus data input
10	SCL	SPI-bus interface clock
11	AF	Autocalibration filter
12	FOUT/nIRQ	Interrupt 1 / Function output
13	VDD	Supply voltage; positive or negative steps in VDD can affect oscillator performance; recommend 100nF decoupling close to the device (see Fig. 30)
14	RESET/	Output signal indicating RTC is operating in backup power mode
15	EN	Charge pump enable; activates VCHG 4.1V (typ.) charging source
16	ΧI	Crystal input

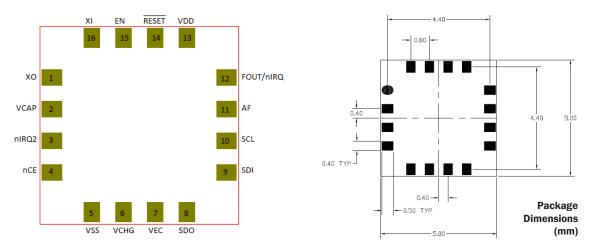


Figure 4: CBC34813 Package (left: top view, looking through package; right: pad dimensions)

EnerChip Properties

Energy capacity (typical): $5\mu Ah$ Recharge time to 80%: <15 minutes

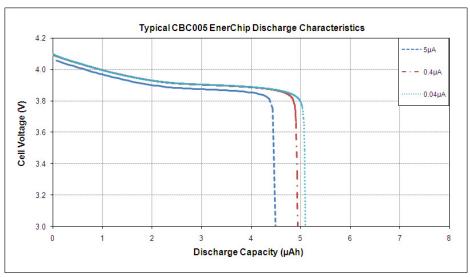
Charge/discharge cycles: >5000 to 10% depth-of-discharge

Operating temperature: $-10^{\circ}\text{C to } +70^{\circ}\text{C}$ Storage temperature: $-40^{\circ}\text{C to } +125^{\circ}\text{C}$

Minimum VDD to charge EnerChip: 2.5V

Absolute Maximum Ratings

PARAMETER / PIN	CONDITION	MIN	TYPICAL	MAX	UNITS
VDD with respect to GND	25°C	GND - 0.3	-	3.6	V
ENABLE Input Voltage	25°C	GND - 0.3	-	VDD+0.3	V
VEC (1)	25°C	3.0	-	4.15	V
VCHG (1)	25°C	3.0	-	4.15	V
RESET Output Voltage	25°C	GND - 0.3	-	2.7	V
VCAP	25°C	GND - 0.3	-	3.6	V
XI, XO, SDI, SDO, SCL, nCE, AF, FOUT/nIRQ, nIRQ2	See Ambiq Micro AM0813 Data Sheet				


⁽¹⁾ No external connections to these pins are allowed, except parallel EnerChips.

Integrated EnerChip Thin Film Battery Operating Characteristics

PARAMETER		CONDITION	MIN	TYPICAL	MAX	UNITS
Self-Discharge (5 yr. average)		Non-recoverable	-	2.5	-	% per year
		Recoverable	-	1.5 ⁽¹⁾	-	% per year
Operating Temperatur	е	-	-10	25	+70	°C
Storage Temperature		-	-40	-	+125 (2)	°C
Recharge Cycles	25°C	10% depth-of-discharge	5000	-	-	cycles
(to 80% of rated		50% depth-of discharge	1000	-	-	cycles
capacity)	40°C	10% depth-of-discharge	2500	-	-	cycles
		50% depth-of-discharge	500	-	-	cycles
Recharge Time (to 80% of rated		Charge cycle 2	-	11	22	minutes
capacity; 4.1V charge; 25°C)		Charge cycle 1000	-	45	70	minutes
Capacity		40nA discharge; 25°C	5	-	-	μAh

⁽¹⁾ First month recoverable self-discharge is 5% average.

⁽²⁾ Storage temperature is for uncharged EnerChip CC device.

Note: All specifications contained within this document are subject to change without notice.

Important Reference Documents

For complete specifications of the integrated AMO813 Real-Time Clock, see here: http://ambigmicro.com

For complete specifications of the Cymbet 5μ Ah EnerChip and integrated power management circuit, reference the CBC3105 datasheet here: http://www.cymbet.com/pdfs/DS-72-21.pdf.

The EnerChip and power management functions within the CBC34813 are configured as in Mode 1 (VMODE = GND) as described in the CBC3105 DS-72-21 data sheet.

For guidelines regarding crystal selection and other important information pertaining to the AMO813, see here: http://ambigmicro.com/resource-center/

Functional Description of Integrated AM0813 Real-Time Clock

The AM0813 serves as a full function RTC for host processors such as microcontrollers. The AM0813 includes 3 distinct feature groups: 1) baseline timekeeping features with 32.768 kHz oscillator and 2) advanced timekeeping features, and 3) basic power management features. Functions from each feature group may be controlled via memory mapped registers. These registers are accessed using either an I2C serial interface (e.g., in the AM0803) or a SPI serial interface (e.g., in the AM0813). For more information on the AM0813, see here: http://ambigmicro.com/0800-series.

Low Power Operation

Minimum power operation will be achieved by turning off the charge pump in the power management circuit by driving ENABLE low once the internal EnerChip has been charged - typically one hour to full charge at room temperature.

The RTC has 3 low power modes, allowing the designer to make appropriate trade-offs between power consumption and timing accuracy. Operating current drawn by the RTC is as follows:

- <15 nA with RC oscillator
- <20 nA with RC oscillator and autocalibration
- <55 nA with crystal oscillator

In addition to the RTC current, the integrated power management circuit typically draws 20-25nA from the EnerChip storage device at room temperature.

Crystal Oscillator Selection

The AMO813 should work with any standard 32.768kHz tuning fork crystal with a load capacitance rating from 0 - 12pF and an ESR from 0 - 90kohms. Recommendations are as follows:

- Crystal load capacitance rating: 0 12pF
- Crystal ESR rating: 0 90kohms max
- No additional loading capacitors on the board
- Stray PCB capacitance on XO/XI: 2pF or less (less is better)

Typically, an oscillator allowance (OA) of 260-290kohms is generated. Increasing the loading capacitance on the XI/XO pins will decrease the OA and using crystals with a higher ESR will reduce the OA margin. The crystal will not affect the AMO813 RTC current because a fixed bias current to the crystal is used. No external load capacitance is required because the frequency offset from the crystal is digitally calibrated out, to within +/-2ppm. Mainstream crystals (3.2mm x 1.5mm) generally have a maximum ESR rating of 70kohms. The smaller 2.0mm x 1.2mm crystals generally have a maximum ESR of 90kohms. Some crystal vendors, such as Epson or Micro Crystal, might have some of the smaller crystals with lower ESR. Below is a list of crystals from several vendors that have been tested:

Abracon: ABS07-32.768KHZ-7-T, ABS06-32.768KHZ-9-T, ABS25.32.768KHZ-T

Epson: C-002RX, FC-135, FC-12D, FC-12M

Micro Crystal: CC7V-T1A, CM7V-T1A

CBC34813 (AM0813) Register Definitions (00 to 0F)

Offset	Register	7	6	5	4	3	2	1	0
00	Hundredths		Second	s - Tenths		5	Seconds -	Hundred	hs
01	Seconds	GP0	S	econds - Te	ens		Second	ls - Ones	
02	Minutes	GP1	N	/linutes - Te	ens		Minute	s - Ones	
03	Hours (24 hour)	GP3	GP2	Hours	- Tens		Hours	- Ones	
03	Hours (12 hour)	GP3	GP2	AM/ PM	Hours - Tens		Hours	- Ones	
04	Date	GP5	GP4	Date -	Tens		Date	- Ones	-
05	Months	GP8	GP7	GP6	Month - Tens	Month - Ones			
06	Years		Years	s - Tens			Years	- Ones	-
07	Weekdays	GP13	GP12	GP11	GP10	GP9		Weekday	S
08	Hundredths_Alarm	Hu	indredths	Alarm - Tei	nths	Hundr	edths_Ala	arm - Hun	dredths
09	Second_Alarm	GP14	Seco	ond_Alarm -	- Tens	9	Second_A	larm - On	es
0A	Minute_Alarm	GP15	Minu	ute_Alarm -	Tens	1	Minute_A	larm - One	es
0B	Hour_Alarm (24 hour)	GP17	GP16	Hour_Ala	rm - Tens		Hour_Ala	arm - One	s
0B	Hour Alarm (12 hour)	GP3	GP2		M/ M	Hours - Tens			
0C	Date_Alarm	GP19	GP18	Date Ala	rm - Tens	Date_Alarm - Ones			
0D	Month_Alarm	GP22	GP21	GP20	Month_ Alarm - Tens	Month_Alarm - Ones			es
0E	Weekday_Alarm	GP27	GP26	GP25	GP24	GP23 Weekday Alarm			arm
0F	Status	CB	BAT	WDT	BL	TIM	ALM	EX2	EX1

The following register bits must be set prior to any switchover, even from VDD to the EnerChip.

BREF bits: The default value out of reset is 0000. This needs to be reprogrammed to 1111. IOBM bit: The default value out of reset is 1. This needs to be reprogrammed to 0.

POWER SUPPLY CURRENT CHARACTERISTICS OF INTEGRATED CBC910 POWER MANAGEMENT CIRCUIT ONLY

 $Ta = -20^{\circ}C \text{ to } +70^{\circ}C$

CHARACTERISTIC	SYMBOL	CONDITION		MIN	MAX	UNITS
Quiescent Current		ENABLE=GND	V _{DD} =3.3V	ı	3.5	μΑ
(CBC910 power management circuit			V _{DD} =5.5V	-	6.0	μΑ
only; VDD > VRESET; RTC	IQ	IQ ENABLE=V _{DD}	V _{DD} =3.3V	-	35	μΑ
current not included)			V _{DD} =5.5V	-	38	μΑ
EnerChip Cutoff Current (IQBATON adds to RTC	IQBATOFF	VBAT < VBATCO, VOUT=0		-	0.5	nA
current when in backup mode)	IQBATON	VBAT > VBATCO, ENABLE=VDD, Id	оит=0	-	42	nA

INTERFACE LOGIC SIGNAL CHARACTERISTICS

 $V_{DD} = 2.5V \text{ to } 5.5V, Ta = -20^{\circ}C \text{ to } +70^{\circ}C$

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
High Level Input Voltage	Vih	-	VDD - 0.5	-	Volts
Low Level Input Voltage	VIL	-	-	0.5	Volts
High Level Output Voltage	Vон	V _{DD} >Vтн (see Figures 4 and 5) IL=10µA	V _{DD} - 0.04V ⁽¹⁾	-	Volts
Low Level Output Voltage	Vol	IL = -100μA	-	0.3	Volts
Logic Input Leakage Current	lin	O <vin<vdd< td=""><td>-1.0</td><td>+1.0</td><td>nA</td></vin<vdd<>	-1.0	+1.0	nA

⁽¹⁾ \overline{RESET} tracks VDD; $\overline{RESET} = VDD - (IOUTx ROUT)$.

RESET SIGNAL AC/DC CHARACTERISTICS

 $V_{DD} = 2.5V \text{ to } 5.5V, Ta = -20^{\circ}C \text{ to } +70^{\circ}C$

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
Vod Rising to RESET Rising	treseth	V _{DD} rising from 2.8V TO 3.1V in <10µs	60	200	ms
VDD Falling to RESET Falling	†RESETL	V _{DD} falling from 3.1V to 2.8V in <100ns	0.5	2	μs
TRIP Voltage VDD Rising	Vreset	V _{MODE} =GND	2.85	3.15	V
RESET Hysteresis Voltage (VDD to RESET)	VHYST	V _{MODE} =GND	45	75	mV

CHARGE PUMP CHARACTERISTICS (PERTAINS TO INTEGRATED CBC910 POWER MANAGEMENT CIRCUIT) (NOTE: THIS TABLE PROVIDES IMPORTANT INFORMATION WHEN CONNECTING ADDITIONAL ENERCHIPS TO VCHG.)

 $V_{DD} = 2.5V \text{ to } 5.5V, Ta = -20^{\circ}C \text{ to } +70^{\circ}C$

CHARACTERISTIC	SYMBOL	CONDITION	MIN	MAX	UNITS
ENABLE=V _{DD} to Charge Pump Active	tcpon	ENABLE to 3rd charge pump pulse, VDD=3.3V	60	80	μs
ENABLE Falling to Charge Pump Inactive	tcpoff	-	0	1	μs
Charge Pump Frequency	fcp		-	120	KHz (1)
Charge Pump Resistance	Rcp	Delta VBAT, for IBAT charging current of 1µA to 100µA CFLY=0.1µF, CBAT=1.0µF	150	300	Ω
Vсна Output Voltage	Vcp	CFLY=0.1μF, CBAT=1.0μF, Ιουτ=1μΑ, Temp=+25°C	4.075	4.125	V
Vсна Temp. Coefficient	Тсср	Іоυт=1μA, Temp=+25°C	-2.0	-2.4	mV/°C
Charge Pump Current Drive	ICP	IBAT=1mA CFLY=0.1μF, CBAT=1.0μF	1.0	-	mA
Charge Pump on Voltage	VENABLE	ENABLE=V _{DD}	2.5	-	V

 $[\]overline{(1)}$ $f_{CP} = 1/t_{CPPER}$

ADDITIONAL CHARACTERISTICS

 $Ta = -20^{\circ}C \text{ to } +70^{\circ}C$

CHARACTERISTIC	SYMBOL	CONDITION	LIMITS		UNITS
			MIN	MAX	
VBAT Cutoff Threshold	VBATCO	Ιουτ=1μΑ	2.75	3.25	V
Cutoff Temp. Coefficient	Tcco	-	+1	+2	mV/°C
VBAT Cutoff Delay Time	tcooff	VBAT from 40mV above to 20mV below VBATCO IOUT=1µA	40	-	ms

Note: All specifications contained within this document are subject to change without notice

Ordering Information

EnerChip RTC Part Number	Description	Notes	
CBC34813-M5C	EnerChip RTC in 5mm x 5mm x 1.4mm 16-QFN Land Grid Array	Shipped in Tube	
CBC34813-M5C-TR1 CBC34813-M5C-TR5	EnerChip RTC in 5mm x 5mm x 1.4mm 16-QFN Land Grid Array	Tape-and-Reel - 1000 pcs (TR1) or 5000 pcs (TR5) per reel	
CBC-EVAL-12-34813	EnerChip RTC Evaluation Kit	USB based Eval Kit with CBC34813 tab board	

U.S. Patent No. 8,144,508. Additional U.S. and Foreign Patents Pending

Disclaimer of Warranties; As Is

The information provided in this data sheet is provided "As Is" and Cymbet Corporation disclaims all representations or warranties of any kind, express or implied, relating to this data sheet and the Cymbet EnerChip product described herein, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, non-infringement, title, or any warranties arising out of course of dealing, course of performance, or usage of trade. Cymbet EnerChip products are not authorized for use in life critical applications. Users shall confirm suitability of the Cymbet EnerChip product in any products or applications in which the Cymbet EnerChip product is adopted for use and are solely responsible for all legal, regulatory, and safety-related requirements concerning their products and applications and any use of the Cymbet EnerChip product described herein in any such product or applications.

Cymbet, the Cymbet Logo, and EnerChip are Cymbet Corporation Trademarks