## Old Company Name in Catalogs and Other Documents

On April 1<sup>st</sup>, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1<sup>st</sup>, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

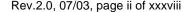


#### Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
  - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
  - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
  - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.



The revision list can be viewed directly by clicking the title page. The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.


# 32

# SH-2E SH7055S F-ZTAT<sup>™</sup>

Hardware Manual
Renesas 32-bit RISC
Microcomputer
SuperH<sup>™</sup> RISC engine Family/
SH7000 Series

#### Notes regarding these materials

- This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.
- Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
- 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
- 4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
- Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
- 6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.
- 7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
- 8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
  - (1) artificial life support devices or systems
  - (2) surgical implantations
  - (3) healthcare intervention (e.g., excision, administration of medication, etc.)
  - (4) any other purposes that pose a direct threat to human life
  - Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.
- 9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
- 10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.
- 12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.
- 13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.



## General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

## 1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions may occur due to the false recognition of the pin state as an input signal. Unused pins should be handled as described under Handling of Unused Pins in the manual.

## 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

#### 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

#### 5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

## **Preface**

The SH7055SF is a single-chip RISC (reduced instruction set computer) microcomputer that has an original 32-bit RISC type CPU as its core, and also includes peripheral functions necessary for system configuration.

The SH7055SF is equipped with on-chip peripheral functions necessary for system configuration, including a floating-point unit (FPU), large-capacity ROM and RAM, a direct memory access controller (DMAC), timers, a serial communication interface (SCI), Controller area network (HCAN), A/D converter, interrupt controller (INTC), and I/O ports, therefore, it can be used as a microprocessor built in a high-level control system.

The SH7055SF is an F-ZTAT<sup>TM\*</sup> (Flexible Zero Turn-Around Time) version with flash memory as its on-chip ROM, and it can rapidly and flexibly deal with each situation on an application system with fluid specifications from an early stage of mass production to full-scale production.

Note: F-ZTAT<sup>TM</sup> is a trademark of Renesas Technology Corp.

Target users: This manual was written for users who will be using the SH7055S F-ZTAT in

the design of application systems. Users of this manual are expected to understand the fundamentals of electrical curcuits, logical circuits, and

microcomputers.

Objective: This manual was written to explain the hardware functions and electrical

characteristics of the SH7055S F-ZTAT to the above users.

Refer to the SH-2E Programming Manual for a detailed description of the

instruction set.

## Notes on reading this manual:

- In order to understand the overall functions of the chip
  Read the manual according to the contents. This manual can be roughly categorized into parts
  on the CPU, system control functions, peripheral functions and electrical characteristics.
- In order to understand the details of the CPU's functions Read the SH-2E Programming Manual.

Rule: Bit order: The MSB (most significant bit) is on the left and the LSB (least

significant bit) is on the right.

Releated Manuals: The latest versions of all related manuals are available from our web site.

Please ensure you have the latest versions of all documents you require.

http://www.renesas.com/

| SH7055S F-ZTAT m | anuals: |
|------------------|---------|
|------------------|---------|

| Manual Title                                                                 | ADE No.     |
|------------------------------------------------------------------------------|-------------|
| SH7055S F-ZTAT Hardware Manual                                               | This manual |
| SH-2E Programming Manual                                                     |             |
|                                                                              |             |
| Users manuals for development tools:                                         |             |
|                                                                              | 4.D.E. N.   |
| Manual Title                                                                 | ADE No.     |
| SH Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual | ADE-702-246 |
| SH Series Simulator/Debugger (for Windows) User's Manual                     | ADE-702-186 |
| SH Series Simulator/Debugger (for UNIX) User's Manual                        | ADE-702-203 |
| High-Performance Embedded Workshop User's Manual                             | ADE-702-201 |
|                                                                              |             |
| Application note:                                                            |             |
| Manual Title                                                                 | ADE No.     |

C/C++ Compiler

## Revisions and Additions in This Editions

| Item                                                 | Page Revisions (See Manual for Details) |            |                  |                                                                                |        |  |  |  |  |
|------------------------------------------------------|-----------------------------------------|------------|------------------|--------------------------------------------------------------------------------|--------|--|--|--|--|
| 2.4.1 Instruction Set by                             | 53                                      | Table ame  | ended            |                                                                                |        |  |  |  |  |
| Classification                                       |                                         | BF/S label | 10001111dddddddd | Delayed branch, if T = 0, disp $\times$ 2 + PC $\rightarrow$ PC; if T = 1, nop | 2/1* — |  |  |  |  |
| Table 2.16 Branch Instructions                       |                                         |            |                  |                                                                                |        |  |  |  |  |
| 3.6 Usage Notes                                      | 69, 70                                  | Newly add  | ded              |                                                                                |        |  |  |  |  |
| 3. Restrictions of the FADD and FSUB instructions    |                                         |            |                  |                                                                                |        |  |  |  |  |
| 5.3.1 Connecting a Crystal                           | 75, 76                                  | Recomme    | ended value a    | mended                                                                         |        |  |  |  |  |
| Oscillator                                           |                                         | CL1=CL2    | =18-22 pF (re    | commended value)                                                               |        |  |  |  |  |
| Figure 5.3 Connecting of Crystal Oscillator(Example) |                                         | Table ame  | ended            | Frequency (MHz)                                                                |        |  |  |  |  |
| Table 5.3 Damping Resistance                         |                                         | Parameter  | 5                | 10                                                                             |        |  |  |  |  |
| Values(Recommended Values)                           |                                         | Rd (Ω)     | 500              | 0                                                                              |        |  |  |  |  |

## 5.4 Usage Notes

PLL Oscillation Power Supply

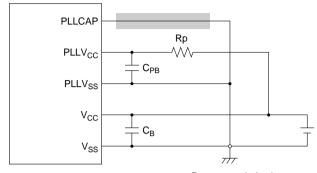
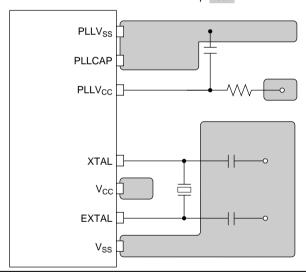

Figure 5.7 Points for Caution in PLL Power Supply Connection

Figure 5.8 Actual Example of Board Design

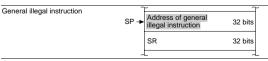
## 77, 78 Description deleted


PLL Oscillation Power Supply: Separate PLLV $_{\rm cc}$  and PLLV $_{\rm ss}$  from the other V $_{\rm cc}$  and V $_{\rm ss}$  lines at the board power supply source, ...

## Figures amended



Recommended values C<sub>PB</sub>, C<sub>B</sub>: 0.1µF


Rp: 200Ω



## 6.7 Stack Status after Exception 92 Processing Ends

Table 6.11 Stack Status After Exception Processing Ends

## Table amended



| 11.1.1 Features  191 to Description amended 193 Prescaler  — 1/1 to 1/32 clock scaling possible in initichannels 0 to 8, 10, and 11  — Channels 1 to 5 enable TI10 pin input, raction TI10 pin input (correction), and select A AGCKM.  Channel 2  — Provision for forcible cutoff of channel 8 counters(DCNT8I to P)  Channel 8  — Reload function can be set to eight 16-becounters (DCNT8I to DCNT8P) |                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| channels 0 to 8, 10, and 11  — Channels 1 to 5 enable TI10 pin input, r TI10 pin input (correction), and select A AGCKM.  Channel 2  — Provision for forcible cutoff of channel 8 counters(DCNT8I to P)  Channel 8  — Reload function can be set to eight 16-b counters (DCNT8I to DCNT8P)                                                                                                               |                                     |
| TI10 pin input (correction), and select A AGCKM.  Channel 2  — Provision for forcible cutoff of channel 8 counters(DCNT8I to P)  Channel 8  — Reload function can be set to eight 16-b counters (DCNT8I to DCNT8P)                                                                                                                                                                                       | tial stage for                      |
| — Provision for forcible cutoff of channel 8 counters(DCNT8I to P)  Channel 8  — Reload function can be set to eight 16-b counters (DCNT8I to DCNT8P)                                                                                                                                                                                                                                                    |                                     |
| counters(DCNT8I to P)  Channel 8  — Reload function can be set to eight 16-b counters (DCNT8I to DCNT8P)                                                                                                                                                                                                                                                                                                 |                                     |
| <ul> <li>Reload function can be set to eight 16-b<br/>counters (DCNT8I to DCNT8P)</li> </ul>                                                                                                                                                                                                                                                                                                             | 8 down-                             |
| counters (DCNT8I to DCNT8P)                                                                                                                                                                                                                                                                                                                                                                              |                                     |
| 01 10                                                                                                                                                                                                                                                                                                                                                                                                    | bit down                            |
| Channel 9                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
| <ul> <li>Channel 9 has six event counters and six g<br/>registers, allowing the following operations:</li> <li>Channel 10</li> </ul>                                                                                                                                                                                                                                                                     | <i>J</i>                            |
| <ul> <li>Channel 10 has a 32-bit output compare ar capture register, free-running counter, 16-b running counter, output compare/input capt register, reload register, 8-bit event counter output compare register, and one 16-bit relocunter, allowing the following operations:         <ul> <li>Reload count possible with 1/32, 1/64, 1</li> </ul> </li> </ul>                                        | oit free-<br>ture<br>r, and<br>load |

1/256 times the captured value

falling edge, and both edges

output, and toggle output selectable

- Waveform output at compare match: 0 output, 1

- Input capture function: Detection at rising edge,

 Compare-match signal can be output at the APC by using a general register as a output compare

register

Channel 11

| Item                                                               | Page | ge Revisions (See Manual for Details)                |       |                                      |                  |                                                                            |                 |             |            |  |  |
|--------------------------------------------------------------------|------|------------------------------------------------------|-------|--------------------------------------|------------------|----------------------------------------------------------------------------|-----------------|-------------|------------|--|--|
| 11.1.1 Features                                                    | 195, | , Table amended                                      |       |                                      |                  |                                                                            |                 |             |            |  |  |
| Table 11.1 ATU-II functions                                        | 196  |                                                      |       |                                      |                  |                                                                            |                 |             |            |  |  |
|                                                                    |      | Channel 1                                            |       | Channel 2                            | 2                | С                                                                          | hanne           | ls 3–5      |            |  |  |
|                                                                    |      | $(\phi-\phi/32)\times(1$                             | /2n)  | (\$\phi-\$\phi/32) ×                 | (1/2n            | ı) (¢                                                                      | <b>–</b> ф/32)  | × (1/2      | ገ)         |  |  |
|                                                                    |      | (n = 0-5)                                            |       | (n = 0-5)                            |                  | · `                                                                        | 1 = 0-5         | <u> </u>    | _          |  |  |
|                                                                    |      | TCLKA, TCL<br>AGCK, AGC                              |       | TCLKA, T<br>AGCK, AG                 |                  |                                                                            | CLKA,<br>GCK, A |             |            |  |  |
|                                                                    |      | GR10G                                                |       |                                      |                  |                                                                            |                 |             |            |  |  |
|                                                                    |      | OCR10AH,<br>OCR10AL,<br>OCR10B,<br>NCR10,<br>TCCLR10 |       |                                      |                  |                                                                            |                 |             |            |  |  |
| 11.1.3 Register Configuration                                      | 201  | Table amer                                           | nded  |                                      |                  |                                                                            |                 |             |            |  |  |
| Table 11.3 ATU-II Registers                                        |      | TSTR1                                                | R/W   | H'00                                 | _                |                                                                            |                 |             |            |  |  |
|                                                                    |      | TSTR2                                                | R/W   | H'00                                 | _                |                                                                            |                 |             |            |  |  |
|                                                                    |      | TSTR3                                                | R/W   | H'00                                 | H'00             |                                                                            |                 |             |            |  |  |
|                                                                    |      | PSCR1                                                | R/W   | H'00                                 |                  |                                                                            |                 |             |            |  |  |
|                                                                    |      | PSCR2                                                | R/W   | H'00                                 | _                |                                                                            |                 |             |            |  |  |
|                                                                    |      | PSCR3                                                | R/W   | H'00                                 | _                |                                                                            |                 |             |            |  |  |
|                                                                    |      | PSCR4                                                | R/W   | H'00                                 | _                |                                                                            |                 |             |            |  |  |
| 11.2.2 Prescaler                                                   | 227  | Bit Table ar                                         | mende | d                                    |                  |                                                                            |                 |             |            |  |  |
| Registers(PSCR)                                                    |      | Bit:                                                 | 7     | 6 5<br>— —                           | 4                | 3                                                                          | 2               | 1           | 0          |  |  |
|                                                                    |      | Initial value:                                       | 0     | 0 0                                  | PSCx<br>0        | E PSCxD                                                                    | PSCxC<br>0      | PSCxB<br>0  | PSCxA<br>0 |  |  |
|                                                                    |      | R/W:<br>x = 1 to 4                                   | R     | R R                                  | R/W              | R/W                                                                        | R/W             | R/W         | R/W        |  |  |
| 11.2.4 Timer I/O Control                                           | 246, | Table amer                                           | nded  |                                      |                  |                                                                            |                 |             |            |  |  |
| Registers(TIOR)                                                    | 247  | Bits 6 to 4                                          |       |                                      |                  |                                                                            |                 |             |            |  |  |
| Timer I/O Control Registers 3A,                                    |      | 1 0                                                  | 0     | GR is an ir capture rec              |                  | Input captu                                                                |                 |             | nel 3      |  |  |
| 3B, 4A, 4B, 5A, 5B(TIOR3A, TIOR3B, TIOR4A, TIOR4B, TIOR5A, TIOR5B) |      |                                                      | 1     | (input captu                         |                  | Input captu                                                                | ıre in GR c     | n rising e  |            |  |  |
|                                                                    |      | 1                                                    | 0     | compare-n<br>enabled)                | natch            | Input captu                                                                | ıre in GR c     | n falling e | dge at     |  |  |
|                                                                    |      | Bits 2 to 0                                          |       | <del></del> ;                        |                  |                                                                            |                 |             |            |  |  |
|                                                                    |      | 1 0                                                  | 0     | GR is an i                           |                  | Input capt                                                                 |                 |             | nnel 3     |  |  |
|                                                                    |      |                                                      | 1     | (input cap<br>channel 3<br>compare-r | ture by<br>and 9 | Input capt                                                                 | ure in GR       | on rising e |            |  |  |
|                                                                    |      | 1                                                    | 0     | enabled)                             | atoH             | Input capture in GR on falling edge at TIOxx pin (GR connot be written to) |                 |             |            |  |  |

| Item                                                 | Page | Revisions (See Manual for Details)                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.2.22 Cycle Registers (CYLR)                       | 335  | Description amended                                                                                                                                                                                                                                                                                                                                                |
| Cycle Registers (CYLR6A to CYLR6D, CYLR7A to CYLR7D) |      | At the same time, the buffer register (BFR) value is transferred to the duty register (DTR). Output pin (TO6A to TO6D, TO7A to TO7D) of corresponding channnel will be 0 when H'0000 of BFR is 0 output and otherwise will                                                                                                                                         |
| 11.2.26 Channel 10 Registers                         | 338  | Description amended                                                                                                                                                                                                                                                                                                                                                |
| Counters(TCNT)                                       |      | an input clock and is cleared to the initial value by input                                                                                                                                                                                                                                                                                                        |
| Free-Running Counter 10AH,AL                         |      | capture input (TI10)(AGCK).                                                                                                                                                                                                                                                                                                                                        |
| (TCNT10AH, TCNT10AL)                                 |      |                                                                                                                                                                                                                                                                                                                                                                    |
| 11.2.26 Channel 10 Registers                         | 342  | Description amended                                                                                                                                                                                                                                                                                                                                                |
| Registers (TCNT)                                     |      | At the same time, ICF10A in timer status register 10                                                                                                                                                                                                                                                                                                               |
| Input Capture Register 10AH, AL                      |      | (TSR10) is set to 1.                                                                                                                                                                                                                                                                                                                                               |
| (ICR10AH, ICR10AL)                                   |      |                                                                                                                                                                                                                                                                                                                                                                    |
| 11.3.1 Overview                                      | 355  | Description amended                                                                                                                                                                                                                                                                                                                                                |
| Channels 6 and 7                                     |      | Do not set a value in DTR that will result in the condition DTR > CYLR. When H'0000 is set to DTR, do not have DTR directly read H'0000. Set BFR to H'0000 and set H'0000 by forwarding from BFR to DTR. If H'0000 is directly set to DTR, duty may not be 0%.                                                                                                     |
| 11.3.8 Twin-Capture Function                         | 365  | Description amended                                                                                                                                                                                                                                                                                                                                                |
|                                                      |      | Line 4                                                                                                                                                                                                                                                                                                                                                             |
|                                                      |      | When TCNT0, TCNT1A, and TCNT2A in channel 0, channel 1, and channel 2 are started by a setting in the timer status register (TSR), and an edge detection is carried out by the ICR0A input as a trigger signal, the TCNT1A value is transferred to OSBR1, and the TCNT2A value to OSBR2. Edge detection is as described in section 11.3.4, Input Capture Function. |

| Item                                                                                                                 | Page | Revisions (See Manual for Details)                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11.3.9 PWM Timer Function                                                                                            | 366, | Description amended                                                                                                                                                                                                                                                                                                                                                           |
| Figure 11.21 PWM Timer Operation                                                                                     | 367  | If the DTR value is H'0000, the output does not change (0% duty). However, when H'0000 is set to DTR, do not directly write H'0000 to DTR. Set H'0000 to BFR and forward it from BFR to DTR. If H'0000 is directly set to DTR, duty may not be 0%. A duty of 100% is specified by setting DTR = CYLR. Do not set a value in DTR that will result in the condition DTR > CYLR. |
|                                                                                                                      |      | Figure amended                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                      |      | TO6A amended                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                      |      | PWM output does not change for one cycle after activation*                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                      |      | Note added                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                      |      | <ul> <li>PWM output is not guaranteed because retained<br/>value is output for one cycle after activation.</li> </ul>                                                                                                                                                                                                                                                         |
| 11.3.9 PWM Timer Function                                                                                            | 368  | Figure replaced                                                                                                                                                                                                                                                                                                                                                               |
| Figure 11.22 Complementary PWM Mode Operation                                                                        |      |                                                                                                                                                                                                                                                                                                                                                                               |
| 11.3.12 Channel 10 Functions                                                                                         | 372  | Figure amended                                                                                                                                                                                                                                                                                                                                                                |
| Inter-Edge Measurement<br>Function and Edge Input<br>Cessation Detection Function:                                   |      |                                                                                                                                                                                                                                                                                                                                                                               |
| Figure 11.28 TCNT10A Capture Operation and Compare-Match Operation                                                   |      |                                                                                                                                                                                                                                                                                                                                                                               |
| 11.7 Usage Notes                                                                                                     | 414  | Note added                                                                                                                                                                                                                                                                                                                                                                    |
| Contention between DCNT Write                                                                                        |      | Figure amended                                                                                                                                                                                                                                                                                                                                                                |
| and Counter Clearing by<br>Underflow:                                                                                |      | Underflow signal  H'5555 is written to the DCNT because the write to the DCNT has priority                                                                                                                                                                                                                                                                                    |
| Figure 11.72 Contention between DCNT Write and Underflow                                                             | ı    | DCNT 0001 0000 5555                                                                                                                                                                                                                                                                                                                                                           |
| 11.7 Usage Notes                                                                                                     | 418  | Description amended                                                                                                                                                                                                                                                                                                                                                           |
| ATU Pin Setting:                                                                                                     |      | When a port is set to the ATU pin function, the following points must be noted because input capture or count operation may occur.                                                                                                                                                                                                                                            |
| 17.4.2 Scan Mode                                                                                                     | 608  | Figure amended                                                                                                                                                                                                                                                                                                                                                                |
| Figure 17.4 Example of A/D<br>Converter Operation(Scan<br>Mode(Single-Cycle Scan),<br>Channels AN0 to AN11 Selected) | )    | ADST Clear                                                                                                                                                                                                                                                                                                                                                                    |

| Item                                                                     | Page | Revisions (See Manual for Details)                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22.1 Features                                                            | 736  | Description amended                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul><li>Programming/erasing time</li><li>Number of programming</li></ul> |      | <ul> <li>Programming/erasing time         The flash memory programming time is t<sub>p</sub> ms (typ) in 128-byte simultaneous programming and t<sub>p</sub>/128ms per byte. The erasing time is t<sub>e</sub>s (typ) per block.     </li> <li>Number of programming         The number of flash memory programming can be up to N<sub>wee</sub> times.     </li> </ul>                                                                                                |
| 22.4.3 Programming/Erasing                                               | 758  | Description added                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Interface Parameters                                                     |      | Line 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (2) Programming/Erasing Initialization                                   |      | The general registers R8 to R15 are stored. The general registers R0 to R7 can be used without being stored.                                                                                                                                                                                                                                                                                                                                                           |
| 22.5.3 User Boot Mode                                                    | 782  | Description added                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (1) User Boot Mode Initiation                                            |      | Line 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                          |      | When the reset start is executed in user boot mode, the check routine for flash-memory related registers runs. While the check routine is running, the RAM area about 1.2 kbytes from H'FFFF6800 is used by the routine and 4 bytes from H'FFFFDFFC is used as a stack area. NMI and all other interrupts cannot be accepted. Neither can the AUD be used in this period. This period is approximately 100 $\mu s$ while operating at an internal frequency of 40 MHz. |
| 22.7 Flash Memory Emulation                                              | 791  | Note: Description added                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| in RAM                                                                   |      | Note: Setting the RAMS bit to 1 puts all the blocks in flash memory in the programming/erasing-protected state regardless of the values of the RAM2 to RAM0 bits (emulation protection). Clear the RAMS bit to 0 before actual programming or erasure. RAM emulation can be performed when the user boot MAT is selected. However, programming/erasing user boot MAT can be performed only in boot mode or program mode.                                               |

| Item                                                       | Page | Revisio                                                                                                                                                           | ons (See Ma                                                         | nual for Detail                                                                                                                                                                                          | s)                                       |  |  |  |  |  |
|------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|
| 22.8.3 Other Notes                                         | 797  | Table a                                                                                                                                                           | mended and                                                          | d added                                                                                                                                                                                                  |                                          |  |  |  |  |  |
| 2. User branch processing                                  |      | Minim                                                                                                                                                             | um Interva                                                          | I                                                                                                                                                                                                        |                                          |  |  |  |  |  |
| intervals                                                  |      | Approx                                                                                                                                                            | ximately 19                                                         | μs                                                                                                                                                                                                       |                                          |  |  |  |  |  |
| Table 22.11 Initiation Intervals of User Branch Processing |      | Appro                                                                                                                                                             | ximately 19                                                         | μs                                                                                                                                                                                                       |                                          |  |  |  |  |  |
| Table 22.12 Required Period for                            | •    | Processing                                                                                                                                                        |                                                                     | Max.                                                                                                                                                                                                     | Min.                                     |  |  |  |  |  |
| Initiating User Branch Processing                          |      | Programmii<br>Erasing                                                                                                                                             | ng                                                                  | Approximately 113 μs Approximately 85 μs                                                                                                                                                                 | Approximately 113 μs Approximately 45 μs |  |  |  |  |  |
| 4. State in which AUD operation                            |      | Descrip                                                                                                                                                           | tion added                                                          |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
| is disabled and interrupts are ignored                     |      | i<br>(<br>i                                                                                                                                                       | mmediately<br>(Approximat<br>nternal freq                           | hecking the flash-memory related registers mediately after user boot mode is initiated approximately 100 µs when operation with ternal frequency of 40 MHz is carried out a e reset signal is released.) |                                          |  |  |  |  |  |
| 22.10.1 Serial Communication                               | 827  | Description added                                                                                                                                                 |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
| Interface Specification for Boot                           |      | Command:                                                                                                                                                          |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
| Mode (3) Mamary road                                       |      | Read start address (four bytes): Size of data to be read                                                                                                          |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
| (3) Memory read                                            |      | Error response:                                                                                                                                                   |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
|                                                            |      | H'2A: Address error                                                                                                                                               |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
|                                                            |      | The start address for reading is not in the MAT.                                                                                                                  |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
|                                                            |      | H'2B: Size error                                                                                                                                                  |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
|                                                            |      | The read size exceeds the MAT, the last address for reading calculated from the start address for reading and the read size is not in the MAT, or read size is 0. |                                                                     |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
| 24.3.1 Transition to Hardware                              | 854  | Descrip                                                                                                                                                           | tion added                                                          |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
| Standby Mode                                               |      | and RE                                                                                                                                                            | mode when the HSTBY following to mode ating modes. Operation nteed. |                                                                                                                                                                                                          |                                          |  |  |  |  |  |
|                                                            |      |                                                                                                                                                                   |                                                                     | mode reduces p<br>g all SH7055SF                                                                                                                                                                         | ower consumption functions               |  |  |  |  |  |

| Item                                                 | Page   | Revisions (See Manual for Details) |                                                |           |                  |              |  |  |  |  |
|------------------------------------------------------|--------|------------------------------------|------------------------------------------------|-----------|------------------|--------------|--|--|--|--|
| 26.1 Absolute Maximum Rating                         | ıs861, | Table amended                      |                                                |           |                  |              |  |  |  |  |
| Table 26.1 Absolute Maximum Ratings                  | 862    | Power supply voltage*              | PV <sub>cc</sub> 1 ar<br>PV <sub>cc</sub> 2 pi |           | PV <sub>cc</sub> | -0.3 to +6.5 |  |  |  |  |
|                                                      |        | (except w                          | g temperaturiting or era                       |           | Topr             | -40 to +125  |  |  |  |  |
|                                                      |        |                                    | temperatur<br>r erasing on<br>mory)            |           | TWEopr           | -40 to +85   |  |  |  |  |
|                                                      |        | Storage to                         | emperature                                     | )         | Tstg             | -55 to +125  |  |  |  |  |
|                                                      |        | Note add                           | ed<br>re Range for                             | Operation | Accumula         | ated Time    |  |  |  |  |
|                                                      |        | 85 to 105 °C                       | 0                                              |           | 3000 hours       | s            |  |  |  |  |
| 26.2 DC Characteristics                              | 869    | Table am                           | ended                                          |           |                  |              |  |  |  |  |
| Table 26.2 Correspondence between Power Supply Names |        | 169                                |                                                | PC4       | ĪRQ0             |              |  |  |  |  |

and Pins

26.2 DC Characteristics

Table 26.4 DC Characteristics

[Operating precautions]

874 to Table amended

876

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}, V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C to } 125^{\circ}\text{C}. When <math>PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{cc} = PV_{cc}1. When writing or erasing on-chip flash memory,}$ 

 $T_a = -40^{\circ}C$  to 85°C.

| level voltage (except Schmitt trigger input voltage)  Input low-level voltage (except Schmitt trigger input voltage)  Input leak current  Input pull-up MOS current  Input pull-up MOS current  Input pull-up AUDR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NMI, FWE,                                             | W               |                        |   |                          |    |                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------|------------------------|---|--------------------------|----|---------------------------------------------------------------------------------------|
| Input low- level voltage (except Schmitt trigger input voltage)  Input leak current  Input pull-up AUDR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0, HSTBY                                             | V <sub>IH</sub> | V <sub>∞</sub><br>-0.5 | _ | 5.8                      | V  | 2.7 V ≤ V <sub>CC</sub> ≤ 3.6V                                                        |
| level voltage (except Schmitt Horizon Fresh Fres |                                                       |                 |                        |   |                          |    |                                                                                       |
| Input leak current  Input leak current  Input leak RES. N MD2-C  EXTAL  TMS. 1 TCK (6  AUDM AUDS' AUDA' (Stand AUDR:  A/D po  Input leak current  Input pull-up MOS current  Input pull-up AUDR: AUDR: AUDA' | NMI, FWE,<br>-0, HSTBY,<br>F, AUDRST,<br>MD           | V <sub>IL</sub> | -0.3                   | _ | 0.5                      | V  | 2.7 V ≤ V <sub>cc</sub> ≤ 3.6V                                                        |
| Input leak current  RES, N MD2-C EXTAL  TMS, 1 TCK (S  AUDM AUDS AUDA (Stand AUDA:  | PL11                                                  |                 | -0.3                   | - | PV <sub>cc</sub> 2 × 0.3 | V  |                                                                                       |
| MD2-0   EXTAL     TMS, 1     TCK (S     AUDM     AUDS     AUDA     (Stand     AUDR     AUDR   | r input pins                                          |                 | -0.3                   | _ | 0.8                      | V  |                                                                                       |
| Input leak current  Input pull-up MOS current  Input pull-up MOS current  TMS, 1 TCK (6 AUDM AUDS AUDA (Stand AUDR)  A/D po  TPE15- PF0, P (When expans Other in AUDM AUDS AUDA AUDA AUDA AUDA AUDRI Input pull- I | NMI, FWE,<br>-0, HSTBY,                               | lin             | -                      | _ | 3.0*1<br>6.0*2           | μА | Vin = 0.5 V to 5.8 V                                                                  |
| Input leak current  Input leak current  D15-C  PE15-PF0, P (When expans Other in MOS current)  Input pull-up MOS current  Input pull-up AUDR: AU | AL (Standby)                                          | -               | -                      | - | 3.0*1<br>6.0*2           | μА | $Vin = 0.5 V to$ $V_{cc} - 0.5 V$                                                     |
| AUDS: AUDA: AUDA: (Stand AUDA: (Stand AUDA: Stand AUDA: Au   | TRST, TDI,<br>(Standby)                               | •               | _                      | - | 3.0*1<br>6.0*2           | μА | $Vin = 0.5 V to$ $V_{cc} - 0.5 V$                                                     |
| A/D por                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ATA3-0                                                | <del>-</del>    | _                      | _ | 3.0*1<br>6.0*2           | μА | Vin = 0.5 V to<br>PV <sub>cc</sub> 2 - 0.5 V                                          |
| Input leak current  PE15-PF0, P (When expans Other in the company of the company  | RST (Standby)                                         | -               | _                      | - | 3.0*1<br>6.0*2           | μА | Vin = 0.5 to AV<br>PV <sub>cc</sub> 2 - 0.5 V                                         |
| PE15-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oort                                                  | -               | -                      | _ | 0.4*2                    | μА | Vin = 0 to AV <sub>CC</sub>                                                           |
| PF0, P (When expans) Other is  Input pull-up MOS current AUDM AUDS AUDA charac Input pull- AUDRIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D0, WAIT, BREQ                                        | lin             | _                      | - | 3.0*1<br>6.0*2           | μΑ | Vin = 0.5 V to<br>PV <sub>cc</sub> 1 - 0.5 V<br>PV <sub>cc</sub> 1 = 3.3 V<br>± 0.3 V |
| Input pull-up MOS current (pull-up AUDM AUDM character) Input pull- AUDM AUDM AUDM Character Input pull- AUDM AUDM AUDM AUDM AUDM AUDM AUDM AUDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5–PE0, PF15–<br>PH15–PH0<br>en in MCU<br>nsion mode)  | -               | _                      | _ | 3.0*1<br>6.0*2           | μΑ | Vin = 0.5 V to<br>PV <sub>cc</sub> 1 - 0.5 V<br>PV <sub>cc</sub> 1 = 3.3 V<br>± 0.3 V |
| MOS current (pull-up AUDM AUDS AUDA charace Input pull-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r input pins                                          | -               | _                      | _ | 3.0*1<br>6.0*2           | μΑ | $Vin = 0.5 V to$ $PV_{cc}2 - 0.5 V$                                                   |
| AUDS' AUDA' charace Input pull- AUDR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRST, TDI, TCK up characteristic)                     | –lpu            | -                      | - | 350                      | μΑ | Vin = 0 V                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MD, AUDCK,<br>SYNC,<br>ATA3-0 (pull-up<br>acteristic) | =               | _                      | _ | 800                      | μΑ | Vin = 0 V                                                                             |
| current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RST (pull-down acteristic)                            | lpd             | _                      | _ | 500                      | μА | Vin = PV <sub>cc</sub> 2                                                              |
| leak current CS3-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A0, D15–D0,<br>-CS0, WRH,<br>, RD, BACK               | l Its I         | _                      | _ | 3.0*1<br>6.0*2           | μА | Vin = 0.5 to<br>$PV_{cc}1 - 0.5 V$<br>$PV_{cc}1 = 3.3 V$<br>$\pm 0.3 V$               |

| Item                                          | Page   | Revisio                         | ons (See M                                          | lanu             | al fo             | or E | )eta              | ils)  |                       |        |                                         |  |
|-----------------------------------------------|--------|---------------------------------|-----------------------------------------------------|------------------|-------------------|------|-------------------|-------|-----------------------|--------|-----------------------------------------|--|
| 26.2 DC Characteristics                       | 877 to |                                 | Normal operatio                                     |                  | I <sub>cc</sub>   | _    | _                 | 50    | 80                    | mA     | f = 40 MHz                              |  |
|                                               | 878    | consumption                     |                                                     |                  |                   | =    | -                 | 40    | 60                    | mA     |                                         |  |
| Table 26.4 DC Characteristics                 | 070    |                                 | Standby                                             |                  |                   | -    | -                 | 50    | 200                   | μА     | $T_a \le 50^{\circ}C$                   |  |
| [Operating precautions]                       |        |                                 |                                                     |                  |                   | _    | -                 | _     | 500                   | μА     | 50°C <<br>Ta≤105°C                      |  |
|                                               |        |                                 |                                                     |                  |                   | -    | -                 | _     | 1000                  | μΑ     | Ta > 105°C                              |  |
|                                               |        |                                 | Write operation                                     |                  |                   | -    | -                 | 60    | 90                    | mA     | $V_{cc} = 3.3 \text{ V}$<br>f = 40  MHz |  |
|                                               |        | Analog<br>supply                | During A/D conversion                               |                  | Al <sub>cc</sub>  | -    | -                 | 1.2   | 5                     | mA     |                                         |  |
|                                               |        | current                         | Awaiting A/D conversion                             |                  |                   |      | -                 | 1     | 30                    | μА     |                                         |  |
|                                               |        | Reference I                     | During A/D                                          | Alref            | _                 | 1.3  | 5                 | mA    | AV <sub>oot</sub> = 5 | V      |                                         |  |
|                                               |        | current                         | conversions Awaiting A/D                            |                  | _                 | 1.1  | 10                | μА    | -                     |        |                                         |  |
|                                               |        | RAM standby                     | conversion                                          | V <sub>RAM</sub> | 2.7               | _    | _                 | V     | V <sub>cc</sub>       |        |                                         |  |
|                                               |        | voltage<br>Notes: *1 Ta ≤       | 105°C                                               |                  |                   |      |                   |       |                       |        |                                         |  |
|                                               |        | Description added               |                                                     |                  |                   |      |                   |       |                       |        |                                         |  |
|                                               |        | [Operating precautions]         |                                                     |                  |                   |      |                   |       |                       |        |                                         |  |
|                                               |        | V <sub>cc</sub> -               | current cor<br>- 0.3 V/PV <sub>c</sub><br>unloaded. |                  |                   |      |                   |       |                       |        |                                         |  |
| 26.2 DC Characteristics                       | 879    | Table a                         | mended                                              |                  |                   |      |                   |       |                       |        |                                         |  |
| Table 26.5 Permitted Output<br>Current Values |        | Condition                       | ons: $V_{cc} = 1$<br>$\pm 0.5 V$<br>PV 2            | //3.3            | ν±                | 0.3  | ٧,                |       |                       | 00     | 1 = 5.0 V<br>' ±0.5 V,                  |  |
|                                               |        |                                 | AV <sub>ref</sub> =                                 | 4.5              | V to              | Α۱ د | / <sub>cc</sub> , |       | 00                    |        |                                         |  |
|                                               |        |                                 | V <sub>ss</sub> = I<br>125°C                        |                  | / <sub>ss</sub> = | = A\ | / <sub>ss</sub> = | = 0 \ | /, T <sub>a</sub> :   | = –4   | 0°C to                                  |  |
|                                               |        |                                 |                                                     |                  |                   |      |                   |       |                       |        | PV <sub>cc</sub> 1.                     |  |
|                                               |        |                                 | When memo                                           |                  | _                 |      |                   | _     |                       | ip fla | ash                                     |  |
|                                               |        | Output low-le                   | evel permissible                                    | I <sub>OL</sub>  |                   | _    |                   | _     |                       | 6      | mA                                      |  |
|                                               |        | Output low-le                   | evel permissible                                    | Σl <sub>oL</sub> |                   | _    |                   | _     |                       | 80     | mA                                      |  |
|                                               |        | Output high-l<br>current (per p | level permissible<br>pin)                           | I <sub>OH</sub>  |                   | =    |                   | =     |                       | 2      | mA                                      |  |
|                                               |        | Output bisk !                   | laccal acassis atlala                               | 2.1              |                   |      |                   |       |                       | 25     | ^                                       |  |

25

Output high-level permissible current (total)

 $\Sigma I_{\scriptscriptstyle OL}$ 

| Item                                                                        | Page | Revisions (See Manual for Details)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26.3.1 Timing for switching the                                             | 880  | Conditions amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| power supply on/off Table 26.6 Timing for switching the power supply on/off |      | Conditions: $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 4.5 \text{ V} \text{ to AV}_{cc}, V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, Ta = -40^{\circ}\text{C to} 125^{\circ}\text{C}. $ When $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{cc} = PV_{cc}1. $ When writing or erasing on-chip flash memory, $Ta = -40^{\circ}\text{C}$ to $85^{\circ}\text{C}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 26.3.2 Clock Timing                                                         | 881  | Conditions amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Table 26.7 Clock Timing                                                     |      | Conditions: $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, PV_{cc} = 4.5 \text{ V} + 10.5 \text{ V}/3.5 \text{ V}/3.5 \text{ EV}/3.5  EV$ |
| 26.3.3 Control Signal Timing                                                | 883  | Table amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Table 26.8 Control Signal Timing                                            |      | Conditions: $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}, V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C to} = 125^{\circ}\text{C}.$ When $PV_{cc} = 1 = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{cc} = PV_{cc} = 1.$ When writing or erasing on-chip flash memory, $T_a = -40^{\circ}\text{C}$ to $85^{\circ}\text{C}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                             |      | RES setup time t <sub>RESS</sub> 40 — ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26.3.4 Bus Timing                                                           | 886  | MD2-MD0 setup time t <sub>Mos</sub> 20 - t <sub>type</sub> Conditions amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _                                                                           | 500  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table 26.9 Bus Timing                                                       |      | Conditions: $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V},$ $AV_{ref} = 4.5 \text{ V to } AV_{cc},$ $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C to}$ $125^{\circ}\text{C}.$ $\text{When } PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{cc} = PV_{cc}1.$ When writing or erasing on-chip flash memory, $T_a = -40^{\circ}\text{C}$ to $85^{\circ}\text{C}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Item                                                                                                                                              | Page | Revisions (See Manual for Details)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26.3.5 Advanced Timer Unit Timing and Advance Pulse Controller Timing Table 26.10 Advanced Timer Unit Timing and Advanced Pulse Controller Timing | 890  | Conditions amended $ \begin{array}{l} \text{Conditions amended} \\ \text{Conditions:} \ V_{cc} = \text{PLLV}_{cc} = 3.3 \ \text{V} \pm 0.3 \ \text{V}, \ \text{PV}_{cc} 1 = 5.0 \ \text{V} \\ \pm 0.5 \ \text{V}/3.3 \ \text{V} \pm 0.3 \ \text{V}, \\ \text{PV}_{cc} 2 = 5.0 \ \text{V} \pm 0.5 \ \text{V}, \ \text{AV}_{cc} = 5.0 \ \text{V} \pm 0.5 \ \text{V}, \\ \text{AV}_{ref} = 4.5 \ \text{V} \ \text{to} \ \text{AV}_{cc}, \\ \text{V}_{ss} = \text{PLLV}_{ss} = \text{AV}_{ss} = 0 \ \text{V}, \ \text{T}_{a} = -40^{\circ} \text{C} \ \text{to} \\ \textbf{125}^{\circ} \text{C}. \\ \text{When PV}_{cc} 1 = 3.3 \ \text{V} \pm 0.3 \ \text{V}, \ \text{V}_{cc} = \text{PV}_{cc} 1. \\ \text{When writing or erasing on-chip flash} \\ \text{memory}, \ \text{T}_{a} = -40^{\circ} \text{C} \ \text{to} \ 85^{\circ} \text{C}. \\ \end{array} $                                                                               |
| 26.3.6 I/O Port Timing                                                                                                                            | 892  | Conditions amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 26.11 I/O Port Timing                                                                                                                       |      | $ \begin{array}{l} \text{Conditions: } \   \text{V}_{cc} = \text{PLLV}_{cc} = 3.3 \ \text{V} \pm 0.3 \ \text{V}, \   \text{PV}_{cc} 1 = 5.0 \ \text{V} \\ \pm 0.5 \ \text{V} / 3.3 \ \text{V} \pm 0.3 \ \text{V}, \\ \text{PV}_{cc} 2 = 5.0 \ \text{V} \pm 0.5 \ \text{V}, \   \text{AV}_{cc} = 5.0 \ \text{V} \pm 0.5 \ \text{V}, \\ \text{AV}_{ref} = 4.5 \ \text{V} \ \text{to AV}_{cc}, \\ \text{V}_{ss} = \text{PLLV}_{ss} = \text{AV}_{ss} = 0 \ \text{V}, \   \text{T}_{a} = -40^{\circ} \text{C} \ \text{to} \\ \text{125}^{\circ} \text{C}. \\ \text{When PV}_{cc} 1 = 3.3 \ \text{V} \pm 0.3 \ \text{V}, \   \text{V}_{cc} = \text{PV}_{cc} 1. \\ \text{When writing or erasing on-chip flash} \\ \text{memory, T}_{a} = -40^{\circ} \text{C} \ \text{to } 85^{\circ} \text{C}. \\ \end{array} $                                                                                                                                |
| 26.3.7 Watchdog Timer Timing                                                                                                                      | 893  | Conditions amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Table 26.12 Watchdog Timer Timing                                                                                                                 |      | $ \begin{array}{l} \text{Conditions:} \   \text{V}_{\text{cc}} = \text{PLLV}_{\text{cc}} = 3.3 \ \text{V} \pm 0.3 \ \text{V}, \   \text{PV}_{\text{cc}} 1 = 5.0 \ \text{V} \\ \pm 0.5 \ \text{V} / 3.3 \ \text{V} \pm 0.3 \ \text{V}, \\ \text{PV}_{\text{cc}} 2 = 5.0 \ \text{V} \pm 0.5 \ \text{V}, \   \text{AV}_{\text{cc}} = 5.0 \ \text{V} \pm 0.5 \ \text{V}, \\ \text{AV}_{\text{ref}} = 4.5 \ \text{V} \ \text{to} \   \text{AV}_{\text{cc}}, \\ \text{V}_{\text{ss}} = \text{PLLV}_{\text{ss}} = \text{AV}_{\text{ss}} = 0 \ \text{V}, \   \text{T}_{\text{a}} = -40^{\circ} \text{C} \ \text{to} \\ \text{125}^{\circ} \text{C}. \\ \text{When PV}_{\text{cc}} 1 = 3.3 \ \text{V} \pm 0.3 \ \text{V}, \   \text{V}_{\text{cc}} = \text{PV}_{\text{cc}} 1. \\ \text{When writing or erasing on-chip flash} \\ \text{memory}, \   \text{T}_{\text{a}} = -40^{\circ} \text{C} \ \text{to} \ 85^{\circ} \text{C}. \\ \end{array} $ |
| 26.3.8 Serial Communication                                                                                                                       | 894  | Conditions amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Interface Timing Table 26.13 Serial Communication Interface Timing                                                                                |      | Conditions: $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} 1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} 1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} 2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}, V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C to} 125^{\circ}\text{C}. When PV_{cc} 1 = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{cc} = PV_{cc} 1. When writing or erasing on-chip flash memory, T_a = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}.$                                                                                                                                                                                                                                                                                           |

| Item                             | Page | Revisions (See M                                                                                             | lanual for Details)                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------|------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26.3.9 HCAN Timing               | 896  | Conditions amend                                                                                             | led                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 26.14 HCAN Timing          |      | $\pm 0.5 \ PV_{cc}2$ $AV_{ref} = V_{ss} = 125^{\circ}C$ When                                                 | PLLV <sub>cc</sub> = 3.3 V $\pm$ 0.3 V, PV <sub>cc</sub> 1 = 5.0 V //3.3 V $\pm$ 0.3 V, = 5.0 V $\pm$ 0.5 V, AV <sub>cc</sub> = 5.0 V $\pm$ 0.5 V, = 4.5 V to AV <sub>cc</sub> , PLLV <sub>ss</sub> = AV <sub>ss</sub> = 0 V, T <sub>a</sub> = $-40^{\circ}$ C to S.  PV <sub>cc</sub> 1 = 3.3 V $\pm$ 0.3 V, V <sub>cc</sub> = PV <sub>cc</sub> 1. writing or erasing on-chip flash bry, T <sub>a</sub> = $-40^{\circ}$ C to 85°C.    |
| 26.3.10 A/D Converter Timing     | 897  | Conditions amend                                                                                             | led                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 26.15 A/D Converter Timing |      | $\pm 0.5 \ PV_{cc}2$ $AV_{ref} = V_{ss} = 125^{\circ}C$ When                                                 | PLLV <sub>cc</sub> = 3.3 V $\pm$ 0.3 V, PV <sub>cc</sub> 1 = 5.0 V<br>//3.3 V $\pm$ 0.3 V,<br>= 5.0 V $\pm$ 0.5 V, AV <sub>cc</sub> = 5.0 V $\pm$ 0.5 V,<br>= 4.5 V to AV <sub>cc</sub> ,<br>PLLV <sub>ss</sub> = AV <sub>ss</sub> = 0 V, T <sub>a</sub> = -40°C to C.<br>PV <sub>cc</sub> 1 = 3.3 V $\pm$ 0.3 V, V <sub>cc</sub> = PV <sub>cc</sub> 1.<br>writing or erasing on-chip flash bry, T <sub>a</sub> = -40°C to 85°C.       |
| 26.3.11 H-UDI Timing             | 899  | Conditions amend                                                                                             | led                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Table 26.16 H-UDI Timing         |      | $\pm 0.5 \text{ N}$ PV <sub>cc</sub> 2 AV <sub>ref</sub> = V <sub>ss</sub> = 125°C When                      | PLLV <sub>cc</sub> = 3.3 V $\pm$ 0.3 V, PV <sub>cc</sub> 1 = 5.0 V<br>//3.3 V $\pm$ 0.3 V,<br>= 5.0 V $\pm$ 0.5 V, AV <sub>cc</sub> = 5.0 V $\pm$ 0.5 V,<br>= 4.5 V to AV <sub>cc</sub> ,<br>PLLV <sub>ss</sub> = AV <sub>ss</sub> = 0 V, T <sub>a</sub> = -40°C to<br>2.<br>PV <sub>cc</sub> 1 = 3.3 V $\pm$ 0.3 V, V <sub>cc</sub> = PV <sub>cc</sub> 1.<br>writing or erasing on-chip flash<br>ory, T <sub>a</sub> = -40°C to 85°C. |
| 26.3.12 AUD Timing               | 901  | Conditions amend                                                                                             | ed                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Table 26.17 AUD Timing           |      | $\pm 0.5 \ \text{PV}_{\text{cc}2}$ $\text{AV}_{\text{ref}} = \ \text{V}_{\text{ss}} = \ 125 \ \text{O}$ When | PLLV <sub>cc</sub> = 3.3 V $\pm$ 0.3 V, PV <sub>cc</sub> 1 = 5.0 V<br>//3.3 V $\pm$ 0.3 V,<br>= 5.0 V $\pm$ 0.5 V, AV <sub>cc</sub> = 5.0 V $\pm$ 0.5 V,<br>= 4.5 V to AV <sub>cc</sub> ,<br>PLLV <sub>ss</sub> = AV <sub>ss</sub> = 0 V, T <sub>a</sub> = -40°C to 2.<br>PV <sub>cc</sub> 1 = 3.3 V $\pm$ 0.3 V, V <sub>cc</sub> = PV <sub>cc</sub> 1.<br>writing or erasing on-chip flash bry, T <sub>a</sub> = -40°C to 85°C.       |

26.3.13 UBC Trigger Timing

Conditions amended 903

Table 26.18 UBC Trigger Timing

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $PV_{cc}1 = 5.0 \text{ V}$ ±0.5 V/3.3 V ±0.3 V,

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V},$ 

 $AV_{ref} = 4.5 \text{ V to } AV_{CC}$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_{a} = -40^{\circ}\text{C to}$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ . When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

26.4 A/D Converter Characteristics

Table 26.19 A/D Converter Characteristics

905 Conditions and table amended

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $PV_{cc}1 = 5.0 \text{ V}$ 

±0.5 V/3.3 V ±0.3 V,

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V},$ 

 $AV_{ref} = 4.5 \text{ V to } AV_{CC},$   $V_{SS} = \text{PLLV}_{SS} = AV_{SS} = 0 \text{ V}, T_a = -40^{\circ}\text{C to}$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

CSK = 0: fop = 10-20 MHz CSK = 1: fop = 10 MHz Min May Min May Unit Тур Itom Тур 10 10 10 10 Resolution 10 A/D conversion time 13.3 13 4 IIS Analog input capacitance 20 20 рF Permitted analog signal source impedance Non-linear error ±1.5° ±1.5°1 LSB ±2.5° ±2.5°2 Offset error ±1.5° ±1.5°1 LSB ±2.5°2 ±2.5°2 Full-scale error ±1.5° ±1.5°1 LSB ±2.5° ±2.5°2 Quantization error ±0.5 ±0.5 LSB Absolute error ±2.0°1 LSB ±2.0°1 ±2.5° ±2.5°2

Note: \*1 Ta ≤105°C \*2 Ta >105°C 26.5 Flash Memory Characteristics

Table 26.20 Flash Memory Characteristics

Conditions and table amended 906

> Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $PV_{cc}1 = 5.0 \text{ V}$ ±0.5 V/3.3 V ±0.3 V,

> > $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V},$

 $AV_{ref} = 4.5 \text{ V to } AV_{cc},$   $V_{ss} = \text{PLLV}_{ss} = AV_{ss} = 0 \text{ V}, T_{a} = -40^{\circ}\text{C to}$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_{0} = -40^{\circ}$ C to 85°C.

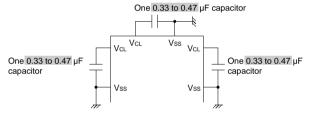
| Item                 | Symbol           | Min | Тур | Max       | Unit  |
|----------------------|------------------|-----|-----|-----------|-------|
| Programming time*182 | t <sub>P</sub> — | 20  | 200 | ms/128 by | ytes  |
| Erase time*1*3       | t <sub>e</sub> — | 1   | 10  | s/block   |       |
| Reprogramming count  | N                | _   | _   | 100       | Times |

\*1 Use the on-chip programming/erasing routine for programming/erasure.

\*2 When all 0 are programmed.

\*3 64 kbytes of block

26.6.1 Notes on Connecting **External Capacitor for Current** Stabilization


Figure 26.29 Connection of V<sub>c1</sub> Capacitor

907 26.6.1 Title added

Description added

...power supply (V<sub>CI</sub> pin) and the V<sub>ss</sub> pin, an capacitor (0.33 to 0.47  $\mu$ F) for stabilizing the internal voltage....

Figure amended



Do not apply any power supply voltage to the Vcl pin. Use multilayer ceramics capacitors (one 0.33 to 0.47 µF capacitor for each VcL pin), which should be located near the pin.

26.6.2 Notes on Mode Pin Input

907 to Newly added 908

A.2 Register States in Reset and 953 to Table amended

Power-Down States

954

Table A.2 Register States in Reset and Power-Down States

| Serial                           | SMR0 to SMR4                                                           | Initialized | Initialized | Held       | Held      |
|----------------------------------|------------------------------------------------------------------------|-------------|-------------|------------|-----------|
| communication<br>interface (SCI) | BRR0 to BRR4                                                           | _           |             |            |           |
| interface (SCI)                  | SCR0 to SCR4                                                           | _           |             |            |           |
|                                  | TDR0 to TDR4                                                           | _           |             | Intialized | _         |
|                                  | SSR0 to SSR4                                                           | _           |             |            |           |
|                                  | RDR0 to RDR4                                                           | _           |             |            |           |
|                                  | SDCR0 to SDCR4                                                         | _           |             | Held       | _         |
| I/O ports                        | PADR, PBDR, PCDR<br>PDDR, PEDR, PFDR<br>PGDE, PHDR, PJDR<br>PKDR, PLDR | Initialized | Initialized | Held       | Held      |
|                                  | PAPR, PBPR, PDPR,<br>PJPR, PLPR                                        | Pin value   | Held        | Held       | Pin value |

## Contents

| Secti | on 1    | Overview                                               | .1  |
|-------|---------|--------------------------------------------------------|-----|
| 1.1   | Featur  | es                                                     | 1   |
| 1.2   | Block   | Diagram                                                | 7   |
| 1.3   | Pin De  | escription                                             | 8   |
|       | 1.3.1   | Pin Arrangement                                        | 8   |
|       | 1.3.2   | Pin Functions                                          | 9   |
|       | 1.3.3   | Pin Assignments                                        | 17  |
| Secti | on 2    | CPU                                                    | .27 |
| 2.1   | Regist  | er Configuration                                       | 27  |
|       | 2.1.1   | General Registers (Rn)                                 | 27  |
|       | 2.1.2   | Control Registers                                      | 28  |
|       | 2.1.3   | System Registers                                       | 29  |
|       | 2.1.4   | Floating-Point Registers                               | 30  |
|       | 2.1.5   | Floating-Point System Registers                        | 31  |
|       | 2.1.6   | Initial Values of Registers                            | 31  |
| 2.2   | Data F  | ormats                                                 | 32  |
|       | 2.2.1   | Data Format in Registers                               | 32  |
|       | 2.2.2   | Data Formats in Memory                                 | 32  |
|       | 2.2.3   | Immediate Data Format                                  | 32  |
| 2.3   | Instruc | tion Features                                          | 33  |
|       | 2.3.1   | RISC-Type Instruction Set                              | 33  |
|       | 2.3.2   | Addressing Modes                                       | 36  |
|       | 2.3.3   | Instruction Format                                     | 40  |
| 2.4   | Instruc | ction Set by Classification                            | 42  |
|       | 2.4.1   | Instruction Set by Classification                      | 42  |
| 2.5   | Proces  | sing States                                            | 57  |
|       | 2.5.1   | State Transitions                                      | 57  |
| Secti | on 3    | Floating-Point Unit (FPU)                              | .61 |
| 3.1   |         | iew                                                    |     |
| 3.2   | Floatir | ng-Point Registers and Floating-Point System Registers | 62  |
|       | 3.2.1   | Floating-Point Register File                           |     |
|       | 3.2.2   | Floating-Point Communication Register (FPUL)           |     |
|       | 3.2.3   | Floating-Point Status/Control Register (FPSCR)         |     |
| 3.3   | Floatir | ng-Point Format                                        |     |
|       | 3.3.1   | Floating-Point Format                                  |     |
|       | 3.3.2   | Non-Numbers (NaN)                                      |     |
|       | 3.3.3   | Denormalized Number Values                             |     |

|                                                           | 3.3.4 Other Special Values                             | 67             |
|-----------------------------------------------------------|--------------------------------------------------------|----------------|
| 3.4                                                       | Floating-Point Exception Model                         | 68             |
|                                                           | 3.4.1 Enable State Exceptions                          | 68             |
|                                                           | 3.4.2 Disable State Exceptions                         | 68             |
|                                                           | 3.4.3 FPU Exception Event and Code                     | 68             |
|                                                           | 3.4.4 Floating-Point Data Arrangement in Memory        | 68             |
|                                                           | 3.4.5 Arithmetic Operations Involving Special Operands | 68             |
| 3.5                                                       | Synchronization with CPU                               | 69             |
| 3.6                                                       | Usage Notes                                            | 69             |
| Sect                                                      | tion 4 Operating Modes                                 | 71             |
| 4.1                                                       | Operating Mode Selection                               |                |
| C .                                                       |                                                        | 70             |
|                                                           | tion 5 Clock Pulse Generator (CPG)                     |                |
| 5.1                                                       | Overview                                               |                |
|                                                           | 5.1.1 Block Diagram                                    |                |
| <i>5</i> 2                                                | 5.1.2 Pin Configuration                                |                |
| 5.2                                                       | Frequency Ranges                                       |                |
| 5.3                                                       | Clock Source                                           |                |
|                                                           | 5.3.1 Connecting a Crystal Oscillator                  |                |
| 5.4                                                       | Usage Notes                                            |                |
| J. <del>4</del>                                           | Usage Ivoies                                           | / /            |
|                                                           |                                                        |                |
| Sect                                                      | tion 6 Exception Processing                            | 79             |
| Sect                                                      | tion 6 Exception Processing                            |                |
|                                                           |                                                        | 79             |
|                                                           | Overview                                               | 79<br>79       |
|                                                           | Overview                                               | 79<br>79<br>80 |
|                                                           | Overview                                               |                |
| 6.1                                                       | Overview                                               |                |
| <ul><li>6.1</li><li>6.2</li><li>6.3</li></ul>             | Overview                                               |                |
| <ul><li>6.1</li><li>6.2</li><li>6.3</li><li>6.4</li></ul> | Overview                                               |                |
| <ul><li>6.1</li><li>6.2</li><li>6.3</li><li>6.4</li></ul> | Overview                                               |                |
| <ul><li>6.1</li><li>6.2</li><li>6.3</li><li>6.4</li></ul> | Overview                                               |                |

|      | 6.5.4  | General Illegal Instructions                                            | 90  |
|------|--------|-------------------------------------------------------------------------|-----|
|      | 6.5.5  | Floating-Point Instructions                                             | 90  |
| 6.6  | When   | Exception Sources Are Not Accepted                                      | 91  |
| 6.7  | Stack  | Status after Exception Processing Ends                                  | 92  |
| 6.8  | Usage  | Notes                                                                   | 93  |
|      | 6.8.1  | Value of Stack Pointer (SP)                                             | 93  |
|      | 6.8.2  | Value of Vector Base Register (VBR)                                     | 93  |
|      | 6.8.3  | Address Errors Caused by Stacking of Address Error Exception Processing | 93  |
|      | 6.8.4  | Interrupt Processing Timing Gap Caused in SCO Processing                | 93  |
| Sect | ion 7  | Interrupt Controller (INTC)                                             | 95  |
| 7.1  | Overv  | riew                                                                    | 95  |
|      | 7.1.1  | Features                                                                | 95  |
|      | 7.1.2  | Block Diagram                                                           | 96  |
|      | 7.1.3  | Pin Configuration                                                       | 97  |
|      | 7.1.4  | Register Configuration                                                  | 97  |
| 7.2  | Interr | upt Sources                                                             | 98  |
|      | 7.2.1  | NMI Interrupts                                                          | 98  |
|      | 7.2.2  | User Break Interrupt                                                    | 98  |
|      | 7.2.3  | H-UDI Interrupt                                                         | 98  |
|      | 7.2.4  | IRQ Interrupts                                                          | 98  |
|      | 7.2.5  | On-Chip Peripheral Module Interrupts                                    | 99  |
|      | 7.2.6  | Interrupt Exception Vectors and Priority Rankings                       | 100 |
| 7.3  | Descr  | iption of Registers                                                     | 109 |
|      | 7.3.1  | Interrupt Priority Registers A–L (IPRA–IPRL)                            | 109 |
|      | 7.3.2  | Interrupt Control Register (ICR)                                        | 110 |
|      | 7.3.3  | IRQ Status Register (ISR)                                               | 11  |
| 7.4  | Interr | upt Operation                                                           | 113 |
|      | 7.4.1  | Interrupt Sequence                                                      | 11. |
|      | 7.4.2  | Stack after Interrupt Exception Processing                              | 11: |
| 7.5  | Interr | upt Response Time                                                       | 110 |
| 7.6  | Data ' | Fransfer with Interrupt Request Signals                                 | 118 |
|      | 7.6.1  | Handling CPU Interrupt Sources, but Not DMAC Activating Sources         | 118 |
|      | 7.6.2  | Handling DMAC Activating Sources but Not CPU Interrupt Sources          | 118 |
| Sect | ion 8  | User Break Controller (UBC)                                             | 11  |
| 8.1  |        | riew                                                                    |     |
|      | 8.1.1  | Features                                                                |     |
|      | 8.1.2  | Block Diagram                                                           |     |
|      | 8.1.3  | Register Configuration                                                  |     |
| 8.2  |        | ter Descriptions                                                        |     |
|      | 8.2.1  | User Break Address Register (UBAR)                                      |     |
|      | 8.2.2  | User Break Address Mask Register (UBAMR)                                |     |
|      |        | Rev.2.0, 07/03, page xxv of                                             |     |

|       | 8.2.3     | User Break Bus Cycle Register (UBBR)                   | 124 |
|-------|-----------|--------------------------------------------------------|-----|
|       | 8.2.4     | User Break Control Register (UBCR).                    |     |
| 8.3   | Operati   | on                                                     |     |
|       | 8.3.1     | Flow of the User Break Operation                       |     |
|       | 8.3.2     | Break on On-Chip Memory Instruction Fetch Cycle        |     |
|       | 8.3.3     | Program Counter (PC) Values Saved                      |     |
| 8.4   | Examp     | les of Use                                             |     |
|       | 8.4.1     | Break on CPU Instruction Fetch Cycle                   |     |
|       | 8.4.2     | Break on CPU Data Access Cycle                         |     |
|       | 8.4.3     | Break on DMA Cycle                                     |     |
| 8.5   |           | Notes                                                  |     |
|       | 8.5.1     | Simultaneous Fetching of Two Instructions              |     |
|       | 8.5.2     | Instruction Fetches at Branches                        |     |
|       | 8.5.3     | Contention between User Break and Exception Processing |     |
|       | 8.5.4     | Break at Non-Delay Branch Instruction Jump Destination |     |
|       | 8.5.5     | User Break Trigger Output                              |     |
|       | 8.5.6     | Module Standby                                         |     |
|       |           |                                                        |     |
| Secti | on 9 1    | Bus State Controller (BSC)                             | 135 |
| 9.1   |           | ew                                                     |     |
|       | 9.1.1     | Features                                               | 135 |
|       | 9.1.2     | Block Diagram                                          | 136 |
|       | 9.1.3     | Pin Configuration                                      |     |
|       | 9.1.4     | Register Configuration                                 |     |
|       | 9.1.5     | Address Map                                            |     |
| 9.2   | Descrip   | otion of Registers                                     | 140 |
|       | 9.2.1     | Bus Control Register 1 (BCR1)                          |     |
|       | 9.2.2     | Bus Control Register 2 (BCR2)                          | 141 |
|       | 9.2.3     | Wait Control Register (WCR)                            |     |
|       | 9.2.4     | RAM Emulation Register (RAMER)                         |     |
| 9.3   | Access    | ing External Space                                     |     |
|       | 9.3.1     | Basic Timing                                           | 148 |
|       | 9.3.2     | Wait State Control                                     | 149 |
|       | 9.3.3     | CS Assert Period Extension                             | 151 |
| 9.4   | Waits b   | between Access Cycles                                  | 152 |
|       | 9.4.1     | Prevention of Data Bus Conflicts                       | 152 |
|       | 9.4.2     | Simplification of Bus Cycle Start Detection            | 153 |
| 9.5   | Bus Ar    | bitration                                              | 154 |
| 9.6   | Memor     | y Connection Examples                                  | 155 |
|       |           |                                                        |     |
| Secti | on 10     | Direct Memory Access Controller (DMAC)                 | 157 |
| 10.1  | Overvio   | ew                                                     | 157 |
|       | 10.1.1    | Features                                               | 157 |
| Rev.2 | .0, 07/03 | 3, page xxvi of xxxviii                                |     |

|       | 10.1.2  | Block Diagram                                                         | 158 |
|-------|---------|-----------------------------------------------------------------------|-----|
|       | 10.1.3  | Register Configuration                                                | 159 |
| 10.2  | Registe | er Descriptions                                                       | 160 |
|       | 10.2.1  | DMA Source Address Registers 0–3 (SAR0–SAR3)                          | 160 |
|       | 10.2.2  | DMA Destination Address Registers 0–3 (DAR0–DAR3)                     | 16  |
|       | 10.2.3  | DMA Transfer Count Registers 0–3 (DMATCR0–DMATCR3)                    | 16  |
|       | 10.2.4  | DMA Channel Control Registers 0–3 (CHCR0–CHCR3)                       | 162 |
|       | 10.2.5  | DMAC Operation Register (DMAOR)                                       | 16  |
| 10.3  | Operat  | ion                                                                   | 169 |
|       | 10.3.1  | DMA Transfer Flow                                                     | 169 |
|       | 10.3.2  | DMA Transfer Requests                                                 | 17  |
|       | 10.3.3  | Channel Priority                                                      | 174 |
|       | 10.3.4  | DMA Transfer Types                                                    | 174 |
|       |         | Dual Address Mode                                                     |     |
|       | 10.3.6  | Bus Modes                                                             | 180 |
|       |         | Relationship between Request Modes and Bus Modes by DMA Transfer      |     |
|       |         | Category                                                              | 18  |
|       | 10.3.8  |                                                                       |     |
|       | 10.3.9  | Source Address Reload Function                                        | 182 |
|       | 10.3.10 | ) DMA Transfer Ending Conditions                                      | 183 |
|       |         | DMAC Access from CPU                                                  |     |
| 10.4  |         | les of Use                                                            |     |
|       | -       | Example of DMA Transfer between On-Chip SCI and External Memory       |     |
|       |         | Example of DMA Transfer between A/D Converter and On-Chip Memory      |     |
|       |         | (Address Reload On)                                                   | 185 |
|       | 10.4.3  | Example of DMA Transfer between External Memory and SCI1 Transmitting |     |
|       |         | Side (Indirect Address on)                                            |     |
| 10.5  | Usage   | Notes                                                                 |     |
|       | υ       |                                                                       |     |
| Secti | ion 11  | Advanced Timer Unit-II (ATU-II)                                       | 19  |
| 11.1  |         | ew                                                                    |     |
|       |         | Features                                                              |     |
|       | 11.1.2  | Pin Configuration                                                     | 197 |
|       |         | Register Configuration                                                |     |
|       |         | Block Diagrams                                                        |     |
|       |         | Inter-Channel and Inter-Module Signal Communication Diagram           |     |
|       |         | Prescaler Diagram                                                     |     |
| 11.2  |         | er Descriptions                                                       |     |
|       | _       | Timer Start Registers (TSTR)                                          |     |
|       |         | Prescaler Registers (PSCR)                                            |     |
|       |         | Timer Control Registers (TCR)                                         |     |
|       | 11.2.4  |                                                                       |     |
|       | 11.2.5  | -                                                                     |     |
|       | 11.2.0  | Rev.2.0, 07/03, page xxvii of x                                       |     |

|       | 11.2.6    | Timer Interrupt Enable Registers (TIER)                     | 278 |
|-------|-----------|-------------------------------------------------------------|-----|
|       | 11.2.7    | Interval Interrupt Request Registers (ITVRR)                | 300 |
|       | 11.2.8    |                                                             |     |
|       | 11.2.9    | Timer Mode Register (TMDR)                                  | 305 |
|       | 11.2.10   | PWM Mode Register (PMDR)                                    | 307 |
|       |           | Down-Count Start Register (DSTR)                            |     |
|       | 11.2.12   | Timer Connection Register (TCNR)                            | 315 |
|       | 11.2.13   | One-Shot Pulse Terminate Register (OTR)                     | 320 |
|       | 11.2.14   | Reload Enable Register (RLDENR)                             | 324 |
|       | 11.2.15   | Free-Running Counters (TCNT)                                | 325 |
|       | 11.2.16   | Down-Counters (DCNT)                                        | 327 |
|       | 11.2.17   | Event Counters (ECNT)                                       | 329 |
|       | 11.2.18   | Output Compare Registers (OCR)                              | 329 |
|       | 11.2.19   | Input Capture Registers (ICR)                               | 330 |
|       | 11.2.20   | General Registers (GR)                                      | 331 |
|       | 11.2.21   | Offset Base Registers (OSBR)                                | 334 |
|       | 11.2.22   | Cycle Registers (CYLR)                                      | 334 |
|       | 11.2.23   | Buffer Registers (BFR)                                      | 335 |
|       | 11.2.24   | Duty Registers (DTR)                                        | 336 |
|       | 11.2.25   | Reload Register (RLDR)                                      | 337 |
|       |           | Channel 10 Registers                                        |     |
| 11.3  |           | on                                                          |     |
|       |           | Overview                                                    |     |
|       | 11.3.2    | Free-Running Counter Operation and Cyclic Counter Operation | 359 |
|       |           | Compare-Match Function                                      |     |
|       |           | Input Capture Function                                      |     |
|       |           | One-Shot Pulse Function                                     |     |
|       |           | Offset One-Shot Pulse Function and Output Cutoff Function   |     |
|       |           | Interval Timer Operation                                    |     |
|       |           | Twin-Capture Function                                       |     |
|       |           | PWM Timer Function                                          |     |
|       |           | Channel 3 to 5 PWM Function                                 |     |
|       |           | Event Count Function and Event Cycle Measurement            |     |
|       |           | Channel 10 Functions                                        |     |
| 11.4  |           | ots                                                         |     |
|       |           | Status Flag Setting Timing                                  |     |
|       |           | Status Flag Clearing                                        |     |
| 11.5  |           | terface                                                     |     |
|       |           | Registers Requiring 32-Bit Access                           |     |
|       |           | Registers Permitting 8-Bit, 16-Bit, or 32-Bit Access        |     |
|       |           | Registers Requiring 16-Bit Access                           |     |
|       |           | 8-Bit or 16-Bit Accessible Registers                        |     |
|       | 11.5.5    | Registers Requiring 8-Bit Access                            | 391 |
| Rev.2 | .0, 07/03 | 3, page xxviii of xxxviii                                   |     |

| 11.6  | Sample | e Setup Procedures                                        | 391 |
|-------|--------|-----------------------------------------------------------|-----|
| 11.7  | Usage  | Notes                                                     | 406 |
| 11.8  | ATU-I  | I Registers and Pins                                      | 419 |
| Secti | ion 12 | Advanced Pulse Controller (APC)                           | 421 |
| 12.1  |        | ew                                                        |     |
|       |        | Features                                                  |     |
|       |        | Block Diagram                                             |     |
|       |        | Pin Configuration                                         |     |
|       |        | Register Configuration                                    |     |
| 12.2  |        | er Descriptions                                           |     |
|       | _      | Pulse Output Port Control Register (POPCR)                |     |
| 12.3  | Operat | ion                                                       | 425 |
|       | 12.3.1 | Overview                                                  | 425 |
|       | 12.3.2 | Advanced Pulse Controller Output Operation                | 426 |
| 12.4  |        | Notes                                                     |     |
| Secti | ion 13 | Watchdog Timer (WDT)                                      | 431 |
| 13.1  |        | ew                                                        |     |
|       |        | Features                                                  |     |
|       |        | Block Diagram                                             |     |
|       |        | Pin Configuration                                         |     |
|       |        | Register Configuration                                    |     |
| 13.2  |        | er Descriptions                                           |     |
|       | _      | Timer Counter (TCNT)                                      |     |
|       | 13.2.2 |                                                           |     |
|       | 13.2.3 | Reset Control/Status Register (RSTCSR)                    |     |
|       |        | Register Access                                           |     |
| 13.3  |        | ion                                                       |     |
|       | -      | Watchdog Timer Mode                                       |     |
|       | 13.3.2 | Interval Timer Mode                                       |     |
|       | 13.3.3 | Timing of Setting the Overflow Flag (OVF)                 | 440 |
|       | 13.3.4 | Timing of Setting the Watchdog Timer Overflow Flag (WOVF) | 441 |
| 13.4  |        | Notes                                                     |     |
|       | 13.4.1 | TCNT Write and Increment Contention                       | 442 |
|       | 13.4.2 | Changing CKS2 to CKS0 Bit Values                          | 442 |
|       | 13.4.3 | Changing between Watchdog Timer/Interval Timer Modes      |     |
|       | 13.4.4 | System Reset by WDTOVF Signal                             |     |
|       | 13.4.5 | Internal Reset in Watchdog Timer Mode                     |     |
|       | 13.4.6 | Manual Reset in Watchdog Timer                            |     |
| Secti | ion 14 | Compare Match Timer (CMT)                                 | 445 |
| 14.1  |        | ew                                                        |     |
|       |        |                                                           |     |

|       | 14.1.1     | Features                                               | 445 |
|-------|------------|--------------------------------------------------------|-----|
|       | 14.1.2     | Block Diagram                                          | 446 |
|       | 14.1.3     | Register Configuration                                 | 447 |
| 14.2  | Registe    | er Descriptions                                        | 448 |
|       | 14.2.1     | Compare Match Timer Start Register (CMSTR)             | 448 |
|       | 14.2.2     | Compare Match Timer Control/Status Register (CMCSR)    | 449 |
|       |            | Compare Match Timer Counter (CMCNT)                    |     |
|       | 14.2.4     | Compare Match Timer Constant Register (CMCOR)          | 451 |
| 14.3  | Operati    | ion                                                    | 451 |
|       | 14.3.1     | Cyclic Count Operation                                 | 451 |
|       | 14.3.2     | CMCNT Count Timing                                     | 452 |
| 14.4  | Interruj   | pts                                                    | 452 |
|       | 14.4.1     | Interrupt Sources and DTC Activation                   | 452 |
|       | 14.4.2     | Compare Match Flag Set Timing                          | 452 |
|       |            | Compare Match Flag Clear Timing                        |     |
| 14.5  |            | Notes                                                  |     |
|       |            | Contention between CMCNT Write and Compare Match       |     |
|       |            | Contention between CMCNT Word Write and Incrementation |     |
|       | 14.5.3     | Contention between CMCNT Byte Write and Incrementation | 456 |
|       |            |                                                        |     |
|       |            | Serial Communication Interface (SCI)                   |     |
| 15.1  |            | ew                                                     |     |
|       |            | Features                                               |     |
|       |            | Block Diagram                                          |     |
|       |            | Pin Configuration                                      |     |
|       |            | Register Configuration                                 |     |
| 15.2  | _          | er Descriptions                                        |     |
|       |            | Receive Shift Register (RSR)                           |     |
|       |            | Receive Data Register (RDR)                            |     |
|       |            | Transmit Shift Register (TSR)                          |     |
|       |            | Transmit Data Register (TDR)                           |     |
|       |            | Serial Mode Register (SMR)                             |     |
|       |            | Serial Control Register (SCR)                          |     |
|       | 15.2.7     |                                                        |     |
|       |            | Bit Rate Register (BRR)                                |     |
|       |            | Serial Direction Control Register (SDCR)               |     |
| 15.0  |            | O Inversion of SCK Pin Signal                          |     |
| 15.3  |            | ion                                                    |     |
|       |            | Overview                                               |     |
|       | 15.3.2     | 1                                                      |     |
|       | 15.3.3     | 1                                                      |     |
| 15 4  |            | Synchronous Operation                                  |     |
| 15.4  | SCI Int    | terrupt Sources and the DMAC                           | 513 |
| Rev.2 | 2.0, 07/03 | 3, page xxx of xxxviii                                 |     |

|       | $\mathcal{C}$ | Notes                                                                  |     |
|-------|---------------|------------------------------------------------------------------------|-----|
|       | 15.5.1        | TDR Write and TDRE Flag                                                | 514 |
|       | 15.5.2        | Simultaneous Multiple Receive Errors                                   | 514 |
|       | 15.5.3        | Break Detection and Processing                                         | 515 |
|       | 15.5.4        | Sending a Break Signal                                                 | 515 |
|       | 15.5.5        | Receive Error Flags and Transmitter Operation (Synchronous Mode Only)  | 515 |
|       | 15.5.6        | Receive Data Sampling Timing and Receive Margin in Asynchronous Mode . | 515 |
|       | 15.5.7        | Constraints on DMAC Use                                                | 516 |
|       | 15.5.8        | Cautions on Synchronous External Clock Mode                            | 517 |
|       | 15.5.9        | Caution on Synchronous Internal Clock Mode                             | 517 |
| Secti | on 16         | Controller Area Network (HCAN)                                         | 519 |
| 16.1  | Overvi        | ew                                                                     | 519 |
|       | 16.1.1        | Features                                                               | 519 |
|       | 16.1.2        | Block Diagram                                                          | 521 |
|       | 16.1.3        | Pin Configuration                                                      | 522 |
|       | 16.1.4        | Register Configuration                                                 | 523 |
| 16.2  | Registe       | er Descriptions                                                        | 527 |
|       | 16.2.1        | Master Control Register (MCR)                                          | 527 |
|       |               | General Status Register (GSR)                                          |     |
|       | 16.2.3        | Bit Configuration Register (BCR)                                       | 529 |
|       | 16.2.4        | Mailbox Configuration Register (MBCR)                                  | 533 |
|       |               | Transmit Wait Register (TXPR)                                          |     |
|       | 16.2.6        | Transmit Wait Cancel Register (TXCR)                                   | 534 |
|       | 16.2.7        | Transmit Acknowledge Register (TXACK)                                  | 535 |
|       |               | Abort Acknowledge Register (ABACK)                                     |     |
|       |               | Receive Complete Register (RXPR)                                       |     |
|       |               | Remote Request Register (RFPR)                                         |     |
|       |               | Interrupt Register (IRR)                                               |     |
|       |               | Mailbox Interrupt Mask Register (MBIMR)                                |     |
|       |               | Interrupt Mask Register (IMR)                                          |     |
|       |               | Receive Error Counter (REC)                                            |     |
|       |               | Transmit Error Counter (TEC)                                           |     |
|       |               | Unread Message Status Register (UMSR)                                  |     |
|       |               | Local Acceptance Filter Masks (LAFML, LAFMH)                           |     |
|       |               | Message Control (MC0 to MC15)                                          |     |
|       |               | Message Data (MD0 to MD15)                                             |     |
| 16.3  |               | ion                                                                    |     |
| 10.5  |               | Hardware Reset and Software Reset                                      |     |
|       |               | Initialization after a Hardware Reset                                  |     |
|       |               | Transmit Mode                                                          |     |
|       |               | Receive Mode                                                           |     |
|       |               | HCAN Sleep Mode                                                        |     |
|       |               | Pov 2.0. 07/02, page vvvi of                                           |     |

|       | 16.3.6    | HCAN Halt Mode                                        | 575         |
|-------|-----------|-------------------------------------------------------|-------------|
|       | 16.3.7    | Interrupt Interface                                   | 575         |
|       | 16.3.8    | DMAC Interface                                        | 576         |
| 16.4  | CAN E     | Bus Interface                                         | 578         |
| 16.5  | Usage     | Notes                                                 | 579         |
| ~     |           |                                                       | ~0 <b>.</b> |
|       |           | A/D Converter                                         |             |
| 17.1  |           | ew                                                    |             |
|       |           | Features                                              |             |
|       |           | Block Diagram                                         |             |
|       |           | Pin Configuration                                     |             |
|       |           | Register Configuration                                |             |
| 17.2  | _         | er Descriptions                                       |             |
|       |           | A/D Data Registers 0 to 31 (ADDR0 to ADDR31)          |             |
|       |           | A/D Control/Status Registers 0 and 1 (ADCSR0, ADCSR1) |             |
|       |           | A/D Control Registers 0 to 2 (ADCR0 to ADCR2)         |             |
|       |           | A/D Control/Status Register 2 (ADCSR2)                |             |
|       |           | A/D Trigger Registers 0 to 2 (ADTRGR0 to ADTRGR2)     |             |
| 17.3  |           | nterface                                              |             |
| 17.4  |           | ion                                                   |             |
|       |           | Single Mode                                           |             |
|       |           | Scan Mode                                             |             |
|       |           | Analog Input Sampling and A/D Conversion Time         |             |
|       |           | External Triggering of A/D Conversion                 |             |
|       |           | A/D Converter Activation by ATU-II                    |             |
|       |           | ADEND Output Pin                                      |             |
| 17.5  |           | pt Sources and DMA Transfer Requests                  |             |
| 17.6  | _         | Notes                                                 |             |
|       | 17.6.1    | A/D conversion accuracy definitions                   | 616         |
| Sect  | ion 18    | High-Performance User Debug Interface (H-UDI)         | 617         |
| 18.1  |           | ew                                                    |             |
| 10.1  |           | Features                                              |             |
|       |           | Block Diagram                                         |             |
|       |           | Pin Configuration                                     |             |
|       |           | Register Configuration                                |             |
| 18.2  |           | al Signals                                            |             |
| 10.2  |           | Test Clock (TCK)                                      |             |
|       |           | Test Mode Select (TMS)                                |             |
|       |           | Test Data Input (TDI)                                 |             |
|       | 18.2.3    | 1                                                     |             |
|       |           | Test Paget (TPST)                                     |             |
| 10 2  |           | Test Reset (TRST)                                     |             |
| 18.3  | _         | er Descriptions                                       | 521         |
| Rev.2 | 2.0, 07/0 | 3, page xxxii of xxxviii                              |             |

|      | 18.3.1 Instruction Register (SDIR)                                | 621 |
|------|-------------------------------------------------------------------|-----|
|      | 18.3.2 Status Register (SDSR)                                     | 623 |
|      | 18.3.3 Data Register (SDDR)                                       | 624 |
|      | 18.3.4 Bypass Register (SDBPR)                                    | 624 |
| 18.4 | Operation                                                         | 625 |
|      | 18.4.1 H-UDI Interrupt                                            | 625 |
|      | 18.4.2 Bypass Mode                                                | 628 |
|      | 18.4.3 H-UDI Reset                                                | 628 |
| 18.5 | Usage Notes                                                       | 628 |
| Sect | ion 19 Advanced User Debugger (AUD)                               | 631 |
| 19.1 | Overview                                                          | 631 |
|      | 19.1.1 Features                                                   | 631 |
|      | 19.1.2 Block Diagram                                              | 632 |
| 19.2 | Pin Configuration                                                 | 632 |
|      | 19.2.1 Pin Descriptions                                           | 633 |
| 19.3 | Branch Trace Mode                                                 | 635 |
|      | 19.3.1 Overview                                                   | 635 |
|      | 19.3.2 Operation                                                  | 635 |
| 19.4 | RAM Monitor Mode                                                  |     |
|      | 19.4.1 Overview                                                   | 637 |
|      | 19.4.2 Communication Protocol                                     | 637 |
|      | 19.4.3 Operation                                                  | 638 |
| 19.5 | Usage Notes                                                       | 639 |
|      | 19.5.1 Initialization                                             | 639 |
|      | 19.5.2 Operation in Software Standby Mode                         | 639 |
|      | 19.5.3 Boot Mode Operation and User Boot Mode Initial State       |     |
|      | 19.5.4 AUD Input Signal in Software Standby/Hardware Standby Mode |     |
| Sect | ion 20 Pin Function Controller (PFC)                              | 641 |
| 20.1 | Overview                                                          |     |
| 20.2 | Register Configuration                                            |     |
| 20.3 | Register Descriptions                                             |     |
|      | 20.3.1 Port A IO Register (PAIOR)                                 |     |
|      | 20.3.2 Port A Control Registers H and L (PACRH, PACRL)            |     |
|      | 20.3.3 Port B IO Register (PBIOR)                                 |     |
|      | 20.3.4 Port B Control Registers H and L (PBCRH, PBCRL)            |     |
|      | 20.3.5 Port B Invert Register (PBIR)                              |     |
|      | 20.3.6 Port C IO Register (PCIOR)                                 |     |
|      | 20.3.7 Port C Control Register (PCCR)                             |     |
|      | 20.3.8 Port D IO Register (PDIOR)                                 |     |
|      | 20.3.9 Port D Control Registers H and L (PDCRH, PDCRL)            |     |
|      | 20.3.10 Port E IO Register (PEIOR)                                |     |
|      | Rev 2.0. 07/03, page                                              |     |

|       | 20.3.1                                                  | 1 Port E Control Register (PECR)                  | 666 |
|-------|---------------------------------------------------------|---------------------------------------------------|-----|
|       | 20.3.1                                                  | 2 Port F IO Register (PFIOR)                      | 671 |
|       | 20.3.1                                                  | 3 Port F Control Registers H and L (PFCRH, PFCRL) | 672 |
|       |                                                         | 4 Port G IO Register (PGIOR)                      |     |
|       | 20.3.1                                                  | 5 Port G Control Register (PGCR)                  | 678 |
|       | 20.3.1                                                  | 6 Port H IO Register (PHIOR)                      | 679 |
|       | 20.3.1                                                  | 7 Port H Control Register (PHCR)                  | 680 |
|       | 20.3.1                                                  | 8 Port J IO Register (PJIOR)                      | 686 |
|       | 20.3.1                                                  | 9 Port J Control Registers H and L (PJCRH, PJCRL) | 687 |
|       | 20.3.2                                                  | 0 Port K IO Register (PKIOR)                      | 691 |
|       | 20.3.21 Port K Control Registers H and L (PKCRH, PKCRL) |                                                   |     |
|       | 20.3.22 Port K Invert Register (PKIR)                   |                                                   | 696 |
|       | 20.3.23 Port L IO Register (PLIOR)                      |                                                   |     |
|       | 20.3.2                                                  | 4 Port L Control Registers H and L (PLCRH, PLCRL) | 698 |
|       | 20.3.2                                                  | 5 Port L Invert Register (PLIR)                   | 703 |
|       |                                                         |                                                   |     |
| Sect  | ion 21                                                  | I/O Ports (I/O)                                   | 70  |
| 21.1  | Overv                                                   | iew                                               | 705 |
| 21.2  | Port A                                                  | L                                                 | 705 |
|       | 21.2.1                                                  | Register Configuration                            | 706 |
|       | 21.2.2                                                  | Port A Data Register (PADR)                       | 706 |
|       | 21.2.3                                                  | Port A Port Register (PAPR)                       | 707 |
| 21.3  | Port B                                                  | -                                                 | 708 |
|       | 21.3.1                                                  | Register Configuration                            | 708 |
|       | 21.3.2                                                  | Port B Data Register (PBDR)                       | 709 |
|       | 21.3.3                                                  | Port B Port Register (PBPR)                       | 710 |
| 21.4  |                                                         |                                                   |     |
|       | 21.4.1                                                  | Register Configuration                            | 710 |
|       |                                                         | Port C Data Register (PCDR)                       |     |
| 21.5  |                                                         | )                                                 |     |
|       |                                                         | Register Configuration                            |     |
|       |                                                         | Port D Data Register (PDDR)                       |     |
|       |                                                         | Port D Port Register (PDPR)                       |     |
| 21.6  |                                                         |                                                   |     |
|       |                                                         | Register Configuration                            |     |
|       |                                                         | Port E Data Register (PEDR)                       |     |
| 21.7  |                                                         |                                                   |     |
|       |                                                         | Register Configuration                            |     |
|       |                                                         | Port F Data Register (PFDR)                       |     |
| 21.8  |                                                         | 1                                                 |     |
|       |                                                         | Register Configuration                            |     |
|       |                                                         | Port G Data Register (PGDR)                       |     |
| 21.9  |                                                         | L                                                 |     |
|       |                                                         |                                                   | 122 |
| Rev.2 | 2.0, 07/0                                               | 03, page xxxiv of xxxviii                         |     |

|       | 21.9.1 Register Configuration                       | 724                |
|-------|-----------------------------------------------------|--------------------|
|       | 21.9.2 Port H Data Register (PHDR)                  | 724                |
| 21.10 | Port J                                              | 725                |
|       | 21.10.1 Register Configuration                      | 726                |
|       | 21.10.2 Port J Data Register (PJDR)                 | 726                |
|       | 21.10.3 Port J Port Register (PJPR)                 | 727                |
| 21.11 | Port K                                              | 728                |
|       | 21.11.1 Register Configuration                      | 728                |
|       | 21.11.2 Port K Data Register (PKDR)                 |                    |
| 21.12 | Port L                                              | 730                |
|       | 21.12.1 Register Configuration                      | 730                |
|       | 21.12.2 Port L Data Register (PLDR)                 | 731                |
|       | 21.12.3 Port L Port Register (PLPR)                 | 732                |
| 21.13 | POD (Port Output Disable) Control                   | 732                |
| 21.14 | Usage Notes                                         | 733                |
|       |                                                     |                    |
| Secti | ion 22 ROM                                          | 735                |
| 22.1  | Features                                            | 735                |
| 22.2  | Overview                                            | 737                |
|       | 22.2.1 Block Diagram                                | 737                |
|       | 22.2.2 Operating Mode                               | 738                |
|       | 22.2.3 Mode Comparison                              | 739                |
|       | 22.2.4 Flash Memory Configuration                   | 741                |
|       | 22.2.5 Block Division                               | 742                |
|       | 22.2.6 Programming/Erasing Interface                | 743                |
| 22.3  | Pin Configuration                                   | 745                |
| 22.4  | Register Configuration                              | 746                |
|       | 22.4.1 Registers                                    | 746                |
|       | 22.4.2 Programming/Erasing Interface Registers      | 748                |
|       | 22.4.3 Programming/Erasing Interface Parameters     | 754                |
|       | 22.4.4 RAM Emulation Register (RAMER)               | 766                |
| 22.5  | On-Board Programming Mode                           | 768                |
|       | 22.5.1 Boot Mode                                    | 768                |
|       | 22.5.2 User Program Mode                            | 771                |
|       | 22.5.3 User Boot Mode                               | 782                |
| 22.6  | Protection                                          | 785                |
|       | 22.6.1 Hardware Protection                          | 785                |
|       | 22.6.2 Software Protection                          | 786                |
|       | 22.6.3 Error Protection.                            | 787                |
| 22.7  | Flash Memory Emulation in RAM                       | 789                |
| 22.8  | Usage Notes                                         | 792                |
|       | 22.8.1 Switching between User MAT and User Boot MAT | 792                |
|       | 22.8.2 Interrupts during Programming/Erasing        | 793                |
|       | Rev.2.0, 07/03, pa                                  | age xxxv of xxxvii |

|       | 22.8.3    | Other Notes                                                | .797  |
|-------|-----------|------------------------------------------------------------|-------|
| 22.9  | Prograi   | mmer Mode                                                  | .798  |
|       | 22.9.1    | Pin Arrangement of Socket Adapter                          | .799  |
|       | 22.9.2    | Programmer Mode Operation                                  | .801  |
|       | 22.9.3    | Memory-Read Mode                                           | .802  |
|       | 22.9.4    | Auto-Program Mode                                          | .803  |
|       | 22.9.5    | Auto-Erase Mode                                            | .803  |
|       | 22.9.6    | Status-Read Mode                                           | . 804 |
|       | 22.9.7    | Status Polling                                             | .804  |
|       | 22.9.8    | Time Taken in Transition to Programmer Mode                | .805  |
|       | 22.9.9    | 8 8 8                                                      |       |
| 22.10 | Further   | Information                                                | .806  |
|       | 22.10.1   | Serial Communication Interface Specification for Boot Mode | .806  |
|       | 22.10.2   | AC Characteristics and Timing in Programmer Mode           | .830  |
|       | 22.10.3   | Storable Area for Procedure Program and Programming Data   | .837  |
|       |           |                                                            |       |
| Secti | on 23     | RAM                                                        | .845  |
| 23.1  | Overvi    | ew                                                         | . 845 |
| 23.2  | Operati   | ion                                                        | .846  |
|       |           |                                                            |       |
| Secti |           | Power-Down State                                           |       |
| 24.1  |           | ew                                                         |       |
|       |           | Power-Down States                                          |       |
|       |           | Pin Configuration                                          |       |
|       |           | Related Registers                                          |       |
| 24.2  | Registe   | er Descriptions                                            |       |
|       | 24.2.1    |                                                            |       |
|       | 24.2.2    |                                                            |       |
|       |           | Module Standby Control Register (MSTCR)                    |       |
|       |           | Notes on Register Access                                   |       |
| 24.3  |           | are Standby Mode                                           |       |
|       |           | Transition to Hardware Standby Mode                        |       |
|       | 24.3.2    | - · · · · · · · · · · · · · · · · · · ·                    |       |
|       |           | Hardware Standby Mode Timing                               |       |
| 24.4  |           | re Standby Mode                                            |       |
|       |           | Transition to Software Standby Mode                        |       |
|       | 24.4.2    | Canceling Software Standby Mode                            |       |
|       | 24.4.3    | Software Standby Mode Application Example                  |       |
| 24.5  | Sleep N   | Mode                                                       |       |
|       | 24.5.1    | <u> </u>                                                   |       |
|       | 24.5.2    | Canceling Sleep Mode                                       | .858  |
| Soat  | on 25     | Poliobility                                                | Q50   |
| secti | 011 23    | Reliability                                                | .039  |
| Rev.2 | .0, 07/03 | 3, page xxxvi of xxxviii                                   |       |

| 25.1  | Reliabi | lity                                                             | 859   |
|-------|---------|------------------------------------------------------------------|-------|
| Secti | on 26   | Electrical Characteristics                                       | 861   |
| 26.1  | Absolu  | te Maximum Ratings                                               | 861   |
| 26.2  | DC Ch   | aracteristics                                                    | 863   |
| 26.3  | AC Ch   | aracteristics                                                    | 880   |
|       | 26.3.1  | Timing for swicthing the power supply on/off                     | 880   |
|       | 26.3.2  | Clock Timing                                                     | 881   |
|       |         | Control Signal Timing                                            |       |
|       |         | Bus Timing                                                       |       |
|       | 26.3.5  | Advanced Timer Unit Timing and Advance Pulse Controller Timing   | 890   |
|       | 26.3.6  | I/O Port Timing                                                  | 892   |
|       | 26.3.7  | Watchdog Timer Timing                                            | 893   |
|       | 26.3.8  | Serial Communication Interface Timing                            | 894   |
|       | 26.3.9  | HCAN Timing                                                      | 896   |
|       | 26.3.10 | A/D Converter Timing                                             | 897   |
|       | 26.3.11 | H-UDI Timing                                                     | 899   |
|       | 26.3.12 | 2 AUD Timing                                                     | 901   |
|       | 26.3.13 | B UBC Trigger Timing                                             | 903   |
|       | 26.3.14 | Measuring Conditions for AC Characteristics                      | 904   |
| 26.4  | A/D Co  | onverter Characteristics                                         | 905   |
| 26.5  | Flash N | Memory Characteristics                                           | 906   |
| 26.6  | Usage 1 | Note                                                             | 907   |
|       | 26.6.1  | Notes on Connecting External Capacitor for Current Stabilization | 907   |
|       | 26.6.2  | Notes on Mode Pin Input                                          | 907   |
|       |         |                                                                  |       |
| Appe  | endix A | A On-chip peripheral module Registers                            | 909   |
| A.1   | Addres  | s                                                                | 909   |
| A.2   | Registe | er States in Reset and Power-Down States                         | 951   |
|       |         |                                                                  |       |
| Appe  | endix E | 3 Pin States                                                     | 956   |
|       |         |                                                                  | A = - |
| Appe  | endix C | Product Lineup                                                   | 959   |
| Anne  | endix F | ) Package Dimensions                                             | 960   |

### Section 1 Overview

#### 1.1 Features

The SH7055SF is a single-chip RISC microcontroller that integrates a RISC CPU core using an original Renesas architecture with peripheral functions required for system configuration.

The CPU has a RISC-type instruction set. Basic instructions can be executed in one state (one system clock cycle), which greatly improves instruction execution speed. In addition, the 32-bit internal architecture enhances data processing power. With this CPU, it has become possible to assemble low-cost, high-performance/high-functionality systems even for applications such as real-time control, which could not previously be handled by microcontrollers because of their high-speed processing requirements.

In addition, the SH7055SF includes on-chip peripheral functions necessary for system configuration, such as a floating-point unit (FPU), ROM, RAM, a direct memory access controller (DMAC), timers, a serial communication interface (SCI), controller area network (HCAN), A/D converter, interrupt controller (INTC), and I/O ports.

ROM and SRAM can be directly connected by means of an external memory access support function, greatly reducing system cost.

On-chip ROM is available as flash memory in the F-ZTAT<sup>TM\*</sup> (Flexible Zero Turn Around Time) version. The flash memory can be programmed with a programmer that supports SH7055SF programming, and can also be programmed and erased by software. Since the programming/erasing control program is included as firmware, programming and erasing can be performed by calling this program with a user program. This enables the chip to be programmed at the user site while mounted on a board.

The features of the SH7055SF are summarized in table 1.1.

Note: \* F-ZTAT is a trademark of Renesas Technology Corp.

### Table 1.1 SH7055SF Features

| Item             | Features                                                                               |
|------------------|----------------------------------------------------------------------------------------|
| CPU              | Maximum operating frequency: 40 MHz                                                    |
|                  | Original Hitachi SH-2E CPU                                                             |
|                  | 32-bit internal architecture                                                           |
|                  | General register machine                                                               |
|                  | Sixteen 32-bit general registers                                                       |
|                  | — Three 32-bit control registers                                                       |
|                  | — Four 32-bit system registers                                                         |
|                  | Instruction execution time: Basic instructions execute in one state                    |
|                  | (25 ns/instruction at 40 MHz operation)                                                |
|                  | Address space: Architecture supports 4 Gbytes                                          |
|                  | Five-stage pipeline                                                                    |
| Operating states | Operating modes                                                                        |
|                  | <ul> <li>— Single-chip mode</li> </ul>                                                 |
|                  | <ul> <li>8/16-bit bus expanded mode</li> </ul>                                         |
|                  | Mode with on-chip ROM                                                                  |
|                  | Mode with no on-chip ROM                                                               |
|                  | Processing states                                                                      |
|                  | <ul> <li>Reset state</li> </ul>                                                        |
|                  | <ul> <li>Program execution state</li> </ul>                                            |
|                  | Exception handling state                                                               |
|                  | <ul> <li>Bus-released state</li> </ul>                                                 |
|                  | <ul><li>— Power-down state</li></ul>                                                   |
|                  | Power-down state                                                                       |
|                  | — Sleep mode                                                                           |
|                  | <ul> <li>Software standby mode</li> </ul>                                              |
|                  | <ul> <li>Hardware standby mode</li> </ul>                                              |
|                  | <ul> <li>Module standby</li> </ul>                                                     |
| Multiplier       | • $32 \times 32 \rightarrow 64$ multiply operations executed in two to four cycles     |
|                  | $32\times32$ + $64\rightarrow64$ multiply-and-accumulate operations executed in two to |
|                  | four cycles                                                                            |

# Table 1.1 SH7055SF Features (cont)

| Item                        | Features                                                                                                                                                  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Floating-point              | SuperH architecture coprocessor                                                                                                                           |
| unit                        | <ul> <li>Supports single-precision floating-point operations</li> </ul>                                                                                   |
|                             | Supports a subset of the data types specified by the IEEE standard                                                                                        |
|                             | <ul> <li>Supports invalid operation and division-by-zero exception detection (subset<br/>of IEEE standard)</li> </ul>                                     |
|                             | Supports Round to Zero as the rounding mode (subset of IEEE standard)                                                                                     |
|                             | Sixteen 32-bit floating-point data registers                                                                                                              |
|                             | Supports the FMAC instruction (multiply-and-accumulate instruction)                                                                                       |
|                             | Supports the FDIV instruction (divide instruction)                                                                                                        |
|                             | Supports the FLDI0/FLDI1 instructions (constant 0/1 load instructions)                                                                                    |
|                             | <ul> <li>Instruction delay time: Two cycles for each of FMAC, FADD, FSUB, and<br/>FMUL instructions</li> </ul>                                            |
|                             | <ul> <li>Execution pitch: One cycle for each of FMAC, FADD, FSUB, and FMUL instructions</li> </ul>                                                        |
| Clock pulse                 | On-chip clock pulse generator (maximum operating frequency: 40 MHz)                                                                                       |
| generator<br>(CPG/PLL)      | <ul> <li>Independent generation of CPU system clock and peripheral clock for<br/>peripheral modules</li> </ul>                                            |
|                             | On-chip clock-multiplication PLL circuit (×4)                                                                                                             |
|                             | Internal clock frequency range: 5 to 10 MHz                                                                                                               |
| Interrupt                   | Nine external interrupt pins (NMI, IRQ0 to IRQ7)                                                                                                          |
| controller (INTC)           | 115 internal interrupt sources                                                                                                                            |
|                             | (ATU-II $\times$ 75, SCI $\times$ 20, DMAC $\times$ 4, A/D $\times$ 3, WDT $\times$ 1, UBC $\times$ 1, CMT $\times$ 2, HCAN $\times$ 8, H-UDI $\times$ 1) |
|                             | 16 programmable priority levels                                                                                                                           |
| User break controller (UBC) | <ul> <li>Requests an interrupt when the CPU or DMAC generates a bus cycle with<br/>specified conditions (interrupt can also be masked)</li> </ul>         |
|                             | Trigger pulse output (UBCTRG) on break condition                                                                                                          |
|                             | — Selection of trigger pulse width ( $\phi \times 1, \times 4, \times 8, \times 16$ )                                                                     |
|                             | Simplifies configuration of an on-chip debugger                                                                                                           |

# Table 1.1 SH7055SF Features (cont)

| Item                                        | Features                                                                                                       |  |  |  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Bus state                                   | Supports external memory access (SRAM and ROM directly connectable)                                            |  |  |  |  |  |  |
| controller (BSC)                            | — 8/16-bit bus space                                                                                           |  |  |  |  |  |  |
|                                             | 3.3 V bus interface                                                                                            |  |  |  |  |  |  |
|                                             | • 16 MB address space divided into four areas, with the following parameters settable for each area:           |  |  |  |  |  |  |
|                                             | — Bus size (8 or 16 bits)                                                                                      |  |  |  |  |  |  |
|                                             | Number of wait cycles                                                                                          |  |  |  |  |  |  |
|                                             | <ul> <li>Chip select signals (<del>CS0</del> to <del>CS3</del>) output for each area</li> </ul>                |  |  |  |  |  |  |
|                                             | Wait cycles can be inserted using an external WAIT signal                                                      |  |  |  |  |  |  |
|                                             | External access in minimum of two cycles                                                                       |  |  |  |  |  |  |
|                                             | Provision for idle cycle insertion to prevent bus collisions                                                   |  |  |  |  |  |  |
| Direct memory                               | DMA transfer possible for the following devices:                                                               |  |  |  |  |  |  |
| access controller<br>(DMAC)<br>(4 channels) | <ul> <li>External memory, on-chip memory, on-chip peripheral modules<br/>(excluding DMAC, UBC, BSC)</li> </ul> |  |  |  |  |  |  |
| (4 chamicis)                                | DMA transfer requests by on-chip modules                                                                       |  |  |  |  |  |  |
|                                             | <ul> <li>SCI, A/D converter, ATU-II, HCAN</li> </ul>                                                           |  |  |  |  |  |  |
|                                             | Cycle steal or burst mode transfer                                                                             |  |  |  |  |  |  |
|                                             | Dual address mode                                                                                              |  |  |  |  |  |  |
|                                             | Direct transfer mode                                                                                           |  |  |  |  |  |  |
|                                             | <ul> <li>Indirect transfer mode (channel 3 only)</li> </ul>                                                    |  |  |  |  |  |  |
|                                             | Address reload function (channel 2 only)                                                                       |  |  |  |  |  |  |
|                                             | Transfer data width: Byte/word/longword                                                                        |  |  |  |  |  |  |
| Advanced timer                              | Maximum 65 inputs or outputs can be processed                                                                  |  |  |  |  |  |  |
| unit-II (ATU-II)                            | <ul> <li>Four 32-bit input capture inputs</li> </ul>                                                           |  |  |  |  |  |  |
|                                             | <ul> <li>Thirty 16-bit input capture inputs/output compare outputs</li> </ul>                                  |  |  |  |  |  |  |
|                                             | <ul> <li>Sixteen 16-bit one-shot pulse outputs</li> </ul>                                                      |  |  |  |  |  |  |
|                                             | Eight 16-bit PWM outputs                                                                                       |  |  |  |  |  |  |
|                                             | <ul> <li>Six 8-bit event counters</li> </ul>                                                                   |  |  |  |  |  |  |
|                                             | <ul> <li>One gap detection function</li> </ul>                                                                 |  |  |  |  |  |  |
|                                             | I/O pin output inversion function                                                                              |  |  |  |  |  |  |
| Advanced pulse controller (APC)             | Maximum eight pulse outputs on reception of ATU-II (channel 11) compare-match signal                           |  |  |  |  |  |  |

# Table 1.1 SH7055SF Features (cont)

| Item                           | Features                                                                                                   |
|--------------------------------|------------------------------------------------------------------------------------------------------------|
| Watchdog timer                 | Can be switched between watchdog timer and interval timer function                                         |
| (WDT)<br>(1 channel)           | Internal reset, external signal, or interrupt generated by counter overflow                                |
| (1 chamber)                    | Two kinds of internal reset                                                                                |
|                                | <ul><li>— Power-on reset</li></ul>                                                                         |
|                                | — Manual reset                                                                                             |
| Compare-match                  | Selection of 4 counter input clocks                                                                        |
| timer (CMT)<br>(2 channels)    | <ul> <li>A compare-match interrupt can be requested independently for each channel</li> </ul>              |
| Serial                         | Selection of asynchronous or synchronous mode                                                              |
| communication interface (SCI)  | Simultaneous transmission/reception (full-duplex) capability                                               |
| (5 channels)                   | <ul> <li>Serial data communication possible between multiple processors<br/>(asynchronous mode)</li> </ul> |
|                                | Clock inversion function                                                                                   |
|                                | <ul> <li>LSB-/MSB-first selection function for transmission</li> </ul>                                     |
| Controller area                | CAN version: Bosch 2.0B active compatible                                                                  |
| network (HCAN)<br>(2 channels) | • Buffer size (per channel): Transmit/receive $\times$ 15, receive-only $\times$ 1                         |
| (2 chamileis)                  | Receive message filtering capability                                                                       |
| A/D converter                  | Thirty-two channels                                                                                        |
|                                | Three sample-and-hold circuits                                                                             |
|                                | — Independent operation of 12 channels $\times$ 2 and 8 channels $\times$ 1                                |
|                                | Selection of two conversion modes                                                                          |
|                                | <ul> <li>Single conversion mode</li> </ul>                                                                 |
|                                | — Scan mode                                                                                                |
|                                | Continuous scan mode                                                                                       |
|                                | Single-cycle scan mode                                                                                     |
|                                | Can be activated by external trigger or ATU-II compare-match                                               |
|                                | 10-bit resolution                                                                                          |
|                                | Accuracy: ±2 LSB                                                                                           |
| High-                          | Five dedicated pins                                                                                        |
| Performance user debug         | Bypass mode (test mode compliant with IEEE1149.1)                                                          |
| interface (H-UDI)              | H-UDI interrupt                                                                                            |

Table 1.1 SH7055SF Features (cont)

| Item                                               | Features                                                                                                                                                       |  |  |  |  |  |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Advanced user                                      | Eight dedicated pins                                                                                                                                           |  |  |  |  |  |
| debugger (AUD)                                     | RAM monitor mode                                                                                                                                               |  |  |  |  |  |
|                                                    | <ul> <li>— Data input/output frequency: φ/4 or less</li> </ul>                                                                                                 |  |  |  |  |  |
|                                                    | <ul> <li>Possible to read/write to a module connected to the internal/external<br/>bus</li> </ul>                                                              |  |  |  |  |  |
|                                                    | Branch address output mode                                                                                                                                     |  |  |  |  |  |
| I/O ports                                          | Dual-function input/output pins: 149                                                                                                                           |  |  |  |  |  |
| (including timer I/O pins, address and data buses) | Schmitt input pins: NMI, $\overline{\text{IRQn}}$ , $\overline{\text{RES}}$ , $\overline{\text{HSTBY}}$ , FWE, TCLK, IC, IC/OC, SCK, $\overline{\text{ADTRG}}$ |  |  |  |  |  |
|                                                    | Input port protection                                                                                                                                          |  |  |  |  |  |
| ROM                                                | 512-kbyte flash memory                                                                                                                                         |  |  |  |  |  |
|                                                    | 512 kbytes divided into 16 blocks                                                                                                                              |  |  |  |  |  |
|                                                    | — Small blocks: 4 kB × 8                                                                                                                                       |  |  |  |  |  |
|                                                    | — Medium block: 32 kB × 1                                                                                                                                      |  |  |  |  |  |
|                                                    | — Large blocks: 64 kB × 7                                                                                                                                      |  |  |  |  |  |
|                                                    | <ul> <li>RAM emulation function (using 4 KB small block)</li> </ul>                                                                                            |  |  |  |  |  |
|                                                    | <ul> <li>Programming/erasing control program included as firmware</li> </ul>                                                                                   |  |  |  |  |  |
|                                                    | Flash memory programming methods                                                                                                                               |  |  |  |  |  |
|                                                    | — Boot mode                                                                                                                                                    |  |  |  |  |  |
|                                                    | <ul><li>User boot mode</li></ul>                                                                                                                               |  |  |  |  |  |
|                                                    | — User program mode                                                                                                                                            |  |  |  |  |  |
|                                                    | — Programmer mode                                                                                                                                              |  |  |  |  |  |
| RAM                                                | 32 kB SRAM                                                                                                                                                     |  |  |  |  |  |

### 1.2 Block Diagram

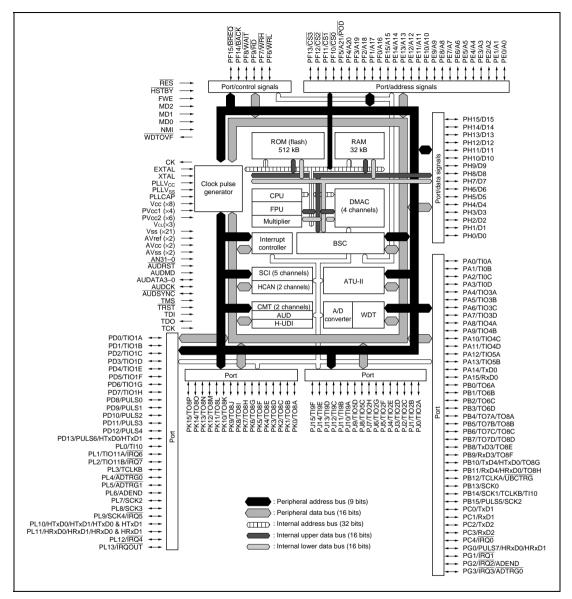



Figure 1.1 Block Diagram

## 1.3 Pin Description

### 1.3.1 Pin Arrangement

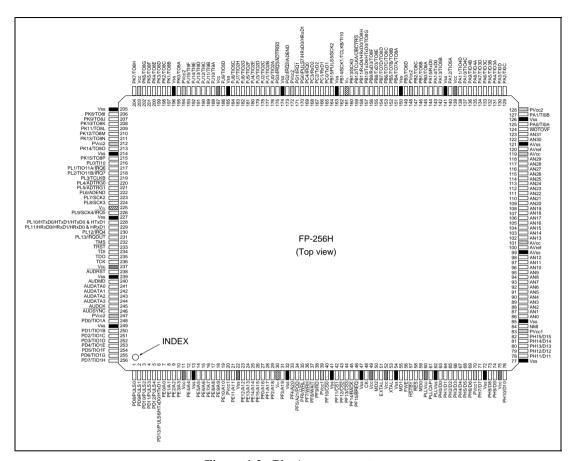



Figure 1.2 Pin Arrangement

## 1.3.2 Pin Functions

Table 1.2 summarizes the pin functions.

**Table 1.2 Pin Functions** 

| Туре         | Symbol             | Pin No.                                     | I/O   | Name                                   | Function                                                                                                                                                                                                                                       |
|--------------|--------------------|---------------------------------------------|-------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Power supply | V <sub>cc</sub>    | 11, 49, 52,<br>75, 139,<br>187, 203,<br>237 | Input | Power supply                           | Power supply for chip-internal and system ports (RES, MD2–MD0, FWE, HSTBY, NMI, CK, EXTAL, XTAL, H-UDI port). Connect all V <sub>cc</sub> pins to the system power supply. The chip will not operate if there are any open pins.               |
|              | PV <sub>cc</sub> 1 | 20, 39, 70,<br>83                           | Input | Port power<br>supply 1                 | Power supply for bus ports (ports E, F, and H). Connect all PV <sub>cc</sub> 1 pins to the system bus power supply. The chip will not operate if there are any open pins.                                                                      |
|              | PV <sub>cc</sub> 2 | 128, 148,<br>172, 194,<br>212, 247          | Input | Port power<br>supply 2                 | Power supply for peripheral module ports (ports A, B, C, D, G, J, K, and L, the AUD port, and WDTOVF). Connect all PV <sub>cc</sub> 2 pins to the system peripheral module power supply. The chip will not operate if there are any open pins. |
|              | $V_{\text{CL}}$    | 30, 161,<br>225                             | Input | Internal step-<br>down power<br>supply | Pins for connection to a capacitor used for stablizing the voltage of the internal step-down power supply.                                                                                                                                     |
|              |                    |                                             |       |                                        | Connect this pin to V <sub>ss</sub> throhgh a capacitor. The capacitor should be located near the pin. Do not connect to an external power supply.                                                                                             |

| Туре         | Symbol          | Pin No.                                                                                                                | I/O   | Name               | Function                                                                                                                                |
|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------|-------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Power supply | V <sub>ss</sub> | 13, 22, 32,<br>41, 47, 54,<br>72, 77, 85,<br>126, 141,<br>150, 163,<br>174, 185,<br>196, 205,<br>214, 227,<br>239, 249 | Input | Ground             | For connection to ground.  Connect all V <sub>ss</sub> pins to the system ground. The chip will not operate if there are any open pins. |
| Flash memory | FWE             | 56                                                                                                                     | Input | Flash write enable | Connected to ground in normal operation.  Apply V <sub>cc</sub> during on-board                                                         |
|              |                 |                                                                                                                        |       |                    | programming.                                                                                                                            |

**Table 1.2 Pin Functions (cont)** 

| Туре           | Symbol             | Pin No. | I/O    | Name                       | Function                                                                                                                                                                          |
|----------------|--------------------|---------|--------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clock          | PLLV <sub>cc</sub> | 60      | Input  | PLL power supply           | On-chip PLL oscillator power supply.                                                                                                                                              |
|                |                    |         |        |                            | For power supply connection, see section 5, Clock Pulse Generator (CPG).                                                                                                          |
|                | PLLV <sub>ss</sub> | 62      | Input  | PLL ground                 | On-chip PLL oscillator ground.                                                                                                                                                    |
|                |                    |         |        |                            | For power supply connection, see section 5, Clock Pulse Generator (CPG).                                                                                                          |
|                | PLLCAP             | 61      | Input  | PLL<br>capacitance         | On-chip PLL oscillator external capacitance connection pin.                                                                                                                       |
|                |                    |         |        |                            | For external capacitance connection, see section 5, Clock Pulse Generator (CPG).                                                                                                  |
|                | EXTAL              | 51      | Input  | External clock             | For connection to a crystal resonator. An external clock source can also be connected to the EXTAL pin.                                                                           |
|                | XTAL               | 53      | Input  | Crystal                    | For connection to a crystal resonator.                                                                                                                                            |
|                | CK                 | 48      | Output | System clock               | Supplies the system clock to peripheral devices.                                                                                                                                  |
| System control | RES                | 58      | Input  | Power-on reset             | Executes a power-on reset when driven low.                                                                                                                                        |
|                | WDTOVF             | 124     | Output | Watchdog<br>timer overflow | WDT overflow output signal.                                                                                                                                                       |
|                | BREQ               | 46      | Input  | Bus request                | Driven low when an external device requests the bus.                                                                                                                              |
|                | BACK               | 45      | Output | Bus request acknowledge    | Indicates that the bus has been granted to an external device. The device that output the BREQ signal recognizes that the bus has been acquired when it receives the BACK signal. |

**Table 1.2 Pin Functions (cont)** 

| Туре                   | Symbol        | Pin No.                                         | I/O              | Name                           | Function                                                                                  |
|------------------------|---------------|-------------------------------------------------|------------------|--------------------------------|-------------------------------------------------------------------------------------------|
| Operating mode control | MD0 to<br>MD2 | 59, 55, 50                                      | Input            | Mode setting                   | These pins determine the operating mode. Do not change the input values during operation. |
|                        | HSTBY         | 57                                              | Input            | Hardware<br>standby            | When driven low, this pin forces a transition to hardware standby mode.                   |
| Interrupts             | NMI           | 84                                              | Input            | Nonmaskable interrupt          | Nonmaskable interrupt request pin.                                                        |
|                        |               |                                                 |                  |                                | Acceptance on the rising edge or falling edge can be selected.                            |
|                        | IRQ0 to       | 169, 171,<br>173, 175,                          | Input            | Interrupt requests             | Maskable interrupt request pins.                                                          |
|                        |               | 230, 226,<br>217, 218                           |                  | 0 to 7                         | Level input or edge input can be selected.                                                |
|                        | IRQOUT 231    | 231                                             | Output           | Interrupt<br>request<br>output | Indicates that an interrupt has been generated.                                           |
|                        |               |                                                 |                  |                                | Enables interrupt generation to be recognized in the busreleased state.                   |
| Address bus            | A0-A21        | 7–10, 12,<br>14–19, 21,<br>23–29, 31,<br>33, 34 | Output           | Address bus                    | Address output pins.                                                                      |
| Data bus               | D0-D15        | 63–69, 71,<br>73, 74, 76,<br>78–82              | Input/<br>output | Data bus                       | 16-bit bidirectional data bus pins.                                                       |
| Bus control            | CS0-CS3       | 40, 42–44                                       | Output           | Chip select 0 to 3             | Chip select signals for external memory or devices.                                       |
|                        | RD            | 38                                              | Output           | Read                           | Indicates reading from an external device.                                                |
|                        | WRH           | 36                                              | Output           | Upper write                    | Indicates writing of the upper 8 bits of external data.                                   |
|                        | WRL           | 35                                              | Output           | Lower write                    | Indicates writing of the lower 8 bits of external data.                                   |
|                        | WAIT          | 37                                              | Input            | Wait                           | Input for wait cycle insertion in bus cycles during external space access.                |

**Table 1.2 Pin Functions (cont)** 

| Туре                   | Symbol          | Pin No.                                                      | I/O              | Name                                                                    | Function                                                      |
|------------------------|-----------------|--------------------------------------------------------------|------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|
| Advanced timer unit-II | TCLKA<br>TCLKB  | 159, 162,<br>219                                             | Input            | ATU-II timer clock input                                                | ATU-II counter external clock Input pins.                     |
| (ATU-II)               | TIOA-TIOD       | 125, 127,<br>129, 130                                        | Input            | ATU-II input<br>capture<br>(channel 0)                                  | Channel 0 input capture input pins.                           |
|                        | TIO1A-<br>TIO1H | 248,<br>250–256                                              | Input/<br>output | ATU-II input<br>capture/output<br>compare<br>(channel 1)                | Channel 1 input capture input/output compare output pins.     |
|                        | TIO2A-<br>TIO2H | 176–183                                                      | Input/<br>output | ATU-II input<br>capture/output<br>compare<br>(channel 2)                | Channel 2 input capture input/output compare output pins.     |
|                        | TIO3A-<br>TIO3D | 131–134                                                      | Input/<br>output | ATU-II input<br>capture/output<br>compare/<br>PWM output<br>(channel 3) | Channel 3 input capture input/output compare/PWM output pins. |
|                        | TIO4A-<br>TIO4D | 135–138                                                      | Input/<br>output | ATU-II input<br>capture/output<br>compare/<br>PWM output<br>(channel 4) | Channel 4 input capture input/output compare/PWM output pins. |
|                        | TIO5A-<br>TIO5D | 140, 142,<br>184, 186                                        | Input/<br>output | ATU-II input<br>capture/output<br>compare/<br>PWM output<br>(channel 5) | Channel 5 input capture input/output compare/PWM output pins. |
|                        | TO6A-<br>TO6D   | 145–147,<br>149                                              | Output           | ATU-II PWM<br>output<br>(channel 6)                                     | Channel 6 PWM output pins.                                    |
|                        | TO7A-<br>TO7D   | 151–154                                                      | Output           | ATU-II PWM output (channel 7)                                           | Channel 7 PWM output pins.                                    |
|                        | TO8A-<br>TO8P   | 151–158,<br>195,<br>197–202,<br>204,<br>206–211,<br>213, 215 | Output           | ATU-II<br>one-shot pulse<br>(channel 8)                                 | Channel 8 down-counter one-<br>shot pulse output pins.        |

**Table 1.2 Pin Functions (cont)** 

| Туре                                       | Symbol            | Pin No.                            | I/O              | Name                                                     | Function                                                   |
|--------------------------------------------|-------------------|------------------------------------|------------------|----------------------------------------------------------|------------------------------------------------------------|
| Advanced<br>timer unit-II<br>(ATU-II)      | TI9A–<br>TI9F     | 188–193                            | Input            | ATU-II event input (channel 9)                           | Channel 9 event counter input pins.                        |
|                                            | TI10              | 162, 216                           | Input            | ATU-II<br>multiplied clock<br>generation<br>(channel 10) | Channel 10 external clock input pin.                       |
|                                            | TIO11A,<br>TIO11B | 217, 218                           | Input/<br>output | ATU-II input capture/output compare                      | Channel 11 input capture input/output compare output pins. |
| Advanced pulse controller (APC)            | PULS0-<br>PULS7   | 1–6, 164,<br>170                   | Output           | APC pulse outputs 0 to 7                                 | APC pulse output pins.                                     |
| Serial<br>communication<br>interface (SCI) | TxD0–<br>TxD4     | 143, 165,<br>167, 155,<br>157      | Output           | Transmit data (channels 0 to 4)                          | SCI0 to SCI4 transmit data output pins.                    |
|                                            | RxD0–<br>RxD4     | 144, 166,<br>168, 156,<br>158      | Input            | Receive data<br>(channels<br>0 to 4)                     | SCI0 to SCI4 receive data input pins.                      |
|                                            | SCK0-<br>SCK4     | 160, 162,<br>223, 224,<br>226, 164 | Input/<br>output | Serial clock<br>(channels<br>0 to 4)                     | SCI0 to SCI4 clock input/output pins.                      |
| Controller area network                    | HTxD0,<br>HTxD1   | 157, 228, 6                        | Output           | Transmit data                                            | CAN bus transmit data output pins.                         |
| (HCAN)                                     | HRxD0,<br>HRxD1   | 158, 229,<br>170                   | input            | Receive data                                             | CAN bus receive data input pins.                           |
| A/D converter                              | AV <sub>cc</sub>  | 101, 119                           | Input            | Analog power supply                                      | A/D converter power supply.                                |
|                                            | AV <sub>ss</sub>  | 99, 121                            | Input            | Analog ground                                            | A/D converter power supply.                                |
|                                            | $AV_{ref}$        | 100, 120                           | Input            | Analog<br>reference<br>power supply                      | Analog reference power supply input pins.                  |
|                                            | AN0-AN31          | 86–98,<br>102–118,<br>122, 123     | Input            | Analog input                                             | Analog signal input pins.                                  |
|                                            | ADTRG0,<br>ADTRG1 | 175, 220,<br>221                   | Input            | A/D conversion trigger input                             | External trigger input pins for starting A/D conversion.   |
|                                            | ADEND             | 173, 222                           | Output           | ADEND output                                             | A/D2 channel 31 conversion timing monitor output pins.     |

**Table 1.2 Pin Functions (cont)** 

| Туре                               | Symbol              | Pin No.                     | I/O              | Name                             | Function                                                                   |
|------------------------------------|---------------------|-----------------------------|------------------|----------------------------------|----------------------------------------------------------------------------|
| User break controller (UBC         | UBCTRG              | 159                         | Output           | User break<br>trigger output     | UBC condition match trigger output pin.                                    |
| High-                              | TCK                 | 236                         | Input            | Test clock                       | Test clock input pin.                                                      |
| Performance user debug interface   | TMS                 | 232                         | Input            | Test mode select                 | Test mode select signal input pin.                                         |
| (H-UDI)                            | TDI                 | 234                         | Input            | Test data input                  | Instruction/data serial input pin.                                         |
|                                    | TDO                 | 235                         | Output           | Test data output                 | Instruction/data serial output pin.                                        |
|                                    | TRST                | 233                         | Input            | Test reset                       | Initialization signal input pin.                                           |
| Advanced<br>user debugger<br>(AUD) | AUDATA0–<br>AUDATA3 | 241–244                     | Input/<br>output | AUD data                         | Realtime trace mode: Branch destination address output pins.               |
|                                    |                     |                             |                  |                                  | RAM monitor mode: Monitor address input / data input/output pins.          |
|                                    | AUDRST              | 238                         | Input            | AUD reset                        | Reset signal input pin.                                                    |
|                                    | AUDMD               | 240                         | Input            | AUD mode                         | Mode select signal input pin.                                              |
|                                    |                     |                             |                  |                                  | Realtime trace mode: Low                                                   |
|                                    |                     |                             |                  |                                  | RAM monitor mode: High                                                     |
|                                    | AUDCK               | 245                         | Input/<br>output | AUD clock                        | Realtime trace mode: Serial clock output pin.                              |
|                                    |                     |                             |                  |                                  | RAM monitor mode: Serial clock input pin.                                  |
|                                    | AUDSYNC             | 246                         | Input/<br>output | AUD<br>synchronization<br>signal | Realtime trace mode: Data start position identification signal output pin. |
|                                    |                     |                             |                  |                                  | RAM monitor mode: Data start position identification signal input pin.     |
| I/O ports                          | POD                 | 34                          | Input            | Port output disable              | Input pin for port pin drive control when general port is set for output.  |
|                                    | PA0-PA15            | 125, 127,                   | Input/           | Port A                           | General input/output port pins.                                            |
|                                    |                     | 129–138,<br>140,<br>142–144 | output           |                                  | Input or output can be specified bit by bit.                               |

**Table 1.2 Pin Functions (cont)** 

| Туре      | Symbol   | Pin No.                                     | I/O              | Name   | Function                                     |
|-----------|----------|---------------------------------------------|------------------|--------|----------------------------------------------|
| I/O ports | PB0-PB15 | 145–147,                                    | Input/           | Port B | General input/output port pins.              |
|           |          | 149,<br>151–160,<br>162, 164                | output           |        | Input or output can be specified bit by bit. |
|           | PC0-PC4  | 165–169                                     | Input/           | Port C | General input/output port pins.              |
|           |          |                                             | output           |        | Input or output can be specified bit by bit. |
|           | PD0-PD13 |                                             | Input/           | Port D | General input/output port pins.              |
|           |          | 250–256,<br>1–6                             | output           |        | Input or output can be specified bit by bit. |
|           | PE0-PE15 | 7–10, 12,                                   | Input/           | Port E | General input/output port pins.              |
|           |          | 14–19, 21,<br>23–26                         | output           |        | Input or output can be specified bit by bit. |
|           | PF0-PF15 | 27–29, 31,                                  | Input/           | Port F | General input/output port pins.              |
|           |          | 33–38, 40,<br>42–46                         | output           |        | Input or output can be specified bit by bit. |
|           |          | 170, 171,<br>173, 175                       | Input/<br>output | Port G | General input/output port pins.              |
|           |          |                                             |                  |        | Input or output can be specified bit by bit. |
|           | PH0-PH15 | PH0-PH15 63-69, 71,<br>73, 74, 76,<br>78-82 | Input/<br>output | Port H | General input/output port pins.              |
|           |          |                                             |                  |        | Input or output can be specified bit by bit. |
|           | PJ0-PJ15 | 176–184,                                    | Input/           | Port J | General input/output port pins.              |
|           |          | 186, ou<br>188–193                          | output           |        | Input or output can be specified bit by bit. |
|           | PK0-PK15 | 195,                                        | Input/           | Port K | General input/output port pins.              |
|           |          | 197–202,<br>204,<br>206–211,<br>213, 215    | output           |        | Input or output can be specified bit by bit. |
|           | PL0-PL13 | 216–224,                                    | 26, output       | Port L | General input/output port pins.              |
|           |          | 226,<br>228–231                             |                  |        | Input or output can be specified bit by bit. |

# 1.3.3 Pin Assignments

**Table 1.3** Pin Assignments

| Pin No. | MCU Mode               | Programmer Mode |  |
|---------|------------------------|-----------------|--|
| 1       | PD8/PULS0              | N.C             |  |
| 2       | PD9/PULS1              | N.C             |  |
| 3       | PD10/PULS2             | N.C             |  |
| 4       | PD11/PULS3             | N.C             |  |
| 5       | PD12/PULS4             | N.C             |  |
| 6       | PD13/PULS6/HTxD0/HTxD1 | N.C             |  |
| 7       | PE0/A0                 | A0              |  |
| 8       | PE1/A1                 | A1              |  |
| 9       | PE2/A2                 | A2              |  |
| 10      | PE3/A3                 | A3              |  |
| 11      | Vcc                    | Vcc             |  |
| 12      | PE4/A4                 | A4              |  |
| 13      | Vss                    | Vss             |  |
| 14      | PE5/A5                 | A5              |  |
| 15      | PE6/A6                 | A6              |  |
| 16      | PE7/A7                 | A7              |  |
| 17      | PE8/A8                 | A8              |  |
| 18      | PE9/A9                 | A9              |  |
| 19      | PE10/A10               | A10             |  |
| 20      | PVcc1                  | Vcc             |  |
| 21      | PE11/A11               | A11             |  |
| 22      | Vss                    | Vss             |  |
| 23      | PE12/A12               | A12             |  |
| 24      | PE13/A13               | A13             |  |
| 25      | PE14/A14               | A14             |  |
| 26      | PE15/A15               | A15             |  |
| 27      | PF0/A16                | A16             |  |
| 28      | PF1/A17                | A17             |  |
| 29      | PF2/A18                | A18             |  |
| 30      | V <sub>CL</sub>        | V <sub>CL</sub> |  |

**Table 1.3** Pin Assignments (cont)

| Pin No. | MCU Mode    | Programmer Mode |
|---------|-------------|-----------------|
| 31      | PF3/A19     | A19             |
| 32      | Vss         | Vss             |
| 33      | PF4/A20     | N.C.            |
| 34      | PF5/A21/POD | N.C.            |
| 35      | PF6/WRL     | N.C.            |
| 36      | PF7/WRH     | N.C.            |
| 37      | PF8/WAIT    | Vcc             |
| 38      | PF9/RD      | N.C.            |
| 39      | PVcc1       | Vcc             |
| 40      | PF10/CS0    | N.C.            |
| 41      | Vss         | Vss             |
| 42      | PF11/CS1    | Vcc             |
| 43      | PF12/CS2    | Vcc             |
| 44      | PF13/CS3    | Vss             |
| 45      | PF14/BACK   | N.C.            |
| 46      | PF15/BREQ   | Vcc             |
| 47      | Vss         | Vss             |
| 48      | CK          | N.C.            |
| 49      | Vcc         | Vcc             |
| 50      | MD2         | Vss             |
| 51      | EXTAL       | EXTAL           |
| 52      | Vcc         | Vcc             |
| 53      | XTAL        | XTAL            |
| 54      | Vss         | Vss             |
| 55      | MD1         | Vcc             |
| 56      | FWE         | FWE             |
| 57      | HSTBY       | Vcc             |
| 58      | RES         | RES             |
| 59      | MD0         | Vcc             |
| 60      | PLLVcc      | PLLVcc          |
| 61      | PLLCAP      | PLLCAP          |

 Table 1.3
 Pin Assignments (cont)

| 62 PLLVss PLLVss 63 PH0/D0 D0 64 PH1/D1 D1 65 PH2/D2 D2 66 PH3/D3 D3 67 PH4/D4 D4 68 PH5/D5 D5 69 PH6/D6 D6 70 PVcc1 Vcc 71 PH7/D7 D7 72 Vss Vss 73 PH8/D8 N.C. 74 PH9/D9 N.C. 75 Vcc Vcc 76 PH10/D10 N.C. 77 Vss Vss 78 PH11/D11 N.C. 79 PH12/D12 N.C. 80 PH3/D13 N.C. 81 PH3/D13 N.C. 81 PH3/D14 N.C. 82 PH5/D15 N.C. 83 PVcc1 Vcc 84 NMI Vss 85 Vss 86 ANO N.C. 87 AN1 N.C. 88 AN2 N.C. 89 AN3 N.C. 90 AN4 N.C. 91 AN5 N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pin No. | MCU Mode | Programmer Mode |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|-----------------|
| 64 PH1/D1 D1 65 PH2/D2 D2 66 PH3/D3 D3 67 PH4/D4 D4 68 PH5/D5 D5 69 PH6/D6 D6 70 PVcc1 Vcc 71 PH7/D7 D7 72 Vss Vss 73 PH8/D8 N.C. 74 PH9/D9 N.C. 75 Vcc Vcc 76 PH10/D10 N.C. 77 Vss Vss 78 PH11/D11 N.C. 79 PH12/D12 N.C. 80 PH13/D13 N.C. 81 PH14/D14 N.C. 82 PH15/D15 N.C. 83 PVcc1 Vcc 84 NMI Vss 85 Vss 86 ANO N.C. 87 AN1 N.C. 88 AN2 N.C. 89 AN3 N.C. 80 P.C. 80 PH3/D3 N.C. 81 N.C. 81 N.C. 82 PH5/D15 N.C. 83 PVcc1 Vcc 84 NMI Vss 85 Vss 86 ANO N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 62      | PLLVss   | PLLVss          |
| 65         PH2/D2         D2           66         PH3/D3         D3           67         PH4/D4         D4           68         PH5/D5         D5           69         PH6/D6         D6           70         PVcc1         Vcc           71         PH7/D7         D7           72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           80         PH13/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           89         AN3         N.C.           90 | 63      | PH0/D0   | D0              |
| 66         PH3/D3         D3           67         PH4/D4         D4           68         PH5/D5         D5           69         PH6/D6         D6           70         PVcc1         Vcc           71         PH7/D7         D7           72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           89         AN3         N.C.           90         AN4         N.C.               | 64      | PH1/D1   | D1              |
| 67         PH4/D4         D4           68         PH5/D5         D5           69         PH6/D6         D6           70         PVcc1         Vcc           71         PH7/D7         D7           72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH3/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           89         AN3         N.C.           90         AN4         N.C.                                                       | 65      | PH2/D2   | D2              |
| 68         PH5/D5         D5           69         PH6/D6         D6           70         PVcc1         Vcc           71         PH7/D7         D7           72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                       | 66      | PH3/D3   | D3              |
| 69         PH6/D6         D6           70         PVcc1         Vcc           71         PH7/D7         D7           72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                        | 67      | PH4/D4   | D4              |
| 70         PVcc1         Vcc           71         PH7/D7         D7           72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                                                               | 68      | PH5/D5   | D5              |
| 71         PH7/D7         D7           72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.                                                                                                                                                                            | 69      | PH6/D6   | D6              |
| 72         Vss         Vss           73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         AN0         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                                                                                                                                             | 70      | PVcc1    | Vcc             |
| 73         PH8/D8         N.C.           74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         AN0         N.C.           87         AN1         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                                                                                                                                                                                                                        | 71      | PH7/D7   | D7              |
| 74         PH9/D9         N.C.           75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                                                                                                                                                                                                                           | 72      | Vss      | Vss             |
| 75         Vcc         Vcc           76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                                                                                                                                                                                                                                                                    | 73      | PH8/D8   | N.C.            |
| 76         PH10/D10         N.C.           77         Vss         Vss           78         PH11/D11         N.C.           79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         AN0         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                                                                                                                                                                                                                                                                                                         | 74      | PH9/D9   | N.C.            |
| 77       Vss       Vss         78       PH11/D11       N.C.         79       PH12/D12       N.C.         80       PH13/D13       N.C.         81       PH14/D14       N.C.         82       PH15/D15       N.C.         83       PVcc1       Vcc         84       NMI       Vss         85       Vss       Vss         86       AN0       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 75      | Vcc      | Vcc             |
| 78       PH11/D11       N.C.         79       PH12/D12       N.C.         80       PH13/D13       N.C.         81       PH14/D14       N.C.         82       PH15/D15       N.C.         83       PVcc1       Vcc         84       NMI       Vss         85       Vss       Vss         86       ANO       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76      | PH10/D10 | N.C.            |
| 79         PH12/D12         N.C.           80         PH13/D13         N.C.           81         PH14/D14         N.C.           82         PH15/D15         N.C.           83         PVcc1         Vcc           84         NMI         Vss           85         Vss         Vss           86         ANO         N.C.           87         AN1         N.C.           88         AN2         N.C.           89         AN3         N.C.           90         AN4         N.C.           91         AN5         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 77      | Vss      | Vss             |
| 80       PH13/D13       N.C.         81       PH14/D14       N.C.         82       PH15/D15       N.C.         83       PVcc1       Vcc         84       NMI       Vss         85       Vss       Vss         86       AN0       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78      | PH11/D11 | N.C.            |
| 81       PH14/D14       N.C.         82       PH15/D15       N.C.         83       PVcc1       Vcc         84       NMI       Vss         85       Vss       Vss         86       ANO       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 79      | PH12/D12 | N.C.            |
| 82       PH15/D15       N.C.         83       PVcc1       Vcc         84       NMI       Vss         85       Vss       Vss         86       AN0       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 80      | PH13/D13 | N.C.            |
| 83       PVcc1       Vcc         84       NMI       Vss         85       Vss       Vss         86       ANO       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81      | PH14/D14 | N.C.            |
| 84       NMI       Vss         85       Vss       Vss         86       AN0       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82      | PH15/D15 | N.C.            |
| 85       Vss         86       AN0         87       AN1         88       AN2         89       AN3         90       AN4         91       AN5             Vss         N.C.         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83      | PVcc1    | Vcc             |
| 86       AN0       N.C.         87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 84      | NMI      | Vss             |
| 87       AN1       N.C.         88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85      | Vss      | Vss             |
| 88       AN2       N.C.         89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 86      | AN0      | N.C.            |
| 89       AN3       N.C.         90       AN4       N.C.         91       AN5       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 87      | AN1      | N.C.            |
| 90 AN4 N.C.<br>91 AN5 N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88      | AN2      | N.C.            |
| 91 AN5 N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 89      | AN3      | N.C.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90      | AN4      | N.C.            |
| 92 AN6 N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91      | AN5      | N.C.            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 92      | AN6      | N.C.            |

**Table 1.3** Pin Assignments (cont)

| Pin No. | MCU Mode | Programmer Mode |
|---------|----------|-----------------|
| 93      | AN7      | N.C.            |
| 94      | AN8      | N.C.            |
| 95      | AN9      | N.C.            |
| 96      | AN10     | N.C.            |
| 97      | AN11     | N.C.            |
| 98      | AN12     | N.C.            |
| 99      | AVss     | Vss             |
| 100     | AVref    | Vcc             |
| 101     | AVcc     | Vcc             |
| 102     | AN13     | N.C.            |
| 103     | AN14     | N.C.            |
| 104     | AN15     | N.C.            |
| 105     | AN16     | N.C.            |
| 106     | AN17     | N.C.            |
| 107     | AN18     | N.C.            |
| 108     | AN19     | N.C.            |
| 109     | AN20     | N.C.            |
| 110     | AN21     | N.C.            |
| 111     | AN22     | N.C.            |
| 112     | AN23     | N.C.            |
| 113     | AN24     | N.C.            |
| 114     | AN25     | N.C.            |
| 115     | AN26     | N.C.            |
| 116     | AN27     | N.C.            |
| 117     | AN28     | N.C.            |
| 118     | AN29     | N.C.            |
| 119     | AVcc     | Vcc             |
| 120     | AVref    | Vcc             |
| 121     | AVss     | Vss             |
| 122     | AN30     | N.C.            |
| 123     | AN31     | N.C.            |

 Table 1.3
 Pin Assignments (cont)

| Pin No. | MCU Mode      | Programmer Mode |
|---------|---------------|-----------------|
| 124     | WDTOVF        | N.C.            |
| 125     | PA0/TI0A      | N.C.            |
| 126     | Vss           | Vss             |
| 127     | PA1/TI0B      | N.C.            |
| 128     | PVcc2         | Vcc             |
| 129     | PA2/TI0C      | N.C.            |
| 130     | PA3/TI0D      | N.C.            |
| 131     | PA4/TIO3A     | N.C.            |
| 132     | PA5/TIO3B     | N.C.            |
| 133     | PA6/TIO3C     | N.C.            |
| 134     | PA7/TIO3D     | N.C.            |
| 135     | PA8/TIO4A     | N.C.            |
| 136     | PA9/TIO4B     | N.C.            |
| 137     | PA10/TIO4C    | N.C.            |
| 138     | PA11/TIO4D    | N.C.            |
| 139     | Vcc           | Vcc             |
| 140     | PA12/TIO5A    | N.C.            |
| 141     | Vss           | Vss             |
| 142     | PA13/TIO5B    | N.C.            |
| 143     | PA14/TxD0     | N.C.            |
| 144     | PA15/RxD0     | N.C.            |
| 145     | PB0/TO6A      | N.C.            |
| 146     | PB1/TO6B      | N.C.            |
| 147     | PB2/TO6C      | N.C.            |
| 148     | PVcc2         | Vcc             |
| 149     | PB3/TO6D      | N.C.            |
| 150     | Vss           | Vss             |
| 151     | PB4/TO7A/TO8A | N.C.            |
| 152     | PB5/TO7B/TO8B | N.C.            |
| 153     | PB6/TO7C/TO8C | N.C.            |
| 154     | PB7/TO7D/TO8D | N.C.            |

**Table 1.3** Pin Assignments (cont)

| 155         PB8/TxD3/TO8E         N.C.           156         PB9/RxD3/TO8F         N.C.           157         PB10/TxD4/HTxD0/TO8G         N.C.           158         PB11//RxD4/HRxD0/TO8H         N.C.           159         PB12/TCLKA/ÜBCTRĞ         N.C.           160         PB13/SCK0         N.C.           161         V <sub>α.</sub> V <sub>α.</sub> 162         PB14/SCK1/TCLKB/TI10         N.C.           163         Vs         Vss           164         PB15/PULS5/SCK2         N.C.           165         PC0/TxD1         N.C.           166         PC1/RxD1         N.C.           167         PC2/TxD2         N.C.           168         PC3/RxD2         N.C.           169         PC4/İRQ0         N.C.           170         PG0/PULS7/HRXD0/HRXD1         N.C.           171         PG1/İRQ0         N.C.           172         PVcc2         Vcc           173         PG2/İRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/ĪRQ3/ADTRĞ0         N.C.           176         PJ0/TIO2A         N.C.           177                                                                                                                            | Pin No. | MCU Mode              | Programmer Mode |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|-----------------|--|
| 157         PB10/TxD4/HTxD0/TO8G         N.C.           158         PB11/RxD4/HRxD0/TO8H         N.C.           159         PB12/TCLKA/ŪBCTRG         N.C.           160         PB13/SCK0         N.C.           161         V <sub>α</sub> V <sub>α</sub> 162         PB14/SCK1/TCLKB/TI10         N.C.           163         Vss         Vss           164         PB15/PULSS/SCK2         N.C.           165         PC0/TxD1         N.C.           166         PC1/RxD1         N.C.           167         PC2/TxD2         N.C.           168         PC3/RxD2         N.C.           169         PC4/IRQ0         N.C.           170         PG0/PULS7/HRxD0/HRxD1         N.C.           171         PG1/IRQ1         N.C.           172         PVcc2         Vcc           173         PG2/IRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           179         PJ3                                                                                                                          | 155     | PB8/TxD3/TO8E         | N.C.            |  |
| 158         PB11/RxD4/HRxD0/TO8H         N.C.           159         PB12/TCLKA/ŪBCTRG         N.C.           160         PB13/SCK0         N.C.           161         Vα         Vα           162         PB14/SCK1/TCLKB/TI10         N.C.           163         Vss         Vss           164         PB15/PULS5/SCK2         N.C.           165         PC0/TxD1         N.C.           166         PC1/RxD1         N.C.           167         PC2/TxD2         N.C.           168         PC3/RxD2         N.C.           169         PC4/IRQQ         N.C.           170         PG0/PULS7/HRXD0/HRXD1         N.C.           171         PG1/IRQQ1         N.C.           172         PVcc2         Vcc           173         PG2/IRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           179         PJ3/TIO2D         N.C.           180         PJ4/TIO2E                                                                                                                                    | 156     | PB9/RxD3/TO8F         | N.C.            |  |
| 159       PB12/TCLKA/UBCTRG       N.C.         160       PB13/SCK0       N.C.         161       V <sub>CL</sub> V <sub>CL</sub> 162       PB14/SCK1/TCLKB/TI10       N.C.         163       Vss       Vss         164       PB15/PULS5/SCK2       N.C.         165       PC0/TxD1       N.C.         166       PC1/RxD1       N.C.         167       PC2/TxD2       N.C.         168       PC3/RxD2       N.C.         169       PC4/IRQ0       N.C.         170       PG0/PULS7/HRxD0/HRxD1       N.C.         171       PG1/IRQ1       N.C.         172       PVcc2       Vcc         173       PG2/IRQ2/ADEND       N.C.         174       Vss       Vss         175       PG3/IRQ3/ADTRG0       N.C.         176       PJ0/TIO2A       N.C.         177       PJ1/TIO2B       N.C.         178       PJ2/TIO2C       N.C.         180       PJ4/TIO2E       N.C.         181       PJ5/TIO2F       N.C.         182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.                                                                                                                                                                                                                        | 157     | PB10/TxD4/HTxD0/TO8G  | N.C.            |  |
| 160         PB13/SCK0         N.C.           161         V <sub>CL</sub> V <sub>CL</sub> 162         PB14/SCK1/TCLKB/TI10         N.C.           163         Vss         Vss           164         PB15/PULS5/SCK2         N.C.           165         PC0/TxD1         N.C.           166         PC1/RxD1         N.C.           167         PC2/TxD2         N.C.           168         PC3/RxD2         N.C.           169         PC4/IRQ0         N.C.           170         PG0/PULS7/HRxD0/HRxD1         N.C.           171         PG1/IRQ1         N.C.           172         PVcc2         Vcc           173         PG2/IRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.                                                                                                                                   | 158     | PB11/RxD4/HRxD0/TO8H  | N.C.            |  |
| 161         V <sub>CL</sub> V <sub>CL</sub> 162         PB14/SCK1/TCLKB/TI10         N.C.           163         Vss         Vss           164         PB15/PULS5/SCK2         N.C.           165         PC0/TxD1         N.C.           166         PC1/RxD1         N.C.           167         PC2/TxD2         N.C.           168         PC3/RxD2         N.C.           169         PC4/IRQ0         N.C.           170         PG0/PULS7/HRxD0/HRxD1         N.C.           171         PG1/IRQ1         N.C.           172         PVcc2         Vcc           173         PG2/IRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                   | 159     | PB12/TCLKA/UBCTRG     | N.C.            |  |
| 162         PB14/SCK1/TCLKB/TI10         N.C.           163         Vss         Vss           164         PB15/PULS5/SCK2         N.C.           165         PC0/TxD1         N.C.           166         PC1/RxD1         N.C.           167         PC2/TxD2         N.C.           168         PC3/RxD2         N.C.           169         PC4/IRQ0         N.C.           170         PG0/PULS7/HRxD0/HRxD1         N.C.           171         PG1/IRQ1         N.C.           172         PVcc2         Vcc           173         PG2/IRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                               | 160     | PB13/SCK0             | N.C.            |  |
| 162         PB14/SCK1/TCLKB/TI10         N.C.           163         Vss         Vss           164         PB15/PULS5/SCK2         N.C.           165         PC0/TxD1         N.C.           166         PC1/RxD1         N.C.           167         PC2/TxD2         N.C.           168         PC3/RxD2         N.C.           169         PC4/IRQ0         N.C.           170         PG0/PULS7/HRxD0/HRxD1         N.C.           171         PG1/IRQ1         N.C.           172         PVcc2         Vcc           173         PG2/IRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                               | 161     | V <sub>cL</sub>       | V <sub>CL</sub> |  |
| 164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 162     | PB14/SCK1/TCLKB/TI10  |                 |  |
| 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 163     | Vss                   | Vss             |  |
| 166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 164     | PB15/PULS5/SCK2       | N.C.            |  |
| 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 165     | PC0/TxD1              | N.C.            |  |
| 168         PC3/RxD2         N.C.           169         PC4/ĪRQ0         N.C.           170         PG0/PULS7/HRxD0/HRxD1         N.C.           171         PG1/ĪRQ1         N.C.           172         PVcc2         Vcc           173         PG2/ĪRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/ĪRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           179         PJ3/TIO2D         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                       | 166     | PC1/RxD1              | N.C.            |  |
| 169   PC4/IRQ0   N.C.     170   PG0/PULS7/HRxD0/HRxD1   N.C.     171   PG1/IRQ1   N.C.     172   PVcc2   Vcc     173   PG2/IRQ2/ADEND   N.C.     174   Vss   Vss     175   PG3/IRQ3/ADTRG0   N.C.     176   PJ0/TIO2A   N.C.     177   PJ1/TIO2B   N.C.     178   PJ2/TIO2C   N.C.     179   PJ3/TIO2D   N.C.     180   PJ4/TIO2E   N.C.     181   PJ5/TIO2F   N.C.     182   PJ6/TIO2G   N.C.     183   PJ7/TIO2H   N.C.     184   PJ8/TIO5C   N.C.     184   PJ8/TIO5C   N.C.     185   N.C.     186   N.C.     187   PJ8/TIO5C   N.C.     188   PJ8/TIO5C   N.C.     189   PJ8/TIO5C   N.C.     180   PJ8/TIO5C   N.C.     180   PJ8/TIO5C   N.C.     181   PJ8/TIO5C   N.C. | 167     | PC2/TxD2              | N.C.            |  |
| 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 168     | PC3/RxD2              | N.C.            |  |
| 171       PG1/ĪRQ1       N.C.         172       PVcc2       Vcc         173       PG2/ĪRQ2/ADEND       N.C.         174       Vss       Vss         175       PG3/ĪRQ3/ADTRG0       N.C.         176       PJ0/TIO2A       N.C.         177       PJ1/TIO2B       N.C.         178       PJ2/TIO2C       N.C.         179       PJ3/TIO2D       N.C.         180       PJ4/TIO2E       N.C.         181       PJ5/TIO2F       N.C.         182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.         184       PJ8/TIO5C       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 169     | PC4/IRQ0              | N.C.            |  |
| 172         PVcc2         Vcc           173         PG2/IRQ2/ADEND         N.C.           174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           179         PJ3/TIO2D         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170     | PG0/PULS7/HRxD0/HRxD1 | N.C.            |  |
| 173       PG2/IRQ2/ADEND       N.C.         174       Vss       Vss         175       PG3/IRQ3/ADTRG0       N.C.         176       PJ0/TIO2A       N.C.         177       PJ1/TIO2B       N.C.         178       PJ2/TIO2C       N.C.         179       PJ3/TIO2D       N.C.         180       PJ4/TIO2E       N.C.         181       PJ5/TIO2F       N.C.         182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.         184       PJ8/TIO5C       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 171     | PG1/IRQ1              | N.C.            |  |
| 174         Vss         Vss           175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           179         PJ3/TIO2D         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 172     | PVcc2                 | Vcc             |  |
| 175         PG3/IRQ3/ADTRG0         N.C.           176         PJ0/TIO2A         N.C.           177         PJ1/TIO2B         N.C.           178         PJ2/TIO2C         N.C.           179         PJ3/TIO2D         N.C.           180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 173     | PG2/IRQ2/ADEND        | N.C.            |  |
| 176       PJ0/TIO2A       N.C.         177       PJ1/TIO2B       N.C.         178       PJ2/TIO2C       N.C.         179       PJ3/TIO2D       N.C.         180       PJ4/TIO2E       N.C.         181       PJ5/TIO2F       N.C.         182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.         184       PJ8/TIO5C       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 174     | Vss                   | Vss             |  |
| 177       PJ1/TIO2B       N.C.         178       PJ2/TIO2C       N.C.         179       PJ3/TIO2D       N.C.         180       PJ4/TIO2E       N.C.         181       PJ5/TIO2F       N.C.         182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.         184       PJ8/TIO5C       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 175     | PG3/IRQ3/ADTRG0       | N.C.            |  |
| 178       PJ2/TIO2C       N.C.         179       PJ3/TIO2D       N.C.         180       PJ4/TIO2E       N.C.         181       PJ5/TIO2F       N.C.         182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.         184       PJ8/TIO5C       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 176     | PJ0/TIO2A             | N.C.            |  |
| 179       PJ3/TIO2D       N.C.         180       PJ4/TIO2E       N.C.         181       PJ5/TIO2F       N.C.         182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.         184       PJ8/TIO5C       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 177     | PJ1/TIO2B             | N.C.            |  |
| 180         PJ4/TIO2E         N.C.           181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 178     | PJ2/TIO2C             | N.C.            |  |
| 181         PJ5/TIO2F         N.C.           182         PJ6/TIO2G         N.C.           183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 179     | PJ3/TIO2D             | N.C.            |  |
| 182       PJ6/TIO2G       N.C.         183       PJ7/TIO2H       N.C.         184       PJ8/TIO5C       N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180     | PJ4/TIO2E             | N.C.            |  |
| 183         PJ7/TIO2H         N.C.           184         PJ8/TIO5C         N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181     | PJ5/TIO2F             | N.C.            |  |
| 184 PJ8/TIO5C N.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 182     | PJ6/TIO2G             | N.C.            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 183     | PJ7/TIO2H             | N.C.            |  |
| 185 Vss Vss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 184     | PJ8/TIO5C             | N.C.            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 185     | Vss                   | Vss             |  |

 Table 1.3
 Pin Assignments (cont)

| Pin No. | MCU Mode  | Programmer Mode |
|---------|-----------|-----------------|
| 186     | PJ9/TIO5D | N.C.            |
| 187     | Vcc       | Vcc             |
| 188     | PJ10/TI9A | N.C.            |
| 189     | PJ11/TI9B | N.C.            |
| 190     | PJ12/TI9C | N.C.            |
| 191     | PJ13/TI9D | N.C.            |
| 192     | PJ14/TI9E | N.C.            |
| 193     | PJ15/TI9F | N.C.            |
| 194     | PVcc2     | Vcc             |
| 195     | PK0/TO8A  | N.C.            |
| 196     | Vss       | Vss             |
| 197     | PK1/TO8B  | N.C.            |
| 198     | PK2/TO8C  | N.C.            |
| 199     | PK3/TO8D  | N.C.            |
| 200     | PK4/TO8E  | N.C.            |
| 201     | PK5/TO8F  | N.C.            |
| 202     | PK6/TO8G  | N.C.            |
| 203     | Vcc       | Vcc             |
| 204     | PK7/TO8H  | N.C.            |
| 205     | Vss       | Vss             |
| 206     | PK8/TO8I  | N.C.            |
| 207     | PK9/TO8J  | N.C.            |
| 208     | PK10/TO8K | N.C.            |
| 209     | PK11/TO8L | N.C             |
| 210     | PK12/TO8M | N.C.            |
| 211     | PK13/TO8N | N.C.            |
| 212     | PVcc2     | Vcc             |
| 213     | PK14/TO8O | N.C.            |
| 214     | Vss       | Vss             |
| 215     | PK15/TO8P | N.C.            |
| 216     | PL0/TI10  | N.C.            |

**Table 1.3** Pin Assignments (cont)

| Pin No. | MCU Mode                       | Programmer Mode |
|---------|--------------------------------|-----------------|
| 217     | PL1/TIO11A/IRQ6                | N.C.            |
| 218     | PL2/TIO11B/IRQ7                | CE              |
| 219     | PL3/TCLKB                      | N.C.            |
| 220     | PL4/ADTRG0                     | N.C.            |
| 221     | PL5/ADTRG1                     | N.C.            |
| 222     | PL6/ADEND                      | N.C.            |
| 223     | PL7/SCK2                       | N.C.            |
| 224     | PL8/SCK3                       | N.C.            |
| 225     | V <sub>cL</sub>                | V <sub>cL</sub> |
| 226     | PL9/SCK4/IRQ5                  | WE              |
| 227     | Vss                            | Vss             |
| 228     | PL10/HTxD0/HTxD1/HTxD0 & HTxD1 | N.C.            |
| 229     | PL11/HRxD0/HRxD1/HRxD0 & HRxD1 | N.C.            |
| 230     | PL12/IRQ4                      | ŌĒ              |
| 231     | PL13/IRQOUT                    | N.C.            |
| 232     | TMS                            | N.C.            |
| 233     | TRST                           | N.C.            |
| 234     | TDI                            | N.C.            |
| 235     | TDO                            | N.C.            |
| 236     | TCK                            | N.C.            |
| 237     | Vcc                            | Vcc             |
| 238     | AUDRST                         | N.C.            |
| 239     | Vss                            | Vss             |
| 240     | AUDMD                          | N.C.            |
| 241     | AUDATA0                        | N.C.            |
| 242     | AUDATA1                        | N.C.            |
| 243     | AUDATA2                        | N.C.            |
| 244     | AUDATA3                        | N.C.            |
| 245     | AUDCK                          | N.C.            |
| 246     | AUDSYNC                        | N.C.            |
| 247     | PVcc2                          | Vcc             |

 Table 1.3
 Pin Assignments (cont)

| Pin No. | MCU Mode  | Programmer Mode |
|---------|-----------|-----------------|
| 248     | PD0/TIO1A | N.C.            |
| 249     | Vss       | Vss             |
| 250     | PD1/TIO1B | N.C.            |
| 251     | PD2/TIO1C | N.C.            |
| 252     | PD3/TIO1D | N.C.            |
| 253     | PD4/TIO1E | N.C.            |
| 254     | PD5/TIO1F | N.C.            |
| 255     | PD6/TIO1G | N.C.            |
| 256     | PD7/TIO1H | N.C.            |

### Section 2 CPU

## 2.1 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four 32-bit system registers.

In addition, the FPU has eighteen internal registers: sixteen 32-bit floating-point registers and two 32-bit floating-point system registers.

### 2.1.1 General Registers (Rn)

The sixteen 32-bit general registers (Rn) are numbered R0–R15. General registers are used for data processing and address calculation. R0 is also used as an index register. Several instructions have R0 fixed as their only usable register. R15 is used as the hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter (PC) in exception processing is accomplished by referencing the stack using R15. Figure 2.1 shows the general registers.

| 1 C                                |
|------------------------------------|
| R0* <sup>1</sup>                   |
| R1                                 |
| R2                                 |
| R3                                 |
| R4                                 |
| R5                                 |
| R6                                 |
| R7                                 |
| R8                                 |
| R9                                 |
| R10                                |
| R11                                |
| R12                                |
| R13                                |
| R14                                |
| R15, SP (hardware stack pointer)*2 |

Notes: \*1. R0 functions as an index register in the indirect indexed register addressing mode and indirect indexed GBR addressing mode. In some instructions, R0 functions as a fixed source register or destination register.

\*2. R15 functions as a hardware stack pointer (SP) during exception processing.

Figure 2.1 General Registers

#### 2.1.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR), and vector base register (VBR). The status register indicates processing states. The global base register functions as a base address for the indirect GBR addressing mode to transfer data to the registers of on-chip peripheral modules. The vector base register functions as the base address of the exception processing vector area (including interrupts). Figure 2.2 shows the control registers.

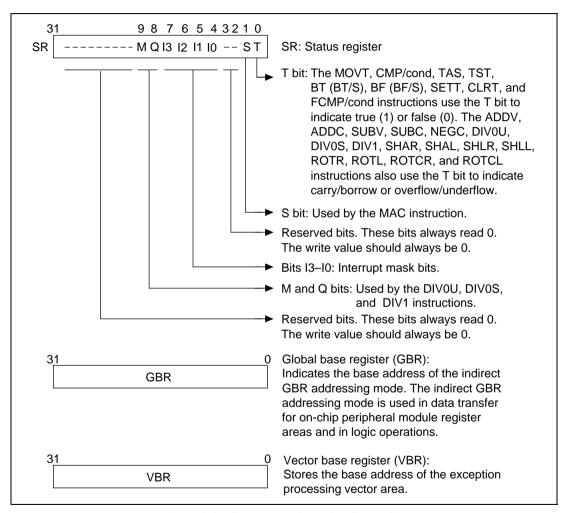



Figure 2.2 Control Register Configuration

### 2.1.3 System Registers

System registers consist of four 32-bit registers: high and low multiply and accumulate registers (MACH and MACL), the procedure register (PR), and the program counter (PC). The multiply-and-accumulate registers store the results of multiply-and-accumulate operations. The procedure register stores the return address from a subroutine procedure. The program counter stores program addresses to control the flow of the processing. Figure 2.3 shows the system registers.

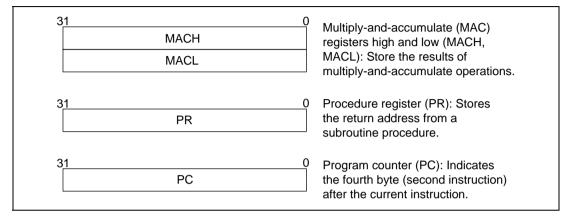



Figure 2.3 System Register Configuration

### 2.1.4 Floating-Point Registers

There are sixteen 32-bit floating-point registers, designated FR0 to FR15, which are used by floating-point instructions. FR0 functions as the index register for the FMAC instruction. These registers are incorporated into the floating-point unit (FPU). For details, see section 3, Floating-Point Unit (FPU).

| 31 | 0    |                                                               |
|----|------|---------------------------------------------------------------|
| F  | R0   | FR0 functions as the index register for the FMAC instruction. |
| F  | R1   |                                                               |
| F  | R2   |                                                               |
| F  | R3   |                                                               |
| F  | R4   |                                                               |
| F  | R5   |                                                               |
| F  | R6   |                                                               |
| F  | R7   |                                                               |
| F  | R8   |                                                               |
| F  | R9   |                                                               |
| F  | FR10 |                                                               |
| F  | FR11 |                                                               |
| F  | FR12 |                                                               |
| F  | FR13 |                                                               |
| F  | FR14 |                                                               |
| F  | -R15 |                                                               |

Figure 2.4 Floating-Point Registers

### 2.1.5 Floating-Point System Registers

There are two 32-bit floating-point system registers: the floating-point communication register (FPUL) and the floating-point status/control register (FPSCR). FPUL is used for communication between the CPU and the floating-point unit (FPU). FPSCR indicates and stores status/control information relating to FPU exceptions.

These registers are incorporated into the floating-point unit (FPU). For details, see section 3, Floating-Point Unit (FPU).

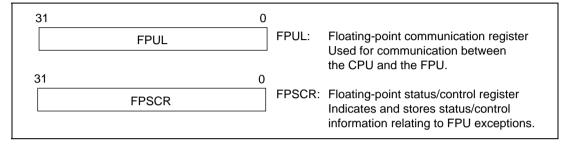



Figure 2.5 Floating-Point System Registers

### 2.1.6 Initial Values of Registers

Table 2.1 lists the values of the registers after reset.

**Table 2.1** Initial Values of Registers

| Classification                  | Register       | Initial Value                                                                |
|---------------------------------|----------------|------------------------------------------------------------------------------|
| General registers               | R0-R14         | Undefined                                                                    |
|                                 | R15 (SP)       | Value of the stack pointer in the vector address table                       |
| Control registers               | SR             | Bits I3–I0 are 1111 (H'F), reserved bits are 0, and other bits are undefined |
|                                 | GBR            | Undefined                                                                    |
|                                 | VBR            | H'00000000                                                                   |
| System registers                | MACH, MACL, PR | Undefined                                                                    |
|                                 | PC             | Value of the program counter in the vector address table                     |
| Floating-point registers        | FR0-FR15       | Undefined                                                                    |
| Floating-point system registers | FPUL           | Undefined                                                                    |
|                                 | FPSCR          | H'00040001                                                                   |
|                                 |                |                                                                              |

### 2.2 Data Formats

#### 2.2.1 Data Format in Registers

Register operands are always longwords (32 bits). When the memory operand is only a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register (figure 2.6).



Figure 2.6 Data Format in Registers

### 2.2.2 Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed from any address, but an address error will occur if an attempt is made to access word data starting from an address other than 2n or longword data starting from an address other than 4n. In such cases, the data accessed cannot be guaranteed. The hardware stack area, referred to by the hardware stack pointer (SP, R15), uses only longword data starting from address 4n because this area holds the program counter and status register (figure 2.7).

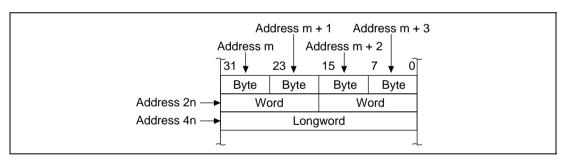



Figure 2.7 Data Formats in Memory

### 2.2.3 Immediate Data Format

Byte (8 bit) immediate data resides in an instruction code. Immediate data accessed by the MOV, ADD, and CMP/EQ instructions is sign-extended and handled in registers as longword data. Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and handled as longword data. Consequently, AND instructions with immediate data always clear the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code, but instead is stored in a memory table. An immediate data transfer instruction (MOV) accesses the memory table using the PC relative addressing mode with displacement.

### 2.3 Instruction Features

## 2.3.1 RISC-Type Instruction Set

All instructions are RISC type. This section details their functions.

**16-Bit Fixed Length**: All instructions are 16 bits long, increasing program code efficiency.

One Instruction per Cycle: The microprocessor can execute basic instructions in one cycle using the pipeline system. Instructions are executed in 25 ns at 40 MHz.

**Data Length:** Longword is the standard data length for all operations. Memory can be accessed in bytes, words, or longwords. Byte or word data accessed from memory is sign-extended and handled as longword data. Immediate data is sign-extended for arithmetic operations or zero-extended for logic operations. It also is handled as longword data (table 2.2).

Table 2.2 Sign Extension of Word Data

| SH7055SF CPU |               | Description                                    | Example of Conventional CPL |            |
|--------------|---------------|------------------------------------------------|-----------------------------|------------|
| MOV.W        | @(disp,PC),R1 | Data is sign-extended to 32                    | ADD.W                       | #H'1234,R0 |
| ADD          | R1,R0         | bits, and R1 becomes<br>H'00001234. It is next |                             |            |
|              |               | operated upon by an ADD                        |                             |            |
| .DATA.W      | H'1234        | instruction.                                   |                             |            |

Note: @(disp, PC) accesses the immediate data.

**Load-Store Architecture**: Basic operations are executed between registers. For operations that involve memory access, data is loaded to the registers and executed (load-store architecture). Instructions such as AND that manipulate bits, however, are executed directly in memory.

**Delayed Branch Instructions**: Unconditional branch instructions are delayed branch instructions. With a delayed branch instruction, the branch is taken after execution of the instruction following the delayed branch instruction. There are two types of conditional branch instructions: delayed branch instructions and ordinary branch instructions.

**Table 2.3** Delayed Branch Instructions

| SH7055SF CPU |       | Description             | <b>Example of Conventional CPU</b> |       |
|--------------|-------|-------------------------|------------------------------------|-------|
| BRA          | TRGET | Executes the ADD before | ADD.W                              | R1,R0 |
| ADD          | R1,R0 | branching to TRGET.     | BRA                                | TRGET |

**Multiply/Multiply-and-Accumulate Operations:** 16-bit  $\times$  16-bit  $\to$  32-bit multiply operations are executed in one to two cycles. 16-bit  $\times$  16-bit + 64-bit  $\to$  64-bit multiply-and-accumulate operations are executed in two to three cycles. 32-bit  $\times$  32-bit  $\to$  64-bit multiply and 32-bit  $\times$  32-bit + 64-bit multiply-and-accumulate operations are executed in two to four cycles.

**T** Bit: The T bit in the status register changes according to the result of the comparison, and in turn is the condition (true/false) that determines if the program will branch. The number of instructions that change the T bit is kept to a minimum to improve the processing speed (table 2.4).

Table 2.4 T Bit

| SH7055SF CPU |        | Description Example of Conventiona                        |       | e of Conventional CPU |
|--------------|--------|-----------------------------------------------------------|-------|-----------------------|
| CMP/GE       | R1,R0  | T bit is set when R0 = R1. The                            | CMP.W | R1,R0                 |
| BT           | TRGET0 | program branches to TRGET0 when R0 = R1 and to TRGET1     | BGE   | TRGET0                |
| BF           | TRGET1 | when R0 < R1.                                             | BLT   | TRGET1                |
| ADD          | #1,R0  | T bit is not changed by ADD.                              | SUB.W | #1,R0                 |
| CMP/EQ       | #0,R0  | T bit is set when R0 = 0. The program branches if R0 = 0. | BEQ   | TRGET                 |
| BT           | TRGET  | program branches if NO = 0.                               |       |                       |

**Immediate Data**: Byte (8-bit) immediate data resides in the instruction code. Word or longword immediate data is not input via instruction codes but is stored in a memory table. An immediate data transfer instruction (MOV) accesses the memory table using the PC relative addressing mode with displacement (table 2.5).

**Table 2.5** Immediate Data Accessing

| Classification   | SH7055SF ( | CPU           | Exampl | le of Conventional CPU |
|------------------|------------|---------------|--------|------------------------|
| 8-bit immediate  | MOV        | #H'12,R0      | MOV.B  | #H'12,R0               |
| 16-bit immediate | MOV.W      | @(disp,PC),R0 | MOV.W  | #H'1234,R0             |
|                  |            |               |        |                        |
|                  | .DATA.W    | Н'1234        |        |                        |
| 32-bit immediate | MOV.L      | @(disp,PC),R0 | MOV.L  | #H'12345678,R0         |
|                  |            |               |        |                        |
|                  | .DATA.L    | Н'12345678    |        |                        |

Note: @(disp, PC) accesses the immediate data.

**Absolute Address:** When data is accessed by absolute address, the value already in the absolute address is placed in the memory table. Loading the immediate data when the instruction is executed transfers that value to the register and the data is accessed in the indirect register addressing mode (table 2.6).

Table 2.6 Absolute Address Accessing

| Classification SH7055SF CPU |         | CPU           | Exampl | e of Conventional CPU |
|-----------------------------|---------|---------------|--------|-----------------------|
| Absolute address            | MOV.L   | @(disp,PC),R1 | MOV.B  | @H'12345678,R0        |
|                             | MOV.B   | @R1,R0        |        |                       |
|                             |         |               |        |                       |
|                             | .DATA.L | H'12345678    |        |                       |

Note: @(disp,PC) accesses the immediate data.

**16-Bit/32-Bit Displacement**: When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is placed in the memory table. Loading the immediate data when the instruction is executed transfers that value to the register and the data is accessed in the indirect indexed register addressing mode (table 2.7).

Table 2.7 Displacement Accessing

| Classification      | SH7055SF | CPU           | Exampl | e of Conventional CPU |
|---------------------|----------|---------------|--------|-----------------------|
| 16-bit displacement | MOV.W    | @(disp,PC),R0 | MOV.W  | @(H'1234,R1),R2       |
|                     | MOV.W    | @(R0,R1),R2   |        |                       |
|                     |          |               |        |                       |
|                     | .DATA.W  | H'1234        |        |                       |

Note: @(disp,PC) accesses the immediate data.

# 2.3.2 Addressing Modes

Table 2.8 describes addressing modes and effective address calculation.

Table 2.8 Addressing Modes and Effective Addresses

| Addressing<br>Mode                          | Instruction<br>Format | Effective Address Calculation                                                                                                                                                                                                                                                                                           | Equation                                                                                                                                                                      |
|---------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Direct register addressing                  | Rn                    | The effective address is register Rn. (The operand is the contents of register Rn.)                                                                                                                                                                                                                                     | _                                                                                                                                                                             |
| Indirect register addressing                | @Rn                   | The effective address is the contents of register Rn.  Rn → Rn                                                                                                                                                                                                                                                          | Rn                                                                                                                                                                            |
| Post-increment indirect register addressing | @Rn+                  | The effective address is the contents of register Rn. A constant is added to the content of Rn after the instruction is executed. 1 is added for a byte operation, 2 for a word operation, and 4 for a longword operation.  Rn  Rn  Rn  Rn  Rn  Rn                                                                      | Rn (After the instruction executes) Byte: Rn + 1 $\rightarrow$ Rn Word: Rn + 2 $\rightarrow$ Rn Longword: Rn + 4 $\rightarrow$ Rn                                             |
| Pre-decrement indirect register addressing  | @-Rn                  | The effective address is the value obtained by subtracting a constant from Rn. 1 is subtracted for a byte operation, 2 for a word operation, and 4 for a longword operation. $ Rn \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$ | Byte: $Rn - 1$<br>$\rightarrow Rn$<br>Word: $Rn - 2$<br>$\rightarrow Rn$<br>Longword:<br>$Rn - 4 \rightarrow Rn$<br>(Instruction<br>executed with<br>Rn after<br>calculation) |

Table 2.8 Addressing Modes and Effective Addresses (cont)

| Addressing<br>Mode                                   | Instruction<br>Format | Effective Address Calculation                                                                                                                                                                                                                                                        | Equation                                                                   |
|------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Indirect register<br>addressing with<br>displacement | @(disp:4,             | The effective address is Rn plus a 4-bit displacement (disp). The value of disp is zero-extended, and remains the same for a byte operation, is doubled for a word operation, and is quadrupled for a longword operation.  Rn  disp (zero-extended)  Rn + disp × 1/2/4               | Byte: Rn +<br>disp<br>Word: Rn +<br>disp × 2<br>Longword: Rn<br>+ disp × 4 |
| Indirect indexed register addressing                 | @(R0, Rn)             | The effective address is the Rn value plus R0.  Rn  Rn + R0                                                                                                                                                                                                                          | Rn + R0                                                                    |
| Indirect GBR addressing with displacement            | @(disp:8,<br>GBR)     | The effective address is the GBR value plus an 8-bit displacement (disp). The value of disp is zero-extended, and remains the same for a byte operation, is doubled for a word operation, and is quadrupled for a longword operation.  GBR  disp (zero-extended)  GBR + disp × 1/2/4 | Byte: GBR + disp Word: GBR + disp × 2 Longword: GBR + disp × 4             |

Table 2.8 Addressing Modes and Effective Addresses (cont)

| Addressing<br>Mode                       | Instruction<br>Format | Effective Address Calculation                                                                                                                                                                                                                                                                                                                     | Equation                                                               |
|------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Indirect indexed<br>GBR addressing       | @(R0, GBR             | ) The effective address is the GBR value plus R0.  GBR  GBR + R0                                                                                                                                                                                                                                                                                  | GBR + R0                                                               |
| Indirect PC addressing with displacement | @(disp:8,<br>PC)      | The effective address is the PC value plus an 8-bit displacement (disp). The value of disp is zero-extended, and is doubled for a word operation, and quadrupled for a longword operation. For a longword operation, the lowest two bits of the PC value are masked.  PC  (for longword)  PC + disp × 2  or  PC & H'FFFFFFC  disp (zero-extended) | Word: PC +<br>disp × 2<br>Longword:<br>PC &<br>H'FFFFFFC<br>+ disp × 4 |

Table 2.8 Addressing Modes and Effective Addresses (cont)

| Addressing<br>Mode     | Instruction<br>Format | Effective Addresses Calculation                                                                                                                                     | Equation      |
|------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| PC relative addressing | disp:8                | The effective address is the PC value sign-extended with an 8-bit displacement (disp), doubled, and added†to the PC value.  PC  disp (sign-extended)  PC + disp × 2 | PC + disp × 2 |
|                        | disp:12               | The effective address is the PC value sign-extended with a 12-bit displacement (disp), doubled, and added to the PC value.  PC  disp (sign-extended)  PC + disp × 2 | PC + disp × 2 |
|                        | Rn                    | The effective address is the register PC value plus Rn.  PC  PC + Rn  Rn                                                                                            | PC + Rn       |
| Immediate addressing   | #imm:8                | The 8-bit immediate data (imm) for the TST, AND, OR, and XOR instructions is zero-extended.                                                                         | _             |
|                        | #imm:8                | The 8-bit immediate data (imm) for the MOV, ADD, and CMP/EQ instructions is sign-extended.                                                                          | _             |
|                        | #imm:8                | The 8-bit immediate data (imm) for the TRAPA instruction is zero-extended and quadrupled.                                                                           | _             |

## 2.3.3 Instruction Format

Table 2.9 lists the instruction formats for the source operand and the destination operand. The meaning of the operand depends on the instruction code. The symbols used are as follows:

xxxx: Instruction code
 mmmm: Source register
 nnnn: Destination register

4. iiii: Immediate data5. dddd: Displacement

**Table 2.9 Instruction Formats** 

| Instruction Formats | Source<br>Operand                      | Destination<br>Operand                    | Example       |
|---------------------|----------------------------------------|-------------------------------------------|---------------|
| 0 format            | _                                      | _                                         | NOP           |
| 15 0 xxxx xxxx xxxx |                                        |                                           |               |
| n format<br>15 0    | _                                      | nnnn: Direct<br>register                  | MOVT Rn       |
| xxxx nnnn xxxx xxxx | Control register or system register    | nnnn: Direct<br>register                  | STS MACH,Rn   |
|                     | Control register or system register    | nnnn: Indirect pre-<br>decrement register | STC.L SR,@-Rn |
| m format            | mmmm: Direct register                  | Control register or<br>system register    | LDC Rm,SR     |
| xxxx mmmm xxxx xxxx | mmmm: Indirect post-increment register | Control register or<br>system register    | LDC.L @Rm+,SR |
|                     | mmmm: Direct register                  | _                                         | JMP @Rm       |
|                     | mmmm: PC relative using Rm             | _                                         | BRAF Rm       |

**Table 2.9** Instruction Formats (cont)

| Instruction Formats                   | Source Operand                                                              | Destination<br>Operand                              | Example                |
|---------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------|------------------------|
| nm format                             | mmmm: Direct register                                                       | nnnn: Direct<br>register                            | ADD Rm,Rn              |
| xxxx nnnn mmmm xxxx                   | mmmm: Direct register                                                       | nnnn: Indirect register                             | MOV.L Rm,@Rn           |
|                                       | mmmm: Indirect post-increment register (multiply-and-accumulate)            | MACH, MACL                                          | MAC.W<br>@Rm+,@Rn+     |
|                                       | nnnn*: Indirect<br>post-increment<br>register (multiply-<br>and-accumulate) |                                                     |                        |
|                                       | mmmm: Indirect post-increment register                                      | nnnn: Direct<br>register                            | MOV.L @Rm+,Rn          |
|                                       | mmmm: Direct register                                                       | nnnn: Indirect pre-<br>decrement<br>register        | MOV.L Rm,@-Rn          |
|                                       | mmmm: Direct register                                                       | nnnn: Indirect indexed register                     | MOV.L<br>Rm,@(R0,Rn)   |
| md format 15 0  xxxx xxxx mmmm dddd   | mmmmdddd:<br>Indirect register<br>with<br>displacement                      | R0 (Direct register)                                | MOV.B<br>@(disp,Rn),R0 |
| nd4 format                            | R0 (Direct register)                                                        | nnnndddd:<br>Indirect register                      | MOV.B<br>R0,@(disp,Rn) |
| 15 0<br>xxxx xxxx nnnn dddd           | register)                                                                   | with displacement                                   | ku,@(disp,kii)         |
| nmd format 15 0  xxxxx nnnn mmmm dddd | mmmm: Direct register                                                       | nnnndddd: Indirect<br>register with<br>displacement | MOV.L<br>Rm,@(disp,Rn) |
|                                       | mmmmdddd:<br>Indirect register<br>with<br>displacement                      | nnnn: Direct<br>register                            | MOV.L<br>@(disp,Rm),Rn |

Note: \* In multiply-and-accumulate instructions, nnnn is the source register.

**Table 2.9** Instruction Formats (cont)

| Instruction Formats                    | Source Operand                                    | Destination<br>Operand                        | Example                             |
|----------------------------------------|---------------------------------------------------|-----------------------------------------------|-------------------------------------|
| d format  15 0  xxxx xxxx dddd dddd    | dddddddd:<br>Indirect GBR<br>with<br>displacement | R0 (Direct register)                          | MOV.L<br>@(disp,GBR),R0             |
|                                        | R0 (Direct register)                              | ddddddd: Indirect<br>GBR with<br>displacement | MOV.L<br>R0,@(disp,GBR)             |
|                                        | ddddddd: PC relative with displacement            | R0 (Direct register)                          | MOVA<br>@(disp,PC),R0               |
|                                        | _                                                 | dddddddd: PC relative                         | BF label                            |
| d12 format  15 0  xxxx dddd dddd dddd  | _                                                 | ddddddddddd:<br>PC relative                   | BRA label<br>(label = disp<br>+ PC) |
| nd8 format  15 0  xxxxx nnnn dddd dddd | dddddddd: PC<br>relative with<br>displacement     | nnnn: Direct<br>register                      | MOV.L<br>@(disp,PC),Rn              |
| i format                               | iiiiiiii: Immediate                               | Indirect indexed<br>GBR                       | AND.B<br>#imm,@(R0,GBR)             |
| xxxx xxxx iiii iiii                    | iiiiiiii: Immediate                               | R0 (Direct register)                          | AND #imm,R0                         |
|                                        | iiiiiiii: Immediate                               | _                                             | TRAPA #imm                          |
| ni format  15 0  xxxx nnnn iiii iiii   | iiiiiii: Immediate                                | nnnn: Direct<br>register                      | ADD #imm,Rn                         |

# 2.4 Instruction Set by Classification

# 2.4.1 Instruction Set by Classification

Table 2.10 lists the instructions according to their classification.

**Table 2.10 Classification of Instructions** 

| Classification | Types | Operation Code | Function                                                                                         | No. of<br>Instructions |
|----------------|-------|----------------|--------------------------------------------------------------------------------------------------|------------------------|
| Data transfer  | 5     | MOV            | Data transfer, immediate data transfer, peripheral module data transfer, structure data transfer | 39                     |
|                |       | MOVA           | Effective address transfer                                                                       | <del>_</del>           |
|                |       | MOVT           | T bit transfer                                                                                   | <del>_</del>           |
|                |       | SWAP           | Swap of upper and lower bytes                                                                    | _                      |
|                |       | XTRCT          | Extraction of the middle of registers connected                                                  | <del>_</del>           |
| Arithmetic     | 21    | ADD            | Binary addition                                                                                  | 33                     |
| operations     |       | ADDC           | Binary addition with carry                                                                       | <del>_</del>           |
|                |       | ADDV           | Binary addition with overflow check                                                              | <del>_</del>           |
|                |       | CMP/cond       | Comparison                                                                                       | <del>_</del>           |
|                |       | DIV1           | Division                                                                                         | _                      |
|                |       | DIV0S          | Initialization of signed division                                                                | _                      |
|                |       | DIV0U          | Initialization of unsigned division                                                              | <del>_</del>           |
|                |       | DMULS          | Signed double-length multiplication                                                              | _                      |
|                |       | DMULU          | Unsigned double-length multiplication                                                            | <del>_</del>           |
|                |       | DT             | Decrement and test                                                                               | <del>_</del>           |
|                |       | EXTS           | Sign extension                                                                                   | <del>_</del>           |
|                |       | EXTU           | Zero extension                                                                                   | <del>_</del>           |
|                |       | MAC            | Multiply-and-accumulate, double-length multiply-and-accumulate operation                         | _                      |
|                |       | MUL            | Double-length multiply operation                                                                 | _                      |
|                |       | MULS           | Signed multiplication                                                                            | <del>_</del>           |
|                |       | MULU           | Unsigned multiplication                                                                          | <del>_</del>           |
|                |       | NEG            | Negation                                                                                         | _                      |
|                |       | NEGC           | Negation with borrow                                                                             | _                      |
|                |       | SUB            | Binary subtraction                                                                               | _                      |
|                |       | SUBC           | Binary subtraction with borrow                                                                   | _                      |
|                |       | SUBV           | Binary subtraction with underflow                                                                |                        |

**Table 2.10 Classification of Instructions (cont)** 

| Classification | Types | Operation Code | Function                                                              | No. of<br>Instructions |
|----------------|-------|----------------|-----------------------------------------------------------------------|------------------------|
| Logic          | 6     | AND            | Logical AND                                                           | 14                     |
| operations     |       | NOT            | Bit inversion                                                         |                        |
|                |       | OR             | Logical OR                                                            | <del></del>            |
|                |       | TAS            | Memory test and bit set                                               |                        |
|                |       | TST            | Logical AND and T bit set                                             | <del></del>            |
|                |       | XOR            | Exclusive OR                                                          |                        |
| Shift          | 10    | ROTL           | One-bit left rotation                                                 | 14                     |
|                |       | ROTR           | One-bit right rotation                                                |                        |
|                |       | ROTCL          | One-bit left rotation with T bit                                      | <del></del>            |
|                |       | ROTCR          | One-bit right rotation with T bit                                     | <del></del>            |
|                |       | SHAL           | One-bit arithmetic left shift                                         |                        |
|                |       | SHAR           | One-bit arithmetic right shift                                        |                        |
|                |       | SHLL           | One-bit logical left shift                                            | <del></del>            |
|                |       | SHLLn          | n-bit logical left shift                                              | <del></del>            |
|                |       | SHLR           | One-bit logical right shift                                           | <del></del>            |
|                |       | SHLRn          | n-bit logical right shift                                             |                        |
| Branch         | 9     | BF             | Conditional branch, conditional branch with delay (Branch when T = 0) | 11                     |
|                |       | ВТ             | Conditional branch, conditional branch with delay (Branch when T = 1) | <del></del>            |
|                |       | BRA            | Unconditional branch                                                  | <del></del>            |
|                |       | BRAF           | Unconditional branch                                                  | <del></del>            |
|                |       | BSR            | Branch to subroutine procedure                                        | <del></del>            |
|                |       | BSRF           | Branch to subroutine procedure                                        |                        |
|                |       | JMP            | Unconditional branch                                                  | <u> </u>               |
|                |       | JSR            | Branch to subroutine procedure                                        |                        |
|                |       | RTS            | Return from subroutine procedure                                      |                        |

**Table 2.10 Classification of Instructions (cont)** 

| Classification      | Types | Operation Code | Function                                           | No. of<br>Instructions |
|---------------------|-------|----------------|----------------------------------------------------|------------------------|
| System              | 11    | CLRT           | T bit clear                                        | 31                     |
| control             |       | CLRMAC         | MAC register clear                                 | =                      |
|                     |       | LDC            | Load to control register                           | _                      |
|                     |       | LDS            | Load to system register                            | =                      |
|                     |       | NOP            | No operation                                       | =                      |
|                     |       | RTE            | Return from exception processing                   | _                      |
|                     |       | SETT           | T bit set                                          | =                      |
|                     |       | SLEEP          | Transition to power-down mode                      | =                      |
|                     |       | STC            | Store control register data                        | _                      |
|                     |       | STS            | Store system register data                         | _                      |
|                     |       | TRAPA          | Trap exception handling                            | _                      |
| Floating-point      | 15    | FABS           | Floating-point absolute value                      | 22                     |
| instructions        |       | FADD           | Floating-point addition                            | _                      |
|                     |       | FCMP           | Floating-point comparison                          | _                      |
|                     |       | FDIV           | Floating-point division                            | _                      |
|                     |       | FLDI0          | Floating-point load immediate 0                    | _                      |
|                     |       | FLDI1          | Floating-point load immediate 1                    | _                      |
|                     |       | FLDS           | Floating-point load into system register FPUL      | _                      |
|                     |       | FLOAT          | Integer-to-floating-point conversion               | _                      |
|                     |       | FMAC           | Floating-point multiply-and-accumulate operation   | _                      |
|                     |       | FMOV           | Floating-point data transfer                       | _                      |
|                     |       | FMUL           | Floating-point multiplication                      | _                      |
|                     |       | FNEG           | Floating-point sign inversion                      | _                      |
|                     |       | FSTS           | Floating-point store from system register FPUL     | _                      |
|                     |       | FSUB           | Floating-point subtraction                         | _                      |
|                     |       | FTRC           | Floating-point conversion with rounding to integer | _                      |
| FPU-related         | 2     | LDS            | Load into floating-point system register           | 8                      |
| CPU<br>instructions |       | STS            | Store from floating-point system register          | _                      |
| Total:              | 79    |                |                                                    | 172                    |

Table 2.11 shows the format used in tables 2.12 to 2.19, which list instruction codes, operation, and execution states in order by classification.

Table 2.11 Instruction Code Format

| Item             | Format                                     | Explanation                                                                                                                                                                        |
|------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instruction      | OP.Sz SRC,DEST                             | OP: Operation code Sz: Size (B: byte, W: word, or L: longword) SRC: Source DEST: Destination Rm: Source register Rn: Destination register imm: Immediate data disp: Displacement*1 |
| Instruction co   | ode MSB ↔ LSB                              | mmmm: Source register<br>nnnn: Destination register<br>0000: R0<br>0001: R1                                                                                                        |
|                  |                                            | 1111: R15<br>iiii: Immediate data                                                                                                                                                  |
|                  |                                            | ddd: Displacement                                                                                                                                                                  |
| Operation        | $\rightarrow$ , $\leftarrow$               | Direction of transfer                                                                                                                                                              |
|                  | (xx)                                       | Memory operand                                                                                                                                                                     |
|                  | M/Q/T                                      | Flag bits in the SR                                                                                                                                                                |
|                  | &                                          | Logical AND of each bit                                                                                                                                                            |
|                  | 1                                          | Logical OR of each bit                                                                                                                                                             |
|                  | ۸                                          | Exclusive OR of each bit                                                                                                                                                           |
|                  | ~                                          | Logical NOT of each bit                                                                                                                                                            |
|                  | < <n< td=""><td>n-bit left shift</td></n<> | n-bit left shift                                                                                                                                                                   |
|                  | >>n                                        | n-bit right shift                                                                                                                                                                  |
| Execution cycles | _                                          | Value when no wait states are inserted*2                                                                                                                                           |
| T bit            | _                                          | Value of T bit after instruction is executed. An em-dash (—) in the column means no change.                                                                                        |

Notes: \*1. Depending on the operand size, displacement is scaled ×1, ×2, or ×4. For details, see the SH-2E Programming Manual.

<sup>\*2.</sup> Instruction execution cycles: The execution cycles shown in the table are minimums. The actual number of cycles may be increased when (1) contention occurs between instruction fetches and data access, or (2) when the destination register of the load instruction (memory → register) and the register used by the next instruction are the same.

**Table 2.12 Data Transfer Instructions** 

| Instruc | etion         | Instruction Code | Operation                                                                                             | Execu-<br>tion<br>Cycles | T<br>Bit |
|---------|---------------|------------------|-------------------------------------------------------------------------------------------------------|--------------------------|----------|
| MOV     | #imm,Rn       | 1110nnnniiiiiiii | $\mbox{\#imm} \rightarrow \mbox{Sign extension} \rightarrow \mbox{Rn}$                                | 1                        | _        |
| MOV.W   | @(disp,PC),Rn | 1001nnnndddddddd | $(disp \times 2 + PC) \rightarrow Sign$<br>extension $\rightarrow Rn$                                 | 1                        | _        |
| MOV.L   | @(disp,PC),Rn | 1101nnnndddddddd | $(\operatorname{disp} \times 4 + \operatorname{PC}) \to \operatorname{Rn}$                            | 1                        | _        |
| MOV     | Rm,Rn         | 0110nnnnmmmm0011 | $Rm \to Rn$                                                                                           | 1                        | _        |
| MOV.B   | Rm,@Rn        | 0010nnnnmmmm0000 | $Rm \rightarrow (Rn)$                                                                                 | 1                        | _        |
| MOV.W   | Rm,@Rn        | 0010nnnnmmmm0001 | $Rm \rightarrow (Rn)$                                                                                 | 1                        | _        |
| MOV.L   | Rm,@Rn        | 0010nnnnmmmm0010 | $Rm \rightarrow (Rn)$                                                                                 | 1                        | _        |
| MOV.B   | @Rm,Rn        | 0110nnnnmmmm0000 | $\begin{array}{l} (\text{Rm}) \rightarrow \text{Sign extension} \rightarrow \\ \text{Rn} \end{array}$ | 1                        | _        |
| MOV.W   | @Rm,Rn        | 0110nnnnmmmm0001 | $(Rm) \rightarrow Sign \ extension \rightarrow Rn$                                                    | 1                        | _        |
| MOV.L   | @Rm,Rn        | 0110nnnnmmmm0010 | $(Rm) \rightarrow Rn$                                                                                 | 1                        | _        |
| MOV.B   | Rm,@-Rn       | 0010nnnnmmmm0100 | $Rn-1 \rightarrow Rn, Rm \rightarrow (Rn)$                                                            | 1                        | _        |
| MOV.W   | Rm,@-Rn       | 0010nnnnmmmm0101 | $Rn-2 \rightarrow Rn,Rm \rightarrow (Rn)$                                                             | 1                        | _        |
| MOV.L   | Rm,@-Rn       | 0010nnnnmmmm0110 | $Rn4 \rightarrow Rn,Rm \rightarrow (Rn)$                                                              | 1                        | _        |
| MOV.B   | @Rm+,Rn       | 0110nnnnmmmm0100 | $(Rm) \rightarrow Sign \ extension \rightarrow Rn,Rm + 1 \rightarrow Rm$                              | 1                        | _        |
| MOV.W   | @Rm+,Rn       | 0110nnnnmmmm0101 | $(Rm) \rightarrow Sign \ extension \rightarrow Rn,Rm + 2 \rightarrow Rm$                              | 1                        | _        |
| MOV.L   | @Rm+,Rn       | 0110nnnnmmmm0110 | $(Rm) \rightarrow Rn, Rm + 4 \rightarrow Rm$                                                          | 1                        | _        |
| MOV.B   | R0,@(disp,Rn) | 10000000nnnndddd | $R0 \rightarrow (disp + Rn)$                                                                          | 1                        | _        |
| MOV.W   | R0,@(disp,Rn) | 10000001nnnndddd | $R0 \rightarrow (disp \times 2 + Rn)$                                                                 | 1                        | _        |
| MOV.L   | Rm,@(disp,Rn) | 0001nnnnmmmmdddd | $Rm \to (disp \times 4 + Rn)$                                                                         | 1                        | _        |
| MOV.B   | @(disp,Rm),R0 | 10000100mmmmdddd | $  \text{(disp + Rm)} \rightarrow \text{Sign} \\ \text{extension} \rightarrow \text{R0} $             | 1                        | _        |
| MOV.W   | @(disp,Rm),R0 | 10000101mmmmdddd | $(disp \times 2 + Rm) \rightarrow Sign$<br>extension $\rightarrow R0$                                 | 1                        | _        |
| MOV.L   | @(disp,Rm),Rn | 0101nnnnmmmmdddd | $(disp \times 4 + Rm) \to Rn$                                                                         | 1                        |          |
| MOV.B   | Rm,@(R0,Rn)   | 0000nnnnmmmm0100 | $Rm \rightarrow (R0 + Rn)$                                                                            | 1                        | _        |

 Table 2.12
 Data Transfer Instructions (cont)

| Instruct | iion           | Instruction Code | Operation                                                              | Execu-<br>tion<br>Cycles | T<br>Bit |
|----------|----------------|------------------|------------------------------------------------------------------------|--------------------------|----------|
| MOV.W    | Rm,@(R0,Rn)    | 0000nnnnmmmm0101 | $Rm \rightarrow (R0 + Rn)$                                             | 1                        | _        |
| MOV.L    | Rm,@(R0,Rn)    | 0000nnnnmmmm0110 | $Rm \rightarrow (R0 + Rn)$                                             | 1                        |          |
| MOV.B    | @(R0,Rm),Rn    | 0000nnnnmmmm1100 | $(R0 + Rm) \rightarrow Sign$<br>extension $\rightarrow Rn$             | 1                        | _        |
| WOV.W    | @(R0,Rm),Rn    | 0000nnnnmmm1101  | $(R0 + Rm) \rightarrow Sign$<br>extension $\rightarrow Rn$             | 1                        | _        |
| MOV.L    | @(R0,Rm),Rn    | 0000nnnnmmmm1110 | $(R0 + Rm) \rightarrow Rn$                                             | 1                        | _        |
| MOV.B    | R0,@(disp,GBR) | 11000000dddddddd | $R0 \rightarrow (disp + GBR)$                                          | 1                        |          |
| MOV.W    | R0,@(disp,GBR) | 11000001dddddddd | $R0 \rightarrow (disp \times 2 + GBR)$                                 | 1                        | _        |
| MOV.L    | R0,@(disp,GBR) | 11000010dddddddd | $R0 \rightarrow (disp \times 4 + GBR)$                                 | 1                        |          |
| MOV.B    | @(disp,GBR),R0 | 11000100dddddddd | $(disp + GBR) \rightarrow Sign$<br>extension $\rightarrow R0$          | 1                        | _        |
| WOV.W    | @(disp,GBR),R0 | 11000101dddddddd | $(disp \times 2 + GBR) \rightarrow Sign$<br>extension $\rightarrow R0$ | 1                        | _        |
| MOV.L    | @(disp,GBR),R0 | 11000110dddddddd | $(disp \times 4 + GBR) \rightarrow R0$                                 | 1                        |          |
| MOVA     | @(disp,PC),R0  | 11000111dddddddd | $disp \times 4 + PC \to R0$                                            | 1                        |          |
| MOVT     | Rn             | 0000nnnn00101001 | $T \rightarrow Rn$                                                     | 1                        | _        |
| SWAP.B   | Rm,Rn          | 0110nnnnmmmm1000 | $Rm \rightarrow Swap$ bottom two bytes $\rightarrow Rn$                | 1                        | _        |
| SWAP.W   | Rm,Rn          | 0110nnnnmmmm1001 | $Rm \rightarrow Swap two$ consecutive words $\rightarrow Rn$           | 1                        | _        |
| XTRCT    | Rm,Rn          | 0010nnnnmmm1101  | Rm: Middle 32 bits of $Rn \rightarrow Rn$                              | 1                        | _        |

**Table 2.13 Arithmetic Operation Instructions** 

| Instruction | on      | Instruction Code | Operation                                                                                                                                                  | Execu-<br>tion<br>Cycles | T Bit              |
|-------------|---------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|
| ADD         | Rm,Rn   | 0011nnnnmmmm1100 | $Rn + Rm \rightarrow Rn$                                                                                                                                   | 1                        | _                  |
| ADD         | #imm,Rn | 0111nnnniiiiiiii | $Rn + imm \rightarrow Rn$                                                                                                                                  | 1                        | _                  |
| ADDC        | Rm,Rn   | 0011nnnnmmmm1110 | $\begin{array}{c} Rn + Rm + T \rightarrow Rn, \\ Carry \rightarrow T \end{array}$                                                                          | 1                        | Carry              |
| ADDV        | Rm,Rn   | 0011nnnnmmmm1111 | $\begin{array}{c} \text{Rn + Rm} \rightarrow \text{Rn}, \\ \text{Overflow} \rightarrow \text{T} \end{array}$                                               | 1                        | Overflow           |
| CMP/EQ      | #imm,R0 | 10001000iiiiiiii | If R0 = imm, $1 \rightarrow T$                                                                                                                             | 1                        | Comparison result  |
| CMP/EQ      | Rm,Rn   | 0011nnnnmmmm0000 | If Rn = Rm, $1 \rightarrow T$                                                                                                                              | 1                        | Comparison result  |
| CMP/HS      | Rm,Rn   | 0011nnnnmmmm0010 | If Rn=Rm with unsigned data, $1 \rightarrow T$                                                                                                             | 1                        | Comparison result  |
| CMP/GE      | Rm,Rn   | 0011nnnnmmmm0011 | If Rn = Rm with signed data, $1 \rightarrow T$                                                                                                             | 1                        | Comparison result  |
| CMP/HI      | Rm,Rn   | 0011nnnnmmmm0110 | If Rn > Rm with unsigned data, $1 \rightarrow T$                                                                                                           | 1                        | Comparison result  |
| CMP/GT      | Rm,Rn   | 0011nnnnmmmm0111 | If Rn > Rm with signed data, $1 \rightarrow T$                                                                                                             | 1                        | Comparison result  |
| CMP/PL      | Rn      | 0100nnnn00010101 | If Rn > 0, 1 $\rightarrow$ T                                                                                                                               | 1                        | Comparison result  |
| CMP/PZ      | Rn      | 0100nnnn00010001 | If Rn = 0, 1 $\rightarrow$ T                                                                                                                               | 1                        | Comparison result  |
| CMP/STR     | Rm,Rn   | 0010nnnnmmmm1100 | If Rn and Rm have<br>an†equivalent byte,<br>1 → T                                                                                                          | 1                        | Comparison result  |
| DIV1        | Rm,Rn   | 0011nnnnmmmm0100 | Single-step division (Rn ÷ Rm)                                                                                                                             | 1                        | Calculation result |
| DIV0S       | Rm,Rn   | 0010nnnnmmmm0111 | $\begin{array}{c} \text{MSB of Rn} \rightarrow \text{Q, MSB} \\ \text{of Rm} \rightarrow \text{M, M } ^{\wedge} \text{Q} \rightarrow \text{T} \end{array}$ | 1                        | Calculation result |
| DIV0U       |         | 000000000011001  | $0 \rightarrow \text{M/Q/T}$                                                                                                                               | 1                        | 0                  |

 Table 2.13
 Arithmetic Operation Instructions (cont)

| Instructi | on        | Instruction Code | Operation                                                                                                | Execu-<br>tion<br>Cycles | T Bit             |
|-----------|-----------|------------------|----------------------------------------------------------------------------------------------------------|--------------------------|-------------------|
| DMULS.I   |           | 0011nnnnmmmm1101 | Signed operation of Rn $\times$ Rm $\rightarrow$ MACH, MACL $32 \times 32 \rightarrow 64$ bits           | 2 to 4*                  | —                 |
| DMULU.I   | Rm,Rn     | 0011nnnnmmmm0101 | Unsigned operation of Rn $\times$ Rm $\rightarrow$ MACH, MACL $32 \times 32 \rightarrow 64$ bits         | 2 to 4*                  | _                 |
| DT        | Rn        | 0100nnnn00010000 | $Rn - 1 \rightarrow Rn$ , when $Rn$ is $0, 1 \rightarrow T$ . When $Rn$ is nonzero, $0 \rightarrow T$    | 1                        | Comparison result |
| EXTS.B    | Rm,Rn     | 0110nnnnmmmm1110 | Byte in Rm is sign-<br>extended $\rightarrow$ Rn                                                         | 1                        | _                 |
| EXTS.W    | Rm,Rn     | 0110nnnnmmmm1111 | Word in Rm is sign-<br>extended $\rightarrow$ Rn                                                         | 1                        | _                 |
| EXTU.B    | Rm,Rn     | 0110nnnnmmmm1100 | Byte in Rm is zero-<br>extended $\rightarrow$ Rn                                                         | 1                        | _                 |
| EXTU.W    | Rm,Rn     | 0110nnnnmmmm1101 | Word in Rm is zero-<br>extended $\rightarrow$ Rn                                                         | 1                        | _                 |
| MAC.L     | @Rm+,@Rn+ | 0000nnnnmmm1111  | Signed operation of (Rn) $\times$ (Rm) + MAC $\rightarrow$ MAC 32 $\times$ 32 + 64 $\rightarrow$ 64 bits | 3/(2 to<br>4)*           | _                 |
| MAC.W     | @Rm+,@Rn+ | 0100nnnnmmmm1111 | Signed operation of (Rn) $\times$ (Rm) + MAC $\rightarrow$ MAC 16 $\times$ 16 + 64 $\rightarrow$ 64 bits | 3/(2)*                   | _                 |
| MUL.L     | Rm,Rn     | 0000nnnnmmmm0111 | $\begin{array}{c} Rn \times Rm \to MACL, \\ 32 \times 32 \to 32 \ bits \end{array}$                      | 2 to 4*                  | _                 |
| MULS.W    | Rm,Rn     | 0010nnnnmmmm1111 | Signed operation of Rn $\times$ Rm $\rightarrow$ MACL 16 $\times$ 16 $\rightarrow$ 32 bits               | 1 to 3*                  | _                 |
| MULU.W    | Rm,Rn     | 0010nnnnmmm1110  | Unsigned operation of Rn $\times$ Rm $\rightarrow$ MACL 16 $\times$ 16 $\rightarrow$ 32 bits             | 1 to 3*                  | _                 |
| NEG       | Rm,Rn     | 0110nnnnmmmm1011 | $0-Rm\to Rn$                                                                                             | 1                        |                   |
| NEGC      | Rm,Rn     | 0110nnnnmmmm1010 | $\begin{array}{l} 0-Rm-T\rightarrow Rn,\\ Borrow\rightarrow T \end{array}$                               | 1                        | Borrow            |

**Table 2.13 Arithmetic Operation Instructions (cont)** 

| Instruct | tion  | Instruction Code | Operation                                               | Execu-<br>tion<br>Cycles | T Bit    |
|----------|-------|------------------|---------------------------------------------------------|--------------------------|----------|
| SUB      | Rm,Rn | 0011nnnnmmmm1000 | $Rn-Rm\to Rn$                                           | 1                        | _        |
| SUBC     | Rm,Rn | 0011nnnnmmmm1010 | $Rn-Rm-T\to Rn, \\ Borrow\to T$                         | 1                        | Borrow   |
| SUBV     | Rm,Rn | 0011nnnnmmmm1011 | $Rn - Rm \rightarrow Rn$ ,<br>Underflow $\rightarrow T$ | 1                        | Overflow |

Note: \* The normal minimum number of execution cycles. (The number in parentheses is the number of cycles when there is contention with following instructions.)

**Table 2.14 Logic Operation Instructions** 

| Instruc | etion          | Instruction Code   | Operation                                                                                            | Execu-<br>tion<br>Cycles | T Bit          |
|---------|----------------|--------------------|------------------------------------------------------------------------------------------------------|--------------------------|----------------|
| AND     | Rm,Rn          | 0010nnnnmmmm1001   | $Rn \& Rm \rightarrow Rn$                                                                            | 1                        | _              |
| AND     | #imm,R0        | 11001001iiiiiiii   | R0 & imm $\rightarrow$ R0                                                                            | 1                        | _              |
| AND.B   | #imm,@(R0,GBR) | 11001101iiiiiiii   | $ \begin{array}{c} (R0 + GBR) \ \& \ imm \rightarrow \\ (R0 + GBR) \end{array} $                     | 3                        | _              |
| NOT     | Rm,Rn          | 0110nnnnmmmm0111   | $\sim$ Rm → Rn                                                                                       | 1                        | _              |
| OR      | Rm,Rn          | 0010nnnnmmmm1011   | $Rn \mid Rm \rightarrow Rn$                                                                          | 1                        | _              |
| OR      | #imm,R0        | 11001011iiiiiii    | R0   imm $\rightarrow$ R0                                                                            | 1                        | _              |
| OR.B    | #imm,@(R0,GBR) | 110011111111111111 | $ \begin{array}{c} (R0 + GBR) \mid imm \rightarrow \\ (R0 + GBR) \end{array} $                       | 3                        | _              |
| TAS.B   | @Rn            | 0100nnnn00011011   | If (Rn) is 0, 1 $\rightarrow$ T; 1 $\rightarrow$ MSB of (Rn)                                         | 4                        | Test<br>result |
| TST     | Rm,Rn          | 0010nnnnmmmm1000   | Rn & Rm; if the result is $0, 1 \rightarrow T$                                                       | 1                        | Test<br>result |
| TST     | #imm,R0        | 11001000iiiiiiii   | R0 & imm; if the result is $0, 1 \rightarrow T$                                                      | 1                        | Test<br>result |
| TST.B   | #imm,@(R0,GBR) | 11001100iiiiiiii   | (R0 + GBR) & imm; if the result is 0, 1 $\rightarrow$ T                                              | 3                        | Test<br>result |
| XOR     | Rm,Rn          | 0010nnnnmmm1010    | $Rn \wedge Rm \rightarrow Rn$                                                                        | 1                        | _              |
| XOR     | #imm,R0        | 11001010iiiiiiii   | R0 ^ imm $\rightarrow$ R0                                                                            | 1                        | _              |
| XOR.B   | #imm,@(R0,GBR) | 11001110iiiiiiii   | $ \begin{array}{c} (\text{R0 + GBR}) \land \text{imm} \rightarrow \\ (\text{R0 + GBR}) \end{array} $ | 3                        | _              |

**Table 2.15 Shift Instructions** 

| Instructi | on | Instruction Code | Operation                        | Execu-<br>tion<br>Cycles | T Bit |
|-----------|----|------------------|----------------------------------|--------------------------|-------|
| ROTL      | Rn | 0100nnnn00000100 | $T \leftarrow Rn \leftarrow MSB$ | 1                        | MSB   |
| ROTR      | Rn | 0100nnnn00000101 | $LSB \to Rn \to T$               | 1                        | LSB   |
| ROTCL     | Rn | 0100nnnn00100100 | $T \leftarrow Rn \leftarrow T$   | 1                        | MSB   |
| ROTCR     | Rn | 0100nnnn00100101 | $T \to Rn \to T$                 | 1                        | LSB   |
| SHAL      | Rn | 0100nnnn00100000 | $T \leftarrow Rn \leftarrow 0$   | 1                        | MSB   |
| SHAR      | Rn | 0100nnnn00100001 | $MSB \to Rn \to T$               | 1                        | LSB   |
| SHLL      | Rn | 0100nnnn00000000 | $T \leftarrow Rn \leftarrow 0$   | 1                        | MSB   |
| SHLR      | Rn | 0100nnnn00000001 | $0 \to Rn \to T$                 | 1                        | LSB   |
| SHLL2     | Rn | 0100nnnn00001000 | $Rn << 2 \rightarrow Rn$         | 1                        | _     |
| SHLR2     | Rn | 0100nnnn00001001 | $Rn>>2 \rightarrow Rn$           | 1                        | _     |
| SHLL8     | Rn | 0100nnnn00011000 | $Rn << 8 \rightarrow Rn$         | 1                        | _     |
| SHLR8     | Rn | 0100nnnn00011001 | $Rn>>8 \rightarrow Rn$           | 1                        | _     |
| SHLL16    | Rn | 0100nnnn00101000 | $Rn << 16 \rightarrow Rn$        | 1                        | _     |
| SHLR16    | Rn | 0100nnnn00101001 | $Rn >> 16 \rightarrow Rn$        | 1                        | _     |

**Table 2.16 Branch Instructions** 

| Instru | uction | Instruction Code | Operation                                                                      | Execu-<br>tion<br>Cycles | T Bit |
|--------|--------|------------------|--------------------------------------------------------------------------------|--------------------------|-------|
| BF     | label  | 10001011dddddddd | If T = 0, disp $\times$ 2 + PC $\rightarrow$ PC; if T = 1, nop                 | 3/1*                     |       |
| BF/S   | label  | 10001111dddddddd | Delayed branch, if T = 0, disp $\times$ 2 + PC $\rightarrow$ PC; if T = 1, nop | 2/1*                     | _     |
| BT     | label  | 10001001dddddddd | If T = 1, disp $\times$ 2 + PC $\rightarrow$ PC; if T = 0, nop                 | 3/1*                     | _     |
| BT/S   | label  | 10001101dddddddd | Delayed branch, if T = 1, disp $\times$ 2 + PC $\rightarrow$ PC; if T = 0, nop | 2/1*                     | _     |
| BRA    | label  | 1010dddddddddddd | Delayed branch, disp $\times$ 2 + PC $\rightarrow$ PC                          | 2                        | _     |
| BRAF   | Rm     | 0000mmmm00100011 | Delayed branch, Rm + PC $\rightarrow$ PC                                       | 2                        | _     |
| BSR    | label  | 1011dddddddddddd | Delayed branch, PC $\rightarrow$ PR, disp $\times$ 2 + PC $\rightarrow$ PC     | 2                        | _     |
| BSRF   | Rm     | 0000mmmm00000011 | Delayed branch, PC $\rightarrow$ PR, Rm†+†PC $\rightarrow$ PC                  | 2                        | _     |
| JMP    | @Rm    | 0100mmmm00101011 | Delayed branch, $Rm \rightarrow PC$                                            | 2                        | _     |
| JSR    | @Rm    | 0100mmmm00001011 | Delayed branch, PC $\rightarrow$ PR, Rm $\rightarrow$ PC                       | 2                        | _     |
| RTS    |        | 0000000000001011 | Delayed branch, $PR \rightarrow PC$                                            | 2                        | _     |

Note: \*One state when the program does not branch.

**Table 2.17 System Control Instructions** 

| Instruc | ction     | Instruction Code | Operation                                       | Execu-<br>tion<br>Cycles | T Bit |
|---------|-----------|------------------|-------------------------------------------------|--------------------------|-------|
| CLRT    |           | 0000000000001000 | $0 \rightarrow T$                               | 1                        | 0     |
| CLRMA   | С         | 000000000101000  | $0 \rightarrow MACH$ , MACL                     | 1                        | _     |
| LDC     | Rm,SR     | 0100mmmm00001110 | $Rm \to SR$                                     | 1                        | LSB   |
| LDC     | Rm,GBR    | 0100mmmm00011110 | $Rm \to GBR$                                    | 1                        | _     |
| LDC     | Rm,VBR    | 0100mmmm00101110 | $Rm \to VBR$                                    | 1                        | _     |
| LDC.L   | @Rm+,SR   | 0100mmmm00000111 | $(Rm) \rightarrow SR, Rm + 4 \rightarrow Rm$    | 3                        | LSB   |
| LDC.L   | @Rm+,GBR  | 0100mmmm00010111 | $(Rm) \rightarrow GBR,Rm + 4 \rightarrow Rm$    | 3                        | _     |
| LDC.L   | @Rm+,VBR  | 0100mmmm00100111 | $(Rm) \rightarrow VBR, Rm + 4 \rightarrow Rm$   | 3                        | _     |
| LDS     | Rm,MACH   | 0100mmmm00001010 | Rm 	o MACH                                      | 1                        | _     |
| LDS     | Rm,MACL   | 0100mmmm00011010 | $Rm \to MACL$                                   | 1                        | _     |
| LDS     | Rm,PR     | 0100mmmm00101010 | $Rm \to PR$                                     | 1                        | _     |
| LDS.L   | @Rm+,MACH | 0100mmmm00000110 | $(Rm) \rightarrow MACH,  Rm + 4 \rightarrow Rm$ | 1                        | _     |
| LDS.L   | @Rm+,MACL | 0100mmmm00010110 | $(Rm) \to MACL, Rm + 4 \to Rm$                  | 1                        | _     |
| LDS.L   | @Rm+,PR   | 0100mmmm00100110 | $(Rm) \rightarrow PR, Rm + 4 \rightarrow Rm$    | 1                        | _     |
| NOP     |           | 0000000000001001 | No operation                                    | 1                        | _     |
| RTE     |           | 000000000101011  | Delayed branch, stack area → PC/SR              | 4                        | _     |
| SETT    |           | 000000000011000  | $1 \rightarrow T$                               | 1                        | 1     |
| SLEEP   |           | 000000000011011  | Sleep                                           | 3*                       | _     |
| STC     | SR,Rn     | 0000nnnn00000010 | $SR \rightarrow Rn$                             | 1                        | _     |
| STC     | GBR,Rn    | 0000nnnn00010010 | $GBR \to Rn$                                    | 1                        | _     |
| STC     | VBR,Rn    | 0000nnnn00100010 | $VBR \to Rn$                                    | 1                        | _     |
| STC.L   | SR,@-Rn   | 0100nnnn00000011 | $Rn - 4 \rightarrow Rn, SR \rightarrow (Rn)$    | 2                        | _     |
| STC.L   | GBR,@-Rn  | 0100nnnn00010011 | $Rn - 4 \rightarrow Rn, GBR \rightarrow (Rn)$   | 2                        | _     |
| STC.L   | VBR,@-Rn  | 0100nnnn00100011 | $Rn - 4 \rightarrow Rn, BR \rightarrow (Rn)$    | 2                        | _     |
| STS     | MACH,Rn   | 0000nnnn00001010 | $MACH \to Rn$                                   | 1                        | _     |
| STS     | MACL,Rn   | 0000nnnn00011010 | $MACL \to Rn$                                   | 1                        | _     |
| STS     | PR,Rn     | 0000nnnn00101010 | $PR \rightarrow Rn$                             | 1                        | _     |

**Table 2.17 System Control Instructions (cont)** 

| Instruc | tion      | Instruction Code | Operation                                                                                                                       | Execu-<br>tion<br>Cycles | T Bit |
|---------|-----------|------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------|
| STS.L   | MACH,@-Rn | 0100nnnn00000010 | $Rn - 4 \rightarrow Rn, MACH \rightarrow (Rn)$                                                                                  | 1                        | _     |
| STS.L   | MACL,@-Rn | 0100nnnn00010010 | $Rn - 4 \rightarrow Rn, MACL \rightarrow (Rn)$                                                                                  | 1                        |       |
| STS.L   | PR,@-Rn   | 0100nnnn00100010 | $Rn - 4 \rightarrow Rn, PR \rightarrow (Rn)$                                                                                    | 1                        | _     |
| TRAPA   | #imm      | 11000011iiiiiii  | $\begin{array}{l} \text{PC/SR} \rightarrow \text{stack area, (imm} \times 4 \\ \text{+ VBR)} \rightarrow \text{PC} \end{array}$ | 8                        | _     |

Note: \* The number of execution cycles before the chip enters sleep mode: The execution cycles shown in the table are minimums. The actual number of cycles may be increased when (1) contention occurs between instruction fetches and data access, or (2) when the destination register of the load instruction (memory → register) and the register used by the next instruction are the same.

**Table 2.18 Floating-Point Instructions** 

| Instruction | on           | Instruction Code | Operation                                                              | Execu-<br>tion<br>Cycles | T Bit             |
|-------------|--------------|------------------|------------------------------------------------------------------------|--------------------------|-------------------|
| FABS        | FRn          | 1111nnnn01011101 | $ FRn  \to FRn$                                                        | 1                        | _                 |
| FADD        | FRm,FRn      | 1111nnnnmmmm0000 | $FRn + FRm \to FRn$                                                    | 1                        | _                 |
| FCMP/EQ     | FRm,FRn      | 1111nnnnmmmm0100 | (FRn = FRm)? $1:0 \rightarrow T$                                       | 1                        | Comparison result |
| FCMP/GT     | 'FRm,FRn     | 1111nnnnmmmm0101 | (FRn > FRm)? $1:0 \rightarrow T$                                       | 1                        | Comparison result |
| FDIV        | FRm,FRn      | 1111nnnnmmmm0011 | $FRn/FRm \to FRn$                                                      | 13                       | _                 |
| FLDI0       | FRn          | 1111nnnn10001101 | 0x00000000 → FRn                                                       | 1                        | _                 |
| FLDI1       | FRn          | 1111nnnn10011101 | 0x3F800000 → FRn                                                       | 1                        | _                 |
| FLDS        | FRm,FPUL     | 1111mmmm00011101 | $FRm \to FPUL$                                                         | 1                        | _                 |
| FLOAT       | FPUL,FRn     | 1111nnnn00101101 | (float) FPUL $\rightarrow$ FRn                                         | 1                        | _                 |
| FMAC        | FR0,FRm,FRn  | 1111nnnnmmmm1110 | $\begin{array}{c} FR0 \times FRm + FRn \rightarrow \\ FRn \end{array}$ | 1                        | _                 |
| FMOV        | FRm, FRn     | 1111nnnnmmmm1100 | $FRm \to FRn$                                                          | 1                        | _                 |
| FMOV.S      | @(R0,Rm),FRn | 1111nnnnmmmm0110 | $(R0 + Rm) \rightarrow FRn$                                            | 1                        | _                 |
| FMOV.S      | @Rm+,FRn     | 1111nnnnmmmm1001 | $(Rm) \rightarrow FRn, Rm+ = 4$                                        | 1                        | _                 |
| FMOV.S      | @Rm,FRn      | 1111nnnnmmmm1000 | $(Rm) \rightarrow FRn$                                                 | 1                        | _                 |
| FMOV.S      | FRm,@(R0,Rn) | 1111nnnnmmmm0111 | $FRm \rightarrow (R0 + Rn)$                                            | 1                        | _                 |
| FMOV.S      | FRm,@-Rn     | 1111nnnnmmmm1011 | $Rn-=4$ , $FRm \rightarrow (Rn)$                                       | 1                        | _                 |
| FMOV.S      | FRm,@Rn      | 1111nnnnmmmm1010 | FRm 	o (Rn)                                                            | 1                        | _                 |
| FMUL        | FRm,FRn      | 1111nnnnmmmm0010 | $FRn \times FRm \to FRn$                                               | 1                        | _                 |
| FNEG        | FRn          | 1111nnnn01001101 | $-FRn \to FRn$                                                         | 1                        | _                 |
| FSTS        | FPUL,FRn     | 1111nnnn00001101 | $FPUL \to FRn$                                                         | 1                        | _                 |
| FSUB        | FRm,FRn      | 1111nnnnmmmm0001 | $FRn - FRm \to FRn$                                                    | 1                        | _                 |
| FTRC        | FRm, FPUL    | 1111mmmm00111101 | (long) $FRm \to FPUL$                                                  | 1                        | _                 |

**Table 2.19 FPU-Related CPU Instructions** 

| Instruct | ion         | Instruction Code | Operation                         | Execu-<br>tion<br>Cycles | T Bit |
|----------|-------------|------------------|-----------------------------------|--------------------------|-------|
| LDS      | Rm,FPSCR    | 0100mmmm01101010 | $Rm \to FPSCR$                    | 1                        | _     |
| LDS      | Rm,FPUL     | 0100mmmm01011010 | $Rm \to FPUL$                     | 1                        | _     |
| LDS.L    | @Rm+, FPSCR | 0100mmmm01100110 | $@Rm \rightarrow FPSCR, Rm + = 4$ | 1                        | _     |
| LDS.L    | @Rm+, FPUL  | 0100mmmm01010110 | $@Rm \rightarrow FPUL, Rm + = 4$  | 1                        | _     |
| STS      | FPSCR, Rn   | 0000nnnn01101010 | $FPSCR \to Rn$                    | 1                        | _     |
| STS      | FPUL,Rn     | 0000nnnn01011010 | $FPUL \to Rn$                     | 1                        | _     |
| STS.L    | FPSCR,@-Rn  | 0100nnnn01100010 | $Rn-=4$ , $FPCSR \rightarrow @Rn$ | 1                        |       |
| STS.L    | FPUL,@-Rn   | 0100nnnn01010010 | $Rn-=4$ , $FPUL \rightarrow @Rn$  | 1                        | _     |

# 2.5 Processing States

## 2.5.1 State Transitions

The CPU has five processing states: power-on reset, exception processing, bus release, program execution and power-down. Figure 2.8 shows the transitions between the states.

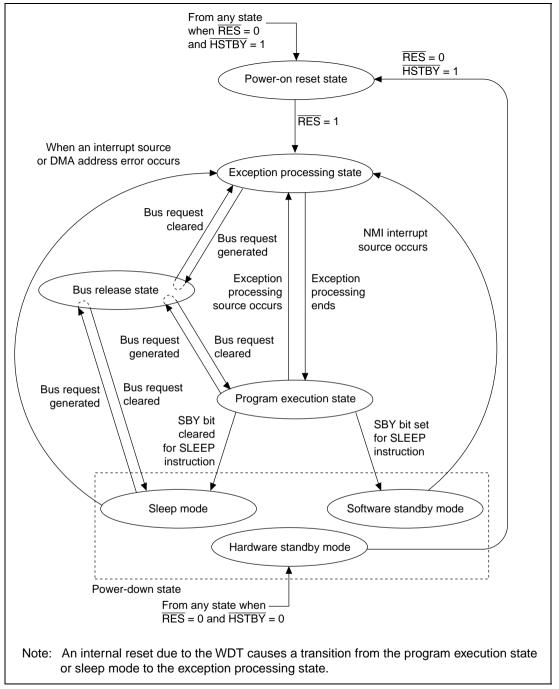



Figure 2.8 Transitions between Processing States

**Power-On Reset State:** The CPU resets in the reset state. When the  $\overline{\text{HSTBY}}$  pin is driven high and the  $\overline{\text{RES}}$  pin level goes low, the power-on reset state is entered.

**Exception Processing State**: The exception processing state is a transient state that occurs when exception processing sources such as resets or interrupts alter the CPU's processing state flow.

For a reset, the initial values of the program counter (PC) (execution start address) and stack pointer (SP) are fetched from the exception processing vector table and stored; the CPU then branches to the execution start address and execution of the program begins.

For an interrupt, the stack pointer (SP) is accessed and the program counter (PC) and status register (SR) are saved to the stack area. The exception service routine start address is fetched from the exception processing vector table; the CPU then branches to that address and the program starts executing, thereby entering the program execution state.

**Program Execution State**: In the program execution state, the CPU sequentially executes the program.

**Power-Down State**: In the power-down state, the CPU operation halts and power consumption declines. The SLEEP instruction places the CPU in the sleep mode or the software standby mode. If the  $\overline{\text{HSTBY}}$  pin is driven low when the  $\overline{\text{RES}}$  pin is low, the CPU will enter the hardware standby mode.

**Bus Release State**: In the bus release state, the CPU releases access rights to the bus to the device that has requested them.

# Section 3 Floating-Point Unit (FPU)

## 3.1 Overview

The SH7055SF has an on-chip floating-point unit (FPU), The FPU's register configuration is shown in figure 3.1.

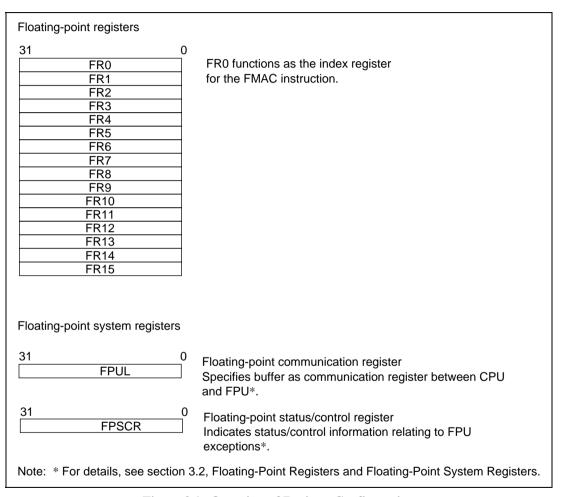



Figure 3.1 Overview of Register Configuration (Floating-Point Registers and Floating-Point System Registers)

# 3.2 Floating-Point Registers and Floating-Point System Registers

## 3.2.1 Floating-Point Register File

The SH7055SF has sixteen 32-bit single-precision floating-point registers. Register specifications are always made as 4 bits. In assembly language, the floating-point registers are specified as FR0, FR1, FR2, and so on. FR0 functions as the index register for the FMAC instruction.

### 3.2.2 Floating-Point Communication Register (FPUL)

Information for transfer between the FPU and the CPU is transferred via the FPUL communication register, which resembles MACL and MACH in the integer unit. The SH7055SF is provided with this communication register since the integer and floating-point formats are different. The 32-bit FPUL is a system register, and is accessed by the CPU by means of LDS and STS instructions.

## 3.2.3 Floating-Point Status/Control Register (FPSCR)

The SH7055SF has a floating-point status/control register (FPSCR) that functions as a system register accessed by means of LDS and STS instructions (figure 3.2). FPSCR can be written to by a user program. This register is part of the process context, and must be saved when the context is switched. It may also be necessary to save this register when a procedure call is made.

FPSCR is a 32-bit register that controls the storage of detailed information relating to the rounding mode, asymptotic underflow (denormalized numbers), and FPU exceptions. The module stop bit that disables the FPU itself is provided in the module standby control register (MSTCR). For details, see section 24, Power-Down State. After a reset start, the FPU is enabled.

Table 3.1 shows the flags corresponding the five kinds of FPU exception. A sixth flag is also provided as an FPU error flag that indicates an floating-point unit error state not covered by the other five flags.

**Table 3.1** Floating-Point Exception Flags

| Flag | Meaning                         | Support in SH7055SF |
|------|---------------------------------|---------------------|
| E    | FPU error                       | _                   |
| V    | Invalid operation               | Yes                 |
| Z    | Division by zero                | Yes                 |
| 0    | Overflow (value not expressed)  | _                   |
| U    | Underflow (value not expressed) | _                   |
| I    | Inexact (result not expressed)  | _                   |

The bits in the cause field indicate the exception cause for the instruction executing at the time. The cause bits are modified by a floating-point instruction. These bits are set to 1 or cleared to 0 according to whether or not an exception state occurred during execution of a single instruction.

The bits in the enable field specify the kinds of exception to be enabled, allowing the flow to be changed to exception processing. If the cause bit corresponding to an enable bit is set by the currently executing instruction, an exception occurs.

The bits in the flag field are used to keep a tally of all exceptions that occur during a series of instructions. Once one of these bits is set by an instruction, it is not reset by a subsequent instruction. The bits in this field can only be reset by the explicit execution of a store operation on FPSCR.

| 31       | 19 1 | 18 | 17 16 15 | 14    | 13  | 12 | 11 | 10  | 9   | 8    | 7  | 6  | 5   | 4    | 3    | 2  | 1 0 |
|----------|------|----|----------|-------|-----|----|----|-----|-----|------|----|----|-----|------|------|----|-----|
|          |      |    | Caus     | e fie | eld |    | Eı | nak | ole | fiel | d  |    | Fla | ag f | ield | 1  |     |
| Reserved |      | N  | ce cv cz | co    | cu  | CI | ΕV | ΕZ  | ΕO  | EU   | ΕI | F۷ | FΖ  | FO   | FU   | FI | RM  |

DN: Denormalized bit

In the SH7055SF this bit is always set to 1, and the source or destination operand of a denormalized number is 0. This bit cannot be modified even by an LDS instruction

CV: Invalid operation cause bit

When 1: Indicates that an invalid operation exception occurred during execution of the current instruction.

When 0: Indicates that an invalid operation exception has not occurred.

CZ: Division-by-zero cause bit

When 1: Indicates that a division-by-zero exception occurred during execution of the current instruction.

When 0: Indicates that a division-by-zero exception has not occurred.

EV: Invalid operation exception enable

When 1: Enables invalid operation exception generation.

When 0: An invalid operation exception is not generated, and a qNAN is returned as the result.

EZ: Division-by-zero exception enable

When 1: Enables exception generation due to division-by-zero during execution of the current instruction.

When 0: A division-by-zero exception is not generated, and infinity with the sign (+ or –) of the current expression is returned as the result.

FV: Invalid operation exception flag bit

When 1: Indicates that an invalid operation exception occurred during instruction execution.

When 0: Indicates that an invalid operation exception has not occurred.

FZ: Division-by-zero exception flag bit

When 1: Indicates that a division-by-zero exception occurred during instruction execution.

When 0: Indicates that a division-by-zero exception has not occurred.

RM: Rounding bit.

In the SH7055SF, the value of these bits is always 01, meaning that rounding to zero (RZ mode) is being used. These bits cannot be modified even by an LDS instruction.

In the SH7055SF, the cause field EOUI bits (CE, CO, CU, and CI), enable field OUI bits (EO, EU, and EI), and flag field OUI bits (FO, FU, and FI), and the reserved area, are preset to 0, and cannot be modified even by using an LDS instruction.

Figure 3.2 Floating-Point Status/Control Register

# 3.3 Floating-Point Format

## 3.3.1 Floating-Point Format

The SH7055SF supports single-precision floating-point operations, and fully complies with the IEEE754 floating-point standard.

A floating-point number consists of the following three fields:

- Sign (s)
- Exponent (e)
- Fraction (f)

The exponent is expressed in biased form, as follows:

$$e = E + bias$$

The range of unbiased exponent E is  $E_{\text{min}}-1$  to  $E_{\text{max}}+1$ . The two values  $E_{\text{min}}-1$  and  $E_{\text{max}}+1$  are distinguished as follows.  $E_{\text{min}}-1$  indicates zero (both positive and negative sign) and a denormalized number, and  $E_{\text{max}}+1$  indicates positive or negative infinity or a non-number (NaN). In a single-precision operation, the bias value is 127,  $E_{\text{min}}$  is -126, and  $E_{\text{max}}$  is 127.

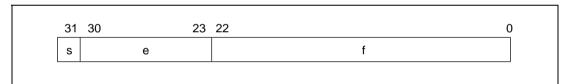



Figure 3.3 Floating-Point Number Format

Floating-point number value v is determined as follows:

```
If E=E_{max}+1 and f!=0, v is a non-number (NaN) irrespective of sign s If E=E_{max}+1 and f=0, v=(-1)^s (infinity) [positive or negative infinity] If E_{min} <= E <= E_{max}, v=(-1)^s 2^E (1.f) [normalized number] If E=E_{min}-1 and f!=0, v=(-1)^s 2^{Emin} (0.f) [denormalized number] If E=E_{min}-1 and f=0, v=(-1)^s 0 [positive or negative zero]
```

#### 3.3.2 Non-Numbers (NaN)

With non-number (NaN) representation in a single-precision operation value, at least one of bits 22 to 0 is set. If bit 22 is set, this indicates a signaling NaN (sNaN). If bit 22 is reset, the value is a quiet NaN (qNaN).

The bit pattern of a non-number (NaN) is shown in the figure below. Bit N in the figure is set for a signaling NaN and reset for a quiet NaN. x indicates a don't care bit (with the proviso that at least one of bits 22 to 0 is set). In a non-number (NaN), the sign bit is a don't care bit.

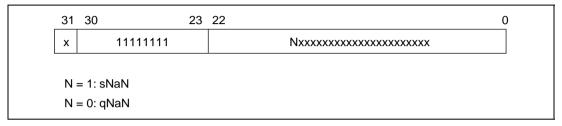



Figure 3.4 NaN Bit Pattern

If a non-number (sNaN) is input in an operation that generates a floating-point value:

- When the EV bit in the FPSCR register is reset, the operation result (output) is a quiet NaN (qNaN).
- When the EV bit in the FPSCR register is set, an invalid operation exception will be generated. In this case, the contents of the operation destination register do not change.

If a quiet NaN is input in an operation that generates a floating-point value, and a signaling NaN has not been input in that operation, the output will always be a quiet NaN irrespective of the setting of the EV bit in the FPSCR register. An exception will not be generated in this case.

Refer to the SH-2E Programming Manual for details of floating-point operations when a non-number (NaN) is input.

#### 3.3.3 Denormalized Number Values

For a denormalized number floating-point value, the biased exponent is expressed as 0, the fraction as a non-zero value, and the hidden bit as 0. In the SH7055SF's floating-point unit, a denormalized number (operand source or operation result) is always flushed to 0 in a floating-point operation that generates a value (an operation other than copy).

## 3.3.4 Other Special Values

Floating-point value representations include the seven different kinds of special values shown in table 3.2.

Table 3.2 Representation of Special Values in Single-Precision Floating-Point Operations Specified by IEEE754 Standard

| Value                | Representation                                    |
|----------------------|---------------------------------------------------|
| +0.0                 | 0x00000000                                        |
| -0.0                 | 0x80000000                                        |
| Denormalized number  | As described in 3.3.3, Denormalized Number Values |
| +INF                 | 0x7F800000                                        |
| -INF                 | 0xFF800000                                        |
| qNaN (quiet NaN)     | As described in 3.3.2, Non-Numbers (NaN)          |
| sNaN (signaling NaN) | As described in 3.3.2, Non-Numbers (NaN)          |

# 3.4 Floating-Point Exception Model

## 3.4.1 Enable State Exceptions

Invalid operation and division-by-zero exceptions are both placed in the enable state by setting the enable bit. All exceptions generated by the FPU are mapped as the same exception event. The meaning of a particular exception is determined by software by reading system register FPSCR and analyzing the information held there.

#### 3.4.2 Disable State Exceptions

If the EV enable bit is not set, a qNaN will be generated as the result of an invalid operation (except for FCMP and FTRC). If the EZ enable bit is not set, division-by-zero will return infinity with the sign (+ or –) of the current expression. Overflow will generate a finite number which is the largest value that can be expressed by an absolute value in the format, with the correct sign. Underflow will generate zero with the correct sign. If the operation result is inexact, the destination register will store that inexact result.

### 3.4.3 FPU Exception Event and Code

All FPU exceptions have a vector table address offset in address H'00000034 as the same general exception event; that is, an FPU exception.

## 3.4.4 Floating-Point Data Arrangement in Memory

Single-precision floating-point data is located in memory at a 4-byte boundary; that is, it is arranged in the same form as an SH7055SF long integer.

# 3.4.5 Arithmetic Operations Involving Special Operands

All arithmetic operations involving special operands (qNaN, sNaN, +INF, -INF, +0, -0) comply with the specifications of the IEEE754 standard. Refer to the SH-2E Programming Manual for details.

# 3.5 Synchronization with CPU

**Synchronization with CPU:** Floating-point instructions and CPU instructions are executed in turn, according to their order in the program, but in some cases operations may not be completed in the program order due to a difference in execution cycles. When a floating-point instruction accesses only FPU resources, there is no need for synchronization with the CPU, and a CPU instruction following an FPU instruction can finish its operation before completion of the FPU operation. Consequently, in an optimized program, it is possible to effectively conceal the execution cycle of a floating-point instruction that requires a long execution cycle, such as a divide instruction. On the other hand, a floating-point instruction that accesses CPU resources, such as a compare instruction, must be synchronized to ensure that the program order is observed.

Floating-Point Instructions That Require Synchronization: Load, store, and compare instructions, and instructions that access the FPUL or FPSCR register, must be synchronized because they access CPU resources. Load and store instructions access a general register. Post-increment load and pre-decrement store instructions change the contents of a general register. A compare instruction modifies the T bit. An FPUL or FPSCR access instruction references or changes the contents of the FPUL or FPSCR register. These references and changes must all be synchronized with the CPU.

# 3.6 Usage Notes

- 1. When using the FPU (using FPU instructions or FPU-related CPU instructions)
  - a. Limitations on using the BT and BF instructions on the SH7055F are abolished. The BT and BF instructions can be used on the SH7055F.
  - b. The branch destination of TRAP instruction and interrupt/exception handling must be located at a 4n address. In this case, do not place an FPU instruction or FPU-related CPU instruction at address 4n or 4n+2.
- When not using the FPU (not using FPU instructions or FPU-related CPU instructions)
   After a power-on reset, the FPU should be placed in the module standby state until a DMAC or AUD bus cycle is generated.

Specifically, write 1 to bit 1 in the module standby control register.

This operation is also effective in reducing current dissipation.

When the FPU enters the module standby state, any subsequent FPU instruction or FPU-related CPU instruction will be subjected to exception handling as an illegal instruction.

Restrictions of the FADD and FSUB instructions
 In this FPU, values calculated by the following two arithmetic operations with a special operand have a sign which is different from values' expected in the IEEE Standard 754.

1) FADD FRm, FRn FRm = -INF(0xFF80000)FRn = MAX(0x7F7FFFFF) At this time, + INF (0x7F800000) is generated as a result to the expected value -INF (0xFF800000) in the IEEE754.

2) FSUB FRm, FRn FRm = -INF(0xFF80000)

FRn = MAX(0x7F7FFFFF)

At this time, + INF (0x7F800000) is generated as a result to the expected value -INF (0xFF800000) in the IEEE754.

# Section 4 Operating Modes

# 4.1 Operating Mode Selection

The SH7055SF has five operating modes that are selected by pins MD2 to MD0 and FWE. The mode setting pins should not be changed during operation of the SH7055SF, and only the setting combinations shown in table 4.1 should be used.

The  $PV_{cc}1$  power supply voltage must be within the range shown in table 4.1.

**Table 4.1 Operating Mode Selection** 

| Operating |     | Pin S | ettings | 6   |                      | On-Chip  | Area 0<br>Bus  |                            |
|-----------|-----|-------|---------|-----|----------------------|----------|----------------|----------------------------|
| Mode No.  | FWE | MD2   | MD1     | MD0 | Mode Name            | ROM      | Width          | PV <sub>cc</sub> 1 Voltage |
| Mode 0    | 0   | 1     | 0       | 0   | MCU expanded         | Disabled | 8 bits         | 3.3 V ±0.3 V               |
| Mode 1    | 0   | 1     | 0       | 1   | mode                 |          | 16 bits        | _                          |
| Mode 2    | 0   | 1     | 1       | 0   | -                    | Enabled  | Set by<br>BCR1 | _                          |
| Mode 3    | 0   | 1     | 1       | 1   | MCU single-chip mode | Enabled  | _              | 5.0 V ±0.5 V               |
| Mode 4    | 1   | 1     | 0       | 0   | Boot mode            | Enabled  | Set by<br>BCR1 | 3.3 V ±0.3 V               |
| Mode 5    | 1   | 1     | 0       | 1   | _                    |          | _              | 5.0 V ±0.5 V               |
| Mode 6    | 1   | 1     | 1       | 0   | User program<br>mode | Enabled  | Set by<br>BCR1 | 3.3 V ±0.3 V               |
| Mode 7    | 1   | 1     | 1       | 1   | _                    |          | _              | 5.0 V ±0.5 V               |
| Mode 8    | 1   | 0     | 0       | 1   | User boot mode       | Enabled  | Set by<br>BCR1 | 3.3 V ±0.3 V               |
| Mode 9    | 1   | 0     | 0       | 1   | _                    |          | _              | 5.0 V ±0.5 V               |
| _         | 0/1 | 0     | 1       | 1   | Programmer mode      | _        | _              | 3.3 V ±0.3 V               |

There are two MCU operating modes: MCU single-chip mode and MCU expanded mode.

Modes in which the flash memory can be programmed are boot mode, user boot mode and user program mode (the two on-board programming modes) and programmer mode in which programming is performed with an EPROM programmer (a type which supports programming of this device).

For details, see section 22, ROM.

# Section 5 Clock Pulse Generator (CPG)

#### 5.1 Overview

The clock pulse generator (CPG) supplies clock pulses inside the SH7055SF chip and to external devices. The SH7055SF CPG consists of an oscillator circuit and a PLL multiplier circuit. There are two methods of generating a clock with the CPG: by connecting a crystal resonator, or by inputting an external clock. The oscillator circuit oscillates at the same frequency as the input clock. A chip operating frequency of 4 times the oscillator frequency is generated by the PLL multiplier circuit.

The CPG is halted in software standby mode and hardware standby mode.

### 5.1.1 Block Diagram

A block diagram of the clock pulse generator is shown in figure 5.1.

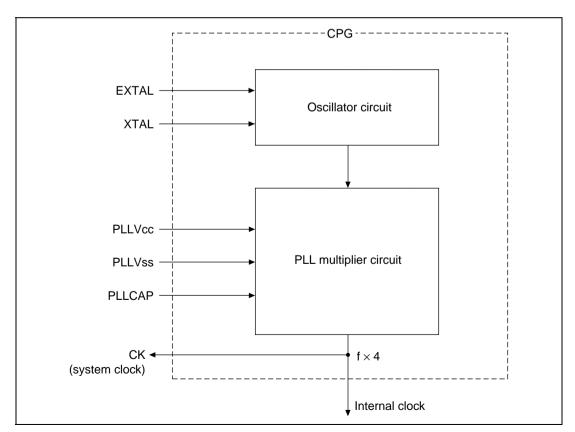



Figure 5.1 Block Diagram of Clock Pulse Generator

#### **5.1.2** Pin Configuration

The pins relating to the clock pulse generator are shown in table 5.1.

Table 5.1 CPG Pins

| Pin Name         | Abbreviation       | I/O    | Description                                                 |
|------------------|--------------------|--------|-------------------------------------------------------------|
| External clock   | EXTAL              | Input  | Crystal resonator or external clock input                   |
| Crystal          | XTAL               | Input  | Crystal resonator connection                                |
| System clock     | СК                 | Output | System clock output                                         |
| PLL power supply | PLLV <sub>cc</sub> | Input  | PLL multiplier circuit power supply                         |
| PLL ground       | PLLV <sub>ss</sub> | Input  | PLL multiplier circuit ground                               |
| PLL capacitance  | PLLCAP             | Input  | PLL multiplier circuit oscillation external capacitance pin |

# 5.2 Frequency Ranges

The input frequency and operating frequency ranges are shown in table 5.2.

Table 5.2 Input Frequency and Operating Frequency

| Input Frequency Range (MHz) | PLL Multiplication Factor | Operating Frequency Range (MHz) |  |
|-----------------------------|---------------------------|---------------------------------|--|
| 5–10                        | ×4                        | 20–40                           |  |

Note: Crystal resonator and external clock input

For the chip operating frequency, a frequency of 4 times the input frequency (EXTAL pin) is generated as the internal clock ( $\phi$ ) by the on-chip PLL circuit. The system clock (CK pin) output frequency is the same as that of the internal clock ( $\phi$ ).

Some on-chip peripheral modules operate on a peripheral clock ( $P\phi$ ) obtained by dividing the internal clock ( $\phi$ ) by 2. Figure 5.2 shows the relationship between the various clocks. As regards the system clock, since the input clock is multiplied by the PLL multiplier circuit, the phases of both clocks are not determined uniformly.

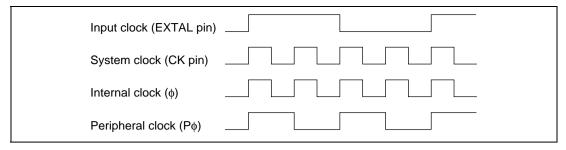



Figure 5.2 Input Clock and System Clock

#### 5.3 Clock Source

Clock pulses can be supplied from a connected crystal resonator or an external clock.

### 5.3.1 Connecting a Crystal Oscillator

**Circuit Configuration:** Figure 5.3 shows an example of connecting a crystal resonator. Use the damping resistance (Rd) shown in table 5.3. An AT-cut parallel-resonance type crystal resonator should be used. Load capacitors (CL1, CL2) must be connected as shown in the figure.

The clock pulses generated by the crystal resonator and internal oscillator are sent to the PLL multiplier circuit, where a multiplied frequency is selected and supplied inside the SH7055SF chip and to external devices.

The crystal oscillator manufacturer should be consulted concerning the compatibility between the crystal oscillator and the chip.

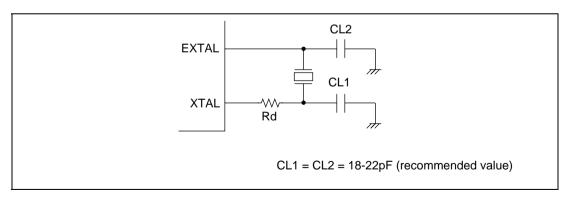



Figure 5.3 Connection of Crystal Oscillator (Example)

Table 5.3 Damping Resistance Values (Recommended Values)

|           | Frequency (MHz) |    |  |
|-----------|-----------------|----|--|
| Parameter | 5               | 10 |  |
| Rd (Ω)    | 500             | 0  |  |

**Crystal Oscillator:** Figure 5.4 shows an equivalent circuit of the crystal oscillator. Use a crystal oscillator with the characteristics listed in table 5.4.

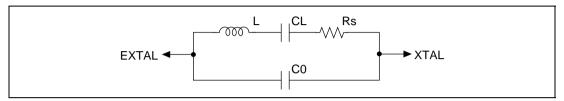



Figure 5.4 Crystal Oscillator Equivalent Circuit

Table 5.4 Crystal Oscillator Parameters (Recommended Values)

|             | Frequency (MHz) |    |  |  |
|-------------|-----------------|----|--|--|
| Parameter   | 5               | 10 |  |  |
| Rs max (Ω)  | 100             | 50 |  |  |
| C0 max (pF) | 7               | 7  |  |  |

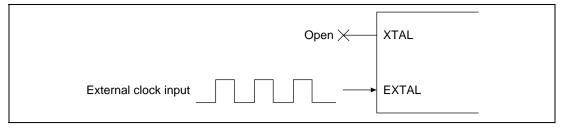
The crystal oscillator manufacturer should be consulted concerning the compatibility between the crystal oscillator and the chip.

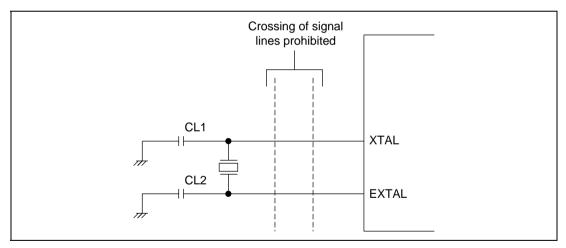
# 5.3.2 External Clock Input Method

An example of external clock input connection is shown in figure 5.5.

When the XTAL pin is placed in the open state, the parasitic capacitance should be 10 pF or less.

Even when an external clock is input, provide for a wait of at least the oscillation settling time when powering on or exiting standby mode in order to secure the PLL settling time.





Figure 5.5 External Clock Input Method (Example)

# 5.4 Usage Notes

**Notes on Board Design:** When connecting a crystal oscillator, observe the following precautions:

- To prevent induction from interfering with correct oscillation, do not route any signal lines near the oscillator circuitry (figure 5.6).
- When designing the board, place the crystal oscillator and its load capacitors as close as possible to the XTAL and EXTAL pins.

Figure 5.6 shows the precautions regarding oscillator circuit system board design.



Figure~5.6~~Precautions~for~Oscillator~Circuit~System~Board~Design

**PLL Oscillation Power Supply:** Separate PLLV<sub>CC</sub> and PLLV<sub>SS</sub> from the other V<sub>CC</sub> and V<sub>SS</sub> lines at the board power supply source, and be sure to insert bypass capacitors  $C_{PB}$  and  $C_{B}$  close to the pins.

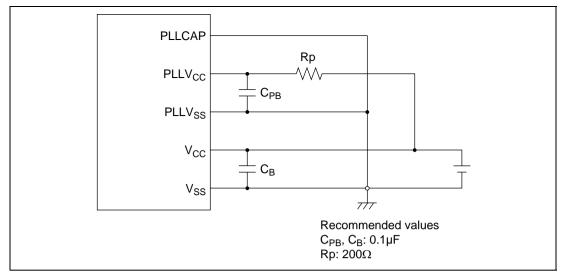



Figure 5.7 Points for Caution in PLL Power Supply Connection

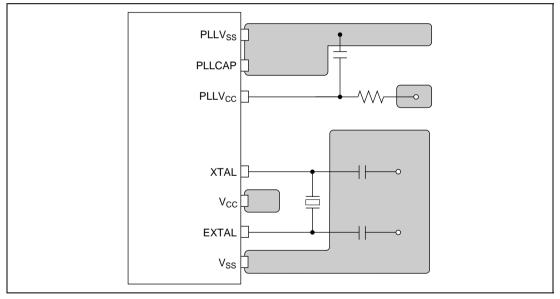



Figure 5.8 Actual Example of Board Design

# Section 6 Exception Processing

# 6.1 Overview

# 6.1.1 Types of Exception Processing and Priority

Exception processing is started by four sources: resets, address errors, interrupts and instructions and have the priority shown in table 6.1. When several exception processing sources occur at once, they are processed according to the priority shown.

Table 6.1 Types of Exception Processing and Priority Order

| Exception    | Source                      |                                                        | Priority     |  |
|--------------|-----------------------------|--------------------------------------------------------|--------------|--|
| Reset        | Power-on reset              |                                                        | High         |  |
|              | Manual reset                |                                                        | _ 1          |  |
| Address      | CPU address error           |                                                        | _            |  |
| error        | DMAC address error          |                                                        | _            |  |
| Instructions | FPU exception               |                                                        | _            |  |
| Interrupt    | NMI                         |                                                        | _            |  |
|              | User break                  |                                                        |              |  |
|              | H-UDI                       |                                                        | _            |  |
|              | IRQ                         |                                                        | _            |  |
|              | On-chip peripheral modules: | Direct memory access controller (DMAC)                 | )            |  |
|              |                             | Advanced timer unit-II (ATU-II)                        |              |  |
|              |                             | <ul> <li>Compare match timer 0 (CMT0)</li> </ul>       |              |  |
|              |                             | <ul> <li>A/D converter channel 0 (A/D0)</li> </ul>     |              |  |
|              |                             | <ul> <li>Compare match timer 1 (CMT1)</li> </ul>       |              |  |
|              |                             | <ul> <li>A/D converter channel 1 (A/D1)</li> </ul>     |              |  |
|              |                             | <ul> <li>A/D converter channel 2 (A/D2)</li> </ul>     |              |  |
|              |                             | Serial communication interface (SCI)                   |              |  |
|              |                             | <ul> <li>Controller area network 0 (HCAN0)</li> </ul>  |              |  |
|              |                             | <ul> <li>Watchdog timer (WDT)</li> </ul>               | $\downarrow$ |  |
|              |                             | <ul> <li>Controller area network 1 (HCAN 1)</li> </ul> | Low          |  |

Table 6.1 Types of Exception Processing and Priority Order (cont)

| Exception    | Source                                                                                                                             | Priority |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|----------|
| Instructions | Trap instruction (TRAPA instruction)                                                                                               | High     |
|              | General illegal instructions (undefined code)                                                                                      | _<br>1   |
|              | Illegal slot instructions (undefined code placed directly after a delay branch instruction* or instructions that rewrite the PC*2) | Low      |

Notes: \*1. Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, BSRF, BRAF.

### **6.1.2** Exception Processing Operations

The exception processing sources are detected and begin processing according to the timing shown in table 6.2.

Table 6.2 Timing of Exception Source Detection and Start of Exception Processing

| Exception    | Source                       | Timing of Source Detection and Start of Processing                                                                                     |  |
|--------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
| Reset        | Power-on reset               | Starts when the $\overline{\rm RES}$ pin changes from low to high or when the WDT overflows.                                           |  |
|              | Manual reset                 | Starts when the WDT overflows.                                                                                                         |  |
| Address erro | r                            | Detected when instruction is decoded and starts when the previous executing instruction finishes executing.                            |  |
| Interrupts   |                              | Detected when instruction is decoded and starts when the previous executing instruction finishes executing.                            |  |
| Instructions | Trap instruction             | Starts from the execution of a TRAPA instruction.                                                                                      |  |
|              | General illegal instructions | Starts from the decoding of undefined code anytime except after a delayed branch instruction (delay slot).                             |  |
|              | Illegal slot instructions    | Starts from the decoding of undefined code placed in a delayed branch instruction (delay slot) or of instructions that rewrite the PC. |  |
|              | Floating point instructions  | Starts when a floating-point instruction causes an invalid operation exception (IEEE754 specification) or division-by-zero exception.  |  |

<sup>\*2.</sup> Instructions that rewrite the PC: JMP, JSR, BRA, BSR, RTS, RTE, BT, BF, TRAPA, BF/S, BT/S, BSRF, BRAF.

When exception processing starts, the CPU operates as follows:

1. Exception processing triggered by reset:

The initial values of the program counter (PC) and stack pointer (SP) are fetched from the exception processing vector table (PC and SP are respectively the H'00000000 and H'00000004 addresses for power-on resets and the H'00000008 and H'0000000C addresses for manual resets). See section 6.1.3, Exception Processing Vector Table, for more information. H'00000000 is then written to the vector base register (VBR) and H'F (1111) is written to the interrupt mask bits (I3–I0) of the status register (SR). The program begins running from the PC address fetched from the exception processing vector table.

2. Exception processing triggered by address errors, interrupts and instructions:

SR and PC are saved to the stack indicated by R15. For interrupt exception processing, the interrupt priority level is written to the SR's interrupt mask bits (I3–I0). For address error and instruction exception processing, the I3–I0 bits are not affected. The start address is then fetched from the exception processing vector table and the program begins running from that address.

### **6.1.3** Exception Processing Vector Table

Before exception processing begins running, the exception processing vector table must be set in memory. The exception processing vector table stores the start addresses of exception service routines. (The reset exception processing table holds the initial values of PC and SP.)

All exception sources are given different vector numbers and vector table address offsets, from which the vector table addresses are calculated. During exception processing, the start addresses of the exception service routines are fetched from the exception processing vector table, which is indicated by this vector table address.

Table 6.3 shows the vector numbers and vector table address offsets. Table 6.4 shows how vector table addresses are calculated.

**Table 6.3** Exception Processing Vector Table

| Exception Source            | es | Vector<br>Numbers | Vector Table Address†Offset |
|-----------------------------|----|-------------------|-----------------------------|
| Power-on reset              | PC | 0                 | H'00000000-H'00000003       |
|                             | SP | 1                 | H'00000004-H'00000007       |
| Manual reset                | PC | 2                 | H'00000008-H'0000000B       |
|                             | SP | 3                 | H'000000C-H'000000F         |
| General illegal instruction |    | 4                 | H'00000010-H'00000013       |
| (Reserved by system)        |    | 5                 | H'00000014-H'00000017       |

**Table 6.3** Exception Processing Vector Table (cont)

| Exception Sources        |                          | Vector<br>Numbers | Vector Table Address†Offset |
|--------------------------|--------------------------|-------------------|-----------------------------|
| Slot illegal instruction | Slot illegal instruction |                   | H'00000018-H'0000001B       |
| (Reserved by system      | 1)                       | 7                 | H'0000001C-H'0000001F       |
|                          |                          | 8                 | H'00000020-H'00000023       |
| CPU address error        |                          | 9                 | H'00000024-H'00000027       |
| DMAC address error       |                          | 10                | H'00000028-H'0000002B       |
| Interrupts               | NMI                      | 11                | H'0000002C-H'0000002F       |
|                          | User break               | 12                | H'00000030-H'00000033       |
| FPU exception            |                          | 13                | H'0000034-H'00000037        |
| H-UDI                    |                          | 14                | H'00000038-H'0000003B       |
| (Reserved by system      | )                        | 16                | H'000003C-H'00000043        |
|                          |                          | :                 | :                           |
|                          |                          | 31                | H'0000007C-H'0000007F       |
| Trap instruction (user   | r vector)                | 32                | H'00000080-H'00000083       |
|                          |                          | :                 | :                           |
|                          |                          | 63                | H'000000FC-H'000000FF       |
| Interrupts               | IRQ0                     | 64                | H'00000100-H'00000103       |
|                          | IRQ1                     | 65                | H'00000104-H'00000107       |
|                          | IRQ2                     | 66                | H'00000108-H'0000010B       |
|                          | IRQ3                     | 67                | H'0000010C-H'0000010F       |
|                          | IRQ4                     | 68                | H'00000110-H'00000113       |
|                          | IRQ5                     | 69                | H'00000114-H'00000117       |
|                          | IRQ6                     | 70                | H'00000118-H'0000011B       |
|                          | IRQ7                     | 71                | H'0000011C-H'0000011F       |
| On-chip peripheral m     | odule*                   | 72                | H'00000120-H'00000124       |
|                          |                          | :                 | :                           |
|                          |                          | 255               | H'000003FC-H'000003FF       |

Note: \*The vector numbers and vector table address offsets for each on-chip peripheral module interrupt are given in table 7.3, Interrupt Exception Processing Vectors and Priorities, in section 7, Interrupt Controller (INTC).

**Table 6.4** Calculating Exception Processing Vector Table Addresses

| Exception Source                         | Vector Table Address Calculation                                                          |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| Resets                                   | Vector table address = (vector table address offset)<br>= (vector number) × 4             |  |  |
| Address errors, interrupts, instructions | Vector table address = VBR + (vector table address offset)<br>= VBR + (vector number) × 4 |  |  |

Notes: 1. VBR: Vector base register

- 2. Vector table address offset: See table 6.3.
- 3. Vector number: See table 6.3.

### 6.2 Resets

### **6.2.1** Types of Reset

A reset is the highest-priority exception processing source. There are two kinds of reset, power-on and manual. As shown in table 6.5, the CPU state is initialized in both a power-on reset and a manual reset. On-chip peripheral module registers are also initialized by a power-on reset, but not by a manual reset.

Table 6.5 Exception Source Detection and Exception Processing Start Timing

|                |      | ions for Transition o Reset State | Internal States       |                                  |                 |  |
|----------------|------|-----------------------------------|-----------------------|----------------------------------|-----------------|--|
| Туре           | RES  | WDT<br>Overflow                   | CPU/MULT/<br>FPU/INTC | On-Chip<br>Peripheral<br>Modules | PFC, IO Port    |  |
| Power-on reset | Low  | _                                 | Initialized           | Initialized                      | Initialized     |  |
|                | High | Power-on reset                    | Initialized           | Initialized                      | Not initialized |  |
| Manual reset   | High | Manual reset                      | Initialized           | Not initialized                  | Not initialized |  |

### 6.2.2 Power-On Reset

**Power-On Reset by Means of \overline{RES} Pin:** When the  $\overline{RES}$  pin is driven low, the chip enters the power-on reset state. To reliably reset the chip, the  $\overline{RES}$  pin should be kept at the low level for at least the duration of the oscillation settling time at power-on or when in standby mode (when the clock is halted), or at least 20  $t_{cyc}$  when the clock is running. In the power-on reset state, the CPU's internal state and all the on-chip peripheral module registers are initialized. See Appendix B, Pin States, for the state of individual pins in the power-on reset state.

In the power-on reset state, power-on reset exception processing starts when the RES pin is first driven low for a set period of time and then returned to high. The CPU operates as follows:

- 1. The initial value (execution start address) of the program counter (PC) is fetched from the exception processing vector table.
- 2. The initial value of the stack pointer (SP) is fetched from the exception processing vector table.
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits (I3-I0) of the status register (SR) are set to H'F (1111).
- 4. The values fetched from the exception processing vector table are set in the PC and SP, and the program begins executing.

Be certain to always perform power-on reset processing when turning the system power on.

**Power-On Reset Initiated by WDT:** When a setting is made for a power-on reset to be generated in the WDT's watchdog timer mode, and the WDT's TCNT overflows, the chip enters the power-on reset state.

The pin function controller (PFC) registers and I/O port registers are not initialized by the reset signal generated by the WDT (these registers are only initialized by a power-on reset from off-chip).

If reset caused by the input signal at the  $\overline{RES}$  pin and a reset caused by WDT overflow occur simultaneously, the  $\overline{RES}$  pin reset has priority, and the WOVF bit in RSTCSR is cleared to 0. When WDT-initiated power-on reset processing is started, the CPU operates as follows:

- 1. The initial value (execution start address) of the program counter (PC) is fetched from the exception processing vector table.
- 2. The initial value of the stack pointer (SP) is fetched from the exception processing vector table.
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits (I3-I0) of the status register (SR) are set to H'F (1111).
- 4. The values fetched from the exception processing vector table are set in the PC and SP, and the program begins executing.

#### 6.2.3 Manual Reset

When a setting is made for a manual reset to be generated in the WDT's watchdog timer mode, and the WDT's TCNT overflows, the chip enters the power-on reset state.

When WDT-initiated manual reset processing is started, the CPU operates as follows:

- 1. The initial value (execution start address) of the program counter (PC) is fetched from the exception processing vector table.
- 2. The initial value of the stack pointer (SP) is fetched from the exception processing vector table.
- 3. The vector base register (VBR) is cleared to H'00000000 and the interrupt mask bits (I3-I0) of the status register (SR) are set to H'F (1111).
- 4. The values fetched from the exception processing vector table are set in the PC and SP, and the program begins executing.

When a manual reset is generated, the bus cycle is retained, but if a manual reset occurs while the bus is released or during DMAC burst transfer, manual reset exception processing will be deferred until the CPU acquires the bus. However, if the interval from generation of the manual reset until the end of the bus cycle is equal to or longer than the internal manual reset interval of 512 cycles, the internal manual reset source is ignored instead of being deferred, and manual reset exception processing is not executed.

# **6.3** Address Errors

#### 6.3.1 Address Error Sources

Address errors occur when instructions are fetched or data read or written, as shown in table 6.6.

Table 6.6 Bus Cycles and Address Errors

### **Bus Cycle**

| Bus Cycle          |                |                                                                         |                      |
|--------------------|----------------|-------------------------------------------------------------------------|----------------------|
| Туре               | Bus<br>Master  | Bus Cycle Description                                                   | Address Errors       |
| Instruction        | CPU            | Instruction fetched from even address                                   | None (normal)        |
| fetch              |                | Instruction fetched from odd address                                    | Address error occurs |
|                    |                | Instruction fetched from other than on-chip peripheral module space*    | None (normal)        |
|                    |                | Instruction fetched from on-chip peripheral module space*               | Address error occurs |
|                    |                | Instruction fetched from external memory space when in single chip mode | Address error occurs |
| Data<br>read/write | CPU or<br>DMAC | Word data accessed from even address                                    | None (normal)        |
|                    |                | Word data accessed from odd address                                     | Address error occurs |
|                    |                | Longword data accessed from a longword boundary                         | None (normal)        |
|                    |                | Longword data accessed from other than a long-word boundary             | Address error occurs |
|                    |                | Byte or word data accessed in on-chip peripheral module space*          | None (normal)        |
|                    |                | Longword data accessed in 16-bit on-chip peripheral module space*       | None (normal)        |
|                    |                | Longword data accessed in 8-bit on-chip peripheral module space*        | Address error occurs |
|                    |                | External memory space accessed when in single chip mode                 | Address error occurs |

Note: \*See section 9, Bus State Controller (BSC), for details of the on-chip peripheral module space.

#### 6.3.2 Address Error Exception Processing

When an address error occurs, the bus cycle in which the address error occurred ends. When the executing instruction then finishes, address error exception processing starts up. The CPU operates as follows:

- 1. The status register (SR) is saved to the stack.
- 2. The program counter (PC) is saved to the stack. The PC value saved is the start address of the instruction to be executed after the last executed instruction.
- 3. The exception service routine start address is fetched from the exception processing vector table that corresponds to the address error that occurred and the program starts executing from that address. The jump that occurs is not a delayed branch.

# 6.4 Interrupts

#### **6.4.1** Interrupt Sources

Table 6.7 shows the sources that start up interrupt exception processing. These are divided into NMI, user breaks, H-UDI, IRQ, and on-chip peripheral modules.

**Table 6.7** Interrupt Sources

|                           |                                        | Number of<br>Sources |
|---------------------------|----------------------------------------|----------------------|
| Туре                      | Request Source                         |                      |
| NMI                       | NMI pin (external input)               | 1                    |
| User break                | User break controller                  | 1                    |
| H-UDI                     | High-performance user debug interface  | 1                    |
| IRQ                       | IRQ0-IRQ7 (external input)             | 8                    |
| On-chip peripheral module | Direct memory access controller (DMAC) | 4                    |
|                           | Advanced timer unit (ATU-II)           | 75                   |
|                           | Compare match timer (CMT)              | 2                    |
|                           | A/D converter                          | 3                    |
|                           | Serial communication interface (SCI)   | 20                   |
|                           | Watchdog timer (WDT)                   | 1                    |
|                           | Controller area network (HCAN)         | 8                    |
|                           |                                        |                      |

Each interrupt source is allocated a different vector number and vector table offset. See table 7.3, Interrupt Exception Processing Vectors and Priorities, in section 7, Interrupt Controller (INTC), for more information on vector numbers and vector table address offsets.

### 6.4.2 Interrupt Priority Level

The interrupt priority order is predetermined. When multiple interrupts occur simultaneously (overlap), the interrupt controller (INTC) determines their relative priorities and starts up processing according to the results.

The priority order of interrupts is expressed as priority levels 0–16, with priority 0 the lowest and priority 16 the highest. The NMI interrupt has priority 16 and cannot be masked, so it is always accepted. The user break interrupt and H-UDI interrupt priority level is 15. IRQ interrupts and on-chip peripheral module interrupt priority levels can be set freely using the INTC's interrupt priority registers A through L (IPRA to IPRL) as shown in table 6.8. The priority levels that can be set are 0–15. Level 16 cannot be set. See section 7.3.1, Interrupt Priority Registers A–L (IPRA-IPRL), for details of the interrupt priority registers.

**Table 6.8** Interrupt Priority Order

| Туре                      | <b>Priority Level</b> | Comment                                                                         |
|---------------------------|-----------------------|---------------------------------------------------------------------------------|
| NMI                       | 16                    | Fixed priority level. Cannot be masked.                                         |
| User break                | 15                    | Fixed priority level.                                                           |
| H-UDI                     | 15                    | Fixed priority level.                                                           |
| IRQ                       | 0–15                  | Set with interrupt priority level setting registers A through L (IPRA to IPRL). |
| On-chip peripheral module | 0–15                  | Set with interrupt priority level setting registers A through L (IPRA to IPRL). |

# 6.4.3 Interrupt Exception Processing

When an interrupt occurs, its priority level is ascertained by the interrupt controller (INTC). NMI is always accepted, but other interrupts are only accepted if they have a priority level higher than the priority level set in the interrupt mask bits (I3–I0) of the status register (SR).

When an interrupt is accepted, exception processing begins. In interrupt exception processing, the CPU saves SR and the program counter (PC) to the stack. The priority level value of the accepted interrupt is written to SR bits I3–I0. For NMI, however, the priority level is 16, but the value set in I3–I0 is H'F (level 15). Next, the start address of the exception service routine is fetched from the exception processing vector table for the accepted interrupt, that address is jumped to and execution begins. See section 7.4, Interrupt Operation, for further details.

# 6.5 Exceptions Triggered by Instructions

### 6.5.1 Types of Exceptions Triggered by Instructions

Exception processing can be triggered by trap instructions, general illegal instructions, and illegal slot instructions, and floating-point instructions, as shown in table 6.9.

Table 6.9 Types of Exceptions Triggered by Instructions

| Туре                         | Source Instruction                                                                                                 | Comment                                                                                              |  |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|
| Trap instructions            | TRAPA                                                                                                              |                                                                                                      |  |  |  |
| Illegal slot instructions    | Undefined code placed immediately after a delayed branch instruction (delay slot)                                  | Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, BSRF, BRAF                    |  |  |  |
|                              | and instructions that rewrite the PC                                                                               | Instructions that rewrite the PC: JMP, JSR BRA, BSR, RTS, RTE, BT, BF, TRAPA, BF/S, BT/S, BSRF, BRAF |  |  |  |
| General illegal instructions | Undefined code anywhere besides in a delay slot                                                                    |                                                                                                      |  |  |  |
| Floating-point instructions  | Instruction causing an invalid operation exception defined in the IEEE754 standard or a division-by-zero exception | FADD, FSUB, FMUL, FDIV, FMAC, FCMP/EQ, FCMP/GT, FNEG, FABS, FTRC                                     |  |  |  |

# **6.5.2** Trap Instructions

When a TRAPA instruction is executed, trap instruction exception processing starts up. The CPU operates as follows:

- 1. The status register (SR) is saved to the stack.
- 2. The program counter (PC) is saved to the stack. The PC value saved is the start address of the instruction to be executed after the TRAPA instruction.
- 3. The exception service routine start address is fetched from the exception processing vector table that corresponds to the vector number specified in the TRAPA instruction. That address is jumped to and the program starts executing. The jump that occurs is not a delayed branch.

#### 6.5.3 Illegal Slot Instructions

An instruction placed immediately after a delayed branch instruction is said to be placed in a delay slot. When the instruction placed in the delay slot is undefined code, illegal slot exception processing starts up when that undefined code is decoded. Illegal slot exception processing also starts up when an instruction that rewrites the program counter (PC) is placed in a delay slot. The processing starts when the instruction is decoded. The CPU handles an illegal slot instruction as follows:

- 1. The status register (SR) is saved to the stack.
- The program counter (PC) is saved to the stack. The PC value saved is the jump address of the delayed branch instruction immediately before the undefined code or the instruction that rewrites the PC.
- The exception service routine start address is fetched from the exception processing vector table that corresponds to the exception that occurred. That address is jumped to and the program starts executing. The jump that occurs is not a delayed branch.

### 6.5.4 General Illegal Instructions

When undefined code placed anywhere other than immediately after a delayed branch instruction (i.e., in a delay slot) is decoded, general illegal instruction exception processing starts up. The CPU handles general illegal instructions in the same way as illegal slot instructions. Unlike processing of illegal slot instructions, however, the program counter value stored is the start address of the undefined code.

When the FPU has been stopped by means of the module stop bit, floating-point instructions and FPU-related CPU instructions are treated as illegal instructions.

# **6.5.5** Floating-Point Instructions

When the V or Z bit is set in the enable field of the FPSCR register, an FPU exception occurs. This indicates that a floating-point instruction has caused an invalid operation exception defined in the IEEE754 standard or a division-by-zero exception. Floating-point instructions which can cause an exception are as follows:

FADD, FSUB, FMUL, FDIV, FMAC, FCMP/EQ, FCMP/GT, FNEG, FABS, FTRC

An FPU exception occurs only if the corresponding enable bit is set. When the FPU detects an exception source, FPU operation is suspended and the occurrence of the exception is reported to the CPU. When exception processing is started, the CPU saves the SR and PC contents to the stack (the PC value saved is the start address of the instruction following the last instruction executed), and branches to VBR + H'00000034.

The exception flag bits in the FPSCR are always updated, regardless of whether or not an FPU exception is accepted, and remain set until the user clears them explicitly with an instruction. FPSCR cause bits change each time an FPU instruction is executed.

Exception events other than those defined in the IEEE754 standard (i.e., underflow, overflow, and inexact exceptions) are detected by the FPU but do not result in the generation of any kind of exception. Neither is an FPU exception generated by a floating-point instruction relating to data transfer, such as FLOAT.

# 6.6 When Exception Sources Are Not Accepted

When an address error or interrupt is generated after a delayed branch instruction or interruptdisabled instruction, it is sometimes not accepted immediately but stored instead, as shown in table 6.10. When this happens, it will be accepted when an instruction that can accept the exception is decoded.

Table 6.10 Generation of Exception Sources Immediately after a Delayed Branch Instruction or Interrupt-Disabled Instruction

|                                                       | Exception Source |              |               |  |  |  |  |
|-------------------------------------------------------|------------------|--------------|---------------|--|--|--|--|
| Point of Occurrence                                   | Bus Error        | Interrupt    | FPU Exception |  |  |  |  |
| Immediately after a delayed branch instruction*1      | Not accepted     | Not accepted | Not accepted  |  |  |  |  |
| Immediately after an interrupt-disabled instruction*2 | Not accepted*4   | Not accepted | Accepted      |  |  |  |  |
| Immediately after an FPU instruction*3                | Not accepted     | Not accepted | Accepted      |  |  |  |  |

Notes: \*1. Delayed branch instructions: JMP, JSR, BRA, BSR, RTS, RTE, BF/S, BT/S, BSRF, BRAF

- \*2. Interrupt-disabled instructions: LDC, LDC.L, STC, STC.L, LDS, LDS.L, STS, STS.L
- \*3. FPU instructions: Table 2.18, Floating-Point Instructions, and table 2.19, FPU-Related CPU Instructions, in section 2.4.1, Instruction Set by Classification.
- \*4. In the SH-2 a bus error is accepted.

# **6.7** Stack Status after Exception Processing Ends

The status of the stack after exception processing ends is as shown in table 6.11.

**Table 6.11 Stack Status After Exception Processing Ends** 

| Exception Type              | Stack | Status                                                 |                               |
|-----------------------------|-------|--------------------------------------------------------|-------------------------------|
| Address error               | SP→   | Address of instruction after executed instruction      | 32 bits                       |
|                             |       | SR                                                     | 32 bits                       |
| Trap instruction            |       | Address of instruction                                 | $\frac{\tilde{a}}{\tilde{a}}$ |
|                             | SP →  | Address of instruction after TRAPA instruction         | 32 bits                       |
|                             |       | SR                                                     | 32 bits                       |
|                             | -     |                                                        |                               |
| General illegal instruction |       | Ĭ                                                      | $\overline{}$                 |
|                             | SP →  | Address of general illegal instruction                 | 32 bits                       |
|                             |       | SR                                                     | 32 bits                       |
|                             |       | L                                                      |                               |
| Interrupt                   | SP →  | Address of instruction after executed instruction      | 32 bits                       |
|                             |       | SR                                                     | 32 bits                       |
|                             | _     | L                                                      | $\perp$                       |
| Illegal slot instruction    |       | <u> </u>                                               | $\overline{}$                 |
| S                           | SP →  | Jump destination address of delay branch instruction   | 32 bits                       |
|                             |       | SR                                                     | 32 bits                       |
|                             |       | L                                                      | ~                             |
| FPU exception               | SP→   | Address of instruction after FPU exception instruction | 32 bits                       |
|                             |       | SR                                                     | 32 bits                       |
|                             | ~     |                                                        |                               |

### 6.8 Usage Notes

#### 6.8.1 Value of Stack Pointer (SP)

The value of the stack pointer must always be a multiple of four. If it is not, an address error will occur when the stack is accessed during exception processing.

### 6.8.2 Value of Vector Base Register (VBR)

The value of the vector base register must always be a multiple of four. If it is not, an address error will occur when the stack is accessed during exception processing.

### 6.8.3 Address Errors Caused by Stacking of Address Error Exception Processing

When the stack pointer is not a multiple of four, an address error will occur during stacking of the exception processing (interrupts, etc.) and address error exception processing will start up as soon as the first exception processing is ended. Address errors will then also occur in the stacking for this address error exception processing. To ensure that address error exception processing does not go into an endless loop, no address errors are accepted at that point. This allows program control to be shifted to the address error exception service routine and enables error processing.

When an address error occurs during exception processing stacking, the stacking bus cycle (write) is executed. During stacking of the status register (SR) and program counter (PC), the SP is decremented by 4 for both, so the value of SP will not be a multiple of four after the stacking either. The address value output during stacking is the SP value, so the address where the error occurred is itself output. This means the write data stacked will be undefined.

### 6.8.4 Interrupt Processing Timing Gap Caused in SCO Processing

If an interrupt processing is generated in an SCO processing, the interrupt generation timing is different because the interrupt processing is started after the SCO\* processing. For details on the arbitration with the SCO processing, refer to section 22.8.2(1).

Note: SCO is the processing to download the flash memory programming/erasing program on the on-chip RAM.

# Section 7 Interrupt Controller (INTC)

#### 7.1 Overview

The interrupt controller (INTC) ascertains the priority of interrupt sources and controls interrupt requests to the CPU. The INTC has registers for setting the priority of each interrupt which can be used by the user to order the priorities in which the interrupt requests are processed.

#### 7.1.1 Features

The INTC has the following features:

- 16 levels of interrupt priority
   By setting the twelve interrupt-priority level registers, the priorities of IRQ interrupts and onchip peripheral module interrupts can be set in 16 levels for different request sources.
- NMI noise canceler function
   NMI input level bits indicate the NMI pin status. By reading these bits with the interrupt exception service routine, the pin status can be confirmed, enabling it to be used as a noise canceler.
- Notification of interrupt occurrence can be reported externally (IRQOUT pin)

  For example, it is possible to request the bus if an external bus master is informed that a peripheral module interrupt has occurred when the chip has released the bus.

#### 7.1.2 Block Diagram

Figure 7.1 is a block diagram of the INTC.



Figure 7.1 INTC Block Diagram

### 7.1.3 Pin Configuration

Table 7.1 shows the INTC pin configuration.

**Table 7.1 Pin Configuration** 

| Name                             | Abbreviation | I/O | Function                                                     |
|----------------------------------|--------------|-----|--------------------------------------------------------------|
| Non-maskable interrupt input pin | NMI          | I   | Input of non-maskable interrupt request signal               |
| Interrupt request input pins     | ĪRQ0–ĪRQ7    | I   | Input of maskable interrupt request signals                  |
| Interrupt request output pin     | ĪRQOUT       | 0   | Output of notification signal when an interrupt has occurred |

### 7.1.4 Register Configuration

The INTC has the 14 registers shown in table 7.2. These registers set the priority of the interrupts and control external interrupt input signal detection.

**Table 7.2** Register Configuration

| Name                          | Abbr. | R/W    | Initial Value | Address     | Access Sizes |
|-------------------------------|-------|--------|---------------|-------------|--------------|
| Interrupt priority register A | IPRA  | R/W    | H'0000        | H'FFFF ED00 | 8, 16, 32    |
| Interrupt priority register B | IPRB  | R/W    | H'0000        | H'FFFF ED02 | 8, 16, 32    |
| Interrupt priority register C | IPRC  | R/W    | H'0000        | H'FFFF ED04 | 8, 16, 32    |
| Interrupt priority register D | IPRD  | R/W    | H'0000        | H'FFFF ED06 | 8, 16, 32    |
| Interrupt priority register E | IPRE  | R/W    | H'0000        | H'FFFF ED08 | 8, 16, 32    |
| Interrupt priority register F | IPRF  | R/W    | H'0000        | H'FFFF ED0A | 8, 16, 32    |
| Interrupt priority register G | IPRG  | R/W    | H'0000        | H'FFFF ED0C | 8, 16, 32    |
| Interrupt priority register H | IPRH  | R/W    | H'0000        | H'FFFF ED0E | 8, 16, 32    |
| Interrupt priority register I | IPRI  | R/W    | H'0000        | H'FFFF ED10 | 8, 16, 32    |
| Interrupt priority register J | IPRJ  | R/W    | H'0000        | H'FFFF ED12 | 8, 16, 32    |
| Interrupt priority register K | IPRK  | R/W    | H'0000        | H'FFFF ED14 | 8, 16, 32    |
| Interrupt priority register L | IPRL  | R/W    | H'0000        | H'FFFF ED16 | 8, 16, 32    |
| Interrupt control register    | ICR   | R/W    | *1            | H'FFFF ED18 | 8, 16, 32    |
| IRQ status register           | ISR   | R(W)*2 | H'0000        | H'FFFF ED1A | 8, 16, 32    |

Notes: Three access cycles are required for byte access and word access, and six cycles for longword access.

<sup>\*1</sup>. The value when the NMI pin is high is H'8000; when the NMI pin is low, it is H'0000.

<sup>\*2.</sup> Only 0 can be written, in order to clear flags.

# 7.2 Interrupt Sources

There are five types of interrupt sources: NMI, user breaks, H-UDI, IRQ, and on-chip peripheral modules. Each interrupt has a priority expressed as a priority level (0 to 16, with 0 the lowest and 16 the highest). Giving an interrupt a priority level of 0 masks it.

### 7.2.1 NMI Interrupts

The NMI interrupt has priority 16 and is always accepted. Input at the NMI pin is detected by edge. Use the NMI edge select bit (NMIE) in the interrupt control register (ICR) to select either the rising or falling edge. NMI interrupt exception processing sets the interrupt mask level bits (I3–I0) in the status register (SR) to level 15.

### 7.2.2 User Break Interrupt

A user break interrupt has a priority of level 15, and occurs when the break condition set in the user break controller (UBC) is satisfied. User break interrupt requests are detected by edge and are held until accepted. User break interrupt exception processing sets the interrupt mask level bits (I3–I0) in the status register (SR) to level 15. For more information about the user break interrupt, see section 8, User Break Controller (UBC).

# 7.2.3 H-UDI Interrupt

A serial debug interface (H-UDI) interrupt has a priority level of 15, and occurs when an H-UDI interrupt instruction is serially input. H-UDI interrupt requests are detected by edge and are held until accepted. H-UDI exception processing sets the interrupt mask level bits (I3-I0) in the status register (SR) to level 15. For more information about the H-UDI interrupt, see section 18, High-Performance User Debug Interface (H-UDI).

# 7.2.4 IRQ Interrupts

IRQ interrupts are requested by input from pins  $\overline{IRQ0}$ – $\overline{IRQ7}$ . Set the IRQ sense select bits (IRQ0S–IRQ7S) of the interrupt control register (ICR) to select low level detection or falling edge detection for each pin. The priority level can be set from 0 to 15 for each pin using interrupt priority registers A and B (IPRA–IPRB).

When IRQ interrupts are set to low level detection, an interrupt request signal is sent to the INTC during the period the IRQ pin is low. Interrupt request signals are not sent to the INTC when the IRQ pin becomes high. Interrupt request levels can be confirmed by reading the IRQ flags (IRQ0F–IRQ7F) of the IRQ status register (ISR).

When IRQ interrupts are set to falling edge detection, interrupt request signals are sent to the INTC upon detecting a change on the IRQ pin from high to low level. IRQ interrupt request detection results are maintained until the interrupt request is accepted. Confirmation that IRQ interrupt requests have been detected is possible by reading the IRQ flags (IRQ0F–IRQ7F) of the IRQ status register (ISR), and by writing a 0 after reading a 1, IRQ interrupt request detection results can be withdrawn.

In IRQ interrupt exception processing, the interrupt mask bits (I3–I0) of the status register (SR) are set to the priority level value of the accepted IRQ interrupt.

### 7.2.5 On-Chip Peripheral Module Interrupts

On-chip peripheral module interrupts are interrupts generated by the following on-chip peripheral modules:

- Direct memory access controller (DMAC)
- Advanced timer unit (ATU-II)
- Compare match timer (CMT)
- A/D converter (A/D)
- Serial communication interface (SCI)
- Watchdog timer (WDT)
- Controller area network (HCAN)

A different interrupt vector is assigned to each interrupt source, so the exception service routine does not have to decide which interrupt has occurred. Priority levels between 0 and 15 can be assigned to individual on-chip peripheral modules in interrupt priority registers C–L (IPRC–IPRL).

On-chip peripheral module interrupt exception processing sets the interrupt mask level bits (I3–I0) in the status register (SR) to the priority level value of the on-chip peripheral module interrupt that was accepted.

### 7.2.6 Interrupt Exception Vectors and Priority Rankings

Table 7.3 lists interrupt sources and their vector numbers, vector table address offsets and interrupt priorities.

Each interrupt source is allocated a different vector number and vector table address offset. Vector table addresses are calculated from vector numbers and address offsets. In interrupt exception processing, the exception service routine start address is fetched from the vector table indicated by the vector table address. See table 6.4, Calculating Exception Processing Vector Table Addresses, in section 6, Exception Processing.

IRQ interrupts and on-chip peripheral module interrupt priorities can be set freely between 0 and 15 for each pin or module by setting interrupt priority registers A–L (IPRA–IPRL). The ranking of interrupt sources for IPRC–IPRL, however, must be the order listed under Priority within IPR Setting Range in table 7.3 and cannot be changed. A power-on reset assigns priority level 0 to IRQ interrupts and on-chip peripheral module interrupts. If the same priority level is assigned to two or more interrupt sources and interrupts from those sources occur simultaneously, their priority order is the default priority order indicated at the right in table 7.3.

**Table 7.3** Interrupt Exception Processing Vectors and Priorities

|           |        | Interrup      | ot Vector                         | Interrupt                      |                                  | Priority   |                           |
|-----------|--------|---------------|-----------------------------------|--------------------------------|----------------------------------|------------|---------------------------|
| Interrupt | Source | Vector<br>No. | Vector Table<br>Address<br>Offset | Priority<br>(Initial<br>Value) | Corre-<br>sponding<br>IPR (Bits) |            | PR<br>Default<br>Priority |
| NMI       |        | 11            | H'0000002C to<br>H'0000002F       | 16                             | _                                | _          | High<br>A                 |
| UBC       |        | 12            | H'00000030 to<br>H'00000033       | 15                             | _                                | _          |                           |
| H-UDI     |        | 14            | H'00000038 to<br>H'00000038       | 15                             | _                                | _          |                           |
| IRQ0      |        | 64            | H'00000100 to<br>H'00000103       | 0 to 15 (0)                    | IPRA<br>(15–12)                  | _          |                           |
| IRQ1      |        | 65            | H'00000104 to<br>H'00000107       | 0 to 15 (0)                    | IPRA<br>(11–8)                   | _          |                           |
| IRQ2      |        | 66            | H'00000108 to<br>H'0000010B       | 0 to 15 (0)                    | IPRA<br>(7–4)                    | _          |                           |
| IRQ3      |        | 67            | H'0000010C to<br>H'0000010F       | 0 to 15 (0)                    | IPRA<br>(3–0)                    | _          |                           |
| IRQ4      |        | 68            | H'00000110 to<br>H'00000113       | 0 to 15 (0)                    | IPRB<br>(15–12)                  | _          |                           |
| IRQ5      |        | 69            | H'00000114 to<br>H'00000117       | 0 to 15 (0)                    | IPRB<br>(11–8)                   | _          |                           |
| IRQ6      |        | 70            | H'00000118 to<br>H'0000011B       | 0 to 15 (0)                    | IPRB<br>(7–4)                    | _          |                           |
| IRQ7      |        | 71            | H'0000011C to<br>H'0000011F       | 0 to 15 (0)                    | IPRB<br>(3-0)                    | _          |                           |
| DMAC0     | DEI0   | 72            | H'00000120 to<br>H'00000123       | 0 to 15 (0)                    | IPRC<br>(15–12)                  | <b>↑</b>   | 1                         |
| DMAC1     | DEI1   | 74            | H'00000128 to<br>H'0000012B       | 0 to 15 (0)                    | -                                | <b>1</b> 2 | 2                         |
| DMAC2     | DEI2   | 76            | H'00000130 to<br>H'00000133       | 0 to 15 (0)                    | IPRC<br>(11–8)                   | <b>↑</b>   | 1 <b>▼</b>                |
| DMAC3     | DEI3   | 78            | H'00000138 to<br>H'0000013B       | 0 to 15 (0)                    | -                                | <b>↓</b> 2 | 2 Low                     |

**Table 7.3** Interrupt Exception Processing Vectors and Priorities (cont)

|          |           |                          | Interrupt Vector |                                   | Interrupt                      |                                  | Priority               |   |                     |
|----------|-----------|--------------------------|------------------|-----------------------------------|--------------------------------|----------------------------------|------------------------|---|---------------------|
| Interrup | ot Source |                          | Vector<br>No.    | Vector Table<br>Address<br>Offset | Priority<br>(Initial<br>Value) | Corre-<br>sponding<br>IPR (Bits) | withi<br>Setti<br>Rang |   | Default<br>Priority |
| ATU0     | ATU01     | ITV1/<br>ITV2A/<br>ITV2B | 80               | H'00000140 to<br>H'00000143       | 0 to 15 (0)                    | IPRC<br>(7–4)                    |                        |   | High                |
|          | ATU02     | ICI0A                    | 84               | H'00000150 to<br>H'00000153       | 0 to 15 (0)                    | IPRC<br>(3-0)                    | 1                      | 1 |                     |
|          |           | ICI0B                    | 86               | H'00000158 to<br>H'0000015B       |                                |                                  | $\downarrow$           | 2 |                     |
|          | ATU03     | ICI0C                    | 88               | H'00000160 to<br>H'00000163       | 0 to 15 (0)                    | IPRD<br>(15–12)                  | 1                      | 1 | _                   |
|          |           | ICI0D                    | 90               | H'00000168 to<br>H'0000016B       |                                |                                  | $\downarrow$           | 2 |                     |
|          | ATU04     | OVI0                     | 92               | H'00000170 to<br>H'00000173       | 0 to 15 (0)                    | IPRD<br>(11–8)                   |                        |   | -                   |
| ATU1     | ATU11     | IMI1A/C<br>MI1           | 96               | H'00000180 to<br>H'00000183       | 0 to 15 (0)                    | IPRD<br>(7–4)                    | 1                      | 1 |                     |
|          |           | IMI1B                    | 97               | H'00000184 to<br>H'00000187       |                                |                                  | -                      | 2 |                     |
|          |           | IMI1C                    | 98               | H'00000188 to<br>H'0000018B       |                                |                                  | -                      | 3 |                     |
|          |           | IMI1D                    | 99               | H'0000018C to<br>H'0000018F       |                                |                                  | $\downarrow$           | 4 |                     |
|          | ATU12     | IMI1E                    | 100              | H'00000190 to<br>H'00000193       | 0 to 15 (0)                    | IPRD<br>(3-0)                    | 1                      | 1 |                     |
|          |           | IMI1F                    | 101              | H'00000194 to<br>H'00000197       |                                |                                  | _                      | 2 |                     |
|          |           | IMI1G                    | 102              | H'00000198 to<br>H'0000019B       |                                |                                  | -                      | 3 |                     |
|          |           | IMI1H                    | 103              | H'0000019C to<br>H'0000019F       |                                |                                  | $\downarrow$           | 4 | _                   |
|          | ATU13     | OVI1A/<br>OVI1B          | 104              | H'000001A0 to<br>H'000001A3       | 0 to 15 (0)                    | IPRE<br>(15–12)                  |                        |   | Low                 |

 Table 7.3
 Interrupt Exception Processing Vectors and Priorities (cont)

|          |           |                 | Interru       | Interrupt Vector                  |                                |                                  | Priorit      | ty |                     |
|----------|-----------|-----------------|---------------|-----------------------------------|--------------------------------|----------------------------------|--------------|----|---------------------|
| Interrup | ot Source |                 | Vector<br>No. | Vector Table<br>Address<br>Offset | Priority<br>(Initial<br>Value) | Corre-<br>sponding<br>IPR (Bits) |              | g  | Default<br>Priority |
| ATU2     | ATU21     | IMI2A/C<br>MI2A | 108           | H'000001B0 to<br>H'000001B3       | 0 to 15 (0)                    | IPRE<br>(11–8)                   | 1            | 1  | High                |
|          |           | IMI2B/C<br>MI2B | 109           | H'000001B4 to<br>H'000001B7       | -                              |                                  |              | 2  | Ī                   |
|          |           | IMI2C/C<br>MI2C | 110           | H'000001B8 to<br>H'000001BB       | -                              |                                  |              | 3  |                     |
|          |           | IMI2D/C<br>MI2D | 111           | H'000001BC<br>to H'000001BF       | -                              |                                  | $\downarrow$ | 4  |                     |
|          | ATU22     | IMI2E/C<br>MI2E | 112           | H'000001C0 to<br>H'000001C3       | 0 to 15 (0)                    | IPRE<br>(7–4)                    | 1            | 1  | -                   |
|          |           | IMI2F/C<br>MI2F | 113           | H'000001C4 to<br>H'000001C7       | -                              |                                  |              | 2  |                     |
|          |           | IMI2G/C<br>MI2G | 114           | H'000001C8 to<br>H'000001CB       | -                              |                                  |              | 3  |                     |
|          |           | IMI2H/C<br>MI2H | 115           | H'000001CC<br>to H'000001CF       | -                              |                                  | $\downarrow$ | 4  |                     |
|          | ATU23     | OVI2A/O<br>VI2B | 116           | H'000001D0 to<br>H'000001D3       | 0 to 15 (0)                    | IPRE<br>(3-0)                    |              |    | _                   |
| ATU3     | ATU31     | IMI3A           | 120           | H'000001E0 to<br>H'000001E3       | 0 to 15 (0)                    | IPRF<br>(15–12)                  | $\uparrow$   | 1  | _                   |
|          |           | IMI3B           | 121           | H'000001E4 to<br>H'000001E7       | -                              |                                  |              | 2  |                     |
|          |           | IMI3C           | 122           | H'000001E8 to<br>H'000001EB       | =                              |                                  |              | 3  |                     |
|          |           | IMI3D           | 123           | H'000001EC<br>to H'000001EF       | -                              |                                  | $\downarrow$ | 4  | $\downarrow$        |
|          | ATU32     | OVI3            | 124           | H'000001F0 to<br>H'000001F3       | 0 to 15 (0)                    | IPRF<br>(11–8)                   |              |    | Low                 |
| _        |           |                 |               |                                   |                                |                                  |              |    |                     |

 Table 7.3
 Interrupt Exception Processing Vectors and Priorities (cont)

|                  |       |                             | Interru | ot Vector                      | Interrupt                        |                 | Priori       | ty                  |           |
|------------------|-------|-----------------------------|---------|--------------------------------|----------------------------------|-----------------|--------------|---------------------|-----------|
| Interrupt Source |       | Vector Table Vector Address |         | Priority<br>(Initial<br>Value) | Corre-<br>sponding<br>IPR (Bits) |                 |              | Default<br>Priority |           |
| ATU4             | ATU41 | IMI4A                       | 128     | H'00000200 to<br>H'00000203    | 0 to 15 (0)                      | IPRF<br>(7–4)   | 1            | 1                   | High<br>• |
|                  |       | IMI4B                       | 129     | H'00000204 to<br>H'00000207    | <u>-</u>                         |                 |              | 2                   | Ī         |
|                  |       | IMI4C                       | 130     | H'00000208 to<br>H'0000020B    | -                                |                 |              | 3                   |           |
|                  |       | IMI4D                       | 131     | H'0000020C<br>to H'0000020F    | -                                |                 | $\downarrow$ | 4                   |           |
|                  | ATU42 | OVI4                        | 132     | H'00000210 to<br>H'00000213    | 0 to 15 (0)                      | IPRF<br>(3-0)   |              |                     | _         |
| ATU5             | ATU51 | IMI5A                       | 136     | H'00000220 to<br>H'00000223    | 0 to 15 (0)                      | IPRG<br>(15–12) | 1            | 1                   | _         |
|                  |       | IMI5B                       | 137     | H'00000224 to<br>H'00000227    | -                                |                 |              | 2                   |           |
|                  |       | IMI5C                       | 138     | H'00000228 to<br>H'0000022B    | -                                |                 |              | 3                   |           |
|                  |       | IMI5D                       | 139     | H'0000022C<br>to H'0000022F    | =                                |                 | $\downarrow$ | 4                   |           |
|                  | ATU52 | OVI5                        | 140     | H'00000230 to<br>H'00000233    | 0 to 15 (0)                      | IPRG<br>(11–8)  |              |                     | _         |
| ATU6             |       | CMI6A                       | 144     | H'00000240 to<br>H'00000243    | 0 to 15 (0)                      | IPRG<br>(7–4)   | 1            | 1                   | _         |
|                  |       | CMI6B                       | 145     | H'00000244 to<br>H'00000247    | -                                |                 |              | 2                   |           |
|                  |       | CMI6C                       | 146     | H'00000248 to<br>H'0000024B    | -                                |                 |              | 3                   |           |
|                  |       | CMI6D                       | 147     | H'0000024C<br>to H'0000024F    | -                                |                 | $\downarrow$ | 4                   | Low       |
|                  | _     | ,                           |         |                                | 1                                |                 |              |                     | ,         |

 Table 7.3
 Interrupt Exception Processing Vectors and Priorities (cont)

| ATU7                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |       | Interru | ot Vector                   | Interrupt    |               | Priori       | ty |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------|---------|-----------------------------|--------------|---------------|--------------|----|---------------------|
| H'00000253                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Interrup | ot Source |       |         | Address                     | (Initial     | sponding      | Settir       | ıg | Default<br>Priority |
| H'00000257  CMI7C 150 H'00000258 to H'0000025B  CMI7D 151 H'0000025C to H'0000025F  ATU8 ATU81 OSI8A 152 H'00000260 to H'00000263  OSI8B 153 H'00000264 to H'00000267  OSI8C 154 H'00000268 to H'0000026B  OSI8D 155 H'0000026C to H'0000026F  ATU82 OSI8E 156 H'00000270 to H'00000270  OSI8F 157 H'00000273  OSI8F 157 H'00000274 to H'00000277  OSI8G 158 H'00000278 to H'00000278  OSI8H 159 H'0000027C to H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1 | ATU7     |           | CMI7A | 148     |                             | 0 to 15 (0)  |               | <b>↑</b>     | 1  | High<br>•           |
| H'0000025B                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |           | CMI7B | 149     |                             | <del>-</del> |               |              | 2  | Ī                   |
| H'0000025F  ATU81 OSI8A 152 H'00000260 to H'00000263 (15-12)  OSI8B 153 H'00000264 to H'00000267  OSI8C 154 H'00000268 to H'0000026B  OSI8D 155 H'0000026C to H'0000026F  ATU82 OSI8E 156 H'00000270 to H'00000273 (11-8)  OSI8F 157 H'00000274 to H'00000277  OSI8G 158 H'00000278 to H'00000278 to H'00000278  OSI8H 159 H'0000027C to H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1                                                                       |          |           | CMI7C | 150     |                             | _            |               |              | 3  |                     |
| H'00000263                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |           | CMI7D | 151     |                             | -            |               | $\downarrow$ | 4  |                     |
| H'00000267  OSI8C 154 H'00000268 to H'0000026B  OSI8D 155 H'0000026C to H'0000026F  ATU82 OSI8E 156 H'00000270 to H'00000273 (11−8)  OSI8F 157 H'00000274 to H'00000277  OSI8G 158 H'00000278 to H'00000278  OSI8H 159 H'0000027C to H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1                                                                                                                                                                           | ATU8     | ATU81     | OSI8A | 152     |                             | 0 to 15 (0)  |               | <b>↑</b>     | 1  | -                   |
| H'0000026B  OSI8D 155 H'0000026C to H'0000026F  ATU82 OSI8E 156 H'00000270 to H'00000273  OSI8F 157 H'00000274 to H'00000277  OSI8G 158 H'00000277  OSI8G 158 H'00000278 to H'00000278  OSI8H 159 H'0000027C to H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1                                                                                                                                                                                                |          |           | OSI8B | 153     |                             | _            |               |              | 2  |                     |
| H'0000026F  ATU82 OSI8E 156 H'00000270 to 0 to 15 (0) IPRH ↑ 1 H'00000273 (11-8)  OSI8F 157 H'00000274 to H'00000277  OSI8G 158 H'00000278 to H'0000027B  OSI8H 159 H'0000027C to H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1                                                                                                                                                                                                                              |          |           | OSI8C | 154     |                             | _            |               |              | 3  |                     |
| H'00000273 (11-8)  OSI8F 157 H'00000274 to H'00000277  OSI8G 158 H'00000278 to H'0000027B  OSI8H 159 H'0000027C to H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1                                                                                                                                                                                                                                                                                             |          |           | OSI8D | 155     |                             | _            |               | $\downarrow$ | 4  |                     |
| H'00000277  OSI8G 158 H'00000278 to H'0000027B  OSI8H 159 H'0000027C to H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1                                                                                                                                                                                                                                                                                                                                        |          | ATU82     | OSI8E | 156     |                             | 0 to 15 (0)  |               | <b>↑</b>     | 1  |                     |
| H'0000027B  OSI8H 159 H'0000027C to                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           | OSI8F | 157     |                             | <del>-</del> |               |              | 2  |                     |
| H'0000027F  ATU83 OSI8I 160 H'00000280 to 0 to 15 (0) IPRH ↑ 1                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | OSI8G | 158     |                             | _            |               |              | 3  |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           | OSI8H | 159     |                             | _            |               | $\downarrow$ | 4  |                     |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | ATU83     | OSI8I | 160     | H'00000280 to<br>H'00000283 | 0 to 15 (0)  | IPRH<br>(7–4) | <b>↑</b>     | 1  |                     |
| OSI8J 161 H'00000284 to 2<br>H'00000287                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | OSI8J | 161     |                             | -            |               |              | 2  |                     |
| OSI8K 162 H'00000288 to<br>H'0000028B                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |           | OSI8K | 162     |                             | -            |               |              | 3  | $\downarrow$        |
| OSI8L 163 H'0000028C to                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | OSI8L | 163     |                             | -            |               | <b></b>      | 4  | Low                 |

 Table 7.3
 Interrupt Exception Processing Vectors and Priorities (cont)

|          |           |                   | Interrup      | ot Vector                         | Interrupt                      |                                  | Priori       | ty |                     |
|----------|-----------|-------------------|---------------|-----------------------------------|--------------------------------|----------------------------------|--------------|----|---------------------|
| Interrup | ot Source |                   | Vector<br>No. | Vector Table<br>Address<br>Offset | Priority<br>(Initial<br>Value) | Corre-<br>sponding<br>IPR (Bits) |              | ıg | Default<br>Priority |
| ATU8     | ATU84     | OSI8M             | 164           | H'00000290 to<br>H'00000293       | 0 to 15 (0)                    | IPRH<br>(3-0)                    | <b>↑</b>     | 1  | High<br><b>A</b>    |
|          |           | OSI8N             | 165           | H'00000294 to<br>H'00000297       | •                              |                                  |              | 2  |                     |
|          |           | OSI8O             | 166           | H'00000298 to<br>H'0000029B       | •                              |                                  |              | 3  |                     |
|          |           | OSI8P             | 167           | H'0000029C to<br>H'0000029F       | •                              |                                  | $\downarrow$ | 4  |                     |
| ATU9     | ATU91     | CMI9A             | 168           | H'000002A0 to<br>H'000002A3       | 0 to 15 (0)                    | IPRI<br>(15–12)                  | <b>↑</b>     | 1  | -                   |
|          |           | CMI9B             | 169           | H'000002A4 to<br>H'000002A7       | •                              |                                  |              | 2  |                     |
|          |           | CMI9C             | 170           | H'000002A8 to<br>H'000002AB       | •                              |                                  |              | 3  |                     |
|          |           | CMI9D             | 171           | H'000002AC to<br>H'000002AF       | •                              |                                  | $\downarrow$ | 4  |                     |
|          | ATU92     | CMI9E             | 172           | H'000002B0 to<br>H'000002B3       | 0 to 15 (0)                    | IPRI<br>(11–8)                   | 1            | 1  | -                   |
|          |           | CMI9F             | 174           | H'000002B8 to<br>H'000002BB       | •                              |                                  | $\downarrow$ | 2  |                     |
| ATU10    | ATU101    | CMI10A            | 176           | H'000002C0 to<br>H'000002C3       | 0 to 15 (0)                    | IPRI<br>(7–4)                    | 1            | 1  | -                   |
|          |           | CMI10B            | 178           | H'000002C8 to<br>H'000002CB       | •                              |                                  | $\downarrow$ | 2  |                     |
|          | ATU102    | ICI10A/C<br>MI10G | 180           | H'000002D0 to<br>H'000002D3       | 0 to 15(0)                     | IPRI<br>(3-0)                    |              |    |                     |
|          | ATU11     | IMI11A            | 184           | H'000002E0 to<br>H'000002E3       | 0 to 15 (0)                    | IPRJ<br>(15–12)                  | <b>↑</b>     | 1  | -                   |
|          |           | IMI11B            | 186           | H'000002E8 to<br>H'000002EB       | •                              |                                  |              | 2  | <b>V</b>            |
|          |           | OVI11             | 187           | H'000002EC to<br>H'000002EF       |                                |                                  | <b>↓</b>     | 3  | Low                 |

 Table 7.3
 Interrupt Exception Processing Vectors and Priorities (cont)

|                  |       | Interrup      | ot Vector                         | Interrupt                      |                                  | Priori       | ty |                     |
|------------------|-------|---------------|-----------------------------------|--------------------------------|----------------------------------|--------------|----|---------------------|
| Interrupt Source |       | Vector<br>No. | Vector Table<br>Address<br>Offset | Priority<br>(Initial<br>Value) | Corre-<br>sponding<br>IPR (Bits) |              | g  | Default<br>Priority |
| CMT0             | CMTI0 | 188           | H'000002F0 to<br>H'000002F3       | 0 to 15 (0)                    | I PRJ<br>(11–8)                  | $\uparrow$   | 1  | High<br><b>A</b>    |
| A/D0             | ADI0  | 190           | H'000002F8 to<br>H'000002FB       | -                              |                                  | $\downarrow$ | 2  | Ī                   |
| CMT1             | CMTI1 | 192           | H'00000300 to<br>H'00000303       | 0 to 15 (0)                    | IPRJ<br>(7–4)                    | $\uparrow$   | 1  | _                   |
| A/D1             | ADI1  | 194           | H'00000308 to<br>H'0000030B       | -                              |                                  | $\downarrow$ | 2  |                     |
| A/D2             | ADI2  | 196           | H'00000310 to<br>H'00000313       | 0 to 15 (0)                    | IPRJ<br>(3-0)                    |              |    | _                   |
| SCI0             | ERI0  | 200           | H'00000320 to<br>H'00000323       | 0 to 15 (0)                    | IPRK<br>(15–12)                  | $\uparrow$   | 1  | _                   |
|                  | RXI0  | 201           | H'00000324 to<br>H'00000327       | -                              |                                  |              | 2  |                     |
|                  | TXI0  | 202           | H'00000328 to<br>H'0000032B       | -                              |                                  |              | 3  |                     |
|                  | TEI0  | 203           | H'0000032C to<br>H'0000032F       | -                              |                                  | $\downarrow$ | 4  |                     |
| SCI1             | ERI1  | 204           | H'00000330 to<br>H'00000333       | 0 to 15 (0)                    | IPRK<br>(11–8)                   | $\uparrow$   | 1  | _                   |
|                  | RXI1  | 205           | H'00000334 to<br>H'00000337       | -                              |                                  |              | 2  |                     |
|                  | TXI1  | 206           | H'00000338 to<br>H'0000033B       | =                              |                                  |              | 3  |                     |
|                  | TEI1  | 207           | H'0000033C to<br>H'0000033F       | -                              |                                  | $\downarrow$ | 4  |                     |
| SCI2             | ERI2  | 208           | H'00000340 to<br>H'00000343       | 0 to 15 (0)                    | IPRK<br>(7–4)                    | <b>↑</b>     | 1  | _                   |
|                  | RXI2  | 209           | H'00000344 to<br>H'00000347       | -                              |                                  |              | 2  |                     |
|                  | TXI2  | 210           | H'00000348 to<br>H'0000034B       | -                              |                                  |              | 3  | $\downarrow$        |
|                  | TEI2  | 211           | H'0000034C to<br>H'0000034F       | -                              |                                  | $\downarrow$ | 4  | Low                 |

 Table 7.3
 Interrupt Exception Processing Vectors and Priorities (cont)

|                  |      | Interru       | ot Vector                         | Interrupt                      |                                  | Priorit      | :y |                     |
|------------------|------|---------------|-----------------------------------|--------------------------------|----------------------------------|--------------|----|---------------------|
| Interrupt Source |      | Vector<br>No. | Vector Table<br>Address<br>Offset | Priority<br>(Initial<br>Value) | Corre-<br>sponding<br>IPR (Bits) |              | g  | Default<br>Priority |
| SCI3             | ERI3 | 212           | H'00000350 to<br>H'00000353       | 0 to 15 (0)                    | IPRK<br>(3-0)                    | $\uparrow$   | 1  | High<br><b>A</b>    |
|                  | RXI3 | 213           | H'00000354 to<br>H'00000357       | <u>-</u>                       |                                  |              | 2  | Ī                   |
|                  | TXI3 | 214           | H'00000358 to<br>H'0000035B       | -                              |                                  |              | 3  |                     |
|                  | TEI3 | 215           | H'0000035C to<br>H'0000035F       | -                              |                                  | $\downarrow$ | 4  |                     |
| SCI4             | ERI4 | 216           | H'00000360 to<br>H'00000363       | 0 to 15 (0)                    | IPRL<br>(15–12)                  | $\uparrow$   | 1  | -                   |
|                  | RXI4 | 217           | H'00000364 to<br>H'00000367       | =                              |                                  |              | 2  |                     |
|                  | TXI4 | 218           | H'00000368 to<br>H'0000036B       | =                              |                                  |              | 3  |                     |
|                  | TEI4 | 219           | H'0000036C to<br>H'0000036F       | =                              |                                  | $\downarrow$ | 4  |                     |
| HCAN0            | ERS0 | 220           | H'00000370 to<br>H'00000373       | 0 to 15 (0)                    | IPRL<br>(11–8)                   | $\uparrow$   | 1  | -                   |
|                  | OVR0 | 221           | H'00000374 to<br>H'00000377       | -                              |                                  |              | 2  |                     |
|                  | RM0  | 222           | H'00000378 to<br>H'0000037B       | -                              |                                  |              | 3  |                     |
|                  | SLE0 | 223           | H'0000037C to<br>H'0000037F       | -                              |                                  | $\downarrow$ | 4  |                     |
| WDT              | ITI  | 224           | H'00000380 to<br>H'00000383       | 0 to 15 (0)                    | IPRL<br>(7-4)                    |              |    | -                   |
| HCAN1            | ERS1 | 228           | H'00000390 to<br>H'00000393       | 0 to 15 (0)                    | IPRL<br>(3-0)                    | $\uparrow$   | 1  | -                   |
|                  | OVR1 | 229           | H'00000394 to<br>H'00000397       | -                              |                                  |              | 2  |                     |
|                  | RM1  | 230           | H'00000398 to<br>H'0000039B       | -                              |                                  |              | 3  | $\bigvee$           |
|                  | SLE1 | 231           | H'0000039C to<br>H'0000039F       | -                              |                                  | $\downarrow$ | 4  | Low                 |
|                  |      | _             |                                   |                                |                                  | _            |    | _                   |

# 7.3 Description of Registers

# 7.3.1 Interrupt Priority Registers A–L (IPRA–IPRL)

Interrupt priority registers A–L (IPRA–IPRL) are 16-bit readable/writable registers that set priority levels from 0 to 15 for IRQ interrupts and on-chip peripheral module interrupts. Correspondence between interrupt request sources and each of the IPRA–IPRL bits is shown in table 7.4.

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

**Bits** 

Table 7.4 Interrupt Request Sources and IPRA-IPRL

|                                                                                                                                                                                     | BIIS                               |                                         |                                         |                                   |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------|--|--|
| Register                                                                                                                                                                            | 15–12                              | 11–8                                    | 7–4                                     | 3–0                               |  |  |
| Interrupt priority register A                                                                                                                                                       | IRQ0                               | IRQ1                                    | IRQ2                                    | IRQ3                              |  |  |
| Interrupt priority register B                                                                                                                                                       | IRQ4                               | IRQ5                                    | IRQ6                                    | IRQ7                              |  |  |
| Interrupt priority register C                                                                                                                                                       | DMAC0, 1                           | DMAC2, 3                                | ATU01                                   | ATU02                             |  |  |
| Interrupt priority register D                                                                                                                                                       | ATU03                              | ATU04                                   | ATU11                                   | ATU12                             |  |  |
| Interrupt priority register E                                                                                                                                                       | ATU13                              | ATU21                                   | ATU22                                   | ATU23                             |  |  |
| Interrupt priority register F                                                                                                                                                       | ATU31                              | ATU32                                   | ATU41                                   | ATU42                             |  |  |
| Interrupt priority register G                                                                                                                                                       | ATU51                              | ATU52                                   | ATU6                                    | ATU7                              |  |  |
| Interrupt priority register H                                                                                                                                                       | ATU81                              | ATU82                                   | ATU83                                   | ATU84                             |  |  |
| Interrupt priority register I                                                                                                                                                       | ATU91                              | ATU92                                   | ATU101                                  | ATU102                            |  |  |
| Interrupt priority register J                                                                                                                                                       | ATU11                              | CMT0, A/D0                              | CMT1, A/D1                              | A/D2                              |  |  |
| Interrupt priority register K                                                                                                                                                       | SCI0                               | SCI1                                    | SCI2                                    | SCI3                              |  |  |
| Interrupt priority register L                                                                                                                                                       | SCI4                               | HCAN0                                   | WDT                                     | HCAN1                             |  |  |
| Interrupt priority register F Interrupt priority register G Interrupt priority register H Interrupt priority register I Interrupt priority register J Interrupt priority register K | ATU31 ATU51 ATU81 ATU91 ATU11 SCI0 | ATU32 ATU52 ATU82 ATU92 CMT0, A/D0 SCI1 | ATU41 ATU6 ATU83 ATU101 CMT1, A/D1 SCI2 | ATU42 ATU7 ATU84 ATU102 A/D2 SCI3 |  |  |

As indicated in table 7.4, four IRQ pins or groups of 4 on-chip peripheral modules are allocated to each register. Each of the corresponding interrupt priority ranks are established by setting a value from H'0 (0000) to H'F (1111) in each of the four-bit groups 15–12, 11–8, 7–4, and 3–0. Interrupt priority rank becomes level 0 (lowest) by setting H'0, and level 15 (highest) by setting H'F. If multiple on-chip peripheral modules are assigned to the same bit (DMAC0 and DMAC1, DMAC2 and DMAC3, CMT0 and A/D0, and CMT1 and A/D1), those multiple modules are set to the same priority rank.

IPRA-IPRL are initialized to H'0000 by a reset and in hardware standby mode. They are not initialized in software standby mode.

### 7.3.2 Interrupt Control Register (ICR)

ICR is a 16-bit register that sets the input signal detection mode of the external interrupt input pin NMI and  $\overline{IRQ0}$  – $\overline{IRQ7}$  and indicates the input signal level at the NMI pin. A reset and hardware standby mode initialize ICR but the software standby mode does not.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | NMIL  | _     | _     |       |       |       |       | NMIE  |
| Initial value: | *     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R     | R     | R     | R     | R     | R     | R     | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | IRQ0S | IRQ1S | IRQ2S | IRQ3S | IRQ4S | IRQ5S | IRQ6S | IRQ7S |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

Note: \* When NMI input is high: 1; when NMI input is low: 0

• Bit 15—NMI Input Level (NMIL): Sets the level of the signal input at the NMI pin. This bit can be read to determine the NMI pin level. This bit cannot be modified.

| Bit 15: NMIL | Description             |
|--------------|-------------------------|
| 0            | NMI input level is low  |
| 1            | NMI input level is high |

• Bits 14 to 9—Reserved: These bits always read 0. The write value should always be 0.

• Bit 8—NMI Edge Select (NMIE)

| Bit 8: NMIE | Description                                                                |
|-------------|----------------------------------------------------------------------------|
| 0           | Interrupt request is detected on falling edge of NMI input (Initial value) |
| 1           | Interrupt request is detected on rising edge of NMI input                  |

• Bits 7 to 0—IRQ0–IRQ7 Sense Select (IRQ0S–IRQ7S): These bits set the IRQ0–IRQ7 interrupt request detection mode.

Bits 7-0: IRQ0S-IRQ7S Description

| 0 | Interrupt request is detected on low level of IRQ input    | (Initial value) |
|---|------------------------------------------------------------|-----------------|
| 1 | Interrupt request is detected on falling edge of IRQ input |                 |

#### 7.3.3 IRQ Status Register (ISR)

ISR is a 16-bit register that indicates the interrupt request status of the external interrupt input pins  $\overline{IRQ0}$ – $\overline{IRQ7}$ . When IRQ interrupts are set to edge detection, held interrupt requests can be withdrawn by writing 0 to IRQnF after reading IRQnF = 1.

A reset and hardware standby mode initialize ISR but software standby mode does not.

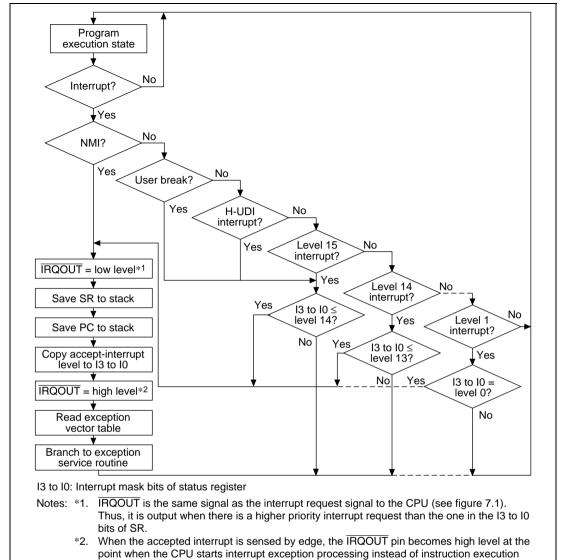
| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | _     | 1     | 1     | 1     | 1     | 1     | 1     | _     |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R     | R     | R     | R     | R     | R     | R     | R     |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | IRQ0F | IRQ1F | IRQ2F | IRQ3F | IRQ4F | IRQ5F | IRQ6F | IRQ7F |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

• Bits 15 to 8—Reserved: These bits always read 0. The write value should always be 0.

• Bits 7 to 0—IRQ0–IRQ7 Flags (IRQ0F–IRQ7F): These bits display the IRQ0–IRQ7 interrupt request status.

| Bit | S | 7-0 | ): |      |  |
|-----|---|-----|----|------|--|
|     |   | _   |    | <br> |  |

| IRQ0F-IRQ7F | <b>Detection Setting</b> | Description                                                                        |  |  |  |  |
|-------------|--------------------------|------------------------------------------------------------------------------------|--|--|--|--|
| 0           | Level detection          | No IRQn interrupt request exists                                                   |  |  |  |  |
|             |                          | [Clearing condition]                                                               |  |  |  |  |
|             |                          | When IRQn input is high                                                            |  |  |  |  |
|             | Edge detection           | No IRQn interrupt request was detected (Initial value)                             |  |  |  |  |
|             |                          | [Clearing conditions]                                                              |  |  |  |  |
|             |                          | <ul> <li>When 0 is written after reading IRQnF = 1</li> </ul>                      |  |  |  |  |
|             |                          | <ul> <li>When IRQn interrupt exception processing has been executed</li> </ul>     |  |  |  |  |
| 1           | Level detection          | An IRQn interrupt request exists                                                   |  |  |  |  |
|             |                          | Setting condition: When IRQn input is low                                          |  |  |  |  |
|             | Edge detection           | An IRQn interrupt request was detected                                             |  |  |  |  |
|             |                          | Setting condition: When a falling edge occurs at an $\overline{\mbox{IRQn}}$ input |  |  |  |  |


n = 7 to 0

# 7.4 Interrupt Operation

#### 7.4.1 Interrupt Sequence

The sequence of interrupt operations is explained below. Figure 7.2 is a flowchart of the operations.

- 1. The interrupt request sources send interrupt request signals to the interrupt controller.
- 2. The interrupt controller selects the highest priority interrupt in the interrupt requests sent, following the priority levels set in interrupt priority registers A–L (IPRA–IPRL). Lower-priority interrupts are ignored. They are held pending until interrupt requests designated as edge-detect type are accepted. For IRQ interrupts, however, withdrawal is possible by accessing the IRQ status register (ISR). See section 7.2.4, IRQ Interrupts, for details. Interrupts held pending due to edge detection are cleared by a power-on reset or a manual reset. If two of these interrupts have the same priority level or if multiple interrupts occur within a single module, the interrupt with the highest default priority or the highest priority within its IPR setting range (as indicated in table 7.3) is selected.
- 3. The interrupt controller compares the priority level of the selected interrupt request with the interrupt mask bits (I3–I0) in the CPU's status register (SR). If the request priority level is equal to or less than the level set in I3–I0, the request is ignored. If the request priority level is higher than the level in bits I3–I0, the interrupt controller accepts the interrupt and sends an interrupt request signal to the CPU.
- 4. When the interrupt controller accepts an interrupt, a low level is output from the  $\overline{\text{IRQOUT}}$  pin.
- 5. The CPU detects the interrupt request sent from the interrupt controller when it decodes the next instruction to be executed. Instead of executing the decoded instruction, the CPU starts interrupt exception processing (figure 7.4).
- 6. SR and PC are saved onto the stack.
- 7. The priority level of the accepted interrupt is copied to the interrupt mask level bits (I3 to I0) in the status register (SR).
- 8. When the accepted interrupt is sensed by level or is from an on-chip peripheral module, a high level is output from the <u>IRQOUT</u> pin. When the accepted interrupt is sensed by edge, a high level is output from the <u>IRQOUT</u> pin at the point when the CPU starts interrupt exception processing instead of instruction execution as noted in 5 above. However, if the interrupt controller accepts an interrupt with a higher priority than one it is in the process of accepting, the <u>IRQOUT</u> pin will remain low.
- 9. The CPU reads the start address of the exception service routine from the exception vector table for the accepted interrupt, jumps to that address, and starts executing the program there. This jump is not a delay branch.



(before SR is saved to the stack).

If the interrupt controller has accepted another interrupt with a higher priority and has output an interrupt request to the CPU, the IRQOUT pin will remain low.

Figure 7.2 Interrupt Sequence Flowchart

# 7.4.2 Stack after Interrupt Exception Processing

Figure 7.3 shows the stack after interrupt exception processing.

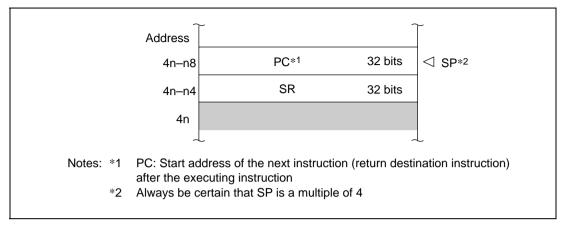



Figure 7.3 Stack after Interrupt Exception Processing

# 7.5 Interrupt Response Time

Table 7.5 indicates the interrupt response time, which is the time from the occurrence of an interrupt request until the interrupt exception processing starts and fetching of the first instruction of the interrupt service routine begins. Figure 7.4 shows an example of pipeline operation when an IRQ interrupt is accepted.

**Table 7.5** Interrupt Response Time

|                                                                                                                                   | Numbe                           | r of States                   |                                                                                                                                                                                             |  |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Item                                                                                                                              | NMI, Peripheral<br>Module       | IRQ                           | <br>Notes                                                                                                                                                                                   |  |
| DMAC activation judgmen                                                                                                           | t 0 or 1                        | 0                             | 1 state required for interrupt<br>signals for which DMAC<br>activation is possible                                                                                                          |  |
| Compare identified interrupt priority with SR mask level                                                                          | 2                               | 3                             |                                                                                                                                                                                             |  |
| Wait for completion of sequence currently being executed by CPU                                                                   | X (≥ 0)                         |                               | The longest sequence is for interrupt or address-error exception processing (X = 4 + m1 + m2 + m3 + m4). If an interrupt-masking instruction follows, however, the time may be even longer. |  |
| Time from start of interrup<br>exception processing until<br>fetch of first instruction of<br>exception service routine<br>starts | t 5 + m1 + m2 + m3              |                               | Performs the PC and SR saves and vector address fetch.                                                                                                                                      |  |
| Interrupt Total: response                                                                                                         | (7 or 8) + m1 +<br>m2 + m3 + X  | 8 + m1 + m2 +<br>m3 + X       |                                                                                                                                                                                             |  |
| time Minimum:                                                                                                                     | 10                              | 11                            | 0.25 to 0.28 µs at 40 MHz                                                                                                                                                                   |  |
| Maximum                                                                                                                           | : 12 + 2 (m1 + m2 +<br>m3) + m4 | 12 + 2 (m1 + m2 +<br>m3) + m4 | n2 + 0.48 μs at 40 MHz*                                                                                                                                                                     |  |

Note: \*When m1 = m2 = m3 = m4 = 1

m1-m4 are the number of states needed for the following memory accesses.

m1: SR save (longword write)m2: PC save (longword write)

m3: Vector address read (longword read)

m4: Fetch first instruction of interrupt service routine

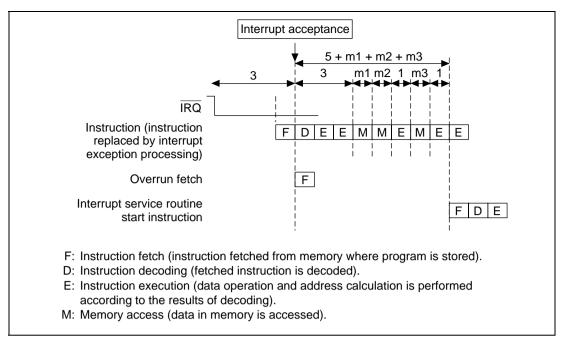



Figure 7.4 Example of Pipeline Operation when an IRQ Interrupt is Accepted

# 7.6 Data Transfer with Interrupt Request Signals

The following data transfer can be carried out using interrupt request signals:

Activate DMAC only, without generating CPU interrupt

Among interrupt sources, those designated as DMAC activating sources are masked and not input to the INTC. The masking condition is as follows:

Mask condition = DME • (DE0 • source selection 0 + DE1 • source selection 1 + DE2 • source selection 2 + DE3 • source selection 3)

### 7.6.1 Handling CPU Interrupt Sources, but Not DMAC Activating Sources

- 1. Either do not select the DMAC as a source, or clear the DME bit to 0.
- 2. Activating sources are applied to the CPU when interrupts occur.
- 3. The CPU clears interrupt sources with its interrupt processing routine and performs the necessary processing.

### 7.6.2 Handling DMAC Activating Sources but Not CPU Interrupt Sources

- 1. Select the DMAC as a source and set the DME bit to 1. CPU interrupt sources are masked regardless of the interrupt priority level register settings.
- 2. Activating sources are applied to the DMAC when interrupts occur.
- 3. The DMAC clears activating sources at the time of data transfer.

# Section 8 User Break Controller (UBC)

# 8.1 Overview

The user break controller (UBC) provides functions that simplify program debugging. Break conditions are set in the UBC and a user break interrupt is generated according to the conditions of the bus cycle generated by the CPU or DMAC. This function makes it easy to design an effective self-monitoring debugger, enabling the chip to easily debug programs without using a large incircuit emulator.

#### 8.1.1 Features

The features of the user break controller are:

- The following break compare conditions can be set:
  - Address
  - CPU cycle/DMA cycle
  - Instruction fetch or data access
  - Read or write
  - Operand size: byte/word/longword
- User break interrupt generated upon satisfying break conditions
   A user-designed user break interrupt exception processing routine can be run.
- Select either to break in the CPU instruction fetch cycle before the instruction is executed or after.
- Satisfaction of a break condition can be output to the UBCTRG pin.

# 8.1.2 Block Diagram

Figure 8.1 shows a block diagram of the UBC.

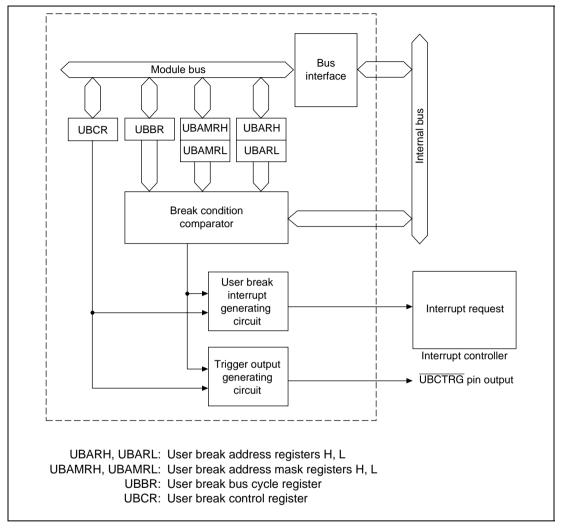



Figure 8.1 User Break Controller Block Diagram

# 8.1.3 Register Configuration

The UBC has the six registers shown in table 8.1. Break conditions are established using these registers.

**Table 8.1** Register Configuration

|                                    |        |     | Initial |            | Access    |
|------------------------------------|--------|-----|---------|------------|-----------|
| Name                               | Abbr.  | R/W | Value   | Address*   | Size      |
| User break address register H      | UBARH  | R/W | H'0000  | H'FFFFEC00 | 8, 16, 32 |
| User break address register L      | UBARL  | R/W | H'0000  | H'FFFFEC02 | 8, 16, 32 |
| User break address mask register H | UBAMRH | R/W | H'0000  | H'FFFFEC04 | 8, 16, 32 |
| User break address mask register L | UBAMRL | R/W | H'0000  | H'FFFFEC06 | 8, 16, 32 |
| User break bus cycle register      | UBBR   | R/W | H'0000  | H'FFFFEC08 | 8, 16, 32 |
| User break control register        | UBCR   | R/W | H'0000  | H'FFFFEC0A | 8, 16, 32 |

Note: \* In register access, three cycles are required for byte access and word access, and six cycles for longword access.

# **8.2** Register Descriptions

# 8.2.1 User Break Address Register (UBAR)

# **UBARH:**

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | UBA31 | UBA30 | UBA29 | UBA28 | UBA27 | UBA26 | UBA25 | UBA24 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | UBA23 | UBA22 | UBA21 | UBA20 | UBA19 | UBA18 | UBA17 | UBA16 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

#### **UBARL:**

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9    | 8    |
|----------------|-------|-------|-------|-------|-------|-------|------|------|
|                | UBA15 | UBA14 | UBA13 | UBA12 | UBA11 | UBA10 | UBA9 | UBA8 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |
| R/W:           | R/W    R/W  |
|                |       |       |       |       |       |       |      |      |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1    | 0    |
|                | UBA7  | UBA6  | UBA5  | UBA4  | UBA3  | UBA2  | UBA1 | UBA0 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |
| R/W:           | R/W    R/W  |

The user break address register (UBAR) consists of user break address register H (UBARH) and user break address register L (UBARL). Both are 16-bit readable/writable registers. UBARH stores the upper bits (bits 31 to 16) of the address of the break condition, while UBARL stores the lower bits (bits 15 to 0). UBARH and UBARL are initialized to H'0000 by a power-on reset and in module standby mode. They are not initialized in software standby mode.

- UBARH Bits 15 to 0—User Break Address 31 to 16 (UBA31 to UBA16): These bits store the upper bit values (bits 31 to 16) of the address of the break condition.
- UBARL Bits 15 to 0—User Break Address 15 to 0 (UBA15 to UBA0): These bits store the lower bit values (bits 15 to 0) of the address of the break condition.

### 8.2.2 User Break Address Mask Register (UBAMR)

#### **UBAMRH:**

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | UBM31 | UBM30 | UBM29 | UBM28 | UBM27 | UBM26 | UBM25 | UBM24 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | UBM23 | UBM22 | UBM21 | UBM20 | UBM19 | UBM18 | UBM17 | UBM16 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

#### **UBAMRL:**

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9    | 8    |
|----------------|-------|-------|-------|-------|-------|-------|------|------|
|                | UBM15 | UBM14 | UBM13 | UBM12 | UBM11 | UBM10 | UBM9 | UBM8 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |
| R/W:           | R/W    R/W  |
|                |       |       |       |       |       |       |      |      |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1    | 0    |
|                | UBM7  | UBM6  | UBM5  | UBM4  | UBM3  | UBM2  | UBM1 | UBM0 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |
| R/W:           | R/W    R/W  |

The user break address mask register (UBAMR) consists of user break address mask register H (UBAMRH) and user break address mask register L (UBAMRL). Both are 16-bit readable/writable registers. UBAMRH designates whether to mask any of the break address bits established in UBARH, and UBAMRL designates whether to mask any of the break address bits established in UBARL. UBAMRH and UBAMRL are initialized to H'0000 by a power-on reset and in module standby mode. They are not initialized in software standby mode.

- UBAMRH Bits 15 to 0—User Break Address Mask 31 to 16 (UBM31 to UBM16): These bits
  designate whether to mask the corresponding break address 31 to 16 bits (UBA31 to UBA16)
  established in UBARH.
- UBAMRL Bits 15 to 0—User Break Address Mask 15 to 0 (UBM15 to UBM0): These bits
  designate whether to mask the corresponding break address 15 to 0 bits (UBA15 to UBA0)
  established in UBARL.

| Bit 15-0: UBMn | Description                                                            |
|----------------|------------------------------------------------------------------------|
| 0              | Break address UBAn is included in the break conditions (Initial value) |
| 1              | Break address UBAn is not included in the break conditions             |

Note: n = 31 to 0

# 8.2.3 User Break Bus Cycle Register (UBBR)

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                | 1   | 1   | 1   | 1   | 1   | 1   | 1   | _   |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R   | R   | R   | R   | R   | R   | R   | R   |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                | CP1 | CP0 | ID1 | ID0 | RW1 | RW0 | SZ1 | SZ0 |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

The user break bus cycle register (UBBR) is a 16-bit readable/writable register that selects from among the following four break conditions:

- 1. CPU cycle/DMA cycle
- 2. Instruction fetch/data access
- 3. Read/write
- 4. Operand size (byte, word, longword)

UBBR is initialized to H'0000 by a power on reset and in module standby mode. It is not initialized in software standby mode.

- Bits 15 to 8—Reserved: These bits always read 0. The write value should always be 0.
- Bits 7 and 6—CPU Cycle/DMA Cycle Select (CP1, CP0): These bits designate break conditions for CPU cycles or DMA cycles.

| Bit 7: CP1 | Bit 6: CP0 | Description                      |                 |
|------------|------------|----------------------------------|-----------------|
| 0          | 0          | No user break interrupt occurs   | (Initial value) |
|            | 1          | Break on CPU cycles              |                 |
| 1          | 0          | Break on DMA cycles              |                 |
|            | 1          | Break on both CPU and DMA cycles |                 |

• Bits 5 and 4—Instruction Fetch/Data Access Select (ID1, ID0): These bits select whether to break on instruction fetch and/or data access cycles.

| Bit 5: ID1 | Bit 4: ID0 | Description                                            |   |
|------------|------------|--------------------------------------------------------|---|
| 0          | 0          | No user break interrupt occurs (Initial value)         | ) |
|            | 1          | Break on instruction fetch cycles                      | _ |
| 1          | 0          | Break on data access cycles                            |   |
|            | 1          | Break on both instruction fetch and data access cycles | _ |

• Bits 3 and 2—Read/Write Select (RW1, RW0): These bits select whether to break on read and/or write cycles.

| Bit 3: RW1 | Bit 2: RW0 | Description                         |                 |
|------------|------------|-------------------------------------|-----------------|
| 0          | 0          | No user break interrupt occurs      | (Initial value) |
|            | 1          | Break on read cycles                |                 |
| 1          | 0          | Break on write cycles               |                 |
|            | 1          | Break on both read and write cycles |                 |

• Bits 1 and 0—Operand Size Select (SZ1, SZ0): These bits select operand size as a break condition.

| Bit 1: SZ1 | Bit 0: SZ0 | Description                                      |   |  |  |
|------------|------------|--------------------------------------------------|---|--|--|
| 0          | 0          | Operand size is not a break condition (Initial v |   |  |  |
|            | 1          | Break on byte access                             |   |  |  |
| 1          | 0          | Break on word access                             | _ |  |  |
|            | 1          | Break on longword access                         |   |  |  |

Note: When breaking on an instruction fetch, clear the SZ0 bit to 0. All instructions are considered to be word-size accesses (even when there are instructions in on-chip memory and two instruction fetches are performed simultaneously in one bus cycle).

Operand size is word for instructions or determined by the operand size specified for the CPU/DMAC data access. It is not determined by the bus width of the space being accessed.

### 8.2.4 User Break Control Register (UBCR)

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10   | 9    | 8    |
|----------------|----|----|----|----|----|------|------|------|
|                |    | _  |    |    |    |      |      | _    |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0    |
| R/W:           | R  | R  | R  | R  | R  | R    | R    | R    |
|                |    |    |    |    |    |      |      |      |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2    | 1    | 0    |
|                | _  | _  | _  | _  | _  | CKS1 | CKS0 | UBID |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0    | 0    | 0    |
| R/W:           | R  | R  | R  | R  | R  | R/W  | R/W  | R/W  |

The user break control register (UBCR) is a 16-bit readable/writable register that (1) enables or disables user break interrupts and (2) sets the pulse width of the  $\overline{UBCTRG}$  signal output in the event of a break condition match.

UBCR is initialized to H'0000 by a power-on reset and in module standby mode. It is not initialized in software standby mode.

- Bits 15 to 3—Reserved: These bits always read 0. The write value should always be 0.
- Bits 2 and 1—Clock Select 1 and 0 (CKS1, CKS0): These bits specify the pulse width of the UBCTRG signal output in the event of a condition match.

| Bit 2: CKS1 | Bit 1: CKS0 | Description                |                 |
|-------------|-------------|----------------------------|-----------------|
| 0           | 0           | UBCTRG pulse width is φ    | (Initial value) |
|             | 1           | ÜBCTRG pulse width is φ/4  |                 |
| 1           | 0           | ÜBCTRG pulse width is φ/8  |                 |
|             | 1           | UBCTRG pulse width is ∮/16 |                 |

• Bit 0—User Break Disable (UBID): Enables or disables user break interrupt request generation in the event of a user break condition match.

| Bit 0: UBID | Description                              |                 |
|-------------|------------------------------------------|-----------------|
| 0           | User break interrupt request is enabled  | (Initial value) |
| 1           | User break interrupt request is disabled |                 |

# 8.3 Operation

#### 8.3.1 Flow of the User Break Operation

The flow from setting of break conditions to user break interrupt exception processing is described below:

- 1. The user break addresses are set in the user break address register (UBAR), the desired masked bits in the addresses are set in the user break address mask register (UBAMR) and the breaking bus cycle type is set in the user break bus cycle register (UBBR). If even one of the three groups of the UBBR's CPU cycle/DMA cycle select bits (CP1, CP0), instruction fetch/data access select bits (ID1, ID0), and read/write select bits (RW1, RW0) is set to 00 (no user break generated), no user break interrupt will be generated even if all other conditions are in agreement. When using user break interrupts, always be certain to establish bit conditions for all of these three groups.
- 2. The UBC uses the method shown in figure 8.2 to judge whether set conditions have been fulfilled. When the set conditions are satisfied, the UBC sends a user break interrupt request signal to the interrupt controller (INTC). At the same time, a condition match signal is output at the UBCTRG pin with the pulse width set in bits CKS1 and CKS0.
- 3. The interrupt controller checks the accepted user break interrupt request signal's priority level. The user break interrupt has priority level 15, so it is accepted only if the interrupt mask level in bits I3–I0 in the status register (SR) is 14 or lower. When the I3–I0 bit level is 15, the user break interrupt cannot be accepted but it is held pending until user break interrupt exception processing can be carried out. Consequently, user break interrupts within NMI exception service routines cannot be accepted, since the I3–I0 bit level is 15. However, if the I3–I0 bit level is changed to 14 or lower at the start of the NMI exception service routine, user break interrupts become acceptable thereafter. See section 7, Interrupt Controller (INTC), describes the handling of priority levels in greater detail.
- 4. The INTC sends the user break interrupt request signal to the CPU, which begins user break interrupt exception processing upon receipt. See section 7.4, Interrupt Operation, for details on interrupt exception processing.

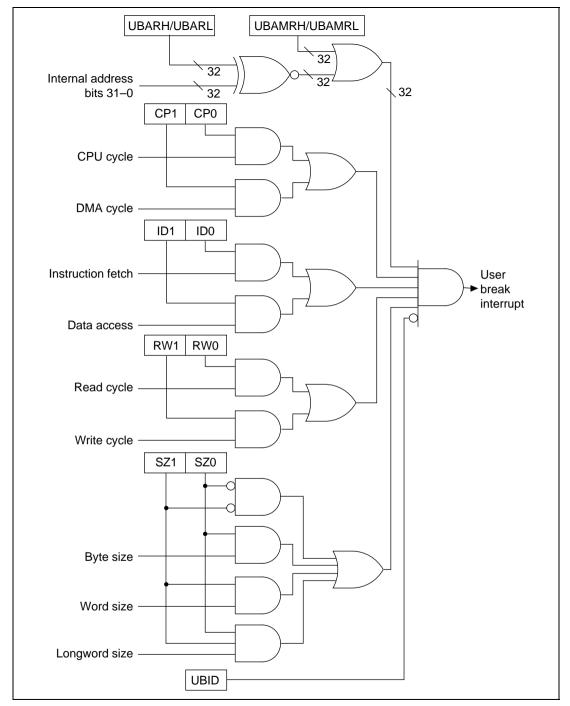



Figure 8.2 Break Condition Judgment Method

#### 8.3.2 Break on On-Chip Memory Instruction Fetch Cycle

On-chip memory (on-chip ROM and/or RAM) is always accessed as 32 bits in one bus cycle. Therefore, two instructions can be retrieved in one bus cycle when fetching instructions from on-chip memory. At such times, only one bus cycle is generated, but by setting the start addresses of both instructions in the user break address register (UBAR) it is possible to cause independent breaks. In other words, when wanting to effect a break using the latter of two addresses retrieved in one bus cycle, set the start address of that instruction in UBAR. The break will occur after execution of the former instruction.

#### 8.3.3 Program Counter (PC) Values Saved

**Break on Instruction Fetch:** The program counter (PC) value saved to the stack in user break interrupt exception processing is the address that matches the break condition. The user break interrupt is generated before the fetched instruction is executed. If a break condition is set in an instruction fetch cycle placed immediately after a delayed branch instruction (delay slot), or on an instruction that follows an interrupt-disabled instruction, however, the user break interrupt is not accepted immediately, but the break condition establishing instruction is executed. The user break interrupt is accepted after execution of the instruction that has accepted the interrupt. In this case, the PC value saved is the start address of the instruction that will be executed after the instruction that has accepted the interrupt.

**Break on Data Access (CPU/DMA):** The program counter (PC) value is the top address of the next instruction after the last instruction executed before the user break exception processing started. When data access (CPU/DMA) is set as a break condition, the place where the break will occur cannot be specified exactly. The break will occur at the instruction fetched close to where the data access that is to receive the break occurs.

# 8.4 Examples of Use

### 8.4.1 Break on CPU Instruction Fetch Cycle

1. Register settings: UBARH = H'0000

UBARL = H'0404 UBBR = H'0054 UBCR = H'0000

Conditions set: Address: H'00000404

Bus cycle: CPU, instruction fetch, read (operand size not included in conditions)

Interrupt requests enabled

A user break interrupt will occur before the instruction at address H'00000404. If it is possible for the instruction at H'00000402 to accept an interrupt, the user break exception processing

will be executed after execution of that instruction. The instruction at H'00000404 is not executed. The PC value saved is H'00000404.

2. Register settings: UBARH = H'0015

UBARL = H'389CUBBR = H'0058

UBCR = H'0000

Conditions set: Address: H'0015389C

Bus cycle: CPU, instruction fetch, write (operand size not included in conditions)

Interrupt requests enabled

A user break interrupt does not occur because the instruction fetch cycle is not a write cycle.

3. Register settings: UBARH = H'0003

UBARL = H'0147 UBBR = H'0054 UBCR = H'0000

Conditions set: Address: H'00030147

Bus cycle: CPU, instruction fetch, read (operand size not included in conditions)

Interrupt requests enabled

A user break interrupt does not occur because the instruction fetch was performed for an even address. However, if the first instruction fetch address after the branch is an odd address set by these conditions, user break interrupt exception processing will be carried out after address error exception processing.

# 8.4.2 Break on CPU Data Access Cycle

1. Register settings: UBARH = H'0012

UBARL = H'3456 UBBR = H'006A

UBCR = H'0000

Conditions set: Address: H'00123456

Bus cycle: CPU, data access, write, word

Interrupt requests enabled

A user break interrupt occurs when word data is written into address H'00123456.

2. Register settings: UBARH = H'00A8

UBARL = H'0391

UBBR = H'0066

UBCR = H'0000

Conditions set: Address: H'00A80391

Bus cycle: CPU, data access, read, word

Interrupt requests enabled

A user break interrupt does not occur because the word access was performed on an even address.

#### 8.4.3 Break on DMA Cycle

1. Register settings: UBARH = H'0076

UBARL = H'BCDC UBBR = H'00A7 UBCR = H'0000

Conditions set: Address: H'0076BCDC

Bus cycle: DMA, data access, read, longword

Interrupt requests enabled

A user break interrupt occurs when longword data is read from address H'0076BCDC.

2. Register settings: UBARH = H'0023

UBARL = H'45C8 UBBR = H'0094 UBCR = H'0000

Conditions set: Address: H'002345C8

Bus cycle: DMA, instruction fetch, read (operand size not included in conditions)

Interrupt requests enabled

A user break interrupt does not occur because no instruction fetch is performed in the DMA cycle.

# 8.5 Usage Notes

# 8.5.1 Simultaneous Fetching of Two Instructions

Two instructions may be simultaneously fetched from on-chip memory. If a break condition is set on the second of these two instructions but the contents of the UBC break condition registers are changed so as to alter the break condition immediately after the first of the two instructions is fetched, a user break interrupt will still occur when the second instruction is fetched.

#### 8.5.2 Instruction Fetches at Branches

When a conditional branch instruction or TRAPA instruction causes a branch, the order of instruction fetching and execution is as follows:

When branching with a conditional branch instruction: BT and BF instructions
 When branching with a TRAPA instruction: TRAPA instruction

Instruction fetch order: Branch instruction fetch  $\rightarrow$  next instruction overrun fetch  $\rightarrow$ 

overrun fetch of instruction after next  $\rightarrow$  branch destination

instruction fetch

Instruction execution order: Branch instruction execution → branch destination instruction

execution

2. When branching with a delayed conditional branch instruction: BT/S and BF/S instructions

 $Instruction \ fetch \ order: \qquad Branch \ instruction \ fetch \ \rightarrow \ next \ instruction \ fetch \ (delay \ slot) \ \rightarrow$ 

overrun fetch of instruction after next  $\rightarrow$  branch destination

instruction fetch

Instruction execution order: Branch instruction execution → delay slot instruction execution

→ branch destination instruction execution

Thus, when a conditional branch instruction or TRAPA instruction causes a branch, the branch destination instruction will be fetched after an overrun fetch of the next instruction or the instruction after next. However, as the instruction that is the object of the break does not break until fetching and execution of the instruction have been confirmed, the overrun fetches described above do not become objects of a break.

If data accesses are also included as break conditions in addition to instruction fetch breaks, a break will occur because the instruction overrun fetch is also regarded as satisfying the data break condition.

### 8.5.3 Contention between User Break and Exception Processing

If a user break is set for the fetch of a particular instruction, and exception processing with higher priority than a user break is in contention and is accepted in the decode stage for that instruction (or the next instruction), user break exception processing may not be performed after completion of the higher-priority exception service routine (on return by RTE).

Thus, if a user break condition is applied to the branch destination instruction fetch after a branch (BRA, BRAF, BT, BF, BT/S, BF/S, BSR, BSRF, JMP, JSR, RTS, RTE, exception processing), and that branch instruction accepts exception processing with higher priority than a user break interrupt, user break exception processing is not performed after completion of the higher-priority exception service routine.

Therefore, a user break condition should not be set for the fetch of the branch destination instruction after a branch.

# 8.5.4 Break at Non-Delay Branch Instruction Jump Destination

When a branch instruction with no delay slot (including exception processing) jumps to the jump destination instruction on execution of the branch, a user break will not be generated even if a user break condition has been set for the first jump destination instruction fetch.

Rev.2.0, 07/03, page 132 of 960

#### 8.5.5 User Break Trigger Output

Information on internal bus condition matches monitored by the UBC is output as UBCTRG. The trigger width can be set with clock select bits 1 and 0 (CKS1, CKS0) in the user break control register (UBCR).

If a condition matches occurs again during trigger output, the UBCTRG pin continues to output a low level, and outputs a pulse of the length set in bits CKS1 and CKS0 from the cycle in which the last condition match occurs.

The trigger output conditions differ from those in the case of a user break interrupt when a CPU instruction fetch condition is satisfied. When a condition occurs in an overrun fetch instruction as described in section 8.5.2, Instruction Fetch at Branches, a user break interrupt is not requested but a trigger is output from the  $\overline{UBCTRG}$  pin.

In other CPU data accesses and DMAC bus cycles, pulse output is performed under conditions similar to user break interrupt conditions.

Setting the user break interrupt disable (UBID) bit to 1 in UBCR enables trigger output to be monitored externally without requesting a user break interrupt.

# 8.5.6 Module Standby

After a power-on reset the UBC is in the module standby state, in which the clock supply is halted. When using the UBC, the module standby state must be cleared before making UBC register settings. Module standby is controlled by the module standby control register (MSTCR). See section 24.2.3, Module Standby Control Register (MSTCR), for further details.

# Section 9 Bus State Controller (BSC)

#### 9.1 Overview

The bus state controller (BSC) divides up the address spaces and outputs control for various types of memory. This enables memories like SRAM and ROM to be linked directly to the chip without external circuitry, simplifying system design and enabling high-speed data transfer to be achieved in a compact system.

#### 9.1.1 Features

The BSC has the following features:

- Address space is divided into four spaces
  - A maximum linear 2 Mbytes for on-chip ROM effective mode, and a maximum 4 Mbytes for on-chip ROM disabled mode, for address space CS0
  - A maximum linear 4 Mbytes for each of address spaces CS1–CS3
  - Bus width can be selected for each space (8 or 16 bits)
  - Wait states can be inserted by software for each space
  - Wait state insertion with WAIT pin in external memory space access
  - Outputs control signals for each space according to the type of memory connected
- On-chip ROM and RAM interfaces
  - On-chip RAM access of 32 bits in 1 state
  - On-chip Rom access of 32 bits in 1 state for a read and 2 states for a write

# 9.1.2 Block Diagram

Figure 9.1 shows the BSC block diagram.

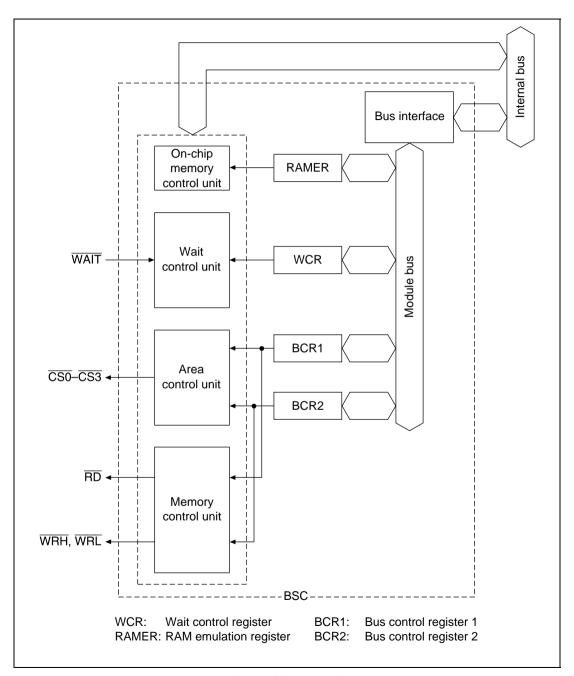



Figure 9.1 BSC Block Diagram

#### 9.1.3 Pin Configuration

Table 9.1 shows the bus state controller pin configuration.

**Table 9.1** Pin Configuration

| Name            | Abbr.   | I/O | Description                                                           |
|-----------------|---------|-----|-----------------------------------------------------------------------|
| Address bus     | A21-A0  | 0   | Address output                                                        |
| Data bus        | D15-D0  | I/O | 16-bit data bus                                                       |
| Chip select     | CS0-CS3 | 0   | Chip select signals indicating the area being accessed                |
| Read            | RD      | 0   | Strobe that indicates the read cycle for ordinary space/multiplex I/O |
| Upper write     | WRH     | 0   | Strobe that indicates a write cycle to the upper 8 bits (D15–D8)      |
| Lower write     | WRL     | 0   | Strobe that indicates a write cycle to the lower 8 bits (D7–D0)       |
| Wait            | WAIT    | ı   | Wait state request signal                                             |
| Bus request     | BREQ    | I   | Bus release request input                                             |
| Bus acknowledge | BACK    | 0   | Bus use enable output                                                 |

Note: When an 8-bit bus width is selected for external space, WRL is enabled.

When a 16-bit bus width is selected for external space, WRH and WRL are enabled.

# 9.1.4 Register Configuration

The BSC has four registers. These registers are used to control wait states, bus width, and interfaces with memories like ROM and SRAM, as well as refresh control. The register configurations are listed in table 9.2.

All registers are 16 bits. All BSC registers are all initialized by a power-on reset and in hardware standby mode. Values are retained in a manual reset and in software standby mode.

**Table 9.2** Register Configuration

| Name                        | Abbr. | R/W | Initial Value | Address    | Access Size |
|-----------------------------|-------|-----|---------------|------------|-------------|
| Bus control register 1      | BCR1  | R/W | H'000F        | H'FFFFEC20 | 8, 16, 32   |
| Bus control register 2      | BCR2  | R/W | H'FFFF        | H'FFFFEC22 | 8, 16, 32   |
| Wait state control register | WCR   | R/W | H'7777        | H'FFFFEC24 | 8, 16, 32   |
| RAM emulation register      | RAMER | R/W | H'0000        | H'FFFFEC26 | 8, 16, 32   |

Note: In register access, three cycles are required for byte access and word access, and six cycles for longword access.

#### 9.1.5 Address Map

Figure 9.2 shows the address format used by the SH7055SF.

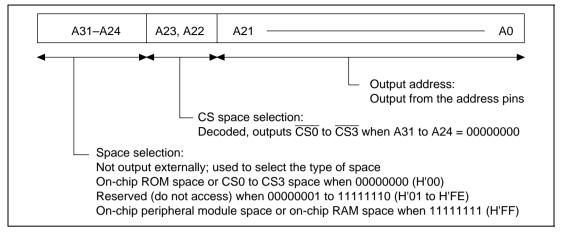



Figure 9.2 Address Format

This chip uses 32-bit addresses:

- Bits A31 to A24 are used to select the type of space and are not output externally.
- Bits A23 and A22 are decoded and output as chip select signals ( $\overline{\text{CS0}}$  to  $\overline{\text{CS3}}$ ) for the corresponding areas when bits A31 to A24 are 00000000.
- A21 to A0 are output externally.

Table 9.3 shows the address map.

# Table 9.3 Address Map

# • On-chip ROM enabled mode

| Address                    | Space                     | Memory                    | Size   | <b>Bus Width</b>         |
|----------------------------|---------------------------|---------------------------|--------|--------------------------|
| H'0000 0000 to H'000F FFFF | On-chip ROM               | On-chip ROM               | 512 kB | 32 bits                  |
| H'0010 0000 to H'001F FFFF | Reserved                  | Reserved                  |        |                          |
| H'0020 0000 to H'003F FFFF | CS0 space                 | External space            | 2 MB   | 8, 16 bits*1             |
| H'0040 0000 to H'007F FFFF | CS1 space                 | External space            | 4 MB   | 8, 16 bits*1             |
| H'0080 0000 to H'00BF FFFF | CS2 space                 | External space            | 4 MB   | 8, 16 bits* <sup>1</sup> |
| H'00C0 0000 to H'00FF FFFF | CS3 space                 | External space            | 4 MB   | 8, 16 bits*1             |
| H'0100 0000 to H'FFFE FFFF | Reserved                  | Reserved                  |        |                          |
| H'FFFF 0000 to H'FFFF BFFF | On-chip RAM               | On-chip RAM               | 32 kB  | 32 bits                  |
| H'FFFF C000 to H'FFFF FFFF | On-chip peripheral module | On-chip peripheral module | 8 kB   | 8, 16 bits               |

# • On-chip ROM disabled mode

| Address                    | Space                     | Memory                    | Size  | <b>Bus Width</b> |
|----------------------------|---------------------------|---------------------------|-------|------------------|
| H'0000 0000 to H'003F FFFF | CS0 space                 | External space            | 4 MB  | 8, 16 bits*2     |
| H'0040 0000 to H'007F FFFF | CS1 space                 | External space            | 4 MB  | 8, 16 bits*1     |
| H'0080 0000 to H'00BF FFFF | CS2 space                 | External space            | 4 MB  | 8, 16 bits*1     |
| H'00C0 0000 to H'00FF FFFF | CS3 space                 | External space            | 4 MB  | 8, 16 bits*1     |
| H'0100 0000 to H'FFFE FFFF | Reserved                  | Reserved                  |       |                  |
| H'FFFF 0000 to H'FFFF BFFF | On-chip RAM               | On-chip RAM               | 32 kB | 32 bits          |
| H'FFFF C000 to H'FFFF FFFF | On-chip peripheral module | On-chip peripheral module | 8 kB  | 8, 16 bits       |

Notes: \*1. Selected by on-chip register (BCR1) settings.

Do not access reserved spaces. Operation cannot be guaranteed if they are accessed.

<sup>\*2.</sup> Selected by the mode pin.

# 9.2 Description of Registers

#### 9.2.1 Bus Control Register 1 (BCR1)

| Bit:           | 15 | 14 | 13 | 12 | 11   | 10   | 9    | 8    |
|----------------|----|----|----|----|------|------|------|------|
|                | _  | _  | _  | _  | _    | 1    | _    | _    |
| Initial value: | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0    |
| R/W:           | R  | R  | R  | R  | R    | R    | R    | R    |
| Bit:           | 7  | 6  | 5  | 4  | 3    | 2    | 1    | 0    |
|                | _  | _  | _  | _  | A3SZ | A2SZ | A1SZ | A0SZ |
| Initial value: | 0  | 0  | 0  | 0  | 1    | 1    | 1    | 1    |
| R/W:           | R  | R  | R  | R  | R/W  | R/W  | R/W  | R/W  |

BCR1 is a 16-bit readable/writable register that specifies the bus size of the CS spaces.

Write bits 15–0 of BCR1 during the initialization stage after a power-on reset, and do not change the values thereafter. In on-chip ROM enabled mode, do not access any of the CS spaces until after completion of register initialization. In on-chip ROM disabled mode, do not access any CS space other than CS0 until after completion of register initialization.

BCR1 is initialized to H'000F by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

- Bits 15–4—Reserved: The write value should always be 0. Operation cannot be guaranteed if 1 is written to these bits.
- Bit 3—CS3 Space Size Specification (A3SZ): Specifies the CS3 space bus size. A 0 setting specifies byte (8-bit) size, and a 1 setting specifies word (16-bit) size.

| Bit 3: A3SZ | Description        |                 |
|-------------|--------------------|-----------------|
| 0           | Byte (8-bit) size  |                 |
| 1           | Word (16-bit) size | (Initial value) |

• Bit 2—CS2 Space Size Specification (A2SZ): Specifies the CS2 space bus size. A 0 setting specifies byte (8-bit) size, and a 1 setting specifies word (16-bit) size.

| Bit 2: A2SZ | Description        |                 |
|-------------|--------------------|-----------------|
| 0           | Byte (8-bit) size  |                 |
| 1           | Word (16-bit) size | (Initial value) |

• Bit 1—CS1 Space Size Specification (A1SZ): Specifies the CS1 space bus size. A 0 setting specifies byte (8-bit) size, and a 1 setting specifies word (16-bit) size.

| Bit 1: A1SZ | Description        | Description     |  |  |  |
|-------------|--------------------|-----------------|--|--|--|
| 0           | Byte (8-bit) size  |                 |  |  |  |
| 1           | Word (16-bit) size | (Initial value) |  |  |  |

• Bit 0—CS0 Space Size Specification (A0SZ): Specifies the CS0 space bus size A 0 setting specifies byte (8-bit) size, and a 1 setting specifies word (16-bit) size.

| Bit 0: A0SZ | Description        |                 |
|-------------|--------------------|-----------------|
| 0           | Byte (8-bit) size  | _               |
| 1           | Word (16-bit) size | (Initial value) |

Note: A0SZ is valid only in on-chip ROM enabled mode. In on-chip ROM disabled mode, the CS0 space bus size is specified by the mode pin.

### 9.2.2 Bus Control Register 2 (BCR2)

| Bit:           | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |
|----------------|------|------|------|------|------|------|------|------|
|                | IW31 | IW30 | IW21 | IW20 | IW11 | IW10 | IW01 | IW00 |
| Initial value: | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
|                |      |      |      |      |      |      |      |      |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|                | CW3  | CW2  | CW1  | CW0  | SW3  | SW2  | SW1  | SW0  |
| Initial value: | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |

BCR2 is a 16-bit readable/writable register that specifies the number of idle cycles and  $\overline{CS}$  signal assert extension of each CS space.

BCR2 is initialized to H'FFFF by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

• Bits 15–8—Idles between Cycles (IW31, IW30, IW21, IW20, IW11, IW10, IW01, IW00): These bits specify idle cycles inserted between consecutive accesses when the second one is to a different CS area after a read. Idles are used to prevent data conflict between ROM (and other memories, which are slow to turn the read data buffer off), fast memories, and I/O interfaces. Even when access is to the same area, idle cycles must be inserted when a read access is followed immediately by a write access. The idle cycles to be inserted comply with

the area specification of the previous access. Refer to section 9.4, Waits between Access Cycles, for details.

IW31, IW30 specify the idle between cycles for CS3 space; IW21, IW20 specify the idle between cycles for CS2 space; IW11, IW10 specify the idle between cycles for CS1 space and IW01, IW00 specify the idle between cycles for CS0 space.

| Bit 15: IW31 | Bit 14: IW30 | Description               |                 |
|--------------|--------------|---------------------------|-----------------|
| 0            | 0            | No CS3 space idle cycle   |                 |
|              | 1            | Inserts one idle cycle    |                 |
| 1            | 0            | Inserts two idle cycles   |                 |
|              | 1            | Inserts three idle cycles | (Initial value) |
| Bit 13: IW21 | Bit 12: IW20 | Description               |                 |
| 0            | 0            | No CS2 space idle cycle   | _               |
|              | 1            | Inserts one idle cycle    |                 |
| 1            | 0            | Inserts two idle cycles   |                 |
|              | 1            | Inserts three idle cycles | (Initial value) |
| Bit 11: IW11 | Bit 10: IW10 | Description               |                 |
| 0            | 0            | No CS1 space idle cycle   |                 |
|              | 1            | Inserts one idle cycle    |                 |
| 1            | 0            | Inserts two idle cycles   |                 |
|              | 1            | Inserts three idle cycles | (Initial value) |
| Bit 9: IW01  | Bit 8: IW00  | Description               |                 |
| 0            | 0            | No CS0 space idle cycle   |                 |
|              | 1            | Inserts one idle cycle    |                 |
| 1            | 0            | Inserts two idle cycles   |                 |
|              | 1            | Inserts three idle cycles | (Initial value) |

Bits 7-4—Idle Specification for Continuous Access (CW3, CW2, CW1, CW0): The
continuous access idle specification makes insertions to clearly delineate the bus intervals by
once negating the CSn signal when performing consecutive accesses to the same CS space.
When a write immediately follows a read, the number of idle cycles inserted is the larger of the
two values specified by IW and CW. Refer to section 9.4, Waits between Access Cycles, for
details.

CW3 specifies the continuous access idles for CS3 space; CW2 specifies the continuous access idles for CS2 space; CW1 specifies the continuous access idles for CS1 space and CW0 specifies the continuous access idles for CS0 space.

Description

Bit 7: CW3

| 0          | No CS3 space continuous access idle cycles |                 |
|------------|--------------------------------------------|-----------------|
| 1          | One CS3 space continuous access idle cycle | (Initial value) |
| Bit 6: CW2 | Description                                |                 |
| 0          | No CS2 space continuous access idle cycles |                 |
| 1          | One CS2 space continuous access idle cycle | (Initial value) |
| Bit 5: CW1 | Description                                |                 |
| 0          | No CS1 space continuous access idle cycles |                 |
| 1          | One CS1 space continuous access idle cycle | (Initial value) |

| Bit 4: CW0 | Description                                |                 |
|------------|--------------------------------------------|-----------------|
| 0          | No CS0 space continuous access idle cycles | _               |
| 1          | One CS0 space continuous access idle cycle | (Initial value) |
|            |                                            |                 |

• Bits 3–0— $\overline{\text{CS}}$  Assert Extension Specification (SW3, SW2, SW1, SW0): The  $\overline{\text{CS}}$  assert cycle extension specification is for making insertions to prevent extension of the  $\overline{\text{RD}}$  signal,  $\overline{\text{WRH}}$  signal, or  $\overline{\text{WRL}}$  signal assert period beyond the length of the  $\overline{\text{CSn}}$  signal assert period. Extended cycles insert one cycle before and after each bus cycle, which simplifies interfaces with external devices and also has the effect of extending the write data hold time. Refer to section 9.3.3,  $\overline{\text{CS}}$  Assert Period Extension, for details.

SW3 specifies the  $\overline{CS}$  assert extension for CS3 space access; SW2 specifies the  $\overline{CS}$  assert extension for CS2 space access; SW1 specifies the  $\overline{CS}$  assert extension for CS1 space access and SW0 specifies the  $\overline{CS}$  assert extension for CS0 space access.

| Bit 3: SW3 | Description                      |                 |
|------------|----------------------------------|-----------------|
| 0          | No CS3 space CS assert extension |                 |
| 1          | CS3 space CS assert extension    | (Initial value) |

| Bit 2: SW2 | Description                      |                 |
|------------|----------------------------------|-----------------|
| 0          | No CS2 space CS assert extension |                 |
| 1          | CS2 space CS assert extension    | (Initial value) |

| Bit 1: SW1 | Description                      |                 |  |  |  |
|------------|----------------------------------|-----------------|--|--|--|
| 0          | No CS1 space CS assert extension |                 |  |  |  |
| 1          | CS1 space CS assert extension    | (Initial value) |  |  |  |
| Bit 0: SW0 | Description                      |                 |  |  |  |
| 0          | No CS0 space CS assert extension |                 |  |  |  |
| 1          | CS0 space CS assert extension    | (Initial value) |  |  |  |

#### 9.2.3 Wait Control Register (WCR)

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                | W33 | W32 | W31 | W30 | W23 | W22 | W21 | W20 |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                | W13 | W12 | W11 | W10 | W03 | W02 | W01 | W00 |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

WCR is a 16-bit readable/writable register that specifies the number of wait cycles for each CS space.

WCR is initialized to H'FFFF by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

• Bits 15–12—CS3 Space Wait Specification (W33, W32, W31, W30): These bits specify the number of waits for CS3 space access.

| Bit 15:<br>W33 | Bit 14:<br>W32 | Bit 13:<br>W31 | Bit 12:<br>W30 | Description                            |                 |
|----------------|----------------|----------------|----------------|----------------------------------------|-----------------|
| 0              | 0              | 0              | 0              | No wait (external wait input disabled) | _               |
| 0              | 0              | 0              | 1              | 1 wait external wait input enabled     |                 |
| •••            |                |                |                |                                        | _               |
| 1              | 1              | 1              | 1              | 15 wait external wait input enabled    | (Initial value) |

• Bits 11–8—CS2 Space Wait Specification (W23, W22, W21, W20): These bits specify the number of waits for CS2 space access.

| Bit 11:<br>W23 | Bit 10:<br>W22 | Bit 9:<br>W21 | Bit 8:<br>W20 | Description                            |                 |
|----------------|----------------|---------------|---------------|----------------------------------------|-----------------|
| 0              | 0              | 0             | 0             | No wait (external wait input disabled) | _               |
| 0              | 0              | 0             | 1             | 1 wait external wait input enabled     |                 |
|                |                |               |               |                                        | _               |
| 1              | 1              | 1             | 1             | 15 wait external wait input enabled    | (Initial value) |
|                |                |               |               |                                        |                 |

• Bits 7–4—CS1 Space Wait Specification (W13, W12, W11, W10): These bits specify the number of waits for CS1 space access.

| Bit 7:<br>W13 | Bit 6:<br>W12 | Bit 5:<br>W11 | Bit 4:<br>W10 | Description                            |                 |
|---------------|---------------|---------------|---------------|----------------------------------------|-----------------|
| 0             | 0             | 0             | 0             | No wait (external wait input disabled) |                 |
| 0             | 0             | 0             | 1             | 1 wait external wait input enabled     |                 |
|               |               |               |               |                                        |                 |
| 1             | 1             | 1             | 1             | 15 wait external wait input enabled    | (Initial value) |

• Bits 3–0—CS0 Space Wait Specification (W03, W02, W01, W00): These bits specify the number of waits for CS0 space access.

| Bit 3:<br>W03 | Bit 2:<br>W02 | Bit 1:<br>W01 | Bit 0:<br>W00 | Description                            |                 |
|---------------|---------------|---------------|---------------|----------------------------------------|-----------------|
| 0             | 0             | 0             | 0             | No wait (external wait input disabled) |                 |
| 0             | 0             | 0             | 1             | 1 wait external wait input enabled     |                 |
|               |               |               |               |                                        |                 |
| 1             | 1             | 1             | 1             | 15 wait external wait input enabled    | (Initial value) |

### 9.2.4 RAM Emulation Register (RAMER)

| Bit:           | 15 | 14 | 13 | 12 | 11   | 10   | 9    | 8    |
|----------------|----|----|----|----|------|------|------|------|
|                | _  |    | _  | _  | _    | _    | _    | _    |
| Initial value: | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0    |
| R/W:           | R  | R  | R  | R  | R    | R    | R    | R    |
|                |    |    |    |    |      |      |      |      |
| Bit:           | 7  | 6  | 5  | 4  | 3    | 2    | 1    | 0    |
|                | _  | _  | _  | _  | RAMS | RAM2 | RAM1 | RAM0 |
| Initial value: | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0    |
| R/W:           | R  | R  | R  | R  | R/W  | R/W  | R/W  | R/W  |

The RAM emulation register (RAMER) is a 16-bit readable/writable register that selects the RAM area to be used when emulating realtime programming of flash memory.

RAMER is initialized to H'0000 by a power-on reset and in hardware standby mode. It is not initialized by a manual reset or in software standby mode.

Note: To ensure correct operation of the RAM emulation function, the ROM for which RAM emulation is performed should not be accessed immediately after this register has been modified. Operation cannot be guaranteed if such an access is made.

- Bits 15 to 4—Reserved: Only 0 should be written to these bits. Operation cannot be guaranteed if 1 is written.
- Bit 3—RAM Select (RAMS): Used together with bits 2 to 0 to select or deselect flash memory emulation by RAM (table 9.4).
  - When 1 is written to this bit, all flash memory blocks are write/erase-protected.
  - This bit is ignored in modes with on-chip ROM disabled.
- Bits 2 to 0—RAM Area Specification (RAM2 to RAM0): These bits are used together with the RAMS bit to designate the flash memory area to be overlapped onto RAM (table 9.4).

**Table 9.4 RAM Area Setting Method** 

| RAM Area                 | Bit 3: RAMS | Bit 2: RAM2 | Bit 1: RAM1 | Bit 0: RAM0 |
|--------------------------|-------------|-------------|-------------|-------------|
| H'FFFF6000 to H'FFFF6FFF | 0           | *           | *           | *           |
| H'00000000 to H'00000FFF | 1           | 0           | 0           | 0           |
| H'00001000 to H'00001FFF | 1           | 0           | 0           | 1           |
| H'00002000 to H'00002FFF | 1           | 0           | 1           | 0           |
| H'00003000 to H'00003FFF | 1           | 0           | 1           | 1           |
| H'00004000 to H'00004FFF | 1           | 1           | 0           | 0           |
| H'00005000 to H'00005FFF | 1           | 1           | 0           | 1           |
| H'00006000 to H'00006FFF | 1           | 1           | 1           | 0           |
| H'00007000 to H'00007FFF | 1           | 1           | 1           | 1           |

<sup>\*:</sup> Don't care

## 9.3 Accessing External Space

A strobe signal is output in external space accesses to provide primarily for SRAM or ROM direct connections.

### 9.3.1 Basic Timing

Figure 9.3 shows the basic timing of external space access. External access bus cycles are performed in 2 states.

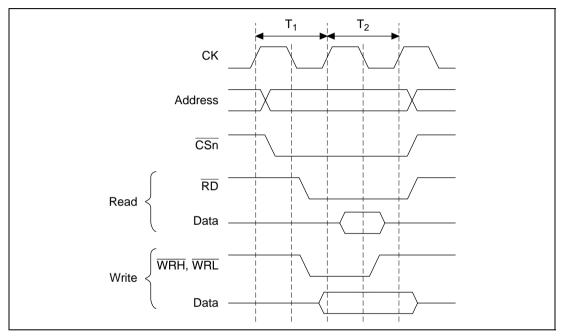



Figure 9.3 Basic Timing of External Space Access

#### 9.3.2 Wait State Control

The number of wait states inserted into external space access states can be controlled using the WCR settings (figure 9.4). The specified number of  $T_{\rm w}$  cycles are inserted as software cycles at the timing shown in figure 9.4.

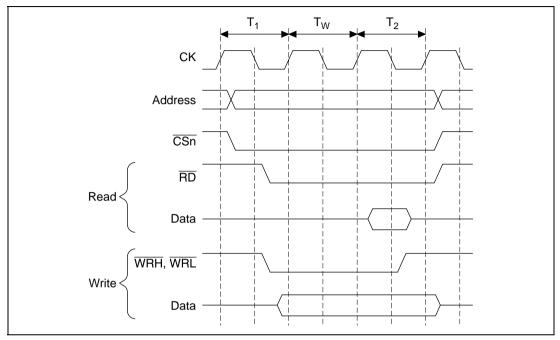



Figure 9.4 Wait State Timing of External Space Access (Software Wait Only)

When the wait is specified by software using WCR, the wait input  $\overline{WAIT}$  signal from outside is sampled. Figure 9.5 shows the  $\overline{WAIT}$  signal sampling. The  $\overline{WAIT}$  signal is sampled at the clock rise one cycle before the clock rise when the  $T_w$  state shifts to the  $T_z$  state. When using external waits, use a WCR setting of 1 state or more when extending  $\overline{CS}$  assertion, and 2 states or more otherwise.

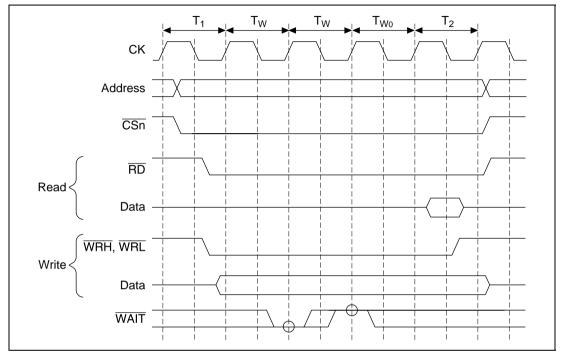
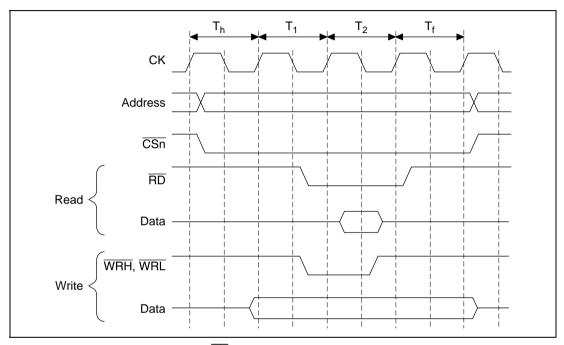




Figure 9.5 Wait State Timing of External Space Access (Two Software Wait States +  $\overline{\text{WAIT}}$  Signal Wait State)

#### 

Idle cycles can be inserted to prevent extension of the  $\overline{RD}$ ,  $\overline{WRH}$ , or  $\overline{WRL}$  signal assert period beyond the length of the  $\overline{CSn}$  signal assert period by setting the SW3–SW0 bits of BCR2. This allows for flexible interfaces with external circuitry. The timing is shown in figure 9.6.  $T_h$  and  $T_f$  cycles are added respectively before and after the ordinary cycle. Only  $\overline{CSn}$  is asserted in these cycles;  $\overline{RD}$ ,  $\overline{WRH}$ , and  $\overline{WRL}$  signals are not. Further, data is extended up to the  $T_f$  cycle, which is effective for gate arrays and the like, which have slower write operations.



### 9.4 Waits between Access Cycles

When a read from a slow device is completed, data buffers may not go off in time to prevent data conflicts with the next access. If there is a data conflict during memory access, the problem can be solved by inserting a wait in the access cycle.

To enable detection of bus cycle starts, waits can be inserted between access cycles during continuous accesses of the same CS space by negating the  $\overline{CSn}$  signal once.

#### 9.4.1 Prevention of Data Bus Conflicts

For the two cases of write cycles after read cycles, and read cycles for a different area after read cycles, waits are inserted so that the number of idle cycles specified by the IW31 to IW00 bits of BCR2 occur. When idle cycles already exist between access cycles, only the number of empty cycles remaining beyond the specified number of idle cycles are inserted.

Figure 9.7 shows an example of idles between cycles. In this example, one idle between CSn space cycles has been specified, so when a CSm space write immediately follows a CSn space read cycle, one idle cycle is inserted.

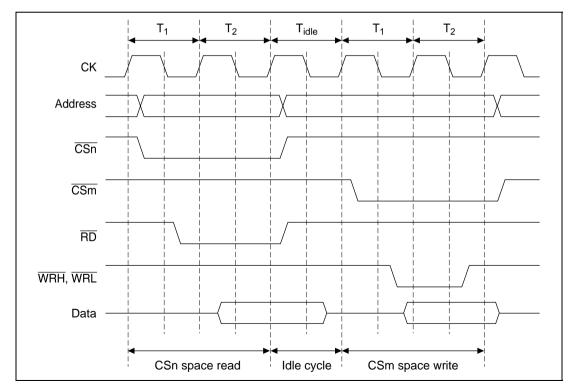



Figure 9.7 Idle Cycle Insertion Example

IW31 and IW30 specify the number of idle cycles required after a CS3 space read either to read other external spaces, or for this chip, to perform write accesses. In the same manner, IW21 and IW20 specify the number of idle cycles after a CS2 space read, IW11 and IW10, the number after a CS1 space read, and IW01 and IW00, the number after a CS0 space read. 0 to 3 idle cycles can be specified.

### 9.4.2 Simplification of Bus Cycle Start Detection

For consecutive accesses to the same CS space, waits are inserted to provide the number of idle cycles designated by bits CW3 to CW0 in BCR2. However, in the case of a write cycle after a read, the number of idle cycles inserted will be the larger of the two values designated by the IW and CW bits. When idle cycles already exist between access cycles, waits are not inserted. Figure 9.8 shows an example. A continuous access idle is specified for CSn space, and CSn space is consecutively write-accessed.

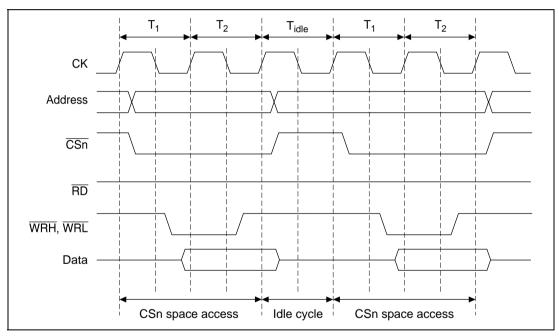



Figure 9.8 Same Space Consecutive Access Idle Cycle Insertion Example

#### 9.5 Bus Arbitration

The SH7058 has a bus arbitration function that, when a bus release request is received from an external device, releases the bus to that device. It also has three internal bus masters, the CPU, DMAC, and AUD. The priority ranking for determining bus right transfer between these bus masters is:

Bus right request from external device > AUD > DMAC > CPU

Therefore, an external device that generates a bus request is given priority even if the request is made during a DMAC burst transfer.

The AUD does not acquire the bus during DMAC burst transfer, but at the end of the transfer. When the CPU has possession of the bus, the AUD has higher priority than the DMAC for bus acquisition.

A bus request by an external device should be input at the  $\overline{BREQ}$  pin. The signal indicating that the bus has been released is output from the  $\overline{BACK}$  pin.

Figure 9.9 shows the bus right release procedure.

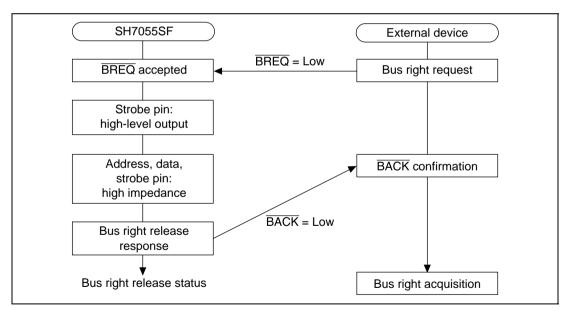



Figure 9.9 Bus Right Release Procedure

## **9.6** Memory Connection Examples

Figures 9.10–9.13 show examples of the memory connections.

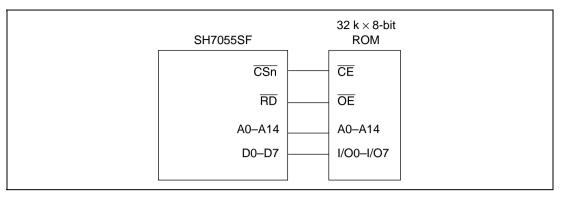



Figure 9.10 Example of 8-Bit Data Bus Width ROM Connection

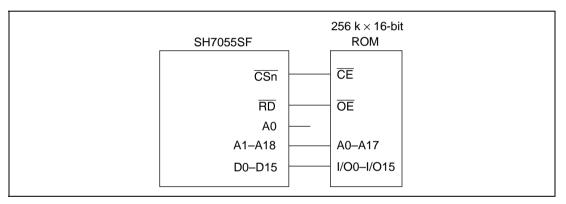



Figure 9.11 Example of 16-Bit Data Bus Width ROM Connection

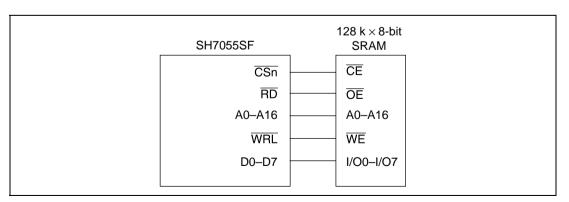



Figure 9.12 Example of 8-Bit Data Bus Width SRAM Connection

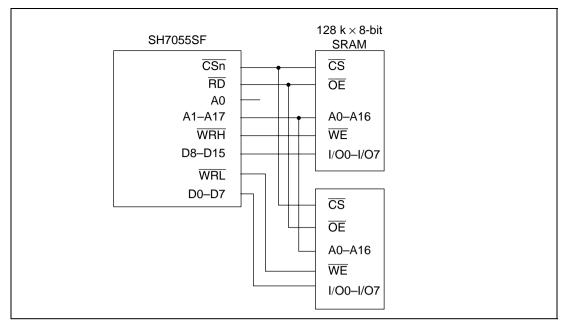



Figure 9.13 Example of 16-Bit Data Bus Width SRAM Connection

# Section 10 Direct Memory Access Controller (DMAC)

#### 10.1 Overview

The SH7055SF includes an on-chip four-channel direct memory access controller (DMAC). The DMAC can be used in place of the CPU to perform high-speed data transfers among external memories, memory-mapped external devices, and on-chip peripheral modules (except for the DMAC, BSC, and UBC). Using the DMAC reduces the burden on the CPU and increases the operating efficiency of the chip as a whole.

#### 10.1.1 Features

The DMAC has the following features:

- Four channels
- 4-Gbyte address space in the architecture
- 8-, 16-, or 32-bit selectable data transfer length
- Maximum of 16 M (6,777,216) transfers
- Address modes

Both the transfer source and transfer destination are accessed by address. There are two transfer modes: direct address and indirect address.

- Direct address transfer mode: Values set in a DMAC internal register indicate the accessed address for both the transfer source and transfer destination. Two bus cycles are required for one data transfer.
- Indirect address transfer mode: The value stored at the location pointed to by the address set in the DMAC internal transfer source register is used as the address. Operation is otherwise the same as for direct access. This function can only be set for channel 3. Four bus cycles are required for one data transfer.
- Channel function: Dual address mode is supported on all channels.
  - Channel 2 has a source address reload function that reloads the source address every fourth transfer. Direct address transfer mode or indirect address transfer mode can be specified for channel 3.
- Reload function

Enables automatic reloading of the value set in the first source address register every fourth DMA transfer. This function can be executed on channel 2 only.

Transfer requests

There are two DMAC transfer activation requests, as indicated below.

- Requests from on-chip peripheral modules: Transfer requests from on-chip modules such as the SCI or A/D. These can be received by all channels.
- Auto-request: The transfer request is generated automatically within the DMAC.

- Selectable bus modes: Cycle-steal mode or burst mode
- Fixed DMAC channel priority ranking
- CPU can be interrupted when the specified number of data transfers are complete.

### 10.1.2 Block Diagram

Figure 10.1 is a block diagram of the DMAC.

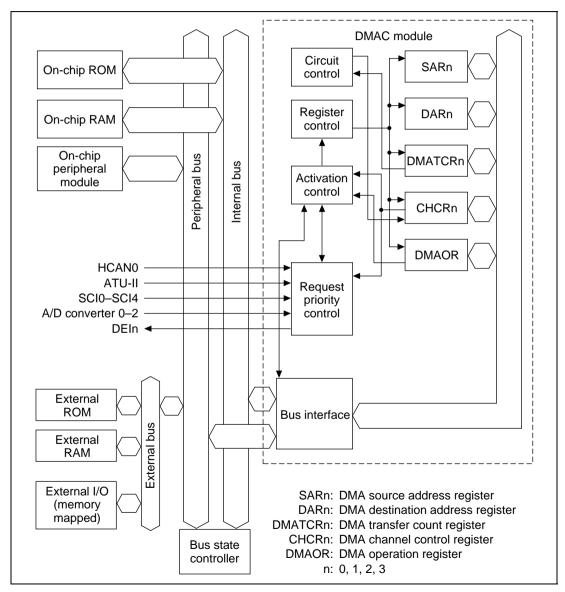



Figure 10.1 DMAC Block Diagram

### 10.1.3 Register Configuration

Table 10.1 summarizes the DMAC registers. The DMAC has a total of 17 registers. Each channel has four registers, and one overall DMAC control register is shared by all channels.

**Table 10.1 DMAC Registers** 

| Channel | Name                               | Abbr.   | R/W   | Initial<br>Value | Address    | Register<br>Size | Access<br>Size       |
|---------|------------------------------------|---------|-------|------------------|------------|------------------|----------------------|
| 0       | DMA source address register 0      | SAR0    | R/W   | Undefined        | H'FFFFECC0 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA destination address register 0 | DAR0    | R/W   | Undefined        | H'FFFFECC4 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA transfer count register 0      | DMATCR0 | R/W   | Undefined        | H'FFFFECC8 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA channel control register 0     | CHCR0   | R/W*1 | H'00000000       | H'FFFFECCC | 32 bits          | 16, 32* <sup>2</sup> |
| 1       | DMA source address register 1      | SAR1    | R/W   | Undefined        | H'FFFFECD0 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA destination address register 1 | DAR1    | R/W   | Undefined        | H'FFFFECD4 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA transfer count register 1      | DMATCR1 | R/W   | Undefined        | H'FFFFECD8 | 32 bits          | 16, 32* <sup>3</sup> |
|         | DMA channel control register 1     | CHCR1   | R/W*1 | H'00000000       | H'FFFFECDC | 32 bits          | 16, 32* <sup>2</sup> |
| 2       | DMA source address register 2      | SAR2    | R/W   | Undefined        | H'FFFFECE0 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA destination address register 2 | DAR2    | R/W   | Undefined        | H'FFFFECE4 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA transfer count register 2      | DMATCR2 | R/W   | Undefined        | H'FFFFECE8 | 32 bits          | 16, 32* <sup>3</sup> |
|         | DMA channel control register 2     | CHCR2   | R/W*1 | H'00000000       | H'FFFFECEC | 32 bits          | 16, 32* <sup>2</sup> |
|         | · ·                                | · ·     |       |                  |            |                  |                      |

Table 10.1 DMAC Registers (cont)

| Channel | Name                               | Abbr.   | R/W   | Initial<br>Value | Address    | Register<br>Size | Access<br>Size       |
|---------|------------------------------------|---------|-------|------------------|------------|------------------|----------------------|
| 3       | DMA source address register 3      | SAR3    | R/W   | Undefined        | H'FFFFECF0 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA destination address register 3 | DAR3    | R/W   | Undefined        | H'FFFFECF4 | 32 bits          | 16, 32* <sup>2</sup> |
|         | DMA transfer count register 3      | DMATCR3 | R/W   | Undefined        | H'FFFFECF8 | 32 bits          | 16, 32* <sup>3</sup> |
|         | DMA channel control register 3     | CHCR3   | R/W*1 | H'00000000       | H'FFFFECFC | 32 bits          | 16, 32* <sup>2</sup> |
| Shared  | DMA operation register             | DMAOR   | R/W*1 | H'0000           | H'FFFFECB0 | 16 bits          | 16*4                 |

Notes: Word access to a register takes 3 cycles, and longword access 6 cycles.

Do not attempt to access an empty address, as operation canot be guaranteed if this is done.

- \*1 Write 0 after reading 1 in bit 1 of CHCR0–CHCR3 and in bits 1 and 2 of DMAOR to clear flags. No other writes are allowed.
- \*2 For 16-bit access of SAR0–SAR3, DAR0–DAR3, and CHCR0–CHCR3, the 16-bit value on the side not accessed is held.
- \*3 DMATCR has a 24-bit configuration: bits 0–23. Writing to the upper 8 bits (bits 24–31) is invalid, and these bits always read 0.
- \*4 Do not use 32-bit access on DMAOR.

## 10.2 Register Descriptions

### 10.2.1 DMA Source Address Registers 0-3 (SAR0-SAR3)

DMA source address registers 0–3 (SAR0–SAR3) are 32-bit readable/writable registers that specify the source address of a DMA transfer. These registers have a count function, and during a DMA transfer, they indicate the next source address.

Specify a 16-bit boundary when performing 16-bit data transfers, and a 32-bit boundary when performing 32-bit data transfers. Operation cannot be guaranteed if any other addresses are set.

The initial value after a power-on reset and in standby mode is undefined.

| Bit:           | 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | _   | _   | _   | _   | _   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 23  | 22  | 21  |     |     | 2   | 1   | 0   |
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | ••• |     | _   | _   | _   |
| R/W:           | R/W | R/W | R/W |     |     | R/W | R/W | R/W |

#### 10.2.2 DMA Destination Address Registers 0-3 (DAR0-DAR3)

DMA destination address registers 0–3 (DAR0–DAR3) are 32-bit readable/writable registers that specify the destination address of a DMA transfer. These registers have a count function, and during a DMA transfer, they indicate the next destination address.

Specify a 16-bit boundary when performing 16-bit data transfers, and a 32-bit boundary when performing 32-bit data transfers. Operation cannot be guaranteed if any other addresses are set.

The value after a power-on reset and in standby mode is undefined.

| Bit:           | 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | _   | _   | _   | _   | _   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 23  | 22  | 21  |     |     | 2   | 1   | 0   |
|                |     |     |     | ••• | ••• |     |     |     |
| Initial value: | _   | _   | _   |     |     | _   | _   | _   |
| R/W:           | R/W | R/W | R/W |     |     | R/W | R/W | R/W |

### 10.2.3 DMA Transfer Count Registers 0–3 (DMATCR0–DMATCR3)

DMA transfer count registers 0–3 (DMATCR0–DMATCR3) are 24-bit read/write registers that specify the transfer count for the channel (byte count, word count, or longword count) in bits 23 to 0. Specifying H'000001 gives a transfer count of 1, while H'000000 gives the maximum setting, 16,777,216 transfers. During DMAC operation, these registers indicate the remaining number of transfers.

The upper 8 bits of DMATCR always read 0. The write value, also, should always be 0.

The value after a power-on reset and in standby mode is undefined.

| Bit:           | 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                | _   | 1   | _   | _   | _   | 1   | _   | _   |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R   | R   | R   | R   | R   | R   | R   | R   |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | _   | _   | _   | _   | _   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | _   | _   | _   | _   | _   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | _   | _   | _   | _   | _   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

## 10.2.4 DMA Channel Control Registers 0-3 (CHCR0-CHCR3)

DMA channel control registers 0–3 (CHCR0–CHCR3) are 32-bit readable/writable registers that designate the operation and transmission of each channel. CHCR register bits are initialized to H'00000000 by a power-on reset and in standby mode.

| Bit:           | 31 | 30 | 29 | 28                | 27  | 26  | 25    | 24                |
|----------------|----|----|----|-------------------|-----|-----|-------|-------------------|
|                | _  | 1  | _  | DI                |     |     | _     | RO                |
| Initial value: | 0  | 0  | 0  | 0                 | 0   | 0   | 0     | 0                 |
| R/W:           | R  | R  | R  | R/W* <sup>2</sup> | R   | R   | R     | R/W* <sup>2</sup> |
| Bit:           | 23 | 22 | 21 | 20                | 19  | 18  | 17    | 16                |
|                |    | 1  | _  | RS4               | RS3 | RS2 | RS1   | RS0               |
| Initial value: | 0  | 0  | 0  | 0                 | 0   | 0   | 0     | 0                 |
| R/W:           | R  | R  | R  | R/W               | R/W | R/W | R/W*1 | R/W               |

| Bit:           | 15 | 14 | 13  | 12  | 11  | 10  | 9       | 8   |
|----------------|----|----|-----|-----|-----|-----|---------|-----|
|                | _  | 1  | SM1 | SM0 | 1   |     | DM1     | DM0 |
| Initial value: | 0  | 0  | 0   | 0   | 0   | 0   | 0       | 0   |
| R/W:           | R  | R  | R/W | R/W | R   | R   | R/W     | R/W |
| Bit:           | 7  | 6  | 5   | 4   | 3   | 2   | 1       | 0   |
|                |    | 1  | TS1 | TS0 | TM  | E   | TE      | DE  |
| Initial value: | 0  | 0  | 0   | 0   | 0   | 0   | 0       | 0   |
| R/W:           | R  | R  | R/W | R/W | R/W | R/W | R/(W)*1 | R/W |

Notes: \*1. TE bit: Allows only a 0 write after reading 1.

- Bits 31–29, 27–25, 23–21, 15, 14, 11, 10, 7, 6—Reserved: These bits are always read as 0, and should only be written with 0.
- Bit 28—Direct/Indirect Select (DI): Specifies either direct address mode operation or indirect address mode operation for the channel 3 source address. This bit is valid only in CHCR3. It always reads 0 in CHCR0–CHCR2, and should always be written with 0.

| Bit 28: DI | Description                                  |                 |
|------------|----------------------------------------------|-----------------|
| 0          | Direct access mode operation for channel 3   | (Initial value) |
| 1          | Indirect access mode operation for channel 3 |                 |

• Bit 24—Source Address Reload (RO): Selects whether to reload the source address initial value during channel 2 transfer. This bit is valid only for channel 2. It always reads 0 in CHCR0, CHCR1, and CHCR3, and should always be written with 0.

| Bit 24: RO | Description                    |                 |
|------------|--------------------------------|-----------------|
| 0          | Does not reload source address | (Initial value) |
| 1          | Reloads source address         |                 |

<sup>\*2.</sup> The DI and RO bits may be absent, depending on the channel.

Bits 20–16—Resource Select 4–0 (RS4–RS0): These bits specify the transfer request source.

| Bit 20: RS4 | Bit 19: RS3 | Bit 18: RS2 | Bit 17: RS1 | Bit 16: RS0 | Description                 |
|-------------|-------------|-------------|-------------|-------------|-----------------------------|
| 0           | 0           | 0           | 0           | 0           | No request* (Initial value) |
|             |             |             |             | 1           | SCI0 transmission           |
|             |             |             | 1           | 0           | SCI0 reception              |
|             |             |             |             | 1           | SCI1 transmission           |
|             |             | 1           | 0           | 0           | SCI1 reception              |
|             |             |             |             | 1           | SCI2 transmission           |
|             |             |             | 1           | 0           | SCI2 reception              |
|             |             |             |             | 1           | SCI3 transmission           |
|             | 1           | 0           | 0           | 0           | SCI3 reception              |
|             |             |             |             | 1           | SCI4 transmission           |
|             |             |             | 1           | 0           | SCI4 reception              |
|             |             |             |             | 1           | On-chip A/D0                |
|             |             | 1           | 0           | 0           | On-chip A/D1                |
|             |             |             |             | 1           | On-chip A/D2                |
|             |             |             | 1           | 0           | No request*                 |
|             |             |             |             | 1           | HCAN0 (RM0)                 |
| 1           | 0           | 0           | 0           | 0           | No request*                 |
|             |             |             |             | 1           | ATU-II (ICI0A)              |
|             |             |             | 1           | 0           | ATU-II (ICI0B)              |
|             |             |             |             | 1           | ATU-II (ICI0C)              |
|             |             | 1           | 0           | 0           | ATU-II (ICI0D)              |
|             |             |             |             | 1           | ATU-II (CMI6A)              |
|             |             |             | 1           | 0           | ATU-II (CMI6B)              |
|             |             |             |             | 1           | ATU-II (CMI6C)              |
|             | 1           | 0           | 0           | 0           | ATU-II (CMI6D)              |
|             |             |             |             | 1           | ATU-II (CMI7A)              |
|             |             |             | 1           | 0           | ATU-II (CMI7B)              |
|             |             |             |             | 1           | ATU-II (CMI7C)              |
|             |             | 1           | 0           | 0           | ATU-II (CMI7D)              |
|             |             |             |             | 1           | No request*                 |
|             |             |             | 1           | 0           | No request*                 |
|             |             |             |             | 1           | Auto-request                |

Note: \* Setting prohibited. For details, see No.12 in section 10.5, Usage Notes.

• Bits 13 and 12—Source Address Mode 1, 0 (SM1, SM0): These bits specify increment/decrement of the DMA transfer source address.

| Bit 13: SM1 | Bit 12: SM0 | Description                                                                                        |                 |
|-------------|-------------|----------------------------------------------------------------------------------------------------|-----------------|
| 0           | 0           | Source address fixed                                                                               | (Initial value) |
| 0           | 1           | Source address incremented (+1 during 8-bit tranduring 16-bit transfer, +4 during 32-bit transfer) | nsfer, +2       |
| 1           | 0           | Source address decremented (–1 during 8-bit traduring 16-bit transfer, –4 during 32-bit transfer)  | ınsfer, –2      |
| 1           | 1           | Setting prohibited                                                                                 |                 |

When the transfer source is specified at an indirect address, specify in source address register 3 (SAR3) the actual storage address of the data to be transferred as the data storage address (indirect address).

During indirect address mode, SAR3 obeys the SM1/SM0 setting for increment/decrement. In this case, SAR3's increment/decrement is fixed at +4/-4 or 0, irrespective of the transfer data size specified by TS1 and TS0.

• Bits 9 and 8—Destination Address Mode 1, 0 (DM1, DM0): These bits specify increment/decrement of the DMA transfer source address.

| Bit 9: DM1 | Bit 8: DM0 | Description                                                                                                      |  |
|------------|------------|------------------------------------------------------------------------------------------------------------------|--|
| 0          | 0          | Destination address fixed (Initial value)                                                                        |  |
| 0          | 1          | Destination address incremented (+1 during 8-bit transfer, +2 during 16-bit transfer, +4 during 32-bit transfer) |  |
| 1          | 0          | Destination address decremented (–1 during 8-bit transfer, –2 during 16-bit transfer, –4 during 32-bit transfer) |  |
| 1          | 1          | Setting prohibited                                                                                               |  |

• Bits 5 and 4—Transfer Size 1, 0 (TS1, TS0): These bits specify the size of the data for transfer.

| Bit 5: TS1 | Bit 4: TS0 | Description                       |                 |
|------------|------------|-----------------------------------|-----------------|
| 0          | 0          | Specifies byte size (8 bits)      | (Initial value) |
| 0          | 1          | Specifies word size (16 bits)     |                 |
| 1          | 0          | Specifies longword size (32 bits) |                 |
| 1          | 1          | Setting prohibited                |                 |

• Bit 3—Transfer Mode (TM): Specifies the bus mode for data transfer.

| Bit 3: TM | Description      |                 |
|-----------|------------------|-----------------|
| 0         | Cycle-steal mode | (Initial value) |
| 1         | Burst mode       | _               |

• Bit 2—Interrupt Enable (IE): When this bit is set to 1, interrupt requests are generated after the number of data transfers specified in DMATCR (when TE = 1).

| Bit 2: IE | Description                                                          |                                  |
|-----------|----------------------------------------------------------------------|----------------------------------|
| 0         | Interrupt request not generated on completion of number of transfers | DMATCR-specified (Initial value) |
| 1         | Interrupt request enabled on completion of DMAT of transfers         | TCR-specified number             |

• Bit 1—Transfer End (TE): This bit is set to 1 after the number of data transfers specified by DMATCR. At this time, if the IE bit is set to 1, an interrupt request is generated. If data transfer ends before TE is set to 1 (for example, due to an NMI or address error, or clearing of the DE bit or DME bit of DMAOR) TE is not set to 1. With this bit set to 1, data transfer is disabled even if the DE bit is set to 1.

| Bit 1: TE | Description                                             |                 |
|-----------|---------------------------------------------------------|-----------------|
| 0         | DMATCR-specified number of transfers not completed      | (Initial value) |
|           | [Clearing condition]                                    |                 |
|           | 0 write after TE = 1 read, power-on reset, standby mode |                 |
| 1         | DMATCR-specified number of transfers completed          |                 |

• Bit 0—DMAC Enable (DE): DE enables operation in the corresponding channel.

| Bit 0: DE | Description                                     |                 |
|-----------|-------------------------------------------------|-----------------|
| 0         | Operation of the corresponding channel disabled | (Initial value) |
| 1         | Operation of the corresponding channel enabled  |                 |

Transfer is initiated if this bit is set to 1 when auto-request is specified (RS4–RS0 settings). With an on-chip module request, when a transfer request occurs after this bit is set to 1, transfer is initiated. If this bit is cleared during a data transfer, transfer is suspended.

If the DE bit has been set, but TE = 1, then if the DME bit of DMAOR is 0, and the NMIF or AE bit of DMAOR is 1, the transfer enable state is not entered.

### 10.2.5 DMAC Operation Register (DMAOR)

DMAOR is a 16-bit readable/writable register that controls the overall operation of the DMAC.

Register values are initialized to H'0000 by a power-on reset and in standby mode.

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10     | 9      | 8   |
|----------------|----|----|----|----|----|--------|--------|-----|
|                | _  | _  | _  | _  | _  | _      | _      | _   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0   |
| R/W:           | R  | R  | R  | R  | R  | R      | R      | R   |
|                |    |    |    |    |    |        |        |     |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2      | 1      | 0   |
|                | _  | _  | _  | _  | _  | AE     | NMIF   | DME |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0      | 0      | 0   |
| R/W:           | R  | R  | R  | R  | R  | R/(W)* | R/(W)* | R/W |

Note: \*0 write only is valid after 1 is read at the AE and NMIF bits.

- Bits 15–3—Reserved: These bits are always read 0 and should always be written with 0.
- Bit 2—Address Error Flag (AE): Indicates that an address error has occurred during DMA transfer. If this bit is set during a data transfer, transfers on all channels are suspended. The CPU cannot write a 1 to the AE bit. Clearing is effected by a 0 write after a 1 read.

| Bit 2: AE | Description                            |                 |
|-----------|----------------------------------------|-----------------|
| 0         | No address error, DMA transfer enabled | (Initial value) |
|           | [Clearing condition]                   |                 |
|           | Write $AE = 0$ after reading $AE = 1$  |                 |
| 1         | Address error, DMA transfer disabled   |                 |
|           | [Setting condition]                    |                 |
|           | Address error due to DMAC              |                 |

• Bit 1—NMI Flag (NMIF): Indicates input of an NMI. This bit is set irrespective of whether the DMAC is operating or suspended. If this bit is set during a data transfer, transfers on all channels are suspended. The CPU is unable to write a 1 to the NMIF. Clearing is effected by a 0 write after a 1 read.

| Bit 1: NMIF | Description                             |                 |
|-------------|-----------------------------------------|-----------------|
| 0           | No NMI interrupt, DMA transfer enabled  | (Initial value) |
|             | [Clearing condition]                    |                 |
|             | Write NMIF = 0 after reading NMIF = 1   |                 |
| 1           | NMI has occurred, DMC transfer disabled |                 |
|             | [Setting condition]                     |                 |
|             | NMI interrupt occurrence                |                 |

• Bit 0—DMAC Master Enable (DME): This bit enables activation of the entire DMAC. When the DME bit and DE bit of the CHCR register for the corresponding channel are set to 1, that channel is transfer-enabled. If this bit is cleared during a data transfer, transfers on all channels are suspended.

Even when the DME bit is set, when the TE bit of CHCR is 1, or its DE bit is 0, transfer is disabled if the NMIF or AE bit in DMAOR is set to 1.

| Bit 0: DME | Description                        |                 |
|------------|------------------------------------|-----------------|
| 0          | Operation disabled on all channels | (Initial value) |
| 1          | Operation enabled on all channels  | _               |

### 10.3 Operation

When there is a DMA transfer request, the DMAC starts the transfer according to the channel priority order; when the transfer end conditions are satisfied, it ends the transfer. Transfers can be requested in two modes: auto-request and on-chip peripheral module request. Transfer is performed only in dual address mode, and either direct or indirect address transfer mode can be used. The bus mode can be either burst or cycle-steal.

#### 10.3.1 DMA Transfer Flow

After the DMA source address registers (SAR), DMA destination address registers (DAR), DMA transfer count register (DMATCR), DMA channel control registers (CHCR), and DMA operation register (DMAOR) are set to the desired transfer conditions, the DMAC transfers data according to the following procedure:

- 1. The DMAC checks to see if transfer is enabled (DE = 1, DME = 1, TE = 0, NMIF = 0, AE = 0).
- 2. When a transfer request comes and transfer has been enabled, the DMAC transfers 1 transfer unit of data (determined by the TS0 and TS1 setting). For an auto-request, the transfer begins automatically when the DE bit and DME bit are set to 1. The DMATCR value will be decremented by 1 upon each transfer. The actual transfer flows vary by address mode and bus mode.
- 3. When the specified number of transfers have been completed (when DMATCR reaches 0), the transfer ends normally. If the IE bit of CHCR is set to 1 at this time, a DEI interrupt is sent to the CPU.
- 4. When an address error occurs in the DMAC or an NMI interrupt is generated, the transfer is aborted. Transfer is also aborted when the DE bit of CHCR or the DME bit of DMAOR is cleared to 0

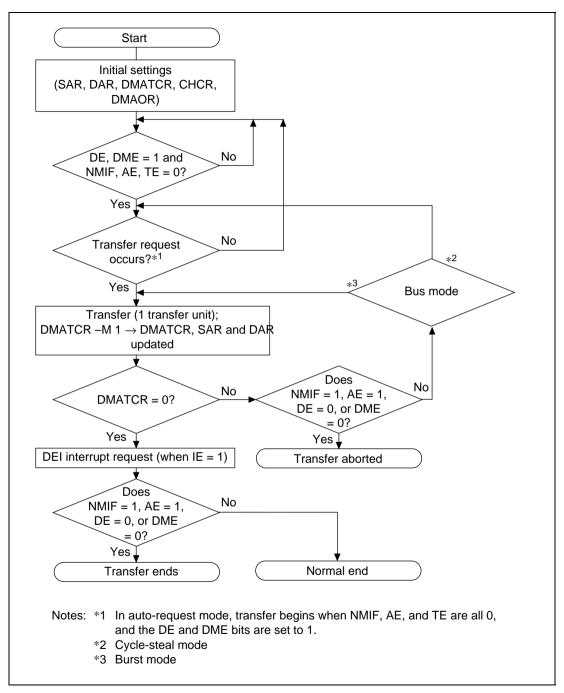



Figure 10.2 DMAC Transfer Flowchart

#### 10.3.2 DMA Transfer Requests

DMA transfer requests are generated in either the data transfer source or destination. Transfers can be requested in two modes: auto-request and on-chip peripheral module request. The request mode is selected in the RS4–RS0 bits of DMA channel control registers 0–3 (CHCR0–CHCR3).

**Auto-Request Mode:** When there is no transfer request signal from an external source, as in a memory-to-memory transfer or a transfer between memory and an on-chip peripheral module unable to request a transfer, the auto-request mode allows the DMAC to automatically generate a transfer request signal internally. When the DE bits of CHCR0–CHCR3 and the DME bit of DMAOR are set to 1, the transfer begins (so long as the TE bits of CHCR0–CHCR3 and the NMIF and AE bits of DMAOR are all 0).

On-Chip Peripheral Module Request Mode: In this mode a transfer is performed at the transfer request signal (interrupt request signal) of an on-chip peripheral module. As indicated in table 10.2, there are 26 transfer request signals: 12 from the advanced timer unit (ATU-II), which are compare match or input capture interrupts; the receive data full interrupts (RXI) and transmit data empty interrupts (TXI) of the five serial communication interfaces (SCI); the receive interrupt of HCAN0; and the A/D conversion end interrupts (ADI) of the three A/D converters. When DMA transfers are enabled (DE = 1, DME = 1, TE = 0, NMIF = 0, AE = 0), a transfer is performed upon the input of a transfer request signal.

When the transfer request is set to RXI (transfer request because the SCI's receive data register is full), the transfer source must be the SCI's receive data register (RDR). When the transfer request is set to TXI (transfer request because the SCI's transmit data register is empty), the transfer destination must be the SCI's transmit data register (TDR). If the transfer request is set to the A/D converter, the data transfer source must be the A/D converter register; if set to HCANO, the transfer source must be HCANO message data.

Table 10.2 Selecting On-Chip Peripheral Module Request Modes with the RS Bits

| DC4          | Dea        | Dea        | DC4        | Dea    | DMAC<br>Transfer<br>Request | DMAC Transfer                                           | Transfer            | Transfer                | Dua Mada                    |
|--------------|------------|------------|------------|--------|-----------------------------|---------------------------------------------------------|---------------------|-------------------------|-----------------------------|
| <b>RS4</b> 0 | <b>RS3</b> | <b>RS2</b> | <b>RS1</b> | 1<br>1 | SCI0<br>transmit<br>block   | TXI0 (SCI0 transmit-<br>data-empty transfer<br>request) | Source  Donít care* | <b>Destination</b> TDR0 | Bus Mode Burst/cycle- steal |
|              |            |            | 1          | 0      | SCI0<br>receive<br>block    | RXI0 (SCI0 receivedata-full transfer request)           | RDR0                | Donít care*             | Burst/cycle-<br>steal       |
|              |            |            |            | 1      | SCI1<br>transmit<br>block   | TXI1 (SCI1 transmit-<br>data-empty transfer<br>request) | Donit care*         | TDR1                    | Burst/cycle-<br>steal       |
|              |            | 1          | 0          | 0      | SCI1<br>receive<br>block    | RXI1 (SCI1 receive-<br>data-full transfer<br>request)   | RDR1                | Donít care*             | Burst/cycle-<br>steal       |
|              |            |            |            | 1      | SCI2<br>transmit<br>block   | TXI2 (SCI2 transmit-<br>data-empty transfer<br>request) | Donit care*         | TDR2                    | Burst/cycle-<br>steal       |
|              |            |            | 1          | 0      | SCI2<br>receive<br>block    | RXI2 (SCI2 receive-<br>data-full transfer<br>request)   | RDR2                | Donít care*             | Burst/cycle-<br>steal       |
|              |            |            |            | 1      | SCI3<br>transmit<br>block   | TXI3 (SCI3 transmit-<br>data-empty transfer<br>request) | Donít care*         | TDR3                    | Burst/cycle-<br>steal       |
|              | 1          | 0          | 0          | 0      | SCI3<br>receive<br>block    | RXI3 (SCI3 receive-<br>data-full transfer<br>request)   | RDR3                | Donít care*             | Burst/cycle-<br>steal       |
|              |            |            |            | 1      | SCI4<br>transmit<br>block   | TXI4 (SCI4 transmit-<br>data-empty transfer<br>request) | Donit care*         | TDR4                    | Burst/cycle-<br>steal       |
|              |            |            | 1          | 0      | SCI4<br>receive<br>block    | RXI4 (SCI4 receivedata-full transfer request)           | RDR4                | Donít care*             | Burst/cycle-<br>steal       |
|              |            |            |            | 1      | A/D0                        | ADI0 (A/D0<br>conversion end<br>interrupt)              | ADDR0–<br>ADDR11    | Donít care*             | Burst/cycle-<br>steal       |
|              |            | 1          | 0          | 0      | A/D1                        | ADI1 (A/D1<br>conversion end<br>interrupt)              | ADDR12–<br>ADDR23   | Donít care*             | Burst/cycle-<br>steal       |
|              |            |            |            | 1      | A/D2                        | ADI2 (A/D2<br>conversion end<br>interrupt)              | ADDR24–<br>ADDR31   | Donít care*             | Burst/cycle-<br>steal       |
|              |            |            | 1          | 1      | HCAN0                       | RM0 (HCAN0 receive interrupt)                           | MD0-MD15            | Donít care*             | Burst/cycle-<br>steal       |

 Table 10.2
 Selecting On-Chip Peripheral Module Request Modes with the RS Bits (cont)

| RS4 | RS3 | RS2 | RS1 | RS0 | DMAC<br>Transfer<br>Request<br>Source | DMAC Transfer<br>Request Signal         | Transfer<br>Source | Transfer<br>Destination | Bus Mode              |
|-----|-----|-----|-----|-----|---------------------------------------|-----------------------------------------|--------------------|-------------------------|-----------------------|
| 1   | 0   | 0   | 0   | 1   | ATU-II                                | ICI0A (ICR0A input capture generation)  | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     | 1   | 0   | ATU-II                                | ICI0B (ICR0B input capture generation)  | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     |     | 1   | ATU-II                                | ICIOC (ICROC input capture generation)  | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     | 1   | 0   | 0   | ATU-II                                | ICI0D (ICR0D input capture generation)  | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     |     | 1   | ATU-II                                | CMI6A (CYLR6A compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     | 1   | 0   | ATU-II                                | CMI6B (CYLR6B compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     |     | 1   | ATU-II                                | CMI6C (CYLR6C compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     | 1   | 0   | 0   | 0   | ATU-II                                | CMI6D (CYLR6D compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     |     | 1   | ATU-II                                | CMI7A (CYLR7A compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     | 1   | 0   | ATU-II                                | CMI7B (CYLR7B compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     |     |     | 1   | ATU-II                                | CMI7C (CYLR7C compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |
|     |     | 1   | 0   | 0   | ATU-II                                | CMI7D (CYLR7D compare-match generation) | Donít care*        | Donít care*             | Burst/cycle-<br>steal |

SCI0, SCI1, SCI2, SCI3, SCI4: Serial communication interface channels 0-4

A/D0, A/D1, A/D2: A/D converter channels 0–2 HCAN0: Controller area network channel 0

ATU-II: Advanced timer unit

TDR0, TDR1, TDR2, TDR3, TDR4: SCI0–SCI4 transmit data registers RDR0, RDR1, RDR2, RDR3, RDR4: SCI0–SCI4 receive data registers

ADDR0-ADDR11: A/D0 data registers ADDR12-ADDR23: A/D1 data registers ADDR24-ADDR31: A/D2 data registers MD0-MD15: HCAN0 message data

Note: \* External memory, memory-mapped external device, on-chip memory, on-chip peripheral module (excluding DMAC, BSC, and UBC)

#### 10.3.3 Channel Priority

When the DMAC receives simultaneous transfer requests on two or more channels, it selects a channel according to the following priority order:

• CH0 > CH1 > CH2 > CH3

#### 10.3.4 DMA Transfer Types

The DMAC supports the transfers shown in table 10.3. It operates in dual address mode, in which both the transfer source and destination addresses are output. The dual address mode consists of a direct address mode, in which the output address value is the object of a direct data transfer, and an indirect address mode, in which the output address value is not the object of the data transfer, but the value stored at the output address becomes the transfer object address. The actual transfer operation timing varies with the bus mode. The DMAC has two bus modes: cycle-steal mode and burst mode.

Table 10.3 Supported DMA Transfers

|                               | Transfer Destination |                                  |                   |                              |  |  |
|-------------------------------|----------------------|----------------------------------|-------------------|------------------------------|--|--|
| Transfer Source               | External<br>Memory   | Memory-Mapped<br>External Device | On-Chip<br>Memory | On-Chip<br>Peripheral Module |  |  |
| External memory               | Supported            | Supported                        | Supported         | Supported                    |  |  |
| Memory-mapped external device | Supported            | Supported                        | Supported         | Supported                    |  |  |
| On-chip memory                | Supported            | Supported                        | Supported         | Supported                    |  |  |
| On-chip peripheral module     | Supported            | Supported                        | Supported         | Supported                    |  |  |

#### 10.3.5 Dual Address Mode

Dual address mode is used for access of both the transfer source and destination by address. Transfer source and destination can be accessed either internally or externally. Dual address mode is subdivided into two other modes: direct address transfer mode and indirect address transfer mode.

**Direct Address Transfer Mode:** Data is read from the transfer source during the data read cycle, and written to the transfer destination during the write cycle, so transfer is conducted in two bus cycles. At this time, the transfer data is temporarily stored in the DMAC. With the kind of external memory transfer shown in figure 10.3, data is read from one of the memories by the DMAC during a read cycle, then written to the other external memory during the subsequent write cycle. Figure 10.4 shows the timing for this operation.

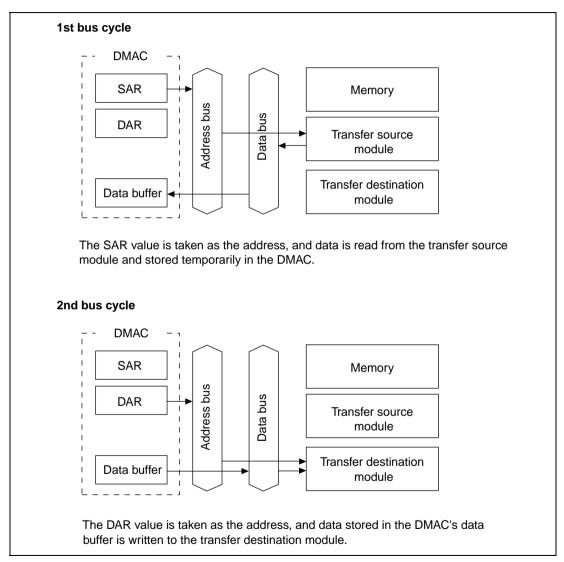
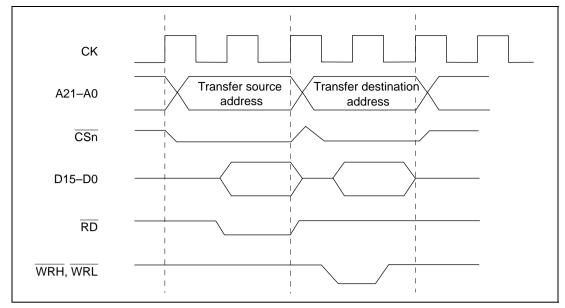
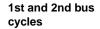
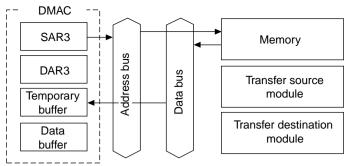


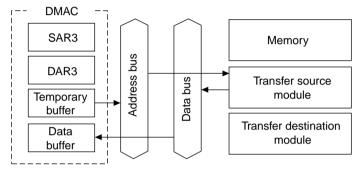

Figure 10.3 Direct Address Operation in Dual Address Mode



Figure 10.4 Direct Address Transfer Timing in Dual Address Mode

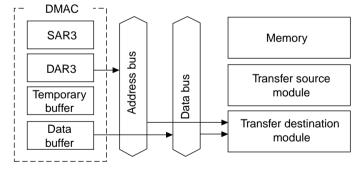
**Indirect Address Transfer Mode:** In this mode the memory address storing the data actually to be transferred is specified in the DMAC internal transfer source address register (SAR3). Therefore, in indirect address transfer mode, the DMAC internal transfer source address register value is read first. This value is first stored in the DMAC. Next, the read value is output as the address, and the value stored at that address is again stored in the DMAC. Finally, the subsequent read value is written to the address specified by the transfer destination address register, ending one cycle of DMAC transfer.

In indirect address mode (figure 10.5), the transfer destination, transfer source, and indirect address storage destination are all 16-bit external memory locations, and transfer in this example is conducted in 16-bit or 8-bit units. Timing for this transfer example is shown in figure 10.6.


In indirect address mode, one NOP cycle (figure 10.6) is required until the data read as the indirect address is output to the address bus. When transfer data is 32-bit, the third and fourth bus cycles each need to be doubled, giving a required total of six bus cycles and one NOP cycle for the whole operation.






The SAR3 value is taken as the address, memory data is read, and the value is stored in the temporary buffer. Since the value read at this time is used as the address, it must be 32 bits. If data bus is 16 bits wide when accessed to an external memory space, two bus cycles are necessary.

### 3rd bus cycle



The value in the temporary buffer is taken as the address, and data is read from the transfer source module to the data buffer.

### 4th bus cycle



The DAR3 value is taken as the address, and the value in the data buffer is written to the transfer destination module.

Note: Memory, transfer source, and transfer destination modules are shown here. In practice, any connection can be made as long as it is within the address space.

Figure 10.5 Dual Address Mode and Indirect Address Operation (16-Bit-Width External Memory Space)

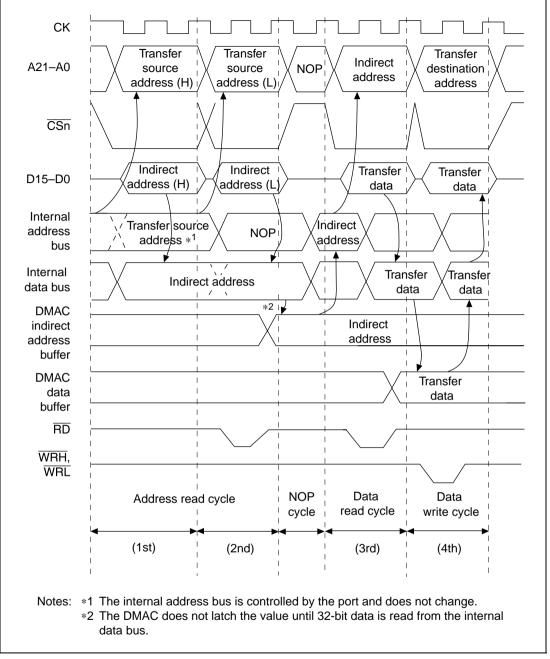



Figure 10.6 Dual Address Mode and Indirect Address Transfer Timing Example 1

External Memory Space → External Memory Space

(External memory space has 16-bit width)

Figure 10.7 shows an example of timing in indirect address mode when transfer source and indirect address storage locations are in internal memory, the transfer destination is an on-chip peripheral module with 2-cycle access space, and transfer data is 8-bit.

Since the indirect address storage destination and the transfer source are in internal memory, these can be accessed in one cycle. The transfer destination is 2-cycle access space, so two data write cycles are required. One NOP cycle is required until the data read as the indirect address is output to the address bus.

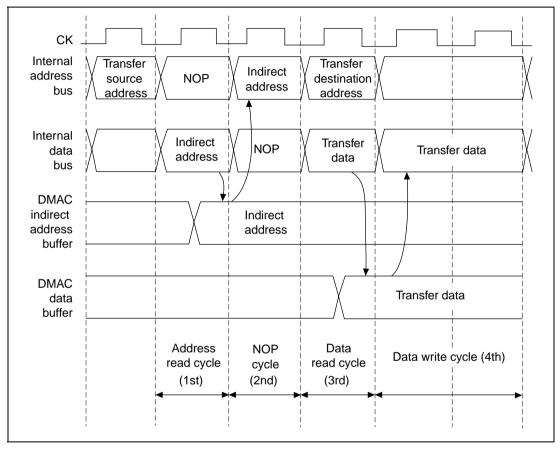



Figure 10.7 Dual Address Mode and Indirect Address Transfer Timing Example 2
Internal Memory Space → Internal Memory Space

### **10.3.6** Bus Modes

Select the appropriate bus mode in the TM bits of CHCR0–CHCR3. There are two bus modes: cycle-steal and burst.

**Cycle-Steal Mode:** In cycle-steal mode, the bus right is given to another bus master after each one-transfer-unit (8-bit, 16-bit, or 32-bit) DMAC transfer. When the next transfer request occurs, the bus right is obtained from the other bus master and a transfer is performed for one transfer unit. When that transfer ends, the bus right is passed to the other bus master. This is repeated until the transfer end conditions are satisfied.

Cycle-steal mode can be used with all categories of transfer destination, transfer source and transfer request. Figure 10.8 shows an example of DMA transfer timing in cycle-steal mode.

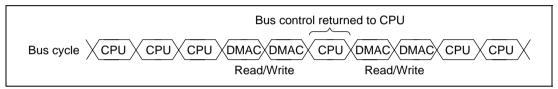



Figure 10.8 DMA Transfer Timing Example in Cycle-Steal Mode

**Burst Mode:** Once the bus right is obtained, transfer is performed continuously until the transfer end condition is satisfied.

Figure 10.9 shows an example of DMA transfer timing in burst mode.




Figure 10.9 DMA Transfer Timing Example in Burst Mode

## 10.3.7 Relationship between Request Modes and Bus Modes by DMA Transfer Category

Table 10.4 shows the relationship between request modes and bus modes by DMA transfer category.

Table 10.4 Relationship between Request Modes and Bus Modes by DMA Transfer Category

| Address<br>Mode | Transfer Category                                               | Request<br>Mode   | Bus*⁵<br>Mode | Transfer<br>Size (Bits) | Usable<br>Channels |
|-----------------|-----------------------------------------------------------------|-------------------|---------------|-------------------------|--------------------|
| Dual            | External memory and external memory                             | Any*1             | B/C           | 8/16/32                 | 0–3                |
|                 | External memory and memory-mapped external device               | Any*1             | B/C           | 8/16/32                 | 0–3                |
|                 | Memory-mapped external device and memory-mapped external device | Any*1             | B/C           | 8/16/32                 | 0–3                |
|                 | External memory and on-chip memory                              | Any*1             | B/C           | 8/16/32                 | 0–3                |
|                 | External memory and on-chip peripheral module                   | Any* <sup>2</sup> | B/C*3         | 8/16/32*4               | 0–3                |
|                 | Memory-mapped external device and on-chip memory                | Any*1             | B/C           | 8/16/32                 | 0–3                |
|                 | Memory-mapped external device and on-chip peripheral module     | Any* <sup>2</sup> | B/C*3         | 8/16/32*4               | 0–3                |
|                 | On-chip memory and on-chip memory                               | Any*1             | B/C           | 8/16/32                 | 0–3                |
|                 | On-chip memory and on-chip peripheral module                    | Any* <sup>2</sup> | B/C*3         | 8/16/32*4               | 0–3                |
|                 | On-chip peripheral module and on-chip†peripheral module         | Any* <sup>2</sup> | B/C*3         | 8/16/32*4               | 0–3                |

B: Burst, C: Cycle-steal

Notes: \*1 Auto-request or on-chip peripheral module request enabled. However, in the case of an on-chip peripheral module request, it is not possible to specify the SCI, HCANO, or A/D converter for the transfer request source.

- \*2 Auto-request or on-chip peripheral module request possible. However, if the transfer request source is also the SCI, HCAN0, or A/D converter, the transfer source or transfer destination must be same as the transfer source.
- \*3 When the transfer request source is the SCI, only cycle-steal mode is possible.
- \*4 Access size permitted by the on-chip peripheral module register that is the transfer source or transfer destination.

### 10.3.8 Bus Mode and Channel Priorities

If, for example, a transfer request is issued for channel 0 while transfer is in progress on lower-priority channel 1 in burst mode, transfer is started immediately on channel 0.

In this case, if channel 0 is set to burst mode, channel 1 transfer is continued after completion of all transfers on channel 0. If channel 0 is set to cycle-steal mode, channel 1 transfer is continued only if a channel 0 transfer request has not been issued; if a transfer request is issued, channel 0 transfer is started immediately.

### 10.3.9 Source Address Reload Function

Channel 2 has a source address reload function. This returns to the first value set in the source address register (SAR2) every four transfers by setting the RO bit of CHCR2 to 1. Figure 10.10 illustrates this operation. Figure 10.11 is a timing chart for use of channel 2 only with the following transfer conditions set: burst mode, auto-request, 16-bit transfer data size, SAR2 incremented. DAR2 fixed, reload function on.

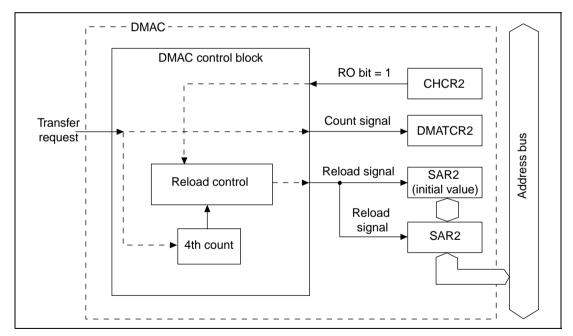



Figure 10.10 Source Address Reload Function

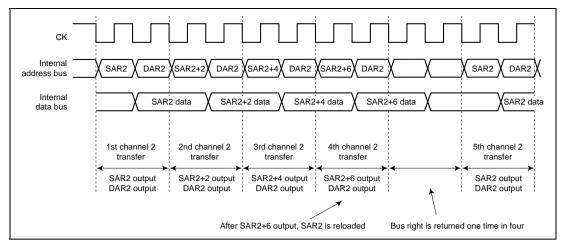



Figure 10.11 Source Address Reload Function Timing Chart

The reload function can be executed whether the transfer data size is 8, 16, or 32 bits.

DMATCR2, which specifies the number of transfers, is decremented by 1 at the end of every single-transfer-unit transfer, regardless of whether the reload function is on or off. Therefore, when using the reload function in the on state, a multiple of 4 must be specified in DMATCR2. Operation will not be guaranteed if any other value is set. Also, the counter which counts the occurrence of four transfers for address reloading is reset by clearing of the DME bit in DMAOR or the DE bit in CHCR2, setting of the transfer end flag (the TE bit in CHCR2), NMI input, and setting of the AE flag (address error generation in DMAC transfer), as well as by a reset and in software standby mode, but SAR2, DAR2, DMATCR2, and other registers are not reset. Consequently, when one of these sources occurs, there is a mixture of initialized counters and uninitialized registers in the DMAC, and incorrect operation may result if a restart is executed in this state. Therefore, when one of the above sources, other than TE setting, occurs during use of the address reload function, SAR, DAR2, and DMATCR2 settings must be carried out before reexecution.

### 10.3.10 DMA Transfer Ending Conditions

The DMA transfer ending conditions vary for individual channels ending and for all channels ending together.

**Individual Channel Ending Conditions:** There are two ending conditions. A transfer ends when the value of the channel's DMA transfer count register (DMATCR) is 0, or when the DE bit of the channel's CHCR is cleared to 0.

- When DMATCR is 0: When the DMATCR value becomes 0 and the corresponding channel's DMA transfer ends, the transfer end flag bit (TE) is set in CHCR. If the IE (interrupt enable) bit has been set, a DMAC interrupt (DEI) request is sent to the CPU.
- When DE of CHCR is 0: Software can halt a DMA transfer by clearing the DE bit in the channel's CHCR. The TE bit is not set when this happens.

Conditions for Ending on All Channels Simultaneously: Transfers on all channels end when the NMIF (NMI flag) bit or AE (address error flag) bit is set to 1 in DMAOR, or when the DME bit in DMAOR is cleared to 0.

• When the NMIF or AE bit is set to 1 in DMAOR: When an NMI interrupt or DMAC address error occurs, the NMIF or AE bit is set to 1 in DMAOR and all channels stop their transfers. The DMAC obtains the bus right, and if these flags are set to 1 during execution of a transfer, DMAC halts operation when the transfer processing currently being executed ends, and transfers the bus right to the other bus master. Consequently, even if the NMIF or AE bit is set to 1 during a transfer, the DMA source address register (SAR), designation address register (DAR), and transfer count register (DMATCR) are all updated. The TE bit is not set. To resume the transfers after NMI interrupt or address error processing, the NMIF or AE flag must be cleared. To avoid restarting a transfer on a particular channel, clear its DE bit to 0 in CHCR.

When the processing of a one-unit transfer is complete: In a dual address mode direct address transfer, even if an address error occurs or the NMI flag is set during read processing, the transfer will not be halted until after completion of the following write processing. In such a case, SAR, DAR, and DMATCR values are updated. In the same manner, the transfer is not halted in indirect address transfers until after the final write processing has ended.

• When DME is cleared to 0 in DMAOR: Clearing the DME bit to 0 in DMAOR aborts the transfers on all channels. The TE bit is not set.

### 10.3.11 DMAC Access from CPU

The space addressed by the DMAC is 3-cycle space. Therefore, when the CPU becomes the bus master and accesses the DMAC, a minimum of three basic clock cycles are required for one bus cycle. Also, since the DMAC is located in word space, while a word-size access to the DMAC is completed in one bus cycle, a longword-size access is automatically divided into two word accesses, requiring two bus cycles (six basic clock cycles). These two bus cycles are executed consecutively; a different bus cycle is never inserted between the two word accesses. This applies to both write accesses and read accesses.

# 10.4 Examples of Use

### 10.4.1 Example of DMA Transfer between On-Chip SCI and External Memory

In this example, on-chip serial communication interface channel 0 (SCI0) receive data is transferred to external memory using DMAC channel 0.

Table 10.5 indicates the transfer conditions and the set values of each of the registers.

Table 10.5 Transfer Conditions and Register Set Values for Transfer between On-chip SCI and External Memory

| Transfer Conditions                             | Register | Value      |
|-------------------------------------------------|----------|------------|
| Transfer source: RDR0 of on-chip SCI0           | SAR0     | H'FFFFF005 |
| Transfer destination: external memory           | DAR0     | H'00400000 |
| Transfer count: 64 times                        | DMATCR0  | H'00000040 |
| Transfer source address: fixed                  | CHCR0    | H'00020105 |
| Transfer destination address: incremented       |          |            |
| Transfer request source: SCI0 (RDR0)            |          |            |
| Bus mode: cycle-steal                           |          |            |
| Transfer unit: byte                             |          |            |
| Interrupt request generation at end of transfer |          |            |
| DMAC master enable on                           | DMAOR    | H'0001     |

# 10.4.2 Example of DMA Transfer between A/D Converter and On-Chip Memory (Address Reload On)

In this example, on-chip A/D converter channel 0 is the transfer source and on-chip memory is the transfer destination, and the address reload function is on.

Table 10.6 indicates the transfer conditions and the set values of each of the registers.

Table 10.6 Transfer Conditions and Register Set Values for Transfer between A/D Converter and On-Chip Memory

| Transfer Conditions                               | Register | Value      |
|---------------------------------------------------|----------|------------|
| Transfer source: on-chip A/D converter ch1 (A/D1) | SAR2     | H'FFFFF820 |
| Transfer destination: on-chip memory              | DAR2     | H'FFFF6000 |
| Transfer count: 128 times (reload count 32 times) | DMATCR2  | H'00000080 |
| Transfer source address: incremented              | CHCR2    | H'010C110D |
| Transfer destination address: incremented         | _        |            |
| Transfer request source: A/D converter ch1 (A/D1) | _        |            |
| Bus mode: burst                                   | _        |            |
| Transfer unit: byte                               | _        |            |
| Interrupt request generation at end of transfer   | _        |            |
| DMAC master enable on                             | DMAOR    | H'0001     |

When address reload is on, the SAR2 value returns to its initially set value every four transfers. In the above example, when a transfer request is input from the A/D1, the byte-size data is first read in from the H'FFFF820 register of on-chip A/D1 and that data is written to internal address H'FFFF6000. Because a byte-size transfer was performed, the SAR2 and DAR2 values at this point are H'FFFF821 and H'FFFF6001, respectively. Also, because this is a burst transfer, the bus right remains secured, so continuous data transfer is possible.

When four transfers are completed, if address reload is off, execution continues with the fifth and sixth transfers and the SAR2 value continues to increment from H'FFFF824 to H'FFFF825 to H'FFFF826 and so on. However, when address reload is on, DMAC transfer is halted upon completion of the fourth transfer and the bus right request signal to the CPU is cleared. At this time, the value stored in SAR2 is not H'FFFFF823  $\rightarrow$  H'FFFFF824, but H'FFFF823  $\rightarrow$  H'FFFFF820, a return to the initially set address. The DAR2 value always continues to be decremented regardless of whether address reload is on or off.

The DMAC internal status, due to the above operation after completion of the fourth transfer, is indicated in table 10.7 for both address reload on and off.

Table 10.7 DMAC Internal Status

| Item                               | Address Reload On | Address Reload Off   |
|------------------------------------|-------------------|----------------------|
| SAR2                               | H'FFFFF820        | H'FFFFF824           |
| DAR2                               | H'FFFF6004        | H'FFFF6004           |
| DMATCR2                            | H'0000007C        | H'0000007C           |
| Bus right                          | Released          | Retained             |
| DMAC operation                     | Halted            | Processing continues |
| Interrupts                         | Not issued        | Not issued           |
| Transfer request source flag clear | Executed          | Not executed         |

- Notes: 1. Interrupts are executed until the DMATCR2 value becomes 0, and if the IE bit of CHCR2 is set to 1, are issued regardless of whether address reload is on or off.
  - 2. If transfer request source flag clears are executed until the DMATCR2 value becomes 0, they are executed regardless of whether address reload is on or off.
  - 3. Designate burst mode when using the address reload function. There are cases where abnormal operation will result if it is used in cycle-steal mode.
  - 4. Designate a multiple of four for the DMATCR2 value when using the address reload function. There are cases where abnormal operation will result if anything else is designated.

To execute transfers after the fifth transfer when address reload is on, have the transfer request source issue another transfer request signal.

# 10.4.3 Example of DMA Transfer between External Memory and SCI1 Transmitting Side (Indirect Address on)

In this example, DMAC channel 3 is used, indirect address designated external memory is the transfer source, and the SCI1 transmitting side is the transfer destination.

Table 10.8 indicates the transfer conditions and the set values of each of the registers.

Table 10.8 Transfer Conditions and Register Set Values for Transfer between External Memory and SCI1 Transmitting Side

| Transfer Conditions                                | Register    | Value      |
|----------------------------------------------------|-------------|------------|
| Transfer source: external memory                   | SAR3        | H'00400000 |
| Value stored in address H'00400000                 | _           | H'00450000 |
| Value stored in address H'00450000                 | _           | H'55       |
| Transfer destination: on-chip SCI TDR1             | DAR3        | H'FFFFF00B |
| Transfer count: 10 times                           | DMATCR3     | H'0000000A |
| Transfer source address: incremented               | CHCR3       | H'10031001 |
| Transfer destination address: fixed                |             |            |
| Transfer request source: SCI1 (TDR1)               | <del></del> |            |
| Bus mode: cycle-steal                              |             |            |
| Transfer unit: byte                                |             |            |
| Interrupt request not generated at end of transfer | <del></del> |            |
| DMAC master enable on                              | DMAOR       | H'0001     |

When indirect address mode is on, the data stored in the address set in SAR is not used as the transfer source data. In the case of indirect addressing, the value stored in the SAR address is read, then that value is used as the address and the data read from that address is used as the transfer source data, then that data is stored in the address designated by DAR.

In the table 10.8 example, when a transfer request from TDR1 of SCI1 is generated, a read of the address located at H'00400000, which is the value set in SAR3, is performed first. The data H'00450000 is stored at this H'00400000 address, and the DMAC first reads this H'00450000 value. It then uses this read value of H'00450000 as an address and reads the value of H'55 that is stored in the H'00450000 address. It then writes the value H'55 to address H'FFFFF00B designated by DAR3 to complete one indirect address transfer.

With indirect addressing, the first executed data read from the address set in SAR3 always results in a longword size transfer regardless of the TS0 and TS1 bit designations for transfer data size. However, the transfer source address fixed and increment or decrement designations are according to the SM0 and SM1 bits. Consequently, despite the fact that the transfer data size designation is byte in this example, the SAR3 value at the end of one transfer is H'00400004. The write operation is exactly the same as an ordinary dual address transfer write operation.

## 10.5 Usage Notes

- 1. Only word (16-bit) access can be used on the DMA operation register (DMAOR). All other registers can be accessed in word (16-bit) or longword (32-bit) units.
- 2. When rewriting the RS0–RS4 bits of CHCR0–CHCR3, first clear the DE bit to 0 (clear the DE bit to 0 before modifying CHCR).
- 3. When an NMI interrupt is input, the NMIF bit of DMAOR is set even when the DMAC is not operating.
- 4. Clear the DME bit of DMAOR to 0 and make certain that any transfer request processing accepted by the DMAC has been completed before entering standby mode.
- 5. Do not access the DMAC, BSC, or UBC on-chip peripheral modules from the DMAC.
- 6. When activating the DMAC, make the CHCR settings as the final step. Abnormal operation may result if any other registers are set last.
- 7. After the DMATCR count becomes 0 and the DMA transfer ends normally, always write 0 to DMATCR, even when executing the maximum number of transfers on the same channel. Abnormal operation may result if this is not done.
- 8. Designate burst mode as the transfer mode when using the address reload function. Abnormal operation may result in cycle-steal mode.
- 9. Designate a multiple of four for the DMATCR value when using the address reload function, otherwise abnormal operation may result.
- 10. Do not access empty DMAC register addresses. Operation cannot be guaranteed when empty addresses are accessed.
- 11. If DMAC transfer is aborted by NMIF or AE setting, or DME or DE clearing, during DMAC execution with address reload on, the SAR2, DAR2, and DMATCR2 settings should be made before re-executing the transfer. The DMAC may not operate correctly if this is not done.
- 12. Do not set the DE bit to 1 while bits RS0 to RS4 in CHCR0 to CHCR3 are still set to "no request."

# Section 11 Advanced Timer Unit-II (ATU-II)

### 11.1 Overview

The SH7055SF has an on-chip advanced timer unit-II (ATU-II) with one 32-bit timer channel and eleven 16-bit timer channels.

#### 11.1.1 Features

ATU-II features are summarized below.

- Capability to process up to 65 pulse inputs and outputs
- Prescaler
- Input clock to channels 0 and 10 scaled in 1 stage, input clock to channels 1 to 8 and 11 scaled in 2 stages
- 1/1 to 1/32 clock scaling possible in initial stage for channels 0 to 8, 10, and 11
- 1/1, 1/2, 1/4, 1/8, 1/16, or 1/32 scaling possible in second stage for channels 1 to 8 and 11
- External clock TCLKA, TCLKB selection also possible for channels 1 to 5 and 11
- Channels 1 to 5 enable TI10 pin input, multiple the TI10 pin input (correction), and select AGCK and AGCKM.
- Channel 0 has four 32-bit input capture lines, allowing the following operations:
- Rising-edge, falling-edge, or both-edge detection selectable
- DMAC can be activated at capture timing
- Channel 10 compare-match signal can be captured as a trigger
- Interval interrupt generation function generates three interval interrupts as selected. CPU interruption or A/D converter (AD0, 1, 2) activation possible
- Capture interrupt and counter overflow interrupt can be generated
- Channel 1 has one 16-bit output compare register, eight general registers, and one dedicated
  input capture register. The output compare register can also be selected for one-shot pulse
  offset in combination with the channel 8 down-counter.
- General registers (GR1A-H) can be used as input capture or output compare registers
- Waveform output by means of compare-match: Selection of 0 output, 1 output, or toggle output
- Input capture function: Rising-edge, falling-edge, or both-edge detection
- Channel 0 input signal (TI0A) can be captured as trigger
- Provision for forcible cutoff of channel 8 down-counters (DCNT8A-H)
- Compare-match interrupts/capture interrupts and counter overflow interrupts can be generated

- Channel 2 has eight 16-bit output compare registers, eight general registers, and one dedicated input capture register. The output compare registers can also be selected for one-shot pulse offset in combination with the channel 8 down-counter.
- General registers (GR2A–H) can be used as input capture or output compare registers
- Waveform output by means of compare-match: Selection of 0 output, 1 output, or toggle output
- Input capture function: Rising-edge, falling-edge, or both-edge detection
- Channel 0 input signal (TI0A) can be captured as trigger
- Provision for forcible cutoff of channel 8 down-counters (DCNT8I to P)
- Compare-match interrupts/capture interrupts and counter overflow interrupts can be generated
- Channels 3 to 5 each have four general registers, allowing the following operations:
- Selection of input capture, output compare, PWM mode
- Waveform output by means of compare-match: Selection of 0 output, 1 output, or toggle output
- Input capture function: Rising-edge, falling-edge, or both-edge detection
- Channel 9 compare-match signal can be captured as trigger (channel 3 only)
- Compare-match interrupts/capture interrupts can be generated
- Channels 6 and 7 have four 16-bit duty registers, four cycle registers, and four buffer registers, allowing the following operations:
  - Any cycle and duty from 0 to 100% can be set
  - Duty buffer register value transferred to duty register every cycle
  - Interrupts can be generated every cycle
  - Complementary PWM output can be set (channel 6 only)
- Channel 8 has sixteen 16-bit down-counters for one-shot pulse output, allowing the following operations:
  - One-shot pulse generation by down-counter
  - Down-counter can be rewritten during count
  - Interrupt can be generated at end of down-count
  - Offset one-shot pulse function available
  - Can be linked to channel 1 and 2 output compare functions
  - Reload function can be set to eight 16-bit down counters (DCNT8I to DCNT8P)
- Channel 9 has six event counters and six general registers, allowing the following operations:
  - Event counters can be cleared by compare-match
  - Rising-edge, falling-edge, or both-edge detection available for external input
  - Compare-match signal can be input to channel 3

- Channel 10 has a 32-bit output compare and input capture register, free-running counter, 16-bit free-running counter, output compare/input capture register, reload register, 8-bit event counter, and output compare register, and one 16-bit reload counter, allowing the following operations:
  - Capture on external input pin edge input
  - Reload count possible with 1/32, 1/64, 1/128, or 1/256 times the captured value
  - Internal clock generated by reload counter underflow can be used as 16-bit free-running counter input
  - Channels 1 and 2 free-running counter clearing capability
- Channel 11 has one 16-bit free-running counter and two 16-bit general registers, allowing the following operations:
  - Two general registers can be used for input capture/output compare
  - Waveform output at compare match: 0 output, 1 output, and toggle output selectable
  - Input capture function: Detection at rising edge, falling edge, and both edges
  - Compare-match signal can be output at the APC by using a general register as a output compare register
- High-speed access to internal 16-bit bus
  - High-speed access to 16-bit bus for 16-bit registers: timer counters, compare registers, and capture registers
- 75 interrupt sources
  - Four input capture interrupt requests, one overflow interrupt request, and one interval interrupt request for channel 0
  - Sixteen dual input capture/compare-match interrupt requests and two counter overflow interrupt requests for channels 1 and 2
  - Twelve dual input capture/compare-match interrupt requests and three overflow interrupt requests for channels 3 to 5
  - Eight compare-match interrupts for channels 6 and 7
  - Sixteen one-shot end interrupt requests for channel 8
  - Six compare-match interrupts for channel 9
  - Two compare-match interrupts and one dual-function input capture/compare-match interrupt for channel 10
  - Two dual input capture/compare-match interrupt requests and one overflow interrupt request for channel 11
- Direct memory access controller (DMAC) activation
  - The DMAC can be activated by a channel 0 input capture interrupt (ICI0A–D)
  - The DMAC can be activated by a channel 6 cycle register 6 compare-match interrupt (CMI6A–D)
  - The DMAC can be activated by a channel 7 cycle register 7 compare-match interrupt (CMI7A–D)

- A/D converter activation
  - The A/D converter can be activated by detection of 1 in bits ITVA6–13 of the channel 0 interval interrupt request registers (ITVRR1, ITVRR2A, ITVRR2B)

Table 11.1 lists the functions of the ATU-II.

**Table 11.1 ATU-II Functions** 

| Item                                              |                          | Channel 0                                                                                                                  | Channel 1                                                                                                               | Channel 2                                                                                       | Channels 3-5                                                                                                                           |
|---------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Counter                                           | Clock                    | ф-ф/32                                                                                                                     | (φ-φ/32) × (1/2n)                                                                                                       | (φ-φ/32) × (1/2n)                                                                               | (φ-φ/32) × (1/2n)                                                                                                                      |
| configu-<br>ration                                | sources                  |                                                                                                                            | (n = 0-5)                                                                                                               | (n = 0-5)                                                                                       | (n = 0-5)                                                                                                                              |
| ration                                            |                          |                                                                                                                            | TCLKA, TCLKB,<br>AGCK, AGCKM                                                                                            | TCLKA, TCLKB,<br>AGCK, AGCKM                                                                    | TCLKA, TCLKB,<br>AGCK, AGCKM                                                                                                           |
|                                                   | Counters                 | TCNT0H, TCNT0L                                                                                                             | TCNT1A, TCNT1B                                                                                                          | TCNT2A, TCNT2B                                                                                  | TCNT3-5                                                                                                                                |
|                                                   | General registers        | _                                                                                                                          | GR1A–H                                                                                                                  | GR2A–H                                                                                          | GR3A-D, GR4A-D,<br>GR5A-D                                                                                                              |
|                                                   | Dedicated input capture  | ICR0AH, ICR0AL,<br>ICR0BH, ICR0BL,<br>ICR0CH, ICR0CL,<br>ICR0DH, ICR0DL                                                    | OSBR1                                                                                                                   | OSBR2                                                                                           | _                                                                                                                                      |
|                                                   | Dedicated output compare | _                                                                                                                          | OCR1                                                                                                                    | OCR2A-2H                                                                                        | _                                                                                                                                      |
|                                                   | PWM<br>output            | _                                                                                                                          | _                                                                                                                       | _                                                                                               | Duty: GR3A-C,<br>GR4A-C, GR5A-C                                                                                                        |
|                                                   |                          |                                                                                                                            |                                                                                                                         |                                                                                                 | Cycle: GR3D, GR4D, GR5D                                                                                                                |
| Input pins                                        |                          | TI0A-D                                                                                                                     | _                                                                                                                       | _                                                                                               | _                                                                                                                                      |
| I/O pins                                          |                          | _                                                                                                                          | TIO1A-H                                                                                                                 | TIO2A–H                                                                                         | TIO3A-D, TIO4A-D,<br>TIO5A-D                                                                                                           |
| Output pin                                        | S                        | _                                                                                                                          | _                                                                                                                       | _                                                                                               | _                                                                                                                                      |
| Counter cl<br>function                            | earing                   | _                                                                                                                          | _                                                                                                                       | _                                                                                               | 0                                                                                                                                      |
| Interrupt se                                      | ources                   | 6 sources                                                                                                                  | 9 sources                                                                                                               | 9 sources                                                                                       | 15 sources                                                                                                                             |
|                                                   |                          | $\begin{aligned} &\text{Interval} \times 1, \\ &\text{input capture} \times 4, \\ &\text{overflow} \times 1 \end{aligned}$ | $\begin{array}{l} \text{Dual input capture/} \\ \text{compare-match} \times 8, \\ \text{overflow} \times 1 \end{array}$ | Dual input capture/ compare-match $\times$ 8, overflow $\times$ 1*                              | $\begin{array}{l} \text{Dual input capture/} \\ \text{compare-match} \times \text{12,} \\ \text{overflow} \times \text{3} \end{array}$ |
|                                                   |                          |                                                                                                                            |                                                                                                                         | (* Same vector)                                                                                 |                                                                                                                                        |
| Inter-channel and inter-module connection signals |                          | A/D converter<br>activation by interval<br>interrupt request,<br>DMAC activation by<br>input capture                       | to channel 8 one-shot pulse                                                                                             | Compare-match<br>signal trigger output<br>to channel 8<br>one-shot pulse<br>output down-counter | Channel 9 compare-<br>match signal input to<br>capture trigger<br>(Channel 3 only)                                                     |
|                                                   |                          | interrupt, channel 10<br>compare-match<br>signal capture trigger<br>input                                                  | match signal counter                                                                                                    | -Channel 10 compare<br>match signal counter<br>clear input                                      |                                                                                                                                        |

**Table 11.1 ATU-II Functions (cont)** 

| Item                                                              |                         | Channels 6, 7                                                         | Channel 8                                            | Channel 9                        | Channel 10                                                                                                                                  | Channel 11                        |
|-------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------|------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Counter configu-ration                                            | Clock<br>sources        | $(\phi - \phi/32) \times (1/2n)$<br>(n = 0-5)                         | $(\phi - \phi/32) \times (1/2n)$<br>(n = 0-5)        | _                                | (φ-φ/32)                                                                                                                                    | (φ-φ/32) ×<br>(1/2n)<br>(n = 0-5) |
| Input pins I/O pins Output pins Counter cle function Interrupt so |                         | ,                                                                     | ,                                                    |                                  |                                                                                                                                             | TCLKA, TCLKB                      |
|                                                                   | Counters                | TCNT6A-D,<br>TCNT7A-D                                                 | DCNT8A-P                                             | ECNT9A-F                         | TCNT10AH,<br>TCNT10AL,<br>TCNT10B-H                                                                                                         | TCNT11                            |
|                                                                   | General registers       | _                                                                     | _                                                    | _                                | _                                                                                                                                           | GR11A, GR11B                      |
|                                                                   | Dedicated input capture | _                                                                     | _                                                    | _                                | ICR10AH,<br>ICR10AL                                                                                                                         | _                                 |
|                                                                   | Dedicated               | _                                                                     | _                                                    | GR9A-F                           | GR10G                                                                                                                                       | _                                 |
|                                                                   | output<br>compare       |                                                                       |                                                      |                                  | OCR10AH,<br>OCR10AL,<br>OCR10B,<br>NCR10,<br>TCCLR10                                                                                        |                                   |
|                                                                   | PWM<br>output           | CYLR6A-D,<br>CYLR7A-D,<br>DTR6A-D,<br>DTR7A-D,<br>BFR6A-D,<br>BFR7A-D | _                                                    | _                                | _                                                                                                                                           | _                                 |
| Input pins                                                        |                         | _                                                                     | _                                                    | TI9A-F                           | TI10                                                                                                                                        | _                                 |
| I/O pins                                                          |                         | _                                                                     | _                                                    | _                                | _                                                                                                                                           | TIO11A, TIO11B                    |
| Output pins                                                       | S                       | TO6A–D,<br>TO7A–D                                                     | TO8A-P                                               | _                                | _                                                                                                                                           | _                                 |
|                                                                   | earing                  | 0                                                                     | _                                                    | 0                                | 0                                                                                                                                           | _                                 |
| Interrupt so                                                      | ources                  | 8 sources                                                             | 16 sources                                           | 6 sources                        | 3 sources                                                                                                                                   | 3 sources                         |
|                                                                   |                         |                                                                       | Underflow × 16                                       |                                  | $ \begin{array}{l} \text{Compare-match} \\ \times  2,  \text{dual input} \\ \text{capture/compare} \\ \text{match}  \times  1 \end{array} $ | capture/compare-                  |
|                                                                   | le                      | DMAC activation<br>compare-match<br>signal output                     | compare-match<br>signal trigger<br>input to one-shot | signal channel 3 capture trigger | Compare-match<br>signal channel 0<br>capture trigger<br>output                                                                              |                                   |
|                                                                   |                         |                                                                       | pulse output<br>down-counter                         |                                  | Channel 1 and 2 counter clear output                                                                                                        |                                   |

O: Available

-: Not available

## 11.1.2 Pin Configuration

Table 11.2 shows the pin configuration of the ATU-II. When these external pin functions are used, the pin function controller (PFC) should also be set in accordance with the ATU-II settings. If there are a number of pins with the same function, make settings so that only one of the pins is used. For details, see section 20, Pin Function Controller (PFC).

**Table 11.2 ATU-II Pins** 

| Channel | Name                            | Abbreviation | I/O              | Function                                       |
|---------|---------------------------------|--------------|------------------|------------------------------------------------|
| Common  | Clock input A                   | TCLKA        | Input            | External clock A input pin                     |
|         | Clock input B                   | TCLKB        | Input            | External clock B input pin                     |
| 0       | Input capture 0A                | TIOA         | Input            | ICR0AH, ICR0AL input capture input pin         |
|         | Input capture 0B                | TI0B         | Input            | ICR0BH, ICR0BL input capture input pin         |
|         | Input capture 0C                | TIOC         | Input            | ICR0CH, ICR0CL input capture input pin         |
|         | Input capture 0D                | TIOD         | Input            | ICR0DH, ICR0DL input capture input pin         |
| 1       | Input capture/output compare 1A | TIO1A        | Input/<br>output | GR1A output compare output/input capture input |
|         | Input capture/output compare 1B | TIO1B        | Input/<br>output | GR1B output compare output/input capture input |
|         | Input capture/output compare 1C | TIO1C        | Input/<br>output | GR1C output compare output/input capture input |
|         | Input capture/output compare 1D | TIO1D        | Input/<br>output | GR1D output compare output/input capture input |
|         | Input capture/output compare 1E | TIO1E        | Input/<br>output | GR1E output compare output/input capture input |
|         | Input capture/output compare 1F | TIO1F        | Input/<br>output | GR1F output compare output/input capture input |
|         | Input capture/output compare 1G | TIO1G        | Input/<br>output | GR1G output compare output/input capture input |
|         | Input capture/output compare 1H | TIO1H        | Input/<br>output | GR1H output compare output/input capture input |

Table 11.2 ATU-II Pins (cont)

| Channel | Name                               | Abbreviation | I/O              | Function                                                                 |
|---------|------------------------------------|--------------|------------------|--------------------------------------------------------------------------|
| 2       | Input capture/output compare 2A    | TIO2A        | Input/<br>output | GR2A output compare output/input capture input                           |
|         | Input capture/output compare 2B    | TIO2B        | Input/<br>output | GR2B output compare output/input capture input                           |
|         | Input capture/output compare 2C    | TIO2C        | Input/<br>output | GR2C output compare output/input capture input                           |
|         | Input capture/output compare 2D    | TIO2D        | Input/<br>output | GR2D output compare output/input capture input                           |
|         | Input capture/output compare 2E    | TIO2E        | Input/<br>output | GR2E output compare output/input capture input                           |
|         | Input capture/output compare 2F    | TIO2F        | Input/<br>output | GR2F output compare output/input capture input                           |
|         | Input capture/output compare 2G    | TIO2G        | Input/<br>output | GR2G output compare output/input capture input                           |
|         | Input capture/output compare 2H    | TIO2H        | Input/<br>output | GR2H output compare output/input capture input                           |
| 3       | Input capture/output compare 3A    | TIO3A        | Input/<br>output | GR3A output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 3B    | TIO3B        | Input/<br>output | GR3B output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 3C    | TIO3C        | Input/<br>output | GR3C output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 3D    | TIO3D        | Input/<br>output | GR3D output compare output/input capture input                           |
| 4       | Input capture/output<br>compare 4A | TIO4A        | Input/<br>output | GR4A output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 4B    | TIO4B        | Input/<br>output | GR4B output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 4C    | TIO4C        | Input/<br>output | GR4C output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 4D    | TIO4D        | Input/<br>output | GR4D output compare output/input capture input                           |

Table 11.2 ATU-II Pins (cont)

| Channel | Name                            | Abbreviation | I/O              | Function                                                                 |
|---------|---------------------------------|--------------|------------------|--------------------------------------------------------------------------|
| 5       | Input capture/output compare 5A | TIO5A        | Input/<br>output | GR5A output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 5B | TIO5B        | Input/<br>output | GR5B output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 5C | TIO5C        | Input/<br>output | GR5C output compare output/input capture input/PWM output pin (PWM mode) |
|         | Input capture/output compare 5D | TIO5D        | Input/<br>output | GR5D output compare output/input capture input                           |
| 6       | Output compare 6A               | TO6A         | Output           | PWM output pin                                                           |
|         | Output compare 6B               | TO6B         | Output           | PWM output pin                                                           |
|         | Output compare 6C               | TO6C         | Output           | PWM output pin                                                           |
|         | Output compare 6D               | TO6D         | Output           | PWM output pin                                                           |
| 7       | Output compare 7A               | TO7A         | Output           | PWM output pin                                                           |
|         | Output compare 7B               | ТО7В         | Output           | PWM output pin                                                           |
|         | Output compare 7C               | TO7C         | Output           | PWM output pin                                                           |
|         | Output compare 7D               | TO7D         | Output           | PWM output pin                                                           |
| 8       | One-shot pulse 8A               | TO8A         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8B               | TO8B         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8C               | TO8C         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8D               | TO8D         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8E               | TO8E         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8F               | TO8F         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8G               | TO8G         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8H               | TO8H         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8I               | TO8I         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8J               | TO8J         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8K               | TO8K         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8L               | TO8L         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8M               | TO8M         | Output           | One-shot pulse output pin                                                |
|         | One-shot pulse 8N               | TO8N         | Output           | One-shot pulse output pin                                                |

Table 11.2 ATU-II Pins (cont)

| Channel | Name                             | Abbreviation | I/O              | Function                                        |
|---------|----------------------------------|--------------|------------------|-------------------------------------------------|
| 8       | One-shot pulse 8O                | TO8O         | Output           | One-shot pulse output pin                       |
|         | One-shot pulse 8P                | TO8P         | Output           | One-shot pulse output pin                       |
| 9       | Event input 9A                   | TI9A         | Input            | GR9A event input                                |
|         | Event input 9B                   | TI9B         | Input            | GR9B event input                                |
|         | Event input 9C                   | TI9C         | Input            | GR9C event input                                |
|         | Event input 9D                   | TI9D         | Input            | GR9D event input                                |
|         | Event input 9E                   | TI9E         | Input            | GR9E event input                                |
|         | Event input 9F                   | TI9F         | Input            | GR9F event input                                |
| 10      | Input capture                    | TI10         | Input            | ICR10AH, ICR10AL input capture input            |
| 11      | Input capture/output compare 11A | TIO11A       | Input/<br>output | GR11A output compare output/input capture input |
|         | Input capture/output compare 11B | TIO11B       | Input/<br>output | GR11B output compare output/input capture input |

# 11.1.3 Register Configuration

Table 11.3 summarizes the ATU-II registers.

Table 11.3 ATU-II Registers

| Channel | Name                                         | Abbrevia-<br>tion | R/W | Initial<br>Value | Address    | Access<br>Size (Bits) | Section<br>No. |
|---------|----------------------------------------------|-------------------|-----|------------------|------------|-----------------------|----------------|
| Common  | Timer start register 1                       | TSTR1             | R/W | H'00             | H'FFFFF401 | 8, 16, 32             | 11.2.1         |
|         | Timer start register 2                       | TSTR2             | R/W | H'00             | H'FFFFF400 | <del></del>           |                |
|         | Timer start register 3                       | TSTR3             | R/W | H'00             | H'FFFFF402 | <del>_</del>          |                |
|         | Prescaler register 1                         | PSCR1             | R/W | H'00             | H'FFFFF404 | 8                     | 11.2.2         |
|         | Prescaler register 2                         | PSCR2             | R/W | H'00             | H'FFFFF406 |                       |                |
|         | Prescaler register 3                         | PSCR3             | R/W | H'00             | H'FFFFF408 | <del></del>           |                |
|         | Prescaler register 4                         | PSCR4             | R/W | H'00             | H'FFFFF40A |                       |                |
| 0       | Free-running counter 0H                      | TCNT0H            | R/W | H'0000           | H'FFFFF430 | 32                    | 11.2.15        |
|         | Free-running counter 0L                      | TCNT0L            | R/W | H'0000           | _          |                       |                |
|         | Input capture register 0AH                   | ICR0AH            | R   | H'0000           | H'FFFFF434 | _                     | 11.2.19        |
|         | Input capture register 0AL                   | ICR0AL            | R   | H'0000           | _          |                       |                |
|         | Input capture register<br>0BH                | ICR0BH            | R   | H'0000           | H'FFFFF438 | _                     |                |
|         | Input capture register 0BL                   | ICR0BL            | R   | H'0000           | _          |                       |                |
|         | Input capture register 0CH                   | ICR0CH            | R   | H'0000           | H'FFFFF43C | _                     |                |
|         | Input capture register 0CL                   | ICR0CL            | R   | H'0000           | _          |                       |                |
|         | Input capture register 0DH                   | ICR0DH            | R   | H'0000           | H'FFFFF420 | <del>_</del>          |                |
|         | Input capture register 0DL                   | ICR0DL            | R   | H'0000           | _          |                       |                |
|         | Timer interval interrupt request register 1  | ITVRR1            | R/W | H'00             | H'FFFFF424 | 8                     | 11.2.7         |
|         | Timer interval interrupt request register 2A | ITVRR2A           | R/W | H'00             | H'FFFFF426 | _                     |                |
|         |                                              |                   |     |                  |            |                       | _,             |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                                         | Abbrevia-<br>tion | R/W    | Initial<br>Value | Address    | Access<br>Size (Bits) | Section No. |
|---------|----------------------------------------------|-------------------|--------|------------------|------------|-----------------------|-------------|
| 0       | Timer interval interrupt request register 2B | ITVRR2B           | R/W    | H'00             | H'FFFFF428 | 8                     | 11.2.7      |
|         | Timer I/O control register                   | TIOR0             | R/W    | H'00             | H'FFFFF42A |                       | 11.2.4      |
|         | Timer status register 0                      | TSR0              | R/(W)* | H'0000           | H'FFFFF42C | 16                    | 11.2.5      |
|         | Timer interrupt enable register 0            | TIER0             | R/W    | H'0000           | H'FFFFF42E | _                     | 11.2.6      |
| 1       | Free-running counter 1A                      | TCNT1A            | R/W    | H'0000           | H'FFFFF440 | 16                    | 11.2.15     |
|         | Free-running counter<br>1B                   | TCNT1B            | R/W    | H'0000           | H'FFFFF442 | _                     |             |
|         | General register 1A                          | GR1A              | R/W    | H'FFFF           | H'FFFFF444 | _                     | 11.2.20     |
|         | General register 1B                          | GR1B              | R/W    | H'FFFF           | H'FFFFF446 | _                     |             |
|         | General register 1C                          | GR1C              | R/W    | H'FFFF           | H'FFFFF448 | _                     |             |
|         | General register 1D                          | GR1D              | R/W    | H'FFFF           | H'FFFFF44A | _                     |             |
|         | General register 1E                          | GR1E              | R/W    | H'FFFF           | H'FFFFF44C | _                     |             |
|         | General register 1F                          | GR1F              | R/W    | H'FFFF           | H'FFFFF44E | _                     |             |
|         | General register 1G                          | GR1G              | R/W    | H'FFFF           | H'FFFFF450 | _                     |             |
|         | General register 1H                          | GR1H              | R/W    | H'FFFF           | H'FFFFF452 | _                     |             |
|         | Output compare register 1                    | OCR1              | R/W    | H'FFFF           | H'FFFFF454 | _                     | 11.2.18     |
|         | Offset base register 1                       | OSBR1             | R      | H'0000           | H'FFFFF456 | _                     | 11.2.21     |
|         | Timer I/O control register 1A                | TIOR1A            | R/W    | H'00             | H'FFFFF459 | 8, 16                 | 11.2.4      |
|         | Timer I/O control register 1B                | TIOR1B            | R/W    | H'00             | H'FFFFF458 |                       |             |
|         | Timer I/O control register 1C                | TIOR1C            | R/W    | H'00             | H'FFFFF45B | _                     |             |
|         | Timer I/O control register 1D                | TIOR1D            | R/W    | H'00             | H'FFFFF45A | _                     |             |
|         | Timer control register 1A                    | TCR1A             | R/W    | H'00             | H'FFFFF45D | _                     | 11.2.3      |
|         | Timer control register<br>1B                 | TCR1B             | R/W    | H'00             | H'FFFFF45C |                       |             |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                               | Abbrevia-<br>tion | R/W    | Initial<br>Value    | Address    | Access<br>Size (Bits) | Section<br>No. |
|---------|------------------------------------|-------------------|--------|---------------------|------------|-----------------------|----------------|
| 1       | Timer status register 1A           | TSR1A             | R/(W)* | <sup>¢</sup> H'0000 | H'FFFFF45E | 16                    | 11.2.5         |
|         | Timer status register<br>1B        | TSR1B             | R/(W)* | <sup>¢</sup> H'0000 | H'FFFFF460 |                       |                |
|         | Timer interrupt enable register 1A | TIER1A            | R/W    | H'0000              | H'FFFFF462 |                       | 11.2.6         |
|         | Timer interrupt enable register 1B | TIER1B            | R/W    | H'0000              | H'FFFFF464 |                       |                |
|         | Trigger mode register              | TRGMDR            | R/W    | H'00                | H'FFFFF466 | 8                     | 11.2.8         |
| 2       | Free-running counter 2A            | TCNT2A            | R/W    | H'0000              | H'FFFFF600 | 16                    | 11.2.15        |
|         | Free-running counter 2B            | TCNT2B            | R/W    | H'0000              | H'FFFFF602 |                       |                |
|         | General register 2A                | GR2A              | R/W    | H'FFFF              | H'FFFFF604 | _                     | 11.2.20        |
|         | General register 2B                | GR2B              | R/W    | H'FFFF              | H'FFFFF606 | _                     |                |
|         | General register 2C                | GR2C              | R/W    | H'FFFF              | H'FFFFF608 | _                     |                |
|         | General register 2D                | GR2D              | R/W    | H'FFFF              | H'FFFFF60A | _                     |                |
|         | General register 2E                | GR2E              | R/W    | H'FFFF              | H'FFFFF60C | _                     |                |
|         | General register 2F                | GR2F              | R/W    | H'FFFF              | H'FFFFF60E | _                     |                |
|         | General register 2G                | GR2G              | R/W    | H'FFFF              | H'FFFFF610 | _                     |                |
|         | General register 2H                | GR2H              | R/W    | H'FFFF              | H'FFFFF612 | _                     |                |
|         | Output compare register 2A         | OCR2A             | R/W    | H'FFFF              | H'FFFFF614 | _                     | 11.2.18        |
|         | Output compare register 2B         | OCR2B             | R/W    | H'FFFF              | H'FFFFF616 | _                     |                |
|         | Output compare register 2C         | OCR2C             | R/W    | H'FFFF              | H'FFFFF618 | _                     |                |
|         | Output compare register 2D         | OCR2D             | R/W    | H'FFFF              | H'FFFFF61A |                       |                |
|         | Output compare register 2E         | OCR2E             | R/W    | H'FFFF              | H'FFFFF61C | _                     |                |
|         | Output compare register 2F         | OCR2F             | R/W    | H'FFFF              | H'FFFFF61E |                       |                |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                               | Abbrevia-<br>tion | R/W    | Initial<br>Value | Address    | Access<br>Size (Bits) | Section<br>No. |
|---------|------------------------------------|-------------------|--------|------------------|------------|-----------------------|----------------|
| 2       | Output compare register 2G         | OCR2G             | R/W    | H'FFFF           | H'FFFFF620 | 16                    | 11.2.18        |
|         | Output compare register 2H         | OCR2H             | R/W    | H'FFFF           | H'FFFFF622 | _                     |                |
|         | Offset base register 2             | OSBR2             | R      | H'0000           | H'FFFFF624 | _                     | 11.2.21        |
|         | Timer I/O control register 2A      | TIOR2A            | R/W    | H'00             | H'FFFFF627 | 8, 16                 | 11.2.4         |
|         | Timer I/O control register 2B      | TIOR2B            | R/W    | H'00             | H'FFFFF626 | _                     |                |
|         | Timer I/O control register 2C      | TIOR2C            | R/W    | H'00             | H'FFFFF629 | _                     |                |
|         | Timer I/O control register 2D      | TIOR2D            | R/W    | H'00             | H'FFFFF628 | _                     |                |
|         | Timer control register 2A          | TCR2A             | R/W    | H'00             | H'FFFFF62B | _                     | 11.2.3         |
|         | Timer control register 2B          | TCR2B             | R/W    | H'00             | H'FFFFF62A | _                     |                |
|         | Timer status register 2A           | TSR2A             | R/(W)* | H'0000           | H'FFFFF62C | 16                    | 11.2.5         |
|         | Timer status register 2B           | TSR2B             | R/(W)* | H'0000           | H'FFFFF62E | _                     |                |
|         | Timer interrupt enable register 2A | TIER2A            | R/W    | H'0000           | H'FFFFF630 | _                     | 11.2.6         |
|         | Timer interrupt enable register 2B | TIER2B            | R/W    | H'0000           | H'FFFFF632 | _                     |                |
| 3–5     | Timer status register 3            | TSR3              | R/(W)* | H'0000           | H'FFFFF480 | 16                    | 11.2.5         |
|         | Timer interrupt enable register 3  | TIER3             | R/W    | H'0000           | H'FFFFF482 | _                     | 11.2.6         |
|         | Timer mode register                | TMDR              | R/W    | H'00             | H'FFFFF484 | 8                     | 11.2.9         |
| 3       | Free-running counter 3             | TCNT3             | R/W    | H'0000           | H'FFFFF4A0 | 16                    | 11.2.15        |
|         | General register 3A                | GR3A              | R/W    | H'FFFF           | H'FFFFF4A2 | =                     | 11.2.20        |
|         | General register 3B                | GR3B              | R/W    | H'FFFF           | H'FFFFF4A4 | _                     |                |
|         | General register 3C                | GR3C              | R/W    | H'FFFF           | H'FFFFF4A6 | _                     |                |
|         | General register 3D                | GR3D              | R/W    | H'FFFF           | H'FFFFF4A8 | _                     |                |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                          | Abbrevia-<br>tion | R/W | Initial<br>Value | Address    | Access<br>Size (Bits)                    | Section<br>No. |
|---------|-------------------------------|-------------------|-----|------------------|------------|------------------------------------------|----------------|
| 3       | Timer I/O control register 3A | TIOR3A            | R/W | H'00             | H'FFFFF4AB | 8, 16                                    | 11.2.4         |
|         | Timer I/O control register 3B | TIOR3B            | R/W | H'00             | H'FFFFF4AA | _                                        |                |
|         | Timer control register 3      | TCR3              | R/W | H'00             | H'FFFFF4AC | 8                                        | 11.2.3         |
| 4       | Free-running counter 4        | TCNT4             | R/W | H'0000           | H'FFFFF4C0 | 8 16 8 16 8 16 8 16 8 16 6 9 16 9 16 9 1 | 11.2.15        |
|         | General register 4A           | GR4A              | R/W | H'FFFF           | H'FFFFF4C2 | _                                        | 11.2.20        |
|         | General register 4B           | GR4B              | R/W | H'FFFF           | H'FFFFF4C4 | =                                        |                |
|         | General register 4C           | GR4C              | R/W | H'FFFF           | H'FFFFF4C6 | _                                        |                |
|         | General register 4D           | GR4D              | R/W | H'FFFF           | H'FFFFF4C8 | _                                        |                |
|         | Timer I/O control register 4A | TIOR4A            | R/W | H'00             | H'FFFFF4CB | 8, 16                                    | 11.2.4         |
|         | Timer I/O control register 4B | TIOR4B            | R/W | H'00             | H'FFFFF4CA | _                                        |                |
|         | Timer control register 4      | TCR4              | R/W | H'00             | H'FFFFF4CC | 8                                        | 11.2.3         |
| 5       | Free-running counter 5        | TCNT5             | R/W | H'0000           | H'FFFFF4E0 | 16                                       | 11.2.15        |
|         | General register 5A           | GR5A              | R/W | H'FFFF           | H'FFFFF4E2 | =                                        | 11.2.20        |
|         | General register 5B           | GR5B              | R/W | H'FFFF           | H'FFFFF4E4 | _                                        |                |
|         | General register 5C           | GR5C              | R/W | H'FFFF           | H'FFFFF4E6 | _                                        |                |
|         | General register 5D           | GR5D              | R/W | H'FFFF           | H'FFFFF4E8 | _                                        |                |
|         | Timer I/O control register 5A | TIOR5A            | R/W | H'00             | H'FFFFF4EB | 8, 16                                    | 11.2.4         |
|         | Timer I/O control register 5B | TIOR5B            | R/W | H'00             | H'FFFFF4EA | _                                        |                |
|         | Timer control register 5      | TCR5              | R/W | H'00             | H'FFFFF4EC | 8                                        | 11.2.3         |
| 6       | Free-running counter 6A       | TCNT6A            | R/W | H'0001           | H'FFFFF500 | 16                                       | 11.2.15        |
|         | Free-running counter<br>6B    | TCNT6B            | R/W | H'0001           | H'FFFFF502 | _                                        |                |
|         | Free-running counter 6C       | TCNT6C            | R/W | H'0001           | H'FFFFF504 | _                                        |                |
|         | Free-running counter 6D       | TCNT6D            | R/W | H'0001           | H'FFFFF506 | _                                        |                |
|         | •                             |                   |     |                  |            | <del></del>                              |                |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                              | Abbrevia-<br>tion | R/W    | Initial<br>Value | Address    | Access<br>Size (Bits) | Section<br>No. |
|---------|-----------------------------------|-------------------|--------|------------------|------------|-----------------------|----------------|
| 6       | Cycle register 6A                 | CYLR6A            | R/W    | H'FFFF           | H'FFFFF508 | 16                    | 11.2.22        |
|         | Cycle register 6B                 | CYLR6B            | R/W    | H'FFFF           | H'FFFFF50A | _                     |                |
|         | Cycle register 6C                 | CYLR6C            | R/W    | H'FFFF           | H'FFFFF50C | =                     |                |
|         | Cycle register 6D                 | CYLR6D            | R/W    | H'FFFF           | H'FFFFF50E | _                     |                |
|         | Buffer register 6A                | BFR6A             | R/W    | H'FFFF           | H'FFFFF510 | _                     | 11.2.23        |
|         | Buffer register 6B                | BFR6B             | R/W    | H'FFFF           | H'FFFFF512 | _                     |                |
|         | Buffer register 6C                | BFR6C             | R/W    | H'FFFF           | H'FFFFF514 | =                     |                |
|         | Buffer register 6D                | BFR6D             | R/W    | H'FFFF           | H'FFFFF516 | _                     |                |
|         | Duty register 6A                  | DTR6A             | R/W    | H'FFFF           | H'FFFFF518 | =                     | 11.2.24        |
|         | Duty register 6B                  | DTR6B             | R/W    | H'FFFF           | H'FFFFF51A | =                     |                |
|         | Duty register 6C                  | DTR6C             | R/W    | H'FFFF           | H'FFFFF51C | =                     |                |
|         | Duty register 6D                  | DTR6D             | R/W    | H'FFFF           | H'FFFFF51E | _                     |                |
|         | Timer control register<br>6A      | TCR6A             | R/W    | H'00             | H'FFFFF521 | 8, 16                 | 11.2.3         |
|         | Timer control register<br>6B      | TCR6B             | R/W    | H'00             | H'FFFFF520 | _                     |                |
|         | Timer status register 6           | TSR6              | R/(W)* | H'0000           | H'FFFFF522 | 16                    | 11.2.5         |
|         | Timer interrupt enable register 6 | TIER6             | R/W    | H'0000           | H'FFFFF524 | _                     | 11.2.6         |
|         | PWM mode register                 | PMDR              | R/W    | H'00             | H'FFFFF526 | 8                     | 11.2.10        |
| 7       | Free-running counter 7A           | TCNT7A            | R/W    | H'0001           | H'FFFFF580 | 16                    | 11.2.15        |
|         | Free-running counter 7B           | TCNT7B            | R/W    | H'0001           | H'FFFFF582 | _                     |                |
|         | Free-running counter 7C           | TCNT7C            | R/W    | H'0001           | H'FFFFF584 | _                     |                |
|         | Free-running counter 7D           | TCNT7D            | R/W    | H'0001           | H'FFFFF586 | _                     |                |
|         | Cycle register 7A                 | CYLR7A            | R/W    | H'FFFF           | H'FFFFF588 | _                     | 11.2.22        |
|         | Cycle register 7B                 | CYLR7B            | R/W    | H'FFFF           | H'FFFFF58A | _                     |                |
|         | Cycle register 7C                 | CYLR7C            | R/W    | H'FFFF           | H'FFFFF58C | _                     |                |
|         | Cycle register 7D                 | CYLR7D            | R/W    | H'FFFF           | H'FFFFF58E |                       |                |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                              | Abbrevia-<br>tion | R/W    | Initial<br>Value | Address    | Access<br>Size (Bits) | Section<br>No. |
|---------|-----------------------------------|-------------------|--------|------------------|------------|-----------------------|----------------|
| 7       | Buffer register 7A                | BFR7A             | R/W    | H'FFFF           | H'FFFFF590 | 16                    | 11.2.23        |
|         | Buffer register 7B                | BFR7B             | R/W    | H'FFFF           | H'FFFFF592 | =                     |                |
|         | Buffer register 7C                | BFR7C             | R/W    | H'FFFF           | H'FFFFF594 | =                     |                |
|         | Buffer register 7D                | BFR7D             | R/W    | H'FFFF           | H'FFFFF596 | _                     |                |
|         | Duty register 7A                  | DTR7A             | R/W    | H'FFFF           | H'FFFFF598 | _                     | 11.2.24        |
|         | Duty register 7B                  | DTR7B             | R/W    | H'FFFF           | H'FFFFF59A | _                     |                |
|         | Duty register 7C                  | DTR7C             | R/W    | H'FFFF           | H'FFFFF59C | =                     |                |
|         | Duty register 7D                  | DTR7D             | R/W    | H'FFFF           | H'FFFFF59E | _                     |                |
|         | Timer control register 7A         | TCR7A             | R/W    | H'00             | H'FFFFF5A1 | 8, 16                 | 11.2.3         |
|         | Timer control register 7B         | TCR7B             | R/W    | H'00             | H'FFFFF5A0 | _                     |                |
|         | Timer status register 7           | TSR7              | R/(W)* | H'0000           | H'FFFFF5A2 | 16                    | 11.2.5         |
|         | Timer interrupt enable register 7 | TIER7             | R/W    | H'0000           | H'FFFFF5A4 | _                     | 11.2.6         |
| 8       | Down-counter 8A                   | DCNT8A            | R/W    | H'0000           | H'FFFFF640 | 16                    | 11.2.16        |
|         | Down-counter 8B                   | DCNT8B            | R/W    | H'0000           | H'FFFFF642 | _                     |                |
|         | Down-counter 8C                   | DCNT8C            | R/W    | H'0000           | H'FFFFF644 | _                     |                |
|         | Down-counter 8D                   | DCNT8D            | R/W    | H'0000           | H'FFFFF646 | _                     |                |
|         | Down-counter 8E                   | DCNT8E            | R/W    | H'0000           | H'FFFFF648 | _                     |                |
|         | Down-counter 8F                   | DCNT8F            | R/W    | H'0000           | H'FFFFF64A | _                     |                |
|         | Down-counter 8G                   | DCNT8G            | R/W    | H'0000           | H'FFFFF64C | _                     |                |
|         | Down-counter 8H                   | DCNT8H            | R/W    | H'0000           | H'FFFFF64E | _                     |                |
|         | Down-counter 8I                   | DCNT8I            | R/W    | H'0000           | H'FFFFF650 | _                     |                |
|         | Down-counter 8J                   | DCNT8J            | R/W    | H'0000           | H'FFFFF652 | _                     |                |
|         | Down-counter 8K                   | DCNT8K            | R/W    | H'0000           | H'FFFFF654 | _                     |                |
|         | Down-counter 8L                   | DCNT8L            | R/W    | H'0000           | H'FFFFF656 | _                     |                |
|         | Down-counter 8M                   | DCNT8M            | R/W    | H'0000           | H'FFFFF658 | _                     |                |
|         | Down-counter 8N                   | DCNT8N            | R/W    | H'0000           | H'FFFFF65A | _                     |                |
|         | Down-counter 80                   | DCNT8O            | R/W    | H'0000           | H'FFFFF65C | _                     |                |
|         | Down-counter 8P                   | DCNT8P            | R/W    | H'0000           | H'FFFFF65E |                       |                |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                              | Abbrevia-<br>tion | R/W    | Initial<br>Value | Address    | Access<br>Size (Bits) | Section<br>No. |
|---------|-----------------------------------|-------------------|--------|------------------|------------|-----------------------|----------------|
| 8       | Reload register 8                 | RLDR8             | R/W    | H'0000           | H'FFFFF660 | 16                    | 11.2.25        |
|         | Timer connection register         | TCNR              | R/W    | H'0000           | H'FFFFF662 | _                     | 11.2.12        |
|         | One-shot pulse terminate register | OTR               | R/W    | H'0000           | H'FFFFF664 | _                     | 11.2.13        |
|         | Down-count start register         | DSTR              | R/W    | H'0000           | H'FFFFF666 | _                     | 11.2.11        |
|         | Timer control register 8          | TCR8              | R/W    | H'00             | H'FFFFF668 | 8                     | 11.2.3         |
|         | Timer status register 8           | TSR8              | R/(W)* | H'0000           | H'FFFFF66A | 16                    | 11.2.5         |
|         | Timer interrupt enable register 8 | TIER8             | R/W    | H'0000           | H'FFFFF66C | _                     | 11.2.6         |
|         | Reload enable register            | RLDENR            | R/W    | H'00             | H'FFFFF66E | 8                     | 11.2.14        |
| 9       | Event counter 9A                  | ECNT9A            | R/W    | H'00             | H'FFFFF680 | 8                     | 11.2.17        |
|         | Event counter 9B                  | ECNT9B            | R/W    | H'00             | H'FFFFF682 | =                     |                |
|         | Event counter 9C                  | ECNT9C            | R/W    | H'00             | H'FFFFF684 | =                     |                |
|         | Event counter 9D                  | ECNT9D            | R/W    | H'00             | H'FFFFF686 | =                     |                |
|         | Event counter 9E                  | ECNT9E            | R/W    | H'00             | H'FFFFF688 | =                     |                |
|         | Event counter 9F                  | ECNT9F            | R/W    | H'00             | H'FFFFF68A | =                     |                |
|         | General register 9A               | GR9A              | R/W    | H'FF             | H'FFFFF68C | =                     | 11.2.20        |
|         | General register 9B               | GR9B              | R/W    | H'FF             | H'FFFFF68E | =                     |                |
|         | General register 9C               | GR9C              | R/W    | H'FF             | H'FFFFF690 | =                     |                |
|         | General register 9D               | GR9D              | R/W    | H'FF             | H'FFFFF692 | =                     |                |
|         | General register 9E               | GR9E              | R/W    | H'FF             | H'FFFFF694 | =                     |                |
|         | General register 9F               | GR9F              | R/W    | H'FF             | H'FFFFF696 | _                     |                |
|         | Timer control register 9A         | TCR9A             | R/W    | H'00             | H'FFFFF698 | _                     | 11.2.3         |
|         | Timer control register<br>9B      | TCR9B             | R/W    | H'00             | H'FFFFF69A | _                     |                |
|         | Timer control register<br>9C      | TCR9C             | R/W    | H'00             | H'FFFFF69C | _                     |                |
|         | Timer status register 9           | TSR9              | R/(W)* | H'0000           | H'FFFFF69E | 16                    | 11.2.5         |
|         | Timer interrupt enable register 9 | TIER9             | R/W    | H'0000           | H'FFFFF6A0 | _                     | 11.2.6         |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                          | Abbrevia-<br>tion | R/W | Initial<br>Value | Address    | Access<br>Size (Bits) | Section<br>No. |
|---------|-------------------------------|-------------------|-----|------------------|------------|-----------------------|----------------|
| 10      | Free-running counter 10AH     | TCNT10AH          | R/W | H'0000           | H'FFFFF6C0 | 32                    | 11.2.26        |
|         | Free-running counter 10AL     | TCNT10AL          | R/W | H'0001           | _          |                       |                |
|         | Event counter 10B             | TCNT10B           | R/W | H'00             | H'FFFFF6C4 | 8                     | _              |
|         | Reload counter 10C            | TCNT10C           | R/W | H'0001           | H'FFFFF6C6 | 16                    | _              |
|         | Correction counter<br>10D     | TCNT10D           | R/W | H'00             | H'FFFFF6C8 | 8                     | _              |
|         | Correction angle counter 10E  | TCNT10E           | R/W | H'0000           | H'FFFFF6CA | 16                    | _              |
|         | Correction angle counter 10F  | TCNT10F           | R/W | H'0001           | H'FFFFF6CC | _                     |                |
|         | Free-running counter 10G      | TCNT10G           | R/W | H'0000           | H'FFFFF6CE | _                     |                |
|         | Input capture register 10AH   | ICR10AH           | R   | H'0000           | H'FFFFF6D0 | 32                    | _              |
|         | Input capture register 10AL   | ICR10AL           | R   | H'0000           | _          |                       |                |
|         | Output compare register 10AH  | OCR10AH           | R/W | H'FFFF           | H'FFFFF6D4 | _                     |                |
|         | Output compare register 10AL  | OCR10AL           | R/W | H'FFFF           | _          |                       |                |
|         | Output compare register 10B   | OCR10B            | R/W | H'FF             | H'FFFFF6D8 | 8                     | _              |
|         | Reload register 10C           | RLD10C            | R/W | H'0000           | H'FFFFF6DA | 16                    | _              |
|         | General register 10G          | GR10G             | R/W | H'FFFF           | H'FFFFF6DC | _                     |                |
|         | Noise canceler counter 10H    | TCNT10H           | R/W | H'00             | H'FFFFF6DE | 8                     | _              |
|         | Noise canceler register 10    | NCR10             | R/W | H'FF             | H'FFFFF6E0 | _                     |                |
|         | Timer I/O control register 10 | TIOR10            | R/W | H'00             | H'FFFFF6E2 | _                     |                |
|         | Timer control register 10     | TCR10             | R/W | H'00             | H'FFFFF6E4 |                       |                |

Table 11.3 ATU-II Registers (cont)

| Channel | Name                                 | Abbrevia-<br>tion | R/W    | Initial<br>Value    | Address    | Access<br>Size (Bits) | Section No. |
|---------|--------------------------------------|-------------------|--------|---------------------|------------|-----------------------|-------------|
| 10      | Correction counter clear register 10 | TCCLR10           | R/W    | H'0000              | H'FFFFF6E6 | 16                    | 11.2.26     |
|         | Timer status register<br>10          | TSR10             | R/(W)* | H'0000              | H'FFFFF6E8 | _                     |             |
|         | Timer interrupt enable register 10   | TIER10            | R/W    | H'0000              | H'FFFFF6EA | _                     |             |
| 11      | Free-running counter                 | TCNT11            | R/W    | H'0000              | H'FFFFF5C0 | 16                    | 11.2.15     |
|         | General register 11A                 | GR11A             | R/W    | H'FFFF              | H'FFFFF5C2 | _                     | 11.2.20     |
|         | General register 11B                 | GR11B             | R/W    | H'FFFF              | H'FFFFF5C4 | _                     |             |
|         | Timer I/O control register 11        | TIOR11            | R/W    | H'00                | H'FFFFF5C6 | 8                     | 11.2.4      |
|         | Timer control register               | TCR11             | R/W    | H'00                | H'FFFFF5C8 | _                     | 11.2.3      |
|         | Timer status register<br>11          | TSR11             | R/(W)* | <sup>c</sup> H'0000 | H'FFFFF5CA | 16                    | 11.2.5      |
|         | Timer interrupt enable register 11   | TIER11            | R/W    | H'0000              | H'FFFFF5CC | _                     | 11.2.6      |

Note: \* 0 write after a read

### 11.1.4 Block Diagrams

Overall Block Diagram of ATU-II: Figure 11.1 shows an overall block diagram of the ATU-II.

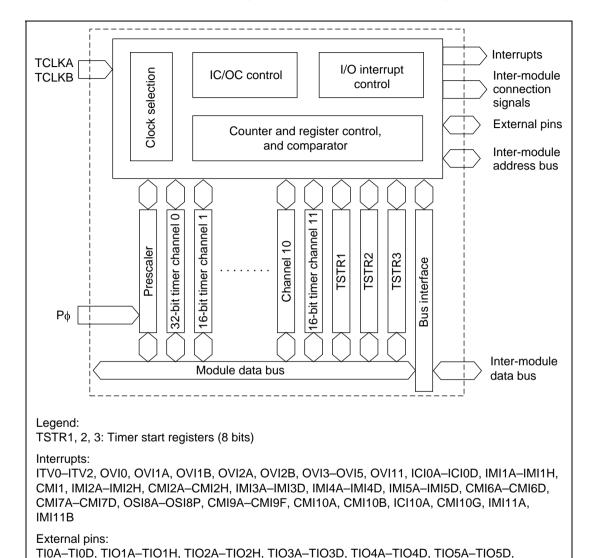



Figure 11.1 Overall Block Diagram of ATU-II

TO6A-TO6D, TO7A-TO7D, TO8A-TO8P, TI9A-TI9F, TI10, TIO11A-TIO11B

Signals to A/D converter, signals to direct memory access controller (DMAC),

Inter-module connection signals:

signals to advanced pulse controller (APC)

**Block Diagram of Channel 0:** Figure 11.2 shows a block diagram of ATU-II channel 0.

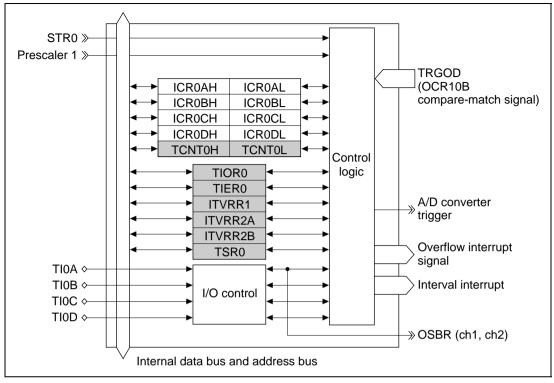



Figure 11.2 Block Diagram of Channel 0

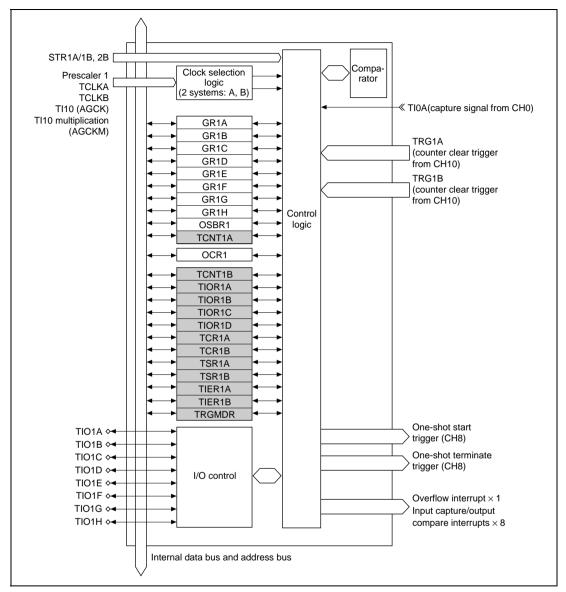



Figure 11.3 Block Diagram of Channel 1

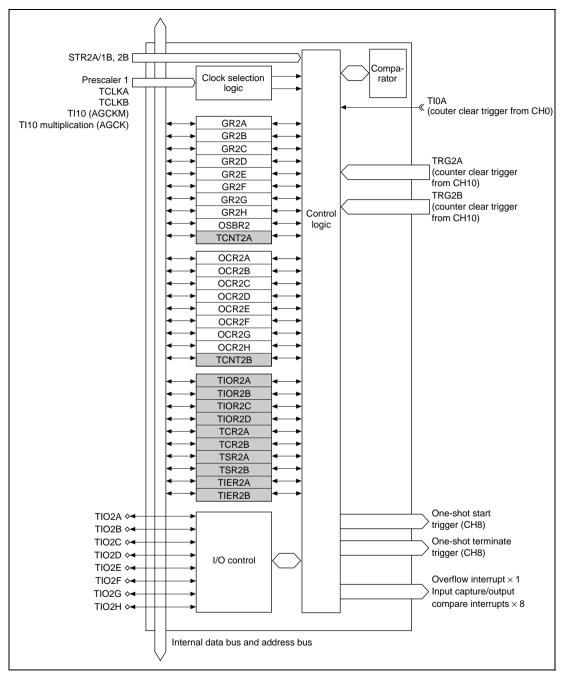



Figure 11.4 Block Diagram of Channel 2

**Block Diagram of Channels 3 to 5:** Figure 11.5 shows a block diagram of ATU-II channels 3, 4, and 5.

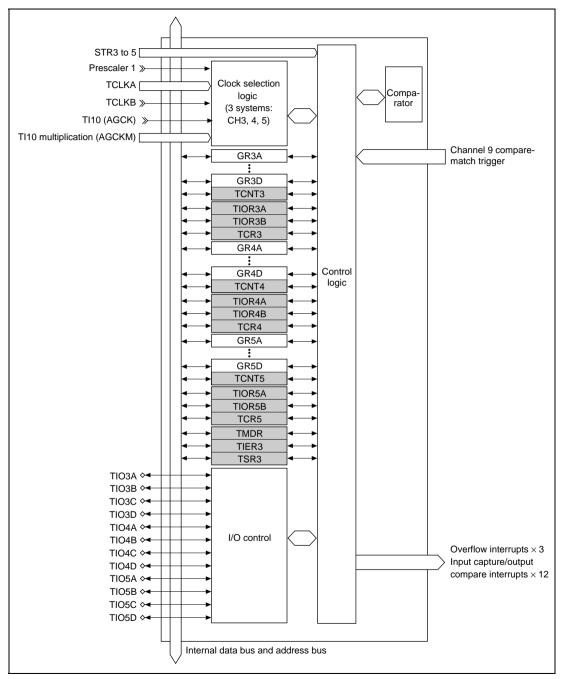



Figure 11.5 Block Diagram of Channels 3 to 5

**Block Diagram of Channels 6 and 7:** Figure 11.6 shows a block diagram of ATU-II channels 6 and 7.

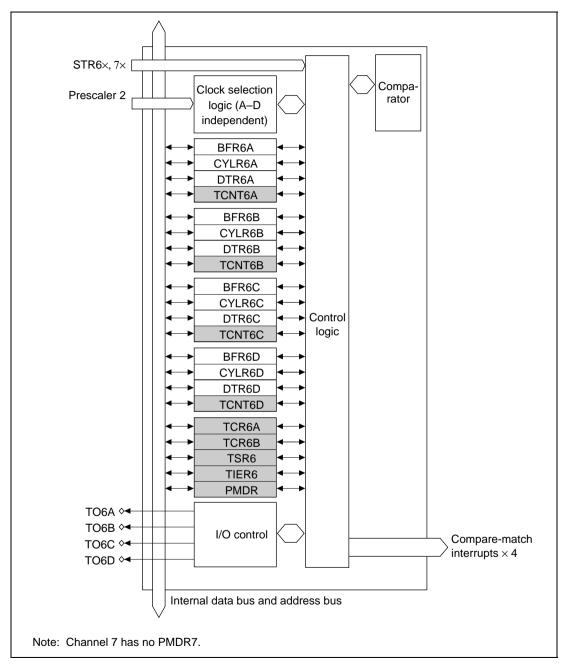



Figure 11.6 Block Diagram of Channel 6 (Same Configuration for Channel 7)

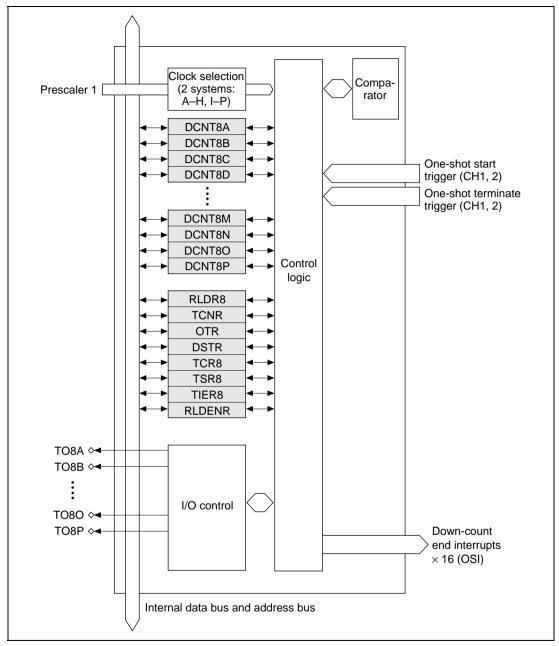



Figure 11.7 Block Diagram of Channel 8

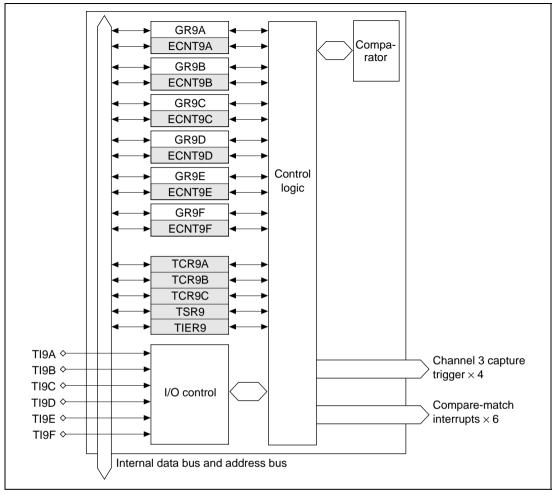



Figure 11.8 Block Diagram of Channel 9

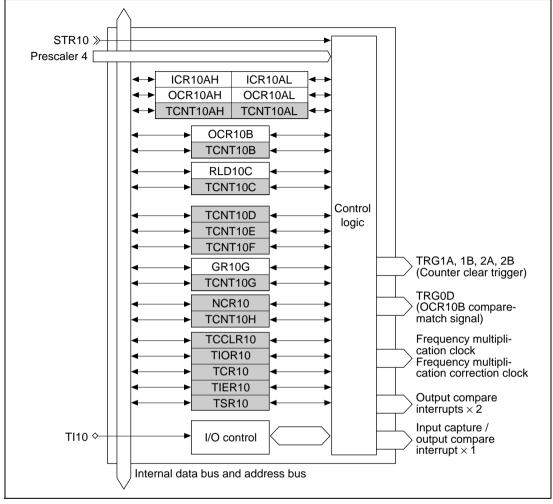



Figure 11.9 Block Diagram of Channel 10

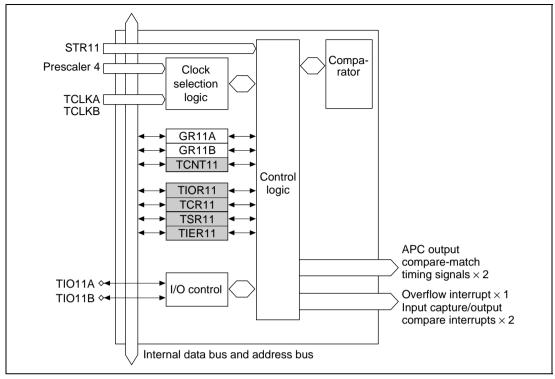



Figure 11.10 Block Diagram of Channel 11

## 11.1.5 Inter-Channel and Inter-Module Signal Communication Diagram

Figure 11.11 shows the connections between channels and between modules in the ATU-II.

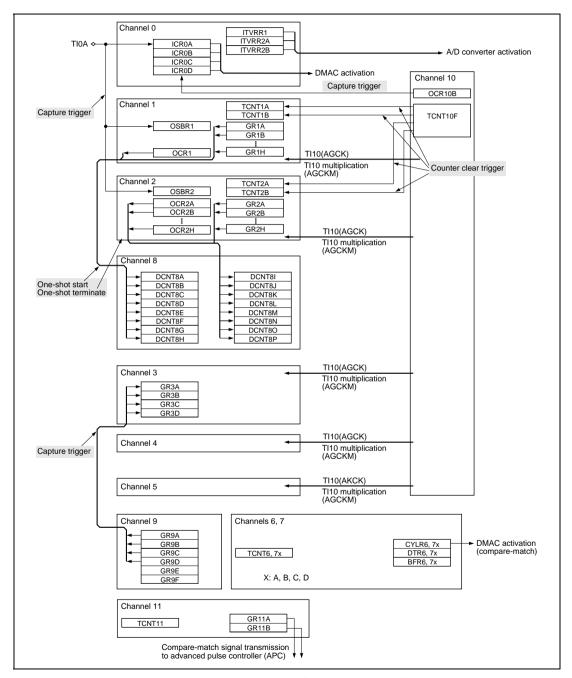



Figure 11.11 Inter-Module Communication Signals

## 11.1.6 Prescaler Diagram

Figure 11.12 shows a diagram of the ATU-II prescalers.

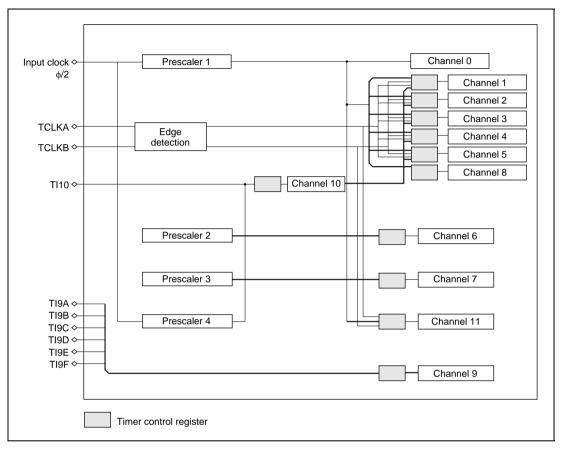



Figure 11.12 Prescaler Diagram

# 11.2 Register Descriptions

## 11.2.1 Timer Start Registers (TSTR)

The timer start registers (TSTR) are 8-bit registers. The ATU-II has three TSTR registers.

| Channel              | Abbreviation | Function                                    |
|----------------------|--------------|---------------------------------------------|
| 0, 1, 2, 3, 4, 5, 10 | TSTR1        | Free-running counter operation/stop setting |
| 6, 7                 | TSTR2        | <del></del>                                 |
| 11                   | TSTR3        | <del></del>                                 |

## **Timer Start Register 1 (TSTR1)**

| Bit:           | 7     | 6    | 5    | 4    | 3      | 2     | 1     | 0    |
|----------------|-------|------|------|------|--------|-------|-------|------|
|                | STR10 | STR5 | STR4 | STR3 | STR1B, | STR2A | STR1A | STR0 |
|                |       |      |      |      | 2B     |       |       |      |
| Initial value: | 0     | 0    | 0    | 0    | 0      | 0     | 0     | 0    |
| R/W:           | R/W   | R/W  | R/W  | R/W  | R/W    | R/W   | R/W   | R/W  |

TSTR1 is an 8-bit readable/writable register that starts and stops the free-running counter (TCNT) in channels 0 to 5 and 10.

TSTR1 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

• Bit 7—Counter Start 10 (STR10): Starts and stops channel 10 counters (TCNT10A, 10C, 10D, 10E, 10F, and 10G). TCNT10B and 10H are not stopped.

| Bit 7: STR10 | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT10 is halted | (Initial value) |
| 1            | TCNT10 counts    | _               |

• Bit 6—Counter Start 5 (STR5): Starts and stops free-running counter 5 (TCNT5).

| Bit 6: STR5 | Description     |                 |
|-------------|-----------------|-----------------|
| 0           | TCNT5 is halted | (Initial value) |
| 1           | TCNT5 counts    |                 |

• Bit 5—Counter Start 4 (STR4): Starts and stops free-running counter 4 (TCNT4).

| Bit 5: STR4 | Description     |                 |
|-------------|-----------------|-----------------|
| 0           | TCNT4 is halted | (Initial value) |
| 1           | TCNT4 counts    |                 |

• Bit 4—Counter Start 3 (STR3): Starts and stops free-running counter 3 (TCNT3).

| Bit 4: STR3 | Description     |                 |
|-------------|-----------------|-----------------|
| 0           | TCNT3 is halted | (Initial value) |
| 1           | TCNT3 counts    |                 |

• Bit 3—Counter Start 1B, 2B (STR1B, STR2B): Starts and stops free-running counters 1B and 2B (TCNT1B, TCNT2B).

### Bit 3:

| STR1B, STR2B | Description                  |                 |
|--------------|------------------------------|-----------------|
| 0            | TCNT1B and TCNT2B are halted | (Initial value) |
| 1            | TCNT1B and TCNT2B count      |                 |

• Bit 2—Counter Start 2A (STR2A): Starts and stops free-running counter 2A (TCNT2A).

| Bit 2: STR2A | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT2A is halted | (Initial value) |
| 1            | TCNT2A counts    |                 |

• Bit 1—Counter Start 1A (STR1A): Starts and stops free-running counter 1A (TCNT1A).

| Bit 1: STR1A | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT1A is halted | (Initial value) |
| 1            | TCNT1A counts    | _               |

• Bit 0—Counter Start 0 (STR0): Starts and stops free-running counter 0 (TCNT0).

| Bit 0: STR0 | Description     |                 |
|-------------|-----------------|-----------------|
| 0           | TCNT0 is halted | (Initial value) |
| 1           | TCNT0 counts    |                 |

### Timer Start Register 2 (TSTR2)

| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | STR7D | STR7C | STR7B | STR7A | STR6D | STR6C | STR6B | STR6A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

TSTR2 is an 8-bit readable/writable register that starts and stops the free-running counter (TCNT) in channels 6 and 7.

TSTR2 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

• Bit 7—Counter Start 7D (STR7D): Starts and stops free-running counter 7D (TCNT7D).

| Bit 7: STR7D | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT7D is halted | (Initial value) |
| 1            | TCNT7D counts    | _               |

• Bit 6—Counter Start 7C (STR7C): Starts and stops free-running counter 7C (TCNT7C).

| Bit 6: STR7C | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT7C is halted | (Initial value) |
| 1            | TCNT7C counts    | _               |

• Bit 5—Counter Start 7B (STR7B): Starts and stops free-running counter 7B (TCNT7B).

| Bit 5: STR7B | Description      |                 |  |
|--------------|------------------|-----------------|--|
| 0            | TCNT7B is halted | (Initial value) |  |
| 1            | TCNT7B counts    |                 |  |

• Bit 4—Counter Start 7A (STR7A): Starts and stops free-running counter 7A (TCNT7A).

| Bit 4: STR7A | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT7A is halted | (Initial value) |
| 1            | TCNT7A counts    |                 |

Bit 3—Counter Start 6D (STR6D): Starts and stops free-running counter 6D (TCNT6D).

| Bit 3: STR6D | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT6D is halted | (Initial value) |
| 1            | TCNT6D counts    | _               |

• Bit 2—Counter Start 6C (STR6C): Starts and stops free-running counter 6C (TCNT6C).

| Bit 2: STR6C | Description      |                 |  |
|--------------|------------------|-----------------|--|
| 0            | TCNT6C is halted | (Initial value) |  |
| 1            | TCNT6C counts    |                 |  |

• Bit 1—Counter Start 6B (STR6B): Starts and stops free-running counter 6B (TCNT6B).

| Bit 1: STR6B | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT6B is halted | (Initial value) |
| 1            | TCNT6B counts    | _               |

• Bit 0—Counter Start 6A (STR6A): Starts and stops free-running counter 6A (TCNT6A).

| Bit 0: STR6A | Description      |                 |
|--------------|------------------|-----------------|
| 0            | TCNT6A is halted | (Initial value) |
| 1            | TCNT6A counts    |                 |

# Timer Start Register 3 (TSTR3)

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
|----------------|---|---|---|---|---|---|---|-------|
|                | _ | _ | _ | _ | _ | _ | _ | STR11 |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0     |
| R/W:           | R | R | R | R | R | R | R | R/W   |

TSTR3 is an 8-bit readable/writable register that starts and stops the free-running counter (TCNT11) in channel 11.

TSTR3 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

- Bits 7 to 1—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 0—Counter Start 11 (STR11): Starts and stops free-running counter 11 (TCNT11).

| Bit 0: STR11 | Description      |                 |  |
|--------------|------------------|-----------------|--|
| 0            | TCNT11 is halted | (Initial value) |  |
| 1            | TCNT11 counts    | _               |  |

## 11.2.2 Prescaler Registers (PSCR)

The prescaler registers (PSCR) are 8-bit registers. The ATU-II has four PSCR registers.

| Channel                 | Abbreviation | Function                                  |
|-------------------------|--------------|-------------------------------------------|
| 0, 1, 2, 3, 4, 5, 8, 11 | PSCR1        | Prescaler setting for respective channels |
| 6                       | PSCR2        | _                                         |
| 7                       | PSCR3        | _                                         |
| 10                      | PSCR4        | _                                         |

PSCRx is an 8-bit writable register that enables the first-stage counter clock  $\phi'$  input to each channel to be set to any value from  $P\phi/1$  to  $P\phi/32$ .

| Bit:           | 7 | 6 | 5 | 4     | 3     | 2     | 1     | 0     |
|----------------|---|---|---|-------|-------|-------|-------|-------|
|                |   | _ | _ | PSCxE | PSCxD | PSCxC | PSCxB | PSCxA |
| Initial value: | 0 | 0 | 0 | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R | R | R | R/W   | R/W   | R/W   | R/W   | R/W   |

x = 1 to 4

Input counter clock  $\phi$ ' is determined by setting PSCxA to PSCxE:  $\phi$ ' is P $\phi$ /1 when the set value is H'00, and P $\phi$ /32 when H'1F.

PSCRx is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

The internal clock  $\phi'$  set with this register can undergo further second-stage scaling to create clock  $\phi''$  for channels 1 to 8 and 11, the setting being made in the timer control register (TCR).

- Bits 7 to 5—Reserved: These bits cannot be modified.
- Bits 4 to 0—Prescaler (PSCxE, PSCxD, PSCxC, PSCxB, PSCxA): These bits specify frequency division of first-stage counter clock ø' input to the corresponding channel.

#### 11.2.3 Timer Control Registers (TCR)

The timer control registers (TCR) are 8-bit registers. The ATU-II has 16 TCR registers: two each for channels 1 and 2, one each for channels 3, 4, 5, 8, and 11, two each for channels 6 and 7, and three for channel 9. For details of channel 10, see section 11.2.26, Channel 10 Registers.

| Channel | Abbreviation           | Function                                                                        |
|---------|------------------------|---------------------------------------------------------------------------------|
| 1       | TCR1A, TCR1B           | Internal clock/external clock/TI10 input clock selection                        |
| 2       | TCR2A, TCR2B           | -                                                                               |
| 3       | TCR3                   | -                                                                               |
| 4       | TCR4                   | _                                                                               |
| 5       | TCR5                   | _                                                                               |
| 6       | TCR6A, TCR6B           | Internal clock selection                                                        |
| 7       | TCR7A, TCR7B           | _                                                                               |
| 8       | TCR8                   | -                                                                               |
| 9       | TCR9A, TCR9B,<br>TCR9C | External clock selection/setting of channel 3 trigger in event of compare-match |
| 11      | TCR11                  | Internal clock/external clock selection                                         |

Each TCR is an 8-bit readable/writable register that selects whether an internal clock or external clock is used for channels 1 to 5 and 11. For channels 6 to 8, TCR selects an internal clock, and for channel 9, an external clock.

When an internal clock is selected, TCR selects the value of  $\phi$ " further scaled from clock  $\phi$ ' scaled with prescaler register (PSCR). Scaled clock  $\phi$ " can be selected, for channels 1 to 8 and 11 only, from  $\phi$ ',  $\phi$ '/2,  $\phi$ '/4,  $\phi$ '/8,  $\phi$ '/16, and  $\phi$ '/32 (only  $\phi$ ' is available for channel 0). Edge detection is performed on the rising edge.

When an external clock is selected, TCR selects whether TCLKA, TCLKB (channels 1 to 5 and 11 only), TI10 pin input (channels 1 to 5 only), or a TI10 pin input multiplied clock (channels 1 to 5 only) is used, and also performs edge selection.

Each TCR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

# Timer Control Registers 1A, 1B, 2A, 2B (TCR1A, TCR1B, TCR2A, TCR2B)

## TCR1A, TCR2A

| Bit:           | 7 | 6 | 5      | 4      | 3       | 2       | 1       | 0       |
|----------------|---|---|--------|--------|---------|---------|---------|---------|
|                | _ | _ | CKEGA1 | CKEGA0 | CKSELA3 | CKSELA2 | CKSELA1 | CKSELA0 |
| Initial value: | 0 | 0 | 0      | 0      | 0       | 0       | 0       | 0       |
| R/W:           | R | R | R/W    | R/W    | R/W     | R/W     | R/W     | R/W     |

#### TCR1B, TCR2B

| Bit:           | 7 | 6 | 5      | 4      | 3       | 2       | 1       | 0       |
|----------------|---|---|--------|--------|---------|---------|---------|---------|
|                |   | _ | CKEGB1 | CKEGB0 | CKSELB3 | CKSELB2 | CKSELB1 | CKSELB0 |
| Initial value: | 0 | 0 | 0      | 0      | 0       | 0       | 0       | 0       |
| R/W:           | R | R | R/W    | R/W    | R/W     | R/W     | R/W     | R/W     |

- Bits 7 and 6—Reserved: These bits always read 0. The write value should always be 0.
- Bits 5 and 4—Clock Edge 1 and 0 (CKEGx1, CKEGx0): These bits select the count edge(s) for external clock TCLKA and TCLKB input.

| Bit 5: CKEGx1 | Bit 4: CKEGx0 | Description                           |                 |
|---------------|---------------|---------------------------------------|-----------------|
| 0             | 0             | Rising edges counted                  | (Initial value) |
|               | 1             | Falling edges counted                 |                 |
| 1             | 0             | Both rising and falling edges counted |                 |
|               | 1             | Count disabled                        |                 |

x = A or B

Bits 3 to 0—Clock Select A3 to A0, B3 to B0 (CKSELA3 to CKSELA0, CKSELB3 to CKSELB0): These bits select whether an internal clock or external clock is used.
 When an internal clock is selected, scaled clock φ" is selected from φ', φ'/2, φ'/4, φ'/8, φ'/16, and φ'/32.

When an external clock is selected, TCLKA, TCLKB, TI10 pin input, or a TI10 pin input multiplied clock is selected.

When TI10 pin input and TI10 pin input clock multiplication are selected, set CKEG1 and CKEG0 in TCR10 so that TI10 input is possible.

| Bit 3:<br>CKSELx3 | Bit 2:<br>CKSELx2 | Bit 1:<br>CKSELx1 | Bit 0:<br>CKSELx0 | Description                                                    |
|-------------------|-------------------|-------------------|-------------------|----------------------------------------------------------------|
| 0                 | 0                 | 0                 | 0                 | Internal clock φ": counting on φ' (Initial value)              |
|                   |                   |                   | 1                 | Internal clock φ": counting on φ'/2                            |
|                   |                   | 1                 | 0                 | Internal clock φ": counting on φ'/4                            |
|                   |                   |                   | 1                 | Internal clock φ": counting on φ'/8                            |
|                   | 1                 | 0                 | 0                 | Internal clock φ": counting on φ'/16                           |
|                   |                   |                   | 1                 | Internal clock φ": counting on φ'/32                           |
|                   |                   | 1                 | 0                 | External clock: counting on TCLKA pin input                    |
|                   |                   |                   | 1                 | External clock: counting on TCLKB pin input                    |
| 1                 | 0                 | 0                 | 0                 | Counting on TI10 pin input (AGCK)                              |
|                   |                   |                   | 1                 | Counting on multiplied (corrected)(AGCKM) TI10 pin input clock |
|                   |                   | 1                 | *                 | Setting prohibited                                             |
|                   | 1                 | *                 | *                 | Setting prohibited                                             |

x = A or B

# Timer Control Registers 3 to 5 (TCR3, TCR4, TCR5)

| Bit:           | 7 | 6 | 5     | 4     | 3      | 2      | 1      | 0      |
|----------------|---|---|-------|-------|--------|--------|--------|--------|
|                | _ | _ | CKEG1 | CKEG0 | CKSEL3 | CKSEL2 | CKSEL1 | CKSEL0 |
| Initial value: | 0 | 0 | 0     | 0     | 0      | 0      | 0      | 0      |
| R/W:           | R | R | R/W   | R/W   | R/W    | R/W    | R/W    | R/W    |

- Bits 7 and 6—Reserved: These bits are always read as 0. The write value should always be 0.
- Bits 5 and 4—Clock Edge 1 and 0 (CKEG1, CKEG0): These bits select the count edge(s) for external clock TCLKA and TCLKB input.

| Bit 5: CKEG1 | Bit 4: CKEG0 | Description                           |                 |
|--------------|--------------|---------------------------------------|-----------------|
| 0            | 0            | Rising edges counted                  | (Initial value) |
|              | 1            | Falling edges counted                 |                 |
| 1            | 0            | Both rising and falling edges counted |                 |
|              | 1            | Count disabled                        |                 |

<sup>\*:</sup> Donít care

• Bits 3 to 0—Clock Select 3 to 0 (CKSEL3 to CKSEL0): These bits select whether an internal clock or external clock is used.

When an internal clock is selected, scaled clock  $\phi$ " is selected from  $\phi$ ',  $\phi$ '/2,  $\phi$ '/4,  $\phi$ '/8,  $\phi$ '/16, and  $\phi$ '/32.

When an external clock is selected, TCLKA, TCLKB, TI10 pin input, or a TI10 pin input multiplied clock is selected.

When TI10 pin input and TI10 pin input clock multiplication are selected, set CKEG1 and CKEG0 in TCR10 so that TI10 input is possible.

| Bit 2:<br>CKSEL2 | Bit 1:<br>CKSEL1 | Bit 0:<br>CKSEL0                                                                                              | Description                                                                                                                                                                                                                                                                                          |  |  |  |
|------------------|------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0                | 0                | 0                                                                                                             | Internal clock φ": counting on φ' (Initial value)                                                                                                                                                                                                                                                    |  |  |  |
|                  |                  | 1                                                                                                             | Internal clock φ": counting on φ'/2                                                                                                                                                                                                                                                                  |  |  |  |
|                  | 1                | 0                                                                                                             | Internal clock φ": counting on φ'/4                                                                                                                                                                                                                                                                  |  |  |  |
|                  |                  | Internal clock φ": counting on φ'/8                                                                           |                                                                                                                                                                                                                                                                                                      |  |  |  |
| 1                | 0                | 0                                                                                                             | Internal clock \$\phi": counting on \$\phi'/16                                                                                                                                                                                                                                                       |  |  |  |
|                  |                  | 1                                                                                                             | Internal clock φ": counting on φ'/32                                                                                                                                                                                                                                                                 |  |  |  |
|                  | 1                | 0                                                                                                             | External clock: counting on TCLKA pin input                                                                                                                                                                                                                                                          |  |  |  |
|                  |                  | 1                                                                                                             | External clock: counting on TCLKB pin input                                                                                                                                                                                                                                                          |  |  |  |
| 0                | 0                | 0                                                                                                             | Counting on TI10 pin input (AGCK)                                                                                                                                                                                                                                                                    |  |  |  |
|                  |                  | 1                                                                                                             | Counting on multiplied (corrected)(AGCKM) TI10 pin input clock                                                                                                                                                                                                                                       |  |  |  |
|                  | 1                | *                                                                                                             | Setting prohibited                                                                                                                                                                                                                                                                                   |  |  |  |
| 1                | *                | *                                                                                                             | Setting prohibited                                                                                                                                                                                                                                                                                   |  |  |  |
|                  | 0<br>1           | CKSEL2         CKSEL1           0         0           1         0           1         0           0         0 | CKSEL2         CKSEL1         CKSEL0           0         0         0           1         0         1           1         0         0           1         0         0           1         0         0           1         0         0           1         0         0           1         1         * |  |  |  |

<sup>\*:</sup> Donít care

## Timer Control Registers 6A, 6B, 7A, 7B (TCR6A, TCR6B, TCR7A, TCR7B)

# TCR6A, TCR7A

| Bit:           | 7 | 6       | 5       | 4       | 3 | 2       | 1       | 0       |
|----------------|---|---------|---------|---------|---|---------|---------|---------|
|                | _ | CKSELB2 | CKSELB1 | CKSELB0 | _ | CKSELA2 | CKSELA1 | CKSELA0 |
| Initial value: | 0 | 0       | 0       | 0       | 0 | 0       | 0       | 0       |
| R/W:           | R | R/W     | R/W     | R/W     | R | R/W     | R/W     | R/W     |

## TCR6B, TCR7B

| Bit:           | 7 | 6       | 5       | 4       | 3 | 2       | 1       | 0       |
|----------------|---|---------|---------|---------|---|---------|---------|---------|
|                | _ | CKSELD2 | CKSELD1 | CKSELD0 | _ | CKSELC2 | CKSELC1 | CKSELC0 |
| Initial value: | 0 | 0       | 0       | 0       | 0 | 0       | 0       | 0       |
| R/W:           | R | R/W     | R/W     | R/W     | R | R/W     | R/W     | R/W     |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 6 to 4—Clock Select B2 to B0, D2 to D0 (CKSELB2 to CKSELB0, CKSELD2 to CKSELD0): These bits select clock φ", scaled from the internal clock source, from φ', φ'/2, φ'/4, φ'/8, φ'/16, and φ'/32.

| Bit 6:<br>CKSELx2 | Bit 5:<br>CKSELx1 | Bit 4:<br>CKSELx0 | Description                                       |                 |
|-------------------|-------------------|-------------------|---------------------------------------------------|-----------------|
| 0 0               |                   | 0                 | Internal clock \$\phi": counting on \$\phi'\$     | (Initial value) |
|                   |                   | 1                 | Internal clock \$\phi": counting on \$\phi'/2     |                 |
|                   | 1                 | 0                 | Internal clock \$\phi\$": counting on \$\phi\$'/4 |                 |
|                   |                   | 1                 | Internal clock \$\phi": counting on \$\phi'/8     |                 |
| 1                 | 0                 | 0                 | Internal clock ohi: counting on ohi/16            |                 |
|                   |                   | 1                 | Internal clock ohi: counting on ohi/32            |                 |
|                   | 1                 | 0                 | Setting prohibited                                |                 |
|                   |                   | 1                 | Setting prohibited                                |                 |

x = B or D

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 2 to 0—Clock Select A2 to A0, C2 to C0 (CKSELA2 to CKSELA0, CKSELC2 to CKSELC0): These bits select clock φ", scaled from the internal clock source, from φ', φ'/2, φ'/4, φ'/8, φ'/16, and φ'/32.

| Bit 2:<br>CKSELx2 | Bit 1<br>CKSELx1 | Bit 0<br>CKSELx0 | Description                          |                 |
|-------------------|------------------|------------------|--------------------------------------|-----------------|
| 0                 | 0                | 0                | Internal clock φ": counting on φ'    | (Initial value) |
|                   |                  | 1                | Internal clock φ": counting on φ'/2  |                 |
|                   | 1                | 0                | Internal clock φ": counting on φ'/4  |                 |
|                   |                  | 1                | Internal clock φ": counting on φ'/8  |                 |
| 1                 | 0                | 0                | Internal clock φ": counting on φ'/16 |                 |
|                   |                  | 1                | Internal clock φ": counting on φ'/32 |                 |
|                   | 1                | 0                | Setting prohibited                   |                 |
|                   |                  | 1                | Setting prohibited                   |                 |
|                   |                  |                  |                                      |                 |

x = A or B

# **Timer Control Register 8 (TCR8)**

| Bit:           | 7 | 6       | 5       | 4       | 3 | 2       | 1       | 0       |
|----------------|---|---------|---------|---------|---|---------|---------|---------|
|                | _ | CKSELB2 | CKSELB1 | CKSELB0 | _ | CKSELA2 | CKSELA1 | CKSELA0 |
| Initial value: | 0 | 0       | 0       | 0       | 0 | 0       | 0       | 0       |
| R/W:           | R | R/W     | R/W     | R/W     | R | R/W     | R/W     | R/W     |

The CKSELAx bits relate to DCNT8A to DCNT8H, and the CKSELBx bits relate to DCNT8I to DCNT8P.

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 6 to 4—Clock Select B2 to B0 (CKSELB2 to CKSELB0): These bits, relating to counters DCNT8I to DCNT8P, select clock φ", scaled from the internal clock source, from φ', φ'/2, φ'/4, φ'/8, φ'/16, and φ'/32.

| Bit 6:<br>CKSELB2 | Bit 5:<br>CKSELB1 | Bit 4:<br>CKSELB0 | Description                          |                 |
|-------------------|-------------------|-------------------|--------------------------------------|-----------------|
| 0                 | 0                 | 0                 | Internal clock φ": counting on φ'    | (Initial value) |
|                   |                   | 1                 | Internal clock φ": counting on φ'/2  |                 |
|                   | 1                 | 0                 | Internal clock φ": counting on φ'/4  |                 |
|                   |                   | 1                 | Internal clock φ": counting on φ'/8  |                 |
| 1                 | 0                 | 0                 | Internal clock φ": counting on φ'/16 |                 |
|                   |                   | 1                 | Internal clock φ": counting on φ'/32 |                 |
|                   | 1                 | 0                 | Setting prohibited                   |                 |
|                   |                   | 1                 | Setting prohibited                   |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 2 to 0—Clock Select A2 to A0 (CKSELA2 to CKSELA0): These bits, relating to counters DCNT8A to DCNT8H, select clock φ", scaled from the internal clock source, from φ', φ'/2, φ'/4, φ'/8, φ'/16, and φ'/32.

| Bit 2:<br>CKSELA2 | Bit 1:<br>CKSELA1 | Bit 0:<br>CKSELA0 | Description                                    |                 |
|-------------------|-------------------|-------------------|------------------------------------------------|-----------------|
| 0                 | 0                 | 0                 | Internal clock \$\phi": counting on \$\phi'\$  | (Initial value) |
|                   |                   | 1                 | Internal clock \$\phi": counting on \$\phi'/2  |                 |
|                   | 1                 | 0                 | Internal clock \$\phi": counting on \$\phi'/4  |                 |
|                   |                   | 1                 | Internal clock \$\phi": counting on \$\phi'/8  |                 |
| 1                 | 0                 | 0                 | Internal clock \$\phi": counting on \$\phi'/16 |                 |
|                   |                   | 1                 | Internal clock \$\phi": counting on \$\phi'/32 |                 |
|                   | 1                 | 0                 | Setting prohibited                             |                 |
|                   |                   | 1                 | Setting prohibited                             |                 |

# Timer Control Registers 9A, 9B, 9C (TCR9A, TCR9B, TCR9C)

## TCR9A

| Bit:           | 7 | 6       | 5       | 4       | 3 | 2       | 1       | 0       |
|----------------|---|---------|---------|---------|---|---------|---------|---------|
|                | _ | TRG3BEN | EGSELB1 | EGSELB0 | _ | TRG3AEN | EGSELA1 | EGSELA0 |
| Initial value: | 0 | 0       | 0       | 0       | 0 | 0       | 0       | 0       |
| R/W:           | R | R/W     | R/W     | R/W     | R | R/W     | R/W     | R/W     |

#### TCR9B

| Bit:           | 7 | 6       | 5       | 4       | 3 | 2       | 1       | 0       |
|----------------|---|---------|---------|---------|---|---------|---------|---------|
|                | _ | TRG3DEN | EGSELD1 | EGSELD0 | _ | TRG3CEN | EGSELC1 | EGSELC0 |
| Initial value: | 0 | 0       | 0       | 0       | 0 | 0       | 0       | 0       |
| R/W:           | R | R/W     | R/W     | R/W     | R | R/W     | R/W     | R/W     |

### TCR9C

| Bit:           | 7 | 6 | 5       | 4       | 3 | 2 | 1       | 0       |
|----------------|---|---|---------|---------|---|---|---------|---------|
|                | _ | _ | EGSELF1 | EGSELF0 |   | _ | EGSELE1 | EGSELE0 |
| Initial value: | 0 | 0 | 0       | 0       | 0 | 0 | 0       | 0       |
| R/W:           | R | R | R/W     | R/W     | R | R | R/W     | R/W     |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—Trigger Channel 3BEN, 3DEN (TRG3BEN, TRG3DEN): These bits select the channel 9 event counter compare-match signal channel 3 input capture trigger.

| Bit 6: TRG3xEN | Description                                                                                   |                          |
|----------------|-----------------------------------------------------------------------------------------------|--------------------------|
| 0              | Channel 3 input capture trigger in event of channel 9 compare-<br>(ECNT9x = GR9x) is disabled | match<br>(Initial value) |
| 1              | Channel 3 input capture trigger in event of channel 9 compare-<br>(ECNT9x = GR9x) is enabled  | match                    |

x = B or D

• Bits 5 and 4—Edge Select B1, B0, D1, D0, F1, F0 (EGSELB1, EGSELB0, EGSELD1, EGSELD0, EGSELF1, EGSELF0): These bits select the event counter counted edge(s).

| Bit 5: EGSELx1 | Bit 4: EGSELx0 | Description                           |                 |
|----------------|----------------|---------------------------------------|-----------------|
| 0              | 0              | Count disabled                        | (Initial value) |
|                | 1              | Rising edges counted                  |                 |
| 1              | 0              | Falling edges counted                 | _               |
|                | 1              | Both rising and falling edges counted |                 |

x = B, D, or F

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—Trigger Channel 3AEN, 3CEN (TRG3AEN, TRG3CEN): These bits select the channel 9 event counter compare-match signal channel 3 input capture trigger.

| Bit 2: TRG3xEN | Description                                                                                   |                          |
|----------------|-----------------------------------------------------------------------------------------------|--------------------------|
| 0              | Channel 3 input capture trigger in event of channel 9 compare-<br>(ECNT9x = GR9x) is disabled | match<br>(Initial value) |
| 1              | Channel 3 input capture trigger in event of channel 9 compare-<br>(ECNT9x = GR9x) is enabled  | match                    |

x = A or C

• Bits 1 and 0—Edge Select A1, A0, C1, C0, E1, E0 (EGSELA1, EGSELA0, EGSELC1, EGSELC0, EGSELE1, EGSELE0): These bits select the event counter counted edge(s).

| Bit 1: EGSELx1 | Bit 0: EGSELx0 | Description                           |                 |
|----------------|----------------|---------------------------------------|-----------------|
| 0              | 0              | Count disabled                        | (Initial value) |
|                | 1              | Rising edges counted                  |                 |
| 1              | 0              | Falling edges counted                 |                 |
|                | 1              | Both rising and falling edges counted |                 |

x = A, C, or E

# **Timer Control Register 11 (TCR11)**

| Bit:           | 7 | 6 | 5     | 4     | 3 | 2       | 1       | 0       |
|----------------|---|---|-------|-------|---|---------|---------|---------|
|                | _ | _ | CKEG1 | CKEG0 | _ | CKSELA2 | CKSELA1 | CKSELA0 |
| Initial value: | 0 | 0 | 0     | 0     | 0 | 0       | 0       | 0       |
| R/W:           | R | R | R/W   | R/W   | R | R/W     | R/W     | R/W     |

- Bits 7, 6, and 3—Reserved: These bits are always read as 0. The write value should always be 0
- Bits 5 and 4—Edge Select: These bits select the event counter counted edge(s).

| Bit 5: CKEG1 | Bit 4: CKEG0 | Description                           |                 |
|--------------|--------------|---------------------------------------|-----------------|
| 0            | 0            | Rising edges counted                  | (Initial value) |
|              | 1            | Falling edges counted                 |                 |
| 1            | 0            | Both rising and falling edges counted |                 |
|              | 1            | Count disabled                        |                 |

• Bits 2 to 0—Clock Select A2 to A0 (CKSELA2 to CKSELA0): These bits select clock φ", scaled from the internal clock source, from φ', φ'/2, φ'/4, φ'/8, φ'/16, and φ'/32.

| Bit 2:<br>CKSELA2 | Bit 1:<br>CKSELA1 | Bit 0:<br>CKSELA0 | Description                                       |
|-------------------|-------------------|-------------------|---------------------------------------------------|
| 0                 | 0                 | 0                 | Internal clock φ": counting on φ' (Initial value) |
|                   |                   | 1                 | Internal clock φ": counting on φ'/2               |
|                   | 1                 | 0                 | Internal clock φ": counting on φ'/4               |
|                   |                   | 1                 | Internal clock φ": counting on φ'/8               |
| 1                 | 0                 | 0                 | Internal clock φ": counting on φ'/16              |
|                   |                   | 1                 | Internal clock φ": counting on φ'/32              |
|                   | 1                 | 0                 | External clock: counting on TCLKA pin input       |
|                   |                   | 1                 | External clock: counting on TCLKB pin input       |

#### 11.2.4 Timer I/O Control Registers (TIOR)

The timer I/O control registers (TIOR) are 8-bit registers. The ATU-II has 16 TIOR registers: one for channel 0, four each for channels 1 and 2, two each for channels 3 to 5, and one for channel 11. For details of channel 10, see section 11.2.26, Channel 10 Registers.

| Channel | Abbreviation   | Function                                                                      |  |  |  |
|---------|----------------|-------------------------------------------------------------------------------|--|--|--|
| 0       | TIOR0          | ICR0 edge detection setting                                                   |  |  |  |
| 1       | TIOR1A-1D      | GR input capture/compare-match switching, edge detection/                     |  |  |  |
| 2       | TIOR2A-2D      | output value setting                                                          |  |  |  |
| 3       | TIOR3A, TIOR3B | GR input capture/compare-match switching, edge                                |  |  |  |
| 4       | TIOR4A, TIOR4B | detection/output value setting, TCNT3 to TCNT5 clear enable/disable setting   |  |  |  |
| 5       | TIOR5A, TIOR5B |                                                                               |  |  |  |
| 11      | TIOR11         | GR input capture/compare-match switching, edge detection/output value setting |  |  |  |

Each TIOR is an 8-bit readable/writable register used to select the functions of dedicated input capture registers and general registers.

For dedicated input capture registers (ICR), TIOR performs edge detection setting.

For general registers (GR), TIOR selects use as an input capture register or output compare register, and performs edge detection setting. For channels 3 to 5, TIOR also selects enabling or disabling of free-running counter (TCNT) clearing in the event of a compare-match.

# Timer I/O Control Register 0 (TIOR0)

| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | IO0D1 | IO0D0 | IO0C1 | IO0C0 | IO0B1 | IO0B0 | IO0A1 | IO0A0 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

TIOR0 specifies edge detection for input capture registers ICR0A to ICR0D.

TIOR0 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

• Bits 7 and 6—I/O Control 0D1 and 0D0 (IO0D1, IO0D0): These bits select TI0D pin input capture signal edge detection.

| Bit 7: IO0D1 | Bit 6: IO0D0 | Description                                                                 |                    |
|--------------|--------------|-----------------------------------------------------------------------------|--------------------|
| 0 0          |              | Input capture disabled (input capture possible in To compare-match) (Initia | CNT10B<br>I value) |
|              | 1            | Input capture in ICR0D on rising edge                                       |                    |
| 1            | 0            | Input capture in ICR0D on falling edge                                      |                    |
|              | 1            | Input capture in ICR0D on both rising and falling ed                        | dges               |

• Bits 5 and 4—I/O Control 0C1 and 0C0 (IO0C1, IO0C0): These bits select TI0C pin input capture signal edge detection.

| Bit 5: IO0C1 | Bit 4: IO0C0 | Description                               |                 |
|--------------|--------------|-------------------------------------------|-----------------|
| 0            | 0            | Input capture disabled                    | (Initial value) |
|              | 1            | Input capture in ICR0C on rising edge     |                 |
| 1            | 0            | Input capture in ICR0C on falling edge    |                 |
|              | 1            | Input capture in ICR0C on both rising and | falling edges   |

• Bits 3 and 2—I/O Control 0B1 and 0B0 (IO0B1, IO0B0): These bits select TI0B pin input capture signal edge detection.

| Bit 3: IO0B1  | Bit 2: IO0B0 | Description                               |                 |
|---------------|--------------|-------------------------------------------|-----------------|
| 0 0 Input cap |              | Input capture disabled                    | (Initial value) |
|               | 1            | Input capture in ICR0B on rising edge     |                 |
| 1             | 0            | Input capture in ICR0B on falling edge    |                 |
|               | 1            | Input capture in ICR0B on both rising and | falling edges   |

• Bits 1 and 0—I/O Control 0A1 and 0A0 (IO0A1, IO0A0): These bits select TI0A pin input capture signal edge detection.

| Bit 1: IO0A1 | Bit 0: IO0A0 | Description                               |                 |
|--------------|--------------|-------------------------------------------|-----------------|
| 0            | 0            | Input capture disabled                    | (Initial value) |
|              | 1            | Input capture in ICR0A on rising edge     |                 |
| 1            | 0            | Input capture in ICR0A on falling edge    |                 |
|              | 1            | Input capture in ICR0A on both rising and | falling edges   |

# Timer I/O Control Registers 1A to 1D (TIOR1A to TIOR1D)

### TIOR1A

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO1B2 | IO1B1 | IO1B0 | _ | IO1A2 | IO1A1 | IO1A0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

#### TIOR1B

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO1D2 | IO1D1 | IO1D0 | _ | IO1C2 | IO1C1 | IO1C0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

#### TIOR1C

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO1F2 | IO1F1 | IO1F0 | _ | IO1E2 | IO1E1 | IO1E0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

#### TIOR1D

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO1H2 | IO1H1 | IO1H0 | _ | IO1G2 | IO1G1 | IO1G0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

Registers TIOR1A to TIOR1D specify whether general registers GR1A to GR1H are used as input capture or compare-match registers, and also perform edge detection and output value setting.

Each TIOR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 6 to 4—I/O Control 1B2 to 1B0, 1D2 to 1D0, 1F2 to 1F0, 1H2 to 1H0 (IO1B2 to IO1B0, IO1D2 to IO1D0, IOF12 to IO1F0, IO1H2 to IO1H0): These bits select the general register (GR) function.

| Bit 6:<br>IO1x2 | Bit 5:<br>IO1x1 | Bit 4:<br>IO1x0 | Description                      |                                                                                             |
|-----------------|-----------------|-----------------|----------------------------------|---------------------------------------------------------------------------------------------|
| 0               | 0               | 0               | GR is an output compare register | Compare-match disabled; pin output undefined (Initial value)                                |
|                 |                 | 1               | <del></del>                      | 0 output on GR compare-match                                                                |
|                 | 1               | 0               | <del></del>                      | 1 output on GR compare-match                                                                |
|                 |                 | 1               |                                  | Toggle output on GR compare-match                                                           |
| 1               | 0               | 0               | GR is an input capture register  | Input capture disabled (GR cannot be written to)                                            |
|                 |                 | 1               |                                  | Input capture in GR on rising edge at TIO1x pin (GR cannot be written to)                   |
|                 | 1               | 0               |                                  | Input capture in GR on falling edge at TIO1x pin (GR cannot be written to)                  |
|                 |                 | 1               | <del></del>                      | Input capture in GR on both rising and falling edges at TIO1x pin (GR cannot be written to) |

x = B, D, F, or H

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 2 to 0—I/O Control 1A2 to 1A0, 1C2 to 1C0, 1E2 to 1E0, 1G2 to 1G0 (IO1A2 to IO1A0, IO1C2 to IO1C0, IO1E2 to IO1E0, IO1G2 to IO1G0): These bits select the general register (GR) function.

| Bit 2:<br>IO1x2 | Bit 1:<br>IO1x1 | Bit 0:<br>IO1x0                                                            | Description                      |                                                                                             |
|-----------------|-----------------|----------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------|
| 0               | 0               | 0                                                                          | GR is an output compare register | Compare-match disabled; pin output undefined (Initial value)                                |
|                 |                 | 1                                                                          |                                  | 0 output on GR compare-match                                                                |
|                 | 1               | 0                                                                          |                                  | 1 output on GR compare-match                                                                |
|                 |                 | 1                                                                          |                                  | Toggle output on GR compare-match                                                           |
| 1               | 0               | 0                                                                          | GR is an input                   | Input capture disabled                                                                      |
|                 |                 | 1                                                                          | capture register                 | Input capture in GR on rising edge at TIO1x pin (GR cannot be written to)                   |
|                 | 1 0             | Input capture in GR on falling edge at TIO1x pin (GR cannot be written to) |                                  |                                                                                             |
|                 |                 | 1                                                                          |                                  | Input capture in GR on both rising and falling edges at TIO1x pin (GR cannot be written to) |

x = A, C, E, or G

# Timer I/O Control Registers 2A to 2D (TIOR2A to TIOR2D)

### TIOR2A

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO2B2 | IO2B1 | IO2B0 | _ | IO2A2 | IO2A1 | IO2A0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

#### TIOR2B

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO2D2 | IO2D1 | IO2D0 | _ | IO2C2 | IO2C1 | IO2C0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

#### TIOR2C

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO2F2 | IO2F1 | IO2F0 | _ | IO2E2 | IO2E1 | IO2E0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

#### TIOR2D

| Bit:           | 7 | 6     | 5     | 4     | 3 | 2     | 1     | 0     |
|----------------|---|-------|-------|-------|---|-------|-------|-------|
|                | _ | IO2H2 | IO2H1 | IO2H0 | _ | IO2G2 | IO2G1 | IO2G0 |
| Initial value: | 0 | 0     | 0     | 0     | 0 | 0     | 0     | 0     |
| R/W:           | R | R/W   | R/W   | R/W   | R | R/W   | R/W   | R/W   |

Registers TIOR2A to TIOR2D specify whether general registers GR2A to GR2H are used as input capture or compare-match registers, and also perform edge detection and output value setting.

Each TIOR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 6 to 4—I/O Control 2B2 to 2B0, 2D2 to 2D0, 2F2 to 2F0, 2H2 to 2H0 (IO2B2 to IO2B0, IO2D2 to IO2D0, IO2F2 to IO2F0, IO2H2 to IO2H0): These bits select the general register (GR) function.

| Bit 6:<br>IO2x2 | Bit 5:<br>IO2x1 | Bit 4:<br>IO2x0 | Description                      |                                                                                             |  |  |
|-----------------|-----------------|-----------------|----------------------------------|---------------------------------------------------------------------------------------------|--|--|
| 0               | 0               | 0               | GR is an output compare register | Compare-match disabled; pin output undefined (Initial value)                                |  |  |
|                 |                 | 1               |                                  | 0 output on GR compare-match                                                                |  |  |
|                 | 1               | 0               | <del></del>                      | 1 output on GR compare-match                                                                |  |  |
|                 |                 | 1               |                                  | Toggle output on GR compare-match                                                           |  |  |
| 1               | 0               | 0               | •                                | Input capture disabled                                                                      |  |  |
|                 |                 | 1               | capture register                 | Input capture in GR on rising edge at TIO2x pin (GR cannot be written to)                   |  |  |
|                 | 1               | 0               | <del></del>                      | Input capture in GR on falling edge at TIO2x pin (GR cannot be written to)                  |  |  |
|                 |                 | 1               |                                  | Input capture in GR on both rising and falling edges at TIO2x pin (GR cannot be written to) |  |  |

x = B, D, F, or H

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 2 to 0—I/O Control 2A2 to 2A0, 2C2 to 2C0, 2E2 to 2E0, 2G2 to 2G0 (IO2A2 to IO2A0, IO2C2 to IO2C0, IO2E2 to IO2E0, IO2G2 to IO2G0): These bits select the general register (GR) function.

| Bit 2:<br>IO2x2 | Bit 1:<br>IO2x1 | Bit 0:<br>IO2x0    | Description                                                               |                                                                                             |  |  |
|-----------------|-----------------|--------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| 0               | 0               | 0                  | GR is an output compare register                                          | Compare-match disabled; pin output undefined (Initial value)                                |  |  |
|                 |                 | 1                  |                                                                           | 0 output on GR compare-match                                                                |  |  |
|                 | 1               | 0                  |                                                                           | 1 output on GR compare-match                                                                |  |  |
|                 |                 | 1                  |                                                                           | Toggle output on GR compare-match                                                           |  |  |
| 1               | 0               | 0                  | GR is an input                                                            | Input capture disabled                                                                      |  |  |
|                 |                 | 1 capture register | Input capture in GR on rising edge at TIO2x pin (GR cannot be written to) |                                                                                             |  |  |
|                 | 1               | 0                  |                                                                           | Input capture in GR on falling edge at TIO2x pin (GR cannot be written to)                  |  |  |
|                 |                 | 1                  |                                                                           | Input capture in GR on both rising and falling edges at TIO2x pin (GR cannot be written to) |  |  |

x = A, C, E, or G

# Timer I/O Control Registers 3A, 3B, 4A, 4B, 5A, 5B (TIOR3A, TIOR3B, TIOR4A, TIOR4B, TIOR5A, TIOR5B)

## TIOR3A, TIOR4A, TIOR5A

| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | CCIxB | IOxB2 | IOxB1 | IOxB0 | CCIxA | IOxA2 | IOxA1 | IOxA0 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

x = 3 to 5

## TIOR3B, TIOR4B, TIOR5B

| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | CCIxD | IOxD2 | IOxD1 | IOxD0 | CCIxC | IOxC2 | IOxC1 | IOxC0 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

x = 3 to 5

TIOR3A, TIOR3B, TIOR4A, TIOR4B, TIOR5A, and TIOR5B specify whether general registers GR3A to GR3D, GR4A to GR4D, and GR5A to GR5D are used as input capture or comparematch registers, and also perform edge detection and output value setting. They also select enabling or disabling of free-running counter (TCNT3 to TCNT5) clearing.

Each TIOR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

• Bit 7—Clear Counter Enable Flag 3B, 4B, 5B, 3D, 4D, 5D (CCI3B, CCI4B, CCI5B, CCI3D, CCI4D, CCI5D): These bits select enabling or disabling of free-running counter (TCNT) clearing.

| Bit 7: CCIxx | Description                      |                 |
|--------------|----------------------------------|-----------------|
| 0            | TCNT clearing disabled           | (Initial value) |
| 1            | TCNT cleared on GR compare-match |                 |

xx = 3B, 4B, 5B, 3D, 4D, or 5D

TCNT is cleared on compare-match only when GR is functioning as an output compare register.

Bits 6 to 4—I/O Control 3B2 to 3B0, 4B2 to 4B0, 5B2 to 5B0, 3D2 to 3D0, 4D2 to 4D0, 5D2 to 5D0 (IO3B2 to IO3B0, IO4B2 to IO4B0, IO5B2 to IO5B0, IO3D2 to IO3D0, IO4D2 to IO4D0, IO5D2 to IO5D0): These bits select the general register (GR) function.

| Bit 6:<br>IOxx2 | Bit 5:<br>IOxx1                                                                             | Bit 4:<br>IOxx0                   | Description                      |                                                                            |  |  |
|-----------------|---------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------|----------------------------------------------------------------------------|--|--|
|                 | 0                                                                                           | 0                                 | GR is an output compare register | Compare-match disabled; pin output undefined (Initial value)               |  |  |
|                 |                                                                                             | 1                                 |                                  | 0 output on GR compare-match                                               |  |  |
|                 | 1                                                                                           | 0                                 |                                  | 1 output on GR compare-match                                               |  |  |
|                 |                                                                                             | Toggle output on GR compare-match |                                  |                                                                            |  |  |
| 1 0             | 0                                                                                           | 0 0                               | GR is an input capture register  | Input capture disabled (In channel 3 only, GR cannot be written to)        |  |  |
|                 |                                                                                             | 1                                 | compare-match                    | Input capture in GR on rising edge at TIOxx pin (GR cannot be written to)  |  |  |
|                 | 1                                                                                           | 0                                 | compare-match<br>enabled)        | Input capture in GR on falling edge at TIOxx pin (GR cannot be written to) |  |  |
| 1               | Input capture in GR on both rising and falling edges at TIOxx pin (GR cannot be written to) |                                   |                                  |                                                                            |  |  |

xx = 3B, 4B, 5B, 3D, 4D, or 5D

• Bit 3—Clear Counter Enable Flag 3A, 4A, 5A, 3C, 4C, 5C (CCI3A, CCI4A, CCI5A, CCI3C, CCI4C, CCI5C): These bits select enabling or disabling of free-running counter (TCNT) clearing.

| Bit 3: CClxx                       | Description            |                 |  |  |  |  |
|------------------------------------|------------------------|-----------------|--|--|--|--|
| 0                                  | TCNT clearing disabled | (Initial value) |  |  |  |  |
| 1 TCNT cleared on GR compare-match |                        |                 |  |  |  |  |
|                                    | -0.10                  |                 |  |  |  |  |

xx = 3A, 4A, 5A, 3C, 4C, or 5C

TCNT is cleared on compare-match only when GR is functioning as an output compare register.

Bits 2 to 0—I/O Control 3A2 to 3A0, 4A2 to 4A0, 5A2 to 5A0, 3C2 to 3C0, 4C2 to 4C0, 5C2 to 5C0 (IO3A2 to IO3A0, IO4A2 to IO4A0, IO5A2 to IO5A0, IO3C2 to IO3C0, IO4C2 to IO4C0, IO5C2 to IO5C0): These bits select the general register (GR) function.

| Bit 1:<br>IOxx1 | Bit 0:<br>IOxx0 | Description                                       |                                                                                             |  |  |
|-----------------|-----------------|---------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|
| 0               | 0               | GR is an output compare register                  | Compare-match disabled; pin output undefined (Initial value)                                |  |  |
|                 | 1               |                                                   | 0 output on GR compare-match                                                                |  |  |
| 1               | 0               |                                                   | 1 output on GR compare-match                                                                |  |  |
|                 | 1               |                                                   | Toggle output on GR compare-match                                                           |  |  |
| 0               | 0               | GR is an input capture register                   | Input capture disabled (In channel 3 only, GR cannot be written to)                         |  |  |
|                 | channel 3 and 9 | channel 3 and 9                                   | Input capture in GR on rising edge at TIOxx pin (GR connot be written to)                   |  |  |
| 1               | 0               | enabled)                                          | Input capture in GR on falling edge at TIOxx pin (GR connot be written to)                  |  |  |
|                 | 1               |                                                   | Input capture in GR on both rising and falling edges at TIOxx pin (GR connot be written to) |  |  |
|                 | 0<br>1          | 10xx1 10xx0 0 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 | IOxx1 IOxx0 Description  0                                                                  |  |  |

xx = 3A, 4A, 5A, 3C, 4C, or 5C

## Timer I/O Control Register 11 (TIOR11)

#### TIOR11

| Bit:           | 7 | 6      | 5      | 4      | 3 | 2      | 1      | 0      |
|----------------|---|--------|--------|--------|---|--------|--------|--------|
|                | _ | IO11B2 | IO11B1 | IO11B0 | _ | IO11A2 | IO11A1 | IO11A0 |
| Initial value: | 0 | 0      | 0      | 0      | 0 | 0      | 0      | 0      |
| R/W:           | R | R/W    | R/W    | R/W    | R | R/W    | R/W    | R/W    |

TIOR11 specifies whether general registers GR11A and GR11B are used as input capture or compare-match registers, and also performs edge detection and output value setting.

TIOR11 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 6 to 4—I/O Control 11B2 to 11B0 (IO11B2 to IO11B0): These bits select the general register (GR) function.

| Bit 5:<br>IO11B1 | Bit 4:<br>IO11B0 | Description                                   |                                                                                                                                                        |  |  |  |  |
|------------------|------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0                | 0                | GR is an output compare register              | Compare-match disabled; pin output undefined (Initial value)                                                                                           |  |  |  |  |
|                  | 1                | _                                             | 0 output on GR compare-match                                                                                                                           |  |  |  |  |
| 1                | 0                | <del></del>                                   | 1 output on GR compare-match                                                                                                                           |  |  |  |  |
|                  | 1                |                                               | Toggle output on GR compare-match                                                                                                                      |  |  |  |  |
| 0                | 0                | GR is an input                                | Input capture disabled                                                                                                                                 |  |  |  |  |
|                  | 1                | —capture register                             | Input capture in GR on rising edge at TIO11B pin (GR cannot be written to)                                                                             |  |  |  |  |
| 1                | 0                |                                               | Input capture in GR on falling edge at TIO11B pin (GR cannot be written to)                                                                            |  |  |  |  |
|                  | 1                | _                                             | Input capture in GR on both rising and falling edges at TIO11B pin (GR cannot be written to)                                                           |  |  |  |  |
|                  | 1011B1<br>0      | IO11B1 IO11B0  0 0  1 1 1 0 1 0 0 1 1 1 1 0 1 | IO11B1     IO11B0     Description       0     GR is an output compare register       1     0       1     0       0     GR is an input capture register |  |  |  |  |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 2 to 0—I/O Control 11A2 to 11A0 (IO11A2 to IO11A0): These bits select the general register (GR) function.

| Bit 2:<br>IO11A2 | Bit 1:<br>IO11A1       | Bit 0:<br>IO11A0 | Description                      |                                                                                              |  |  |
|------------------|------------------------|------------------|----------------------------------|----------------------------------------------------------------------------------------------|--|--|
| 0                | 0                      | 0                | GR is an output compare register | Compare-match disabled; pin output undefined (Initial value)                                 |  |  |
|                  |                        | 1                | <del></del>                      | 0 output on GR compare-match                                                                 |  |  |
|                  | 1                      | 0                | <del></del>                      | 1 output on GR compare-match                                                                 |  |  |
|                  |                        | 1                | <del></del>                      | Toggle output on GR compare-match                                                            |  |  |
| 1                | 0 <u>0</u><br>1<br>1 0 | 0                | GR is an input                   | Input capture disabled                                                                       |  |  |
|                  |                        | 1 cap            | capture register                 | Input capture in GR on rising edge at TIO11A pin (GR cannot be written to)                   |  |  |
|                  |                        | 0                | _                                | Input capture in GR on falling edge at TIO11A pin (GR cannot be written to)                  |  |  |
|                  |                        | 1                | _                                | Input capture in GR on both rising and falling edges at TIO11A pin (GR cannot be written to) |  |  |

### 11.2.5 Timer Status Registers (TSR)

The timer status registers (TSR) are 16-bit registers. The ATU-II has 11 TSR registers: one each for channels 0, 6 to 9, and 11, two each for channels 1 and 2, and one for channels 3 to 5. For details of channel 10, see section 11.2.26, Channel 10 Registers.

| Channel | Abbreviation | Function                                                         |
|---------|--------------|------------------------------------------------------------------|
| 0       | TSR0         | Indicates input capture, interval interrupt, and overflow status |
| 1       | TSR1A, TSR1B | Indicate input capture, compare-match, and overflow status       |
| 2       | TSR2A, TSR2B | _                                                                |
| 3       | TSR3         | Indicates input capture, compare-match, and overflow status      |
| 4       | _            |                                                                  |
| 5       | _            |                                                                  |
| 6       | TSR6         | Indicate cycle register compare-match status                     |
| 7       | TSR7         | -                                                                |
| 8       | TSR8         | Indicates down-counter output end (low) status                   |
| 9       | TSR9         | Indicates event counter compare-match status                     |
| 11      | TSR11        | Indicates input capture, compare-match, and overflow status      |

The TSR registers are 16-bit readable/writable registers containing flags that indicate free-running counter (TCNT) overflow, channel 0 input capture or interval interrupt generation, channel 3, 4, 5, and 11 general register input capture or compare-match, channel 6 and 7 compare-matches, channel 8 down-counter output end, and channel 9 event counter compare-matches.

Each flag is an interrupt source, and issues an interrupt request to the CPU if the interrupt is enabled by the corresponding bit in the timer interrupt enable register (TIER).

Each TSR is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

#### Timer Status Register 0 (TSR0)

TSR0 indicates the status of channel 0 interval interrupts, input capture, and overflow.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                |        | _      | _      | _      | _      | _      | _      | _      |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R      | R      | R      | R      | R      | R      | R      | R      |
|                |        |        |        |        |        |        |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|                | IIF2B  | IIF2A  | IIF1   | OVF0   | ICF0D  | ICF0C  | ICF0B  | ICF0A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |

Note: \*Only 0 can be written to clear the flag.

- Bits 15 to 8—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 7—Interval Interrupt Flag 2B (IIF2B): Status flag that indicates the generation of an interval interrupt.

| Bit 7: IIF2B | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When IIF2B is read while set to 1, then 0 is written to IIF2B | (Initial value) |
| 1            | [Setting condition] When interval interrupt selected by ITVRR2B is generated       |                 |

• Bit 6—Interval Interrupt Flag 2A (IIF2A): Status flag that indicates the generation of an interval interrupt.

| Bit 6: IIF2A | Description                                                   |                 |
|--------------|---------------------------------------------------------------|-----------------|
| 0            | [Clearing condition]                                          | (Initial value) |
|              | When IIF2A is read while set to 1, then 0 is written to IIF2A |                 |
| 1            | [Setting condition]                                           |                 |
|              | When interval interrupt selected by ITVRR2A is generated      |                 |

• Bit 5—Interval Interrupt Flag 1 (IIF1): Status flag that indicates the generation of an interval interrupt.

| Bit 5: IIF1 | Description                                                                      |                 |
|-------------|----------------------------------------------------------------------------------|-----------------|
| 0           | [Clearing condition] When IIF1 is read while set to 1, then 0 is written to IIF1 | (Initial value) |
| 1           | [Setting condition] When interval interrupt selected by ITVRR1 is generated      |                 |

• Bit 4—Overflow Flag 0 (OVF0): Status flag that indicates TCNT0 overflow.

| Bit 4: OVF0 | Description                                                                      |                 |
|-------------|----------------------------------------------------------------------------------|-----------------|
| 0           | [Clearing condition] When OVF0 is read while set to 1, then 0 is written to OVF0 | (Initial value) |
| 1           | [Setting condition] When the TCNT0 value overflows (from H'FFFFFFF to H'000)     | 00000)          |

• Bit 3—Input Capture Flag 0D (ICF0D): Status flag that indicates ICR0D input capture.

| Bit 3: ICF0D | Description                                                                                                                                                       |                 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When ICF0D is read while set to 1, then 0 is written to ICF0D                                                                                | (Initial value) |
| 1            | [Setting condition] When the TCNT0 value is transferred to the input capture reg<br>capture signal. Also set by input capture with a channel 10 co<br>the trigger | •               |

• Bit 2—Input Capture Flag 0C (ICF0C): Status flag that indicates ICR0C input capture.

| Bit 2: ICF0C | Description                                                                                       |                  |
|--------------|---------------------------------------------------------------------------------------------------|------------------|
| 0            | [Clearing condition] When ICF0C is read while set to 1, then 0 is written to ICF0C                | (Initial value)  |
| 1            | [Setting condition] When the TCNT0 value is transferred to the input capture regis capture signal | ster by an input |

• Bit 1—Input Capture Flag 0B (ICF0B): Status flag that indicates ICR0B input capture.

| Bit 1: ICF0B | Description                                                                                       |                 |
|--------------|---------------------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When ICF0B is read while set to 1, then 0 is written to ICF0B                | (Initial value) |
| 1            | [Setting condition] When the TCNT0 value is transferred to the input capture regis capture signal | ter by an input |

• Bit 0—Input Capture Flag 0A (ICF0A): Status flag that indicates ICR0A input capture.

| Bit 0: ICF0A | Description                                                                                       |                  |
|--------------|---------------------------------------------------------------------------------------------------|------------------|
| 0            | [Clearing condition] When ICF0A is read while set to 1, then 0 is written to ICF0A                | (Initial value)  |
| 1            | [Setting condition] When the TCNT0 value is transferred to the input capture regis capture signal | ster by an input |

### Timer Status Registers 1A and 1B (TSR1A, TSR1B)

TSR1A: TSR1A indicates the status of channel 1 input capture, compare-match, and overflow.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                | _      | _      |        |        | _      |        | _      | OVF1A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R      | R      | R      | R      | R      | R      | R      | R/(W)* |
|                |        |        |        |        |        |        |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|                | IMF1H  | IMF1G  | IMF1F  | IMF1E  | IMF1D  | IMF1C  | IMF1B  | IMF1A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |

Note: \* Only 0 can be written, to clear the flag.

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Flag 1A (OVF1A): Status flag that indicates TCNT1A overflow.

| Bit 8: OVF1A | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OVF1A is read while set to 1, then 0 is written to OVF1A | (Initial value) |
| 1            | [Setting condition] When the TCNT1A value overflows (from H'FFFF to H'0000)        |                 |

• Bit 7—Input Capture/Compare-Match Flag 1H (IMF1H): Status flag that indicates GR1H input capture or compare-match.

| Bit 7: IMF1H | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF1H is read while set to 1, then 0 is written to IMF1H                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1H by an input capture signal while GR1H is functioning as an input capture register</li> <li>When TCNT1A = GR1H while GR1H is functioning as an output compare register</li> </ul> |

• Bit 6—Input Capture/Compare-Match Flag 1G (IMF1G): Status flag that indicates GR1G input capture or compare-match.

| Bit 6: IMF1G | Description                                                                                                                                                                                                                                                     |       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 0            | [Clearing condition] (Initial value) When IMF1G is read while set to 1, then 0 is written to IMF1G                                                                                                                                                              | alue) |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1G by an input capture signal while GR1G is functioning as an input capture register</li> <li>When TCNT1A = GR1G while GR1G is functioning as an output comregister</li> </ul> | pare  |

• Bit 5—Input Capture/Compare-Match Flag 1F (IMF1F): Status flag that indicates GR1F input capture or compare-match.

| Bit 5: IMF1F | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF1F is read while set to 1, then 0 is written to IMF1F                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1F by an input capture signal while GR1F is functioning as an input capture register</li> <li>When TCNT1A = GR1F while GR1F is functioning as an output compare register</li> </ul> |

• Bit 4—Input Capture/Compare-Match Flag 1E (IMF1E): Status flag that indicates GR1E input capture or compare-match.

| Bit 4: IMF1E | Description                                                                                                                                                                                                                                                          |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0            | [Clearing condition] (Initial value) When IMF1E is read while set to 1, then 0 is written to IMF1E                                                                                                                                                                   |  |  |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1E by an input capture signal while GR1E is functioning as an input capture register</li> <li>When TCNT1A = GR1E while GR1E is functioning as an output compare register</li> </ul> |  |  |

• Bit 3—Input Capture/Compare-Match Flag 1D (IMF1D): Status flag that indicates GR1D input capture or compare-match.

| Bit 3: IMF1D | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF1D is read while set to 1, then 0 is written to IMF1D                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1D by an input capture signal while GR1D is functioning as an input capture register</li> <li>When TCNT1A = GR1D while GR1D is functioning as an output compare register</li> </ul> |

• Bit 2—Input Capture/Compare-Match Flag 1C (IMF1C): Status flag that indicates GR1C input capture or compare-match.

| Bit 2: IMF1C | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF1C is read while set to 1, then 0 is written to IMF1C                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1C by an input capture signal while GR1C is functioning as an input capture register</li> <li>When TCNT1A = GR1C while GR1C is functioning as an output compare register</li> </ul> |

• Bit 1—Input Capture/Compare-Match Flag 1B (IMF1B): Status flag that indicates GR1B input capture or compare-match.

| Bit 1: IMF1B | Description                                                                                                                                                                                                                                                          |   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 0            | [Clearing condition] (Initial value) When IMF1B is read while set to 1, then 0 is written to IMF1B                                                                                                                                                                   | _ |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1B by an input capture signal while GR1B is functioning as an input capture register</li> <li>When TCNT1A = GR1B while GR1B is functioning as an output compare register</li> </ul> | _ |

• Bit 0—Input Capture/Compare-Match Flag 1A (IMF1A): Status flag that indicates GR1A input capture or compare-match.

| Bit 0: IMF1A | Description                                                                                                                                                                                                                                       |                 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When IMF1A is read while set to 1, then 0 is written to IMF1A                                                                                                                                                                | (Initial value) |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT1A value is transferred to GR1A by an input signal while GR1A is functioning as an input capture register</li> <li>When TCNT1A = GR1A while GR1A is functioning as an our register</li> </ul> | r               |

**TSR1B:** TSR1B indicates the status of channel 1 compare-match and overflow.

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8      |
|----------------|----|----|----|----|----|----|---|--------|
|                | _  | _  | _  | _  | _  |    |   | OVF1B  |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0      |
| R/W:           | R  | R  | R  | R  | R  | R  | R | R/(W)* |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1 | 0      |
|                | _  | _  | _  | _  | _  | _  |   | CMF1   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0      |
| R/W:           | R  | R  | R  | R  | R  | R  | R | R/(W)* |

Note: \* Only 0 can be written, to clear the flag.

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Flag 1B (OVF1B): Status flag that indicates TCNT1B overflow.

| Bit 8: OVF1B | Description                                                   |                 |
|--------------|---------------------------------------------------------------|-----------------|
| 0            | [Clearing condition]                                          | (Initial value) |
|              | When OVF1B is read while set to 1, then 0 is written to OVF1B |                 |
| 1            | [Setting condition]                                           |                 |
|              | When the TCNT1B value overflows (from H'FFFF to H'0000)       |                 |

- Bits 7 to 1—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 0—Compare-Match Flag 1 (CMF1): Status flag that indicates OCR1 compare-match.

| Bit 0: CMF1 | Description                                                                      |                 |
|-------------|----------------------------------------------------------------------------------|-----------------|
| 0           | [Clearing condition] When CMF1 is read while set to 1, then 0 is written to CMF1 | (Initial value) |
| 1           | [Setting condition] When TCNT1B = OCR1                                           |                 |

# Timer Status Registers 2A and 2B (TSR2A, TSR2B)

TSR2A: TSR2A indicates the status of channel 2 input capture, compare-match, and overflow.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                | _      | 1      | 1      | 1      | 1      | 1      |        | OVF2A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R      | R      | R      | R      | R      | R      | R      | R/(W)* |
|                |        |        |        |        |        |        |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|                | IMF2H  | IMF2G  | IMF2F  | IMF2E  | IMF2D  | IMF2C  | IMF2B  | IMF2A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |

Note: \* Only 0 can be written to clear the flag.

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Flag 2A (OVF2A): Status flag that indicates TCNT2A overflow.

| Bit 8: OVF2A | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OVF2A is read while set to 1, then 0 is written to OVF2A | (Initial value) |
| 1            | [Setting condition] When the TCNT2A value overflows (from H'FFFF to H'0000)        |                 |

• Bit 7—Input Capture/Compare-Match Flag 2H (IMF2H): Status flag that indicates GR2H input capture or compare-match.

| Bit 7: IMF2H | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF2H is read while set to 1, then 0 is written to IMF2H                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2H by an input capture signal while GR2H is functioning as an input capture register</li> <li>When TCNT2A = GR2H while GR2H is functioning as an output compare register</li> </ul> |

• Bit 6—Input Capture/Compare-Match Flag 2G (IMF2G): Status flag that indicates GR2G input capture or compare-match.

| Bit 6: IMF2G | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF2G is read while set to 1, then 0 is written to IMF2G                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2G by an input capture signal while GR2G is functioning as an input capture register</li> <li>When TCNT2A = GR2G while GR2G is functioning as an output compare register</li> </ul> |

• Bit 5—Input Capture/Compare-Match Flag 2F (IMF2F): Status flag that indicates GR2F input capture or compare-match.

| Bit 5: IMF2F | Description                                                                                                                                                                                                                                                          |   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 0            | [Clearing condition] (Initial value) When IMF2F is read while set to 1, then 0 is written to IMF2F                                                                                                                                                                   | _ |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2F by an input capture signal while GR2F is functioning as an input capture register</li> <li>When TCNT2A = GR2F while GR2F is functioning as an output compare register</li> </ul> |   |

• Bit 4—Input Capture/Compare-Match Flag 2E (IMF2E): Status flag that indicates GR2E input capture or compare-match.

| Bit 4: IMF2E | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF2E is read while set to 1, then 0 is written to IMF2E                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2E by an input capture signal while GR2E is functioning as an input capture register</li> <li>When TCNT2A = GR2E while GR2E is functioning as an output compare register</li> </ul> |

• Bit 3—Input Capture/Compare-Match Flag 2D (IMF2D): Status flag that indicates GR2D input capture or compare-match.

| Bit 3: IMF2D | Description                                                                                                                                                                                                                                                          |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF2D is read while set to 1, then 0 is written to IMF2D                                                                                                                                                                   |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2D by an input capture signal while GR2D is functioning as an input capture register</li> <li>When TCNT2A = GR2D while GR2D is functioning as an output compare register</li> </ul> |

• Bit 2—Input Capture/Compare-Match Flag 2C (IMF2C): Status flag that indicates GR2C input capture or compare-match.

| Bit 2: IMF2C | Description                                                                                                                                                                                                                                                          |  |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0            | [Clearing condition] (Initial value) When IMF2C is read while set to 1, then 0 is written to IMF2C                                                                                                                                                                   |  |  |  |  |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2C by an input capture signal while GR2C is functioning as an input capture register</li> <li>When TCNT2A = GR2C while GR2C is functioning as an output compare register</li> </ul> |  |  |  |  |

• Bit 1—Input Capture/Compare-Match Flag 2B (IMF2B): Status flag that indicates GR2B input capture or compare-match.

| Bit 1: IMF2B | Description                                                                                                                                                                                                                                                          |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0            | [Clearing condition] (Initial value) When IMF2B is read while set to 1, then 0 is written to IMF2B                                                                                                                                                                   |  |  |  |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2B by an input capture signal while GR2B is functioning as an input capture register</li> <li>When TCNT2A = GR2B while GR2B is functioning as an output compare register</li> </ul> |  |  |  |

• Bit 0—Input Capture/Compare-Match Flag 2A (IMF2A): Status flag that indicates GR2A input capture or compare-match.

| Bit 0: IMF2A | Description                                                                                                                                                                                                                                                          |          |  |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| 0            | [Clearing condition] (Initial value) When IMF2A is read while set to 1, then 0 is written to IMF2A                                                                                                                                                                   |          |  |  |  |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT2A value is transferred to GR2A by an input capture signal while GR2A is functioning as an input capture register</li> <li>When TCNT2A = GR2A while GR2A is functioning as an output compare register</li> </ul> | <b>,</b> |  |  |  |

TSR2B: TSR2B indicates the status of channel 2 compare-match and overflow.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                | _      | 1      |        | _      | 1      |        |        | OVF2B  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R      | R      | R      | R      | R      | R      | R      | R/(W)* |
|                |        |        |        |        |        |        |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|                | CMF2H  | CMF2G  | CMF2F  | CMF2E  | CMF2D  | CMF2C  | CMF2B  | CMF2A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |
|                |        |        |        |        |        |        |        |        |

Note: \* Only 0 can be written to clear the flag.

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Flag 2B (OVF2B): Status flag that indicates TCNT2B overflow.

| Bit 8: OVF2B | Description                                                   |                 |
|--------------|---------------------------------------------------------------|-----------------|
| 0            | [Clearing condition]                                          | (Initial value) |
|              | When OVF2B is read while set to 1, then 0 is written to OVF2B |                 |
| 1            | [Setting condition]                                           | _               |
|              | When the TCNT2B value overflows (from H'FFFF to H'0000)       |                 |

• Bit 7—Compare-Match Flag 2H (CMF2H): Status flag that indicates OCR2H compare-match.

| Bit 7: CMF2H | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2H is read while set to 1, then 0 is written to CMF2H | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2H                                            |                 |

• Bit 6—Compare-Match Flag 2G (CMF2G): Status flag that indicates OCR2G compare-match.

| Bit 6: CMF2G | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2G is read while set to 1, then 0 is written to CMF2G | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2G                                            |                 |

• Bit 5—Compare-Match Flag 2F (CMF2F): Status flag that indicates OCR2F compare-match.

| Bit 5: CMF2F | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2F is read while set to 1, then 0 is written to CMF2F | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2F                                            |                 |

• Bit 4—Compare-Match Flag 2E (CMF2E): Status flag that indicates OCR2E compare-match.

| Bit 4: CMF2E | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2E is read while set to 1, then 0 is written to CMF2E | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2E                                            |                 |

• Bit 3—Compare-Match Flag 2D (CMF2D): Status flag that indicates OCR2D compare-match.

| Bit 3: CMF2D | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2D is read while set to 1, then 0 is written to CMF2I | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2D                                            |                 |

• Bit 2—Compare-Match Flag 2C (CMF2C): Status flag that indicates OCR2C compare-match.

| Bit 2: CMF2C | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2C is read while set to 1, then 0 is written to CMF2C | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2C                                            |                 |

• Bit 1—Compare-Match Flag 2B (CMF2B): Status flag that indicates OCR2B compare-match.

| Bit 1: CMF2B | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2B is read while set to 1, then 0 is written to CMF2E | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2B                                            |                 |

• Bit 0—Compare-Match Flag 2A (CMF2A): Status flag that indicates OCR2A compare-match.

| Bit 0: CMF2A | Description                                                                        | _               |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF2A is read while set to 1, then 0 is written to CMF2A | (Initial value) |
| 1            | [Setting condition] When TCNT2B = OCR2A                                            |                 |

### Timer Status Register 3 (TSR3)

TSR3 indicates the status of channel 3 to 5 input capture, compare-match, and overflow.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                | _      | OVF5   | IMF5D  | IMF5C  | IMF5B  | IMF5A  | OVF4   | IMF4D  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R      | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |
|                |        |        |        |        |        |        |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|                | IMF4C  | IMF4B  | IMF4A  | OVF3   | IMF3D  | IMF3C  | IMF3B  | IMF3A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |

Note: \*Only 0 can be written to clear the flag.

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—Overflow Flag 5 (OVF5): Status flag that indicates TCNT5 overflow.

| Bit 14: OVF5 | Description                                                                      |                 |
|--------------|----------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OVF5 is read while set to 1, then 0 is written to OVF5 | (Initial value) |
| 1            | [Setting condition] When the TCNT5 value overflows (from H'FFFF to H'0000)       |                 |

• Bit 13—Input Capture/Compare-Match Flag 5D (IMF5D): Status flag that indicates GR5D input capture or compare-match.

| Bit 13: IMF5D | Description                                                                                                                                                                                                                                                                                                                                             |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | [Clearing condition] (Initial value) When IMF5D is read while set to 1, then 0 is written to IMF5D                                                                                                                                                                                                                                                      |
| 1             | <ul> <li>[Setting conditions]</li> <li>When the TCNT5 value is transferred to GR5D by an input capture signal while GR5D is functioning as an input capture register</li> <li>When TCNT5 = GR5D while GR5D is functioning as an output compare register</li> <li>When TCNT5 = GR5D while GR5D is functioning as a cycle register in PWM mode</li> </ul> |

• Bit 12—Input Capture/Compare-Match Flag 5C (IMF5C): Status flag that indicates GR5C input capture or compare-match. The flag is not set in PWM mode.

| Bit 12: IMF5C | Description                                                                                                                                                                                                                                                        |        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0             | [Clearing condition] (Initial value) When IMF5C is read while set to 1, then 0 is written to IMF5C                                                                                                                                                                 | ,      |
| 1             | <ul> <li>[Setting conditions]</li> <li>When the TCNT5 value is transferred to GR5C by an input capture signal while GR5C is functioning as an input capture register</li> <li>When TCNT5 = GR5C while GR5C is functioning as an output compare register</li> </ul> | _<br>I |

• Bit 11—Input Capture/Compare-Match Flag 5B (IMF5B): Status flag that indicates GR5B input capture or compare-match. The flag is not set in PWM mode.

| Bit 11: IMF5B | Description                                                                                                                                                                                                                                                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | [Clearing condition] (Initial value) When IMF5B is read while set to 1, then 0 is written to IMF5B                                                                                                                                                                 |
| 1             | <ul> <li>[Setting conditions]</li> <li>When the TCNT5 value is transferred to GR5B by an input capture signal while GR5B is functioning as an input capture register</li> <li>When TCNT5 = GR5B while GR5B is functioning as an output compare register</li> </ul> |

• Bit 10—Input Capture/Compare-Match Flag 5A (IMF5A): Status flag that indicates GR5A input capture or compare-match. The flag is not set in PWM mode.

| Bit 10: IMF5A | Description                                                                                                                                                                     |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | [Clearing condition] (Initial value) When IMF5A is read while set to 1, then 0 is written to IMF5A                                                                              |
| 1             | <ul> <li>[Setting conditions]</li> <li>When the TCNT5 value is transferred to GR5A by an input capture signal while GR5A is functioning as an input capture register</li> </ul> |
|               | <ul> <li>When TCNT5 = GR5A while GR5A is functioning as an output compare<br/>register</li> </ul>                                                                               |

• Bit 9—Overflow Flag 4 (OVF4): Status flag that indicates TCNT4 overflow.

| Bit 9: OVF4 | Description                                                                      |                 |
|-------------|----------------------------------------------------------------------------------|-----------------|
| 0           | [Clearing condition] When OVF4 is read while set to 1, then 0 is written to OVF4 | (Initial value) |
| 1           | [Setting condition] When the TCNT4 value overflows (from H'FFFF to H'0000)       |                 |

• Bit 8—Input Capture/Compare-Match Flag 4D (IMF4D): Status flag that indicates GR4D input capture or compare-match.

| Bit 8: IMF4D | Description                                                                                                                                                                                                                                                                                                                                                |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF4D is read while set to 1, then 0 is written to IMF4D                                                                                                                                                                                                                                                         |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT4 value is transferred to GR4D by an input capture signal while GR4D is functioning as an input capture register</li> <li>When TCNT4 = GR4D while GR4D is functioning as an output compare register</li> <li>When TCNT4 = GR4D while GR4D is functioning as a PWM mode synchronous register</li> </ul> |

• Bit 7—Input Capture/Compare-Match Flag 4C (IMF4C): Status flag that indicates GR4C input capture or compare-match. The flag is not set in PWM mode.

| Bit 7: IMF4C | Description                                                                                                                                                                                                                                                       |    |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 0            | [Clearing condition] (Initial value When IMF4C is read while set to 1, then 0 is written to IMF4C                                                                                                                                                                 | ∍) |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT4 value is transferred to GR4C by an input capture signs while GR4C is functioning as an input capture register</li> <li>When TCNT4 = GR4C while GR4C is functioning as an output compare register</li> </ul> |    |

• Bit 6—Input Capture/Compare-Match Flag 4B (IMF4B): Status flag that indicates GR4B input capture or compare-match. The flag is not set in PWM mode.

| Bit 6: IMF4B | Description                                                                                                                                                                                                                                                    |     |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0            | [Clearing condition] (Initial value) When IMF4B is read while set to 1, then 0 is written to IMF4B                                                                                                                                                             | ue) |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT4 value is transferred to GR4B by an input capture sig while GR4B is functioning as an input capture register</li> <li>When TCNT4 = GR4B while GR4B is functioning as an output compar register</li> </ul> |     |

• Bit 5—Input Capture/Compare-Match Flag 4A (IMF4A): Status flag that indicates GR4A input capture or compare-match. The flag is not set in PWM mode.

| Bit 5: IMF4A | Description                                                                                                                            |                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition]                                                                                                                   | (Initial value) |
|              | When IMF4A is read while set to 1, then 0 is written to IMF4A                                                                          |                 |
| 1            | [Setting conditions]                                                                                                                   |                 |
|              | <ul> <li>When the TCNT4 value is transferred to GR4A by an input<br/>while GR4A is functioning as an input capture register</li> </ul> | capture signal  |
|              | <ul> <li>When TCNT4 = GR4A while GR4A is functioning as an out<br/>register</li> </ul>                                                 | put compare     |

• Bit 4—Overflow Flag 3 (OVF3): Status flag that indicates TCNT3 input capture or comparematch.

| Bit 4: OVF3 | Description                                                                      |                 |
|-------------|----------------------------------------------------------------------------------|-----------------|
| 0           | [Clearing condition] When OVF3 is read while set to 1, then 0 is written to OVF3 | (Initial value) |
| 1           | [Setting condition] When the TCNT3 value overflows (from H'FFFF to H'0000)       |                 |

• Bit 3—Input Capture/Compare-Match Flag 3D (IMF3D): Status flag that indicates GR5D input capture or compare-match.

| Bit 3: IMF3D | Description                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF3D is read while set to 1, then 0 is written to IMF3D                                                                                                                                                                                                                                                                                                                                                      |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT3 value is transferred to GR3D by an input capture signal while GR3D is functioning as an input capture register. However, IMF3D is not set by input capture with a channel 9 compare match as the trigger</li> <li>When TCNT3 = GR3D while GR3D is functioning as an output compare register</li> <li>When TCNT3 = GR3D while GR3D is functioning as a synchronous register in PWM mode</li> </ul> |

• Bit 2—Input Capture/Compare-Match Flag 3C (IMF3C): Status flag that indicates GR3C input capture or compare-match. The flag is not set in PWM mode.

| Bit 2: IMF3C | Description                                                                                                                                                                                                                                                                                                                                                 |   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 0            | [Clearing condition] (Initial value) When IMF3C is read while set to 1, then 0 is written to IMF3C                                                                                                                                                                                                                                                          | ) |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT3 value is transferred to GR3C by an input capture signa while GR3C is functioning as an input capture register. However, IMF3C is not set by input capture with a channel 9 compare match as the trigger</li> <li>When TCNT3 = GR3C while GR3C is functioning as an output compare register</li> </ul> |   |

• Bit 1—Input Capture/Compare-Match Flag 3B (IMF3B): Status flag that indicates GR3B input capture or compare-match. The flag is not set in PWM mode.

| Bit 1: IMF3B | Description                                                                                                                                                                                                                                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF3B is read while set to 1, then 0 is written to IMF3B                                                                                                                                                                                                                                                           |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT3 value is transferred to GR3B by an input capture signal while GR3B is functioning as an input capture register. However, IMF3B is not set by input capture with a channel 9 compare match as the trigger</li> <li>When TCNT3 = GR3B while GR3B is functioning as an output compare register</li> </ul> |

• Bit 0—Input Capture/Compare-Match Flag 3A (IMF3A): Status flag that indicates GR3A input capture or compare-match. The flag is not set in PWM mode.

| Bit 0: IMF3A | Description                                                                                                                                                                                                                                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When IMF3A is read while set to 1, then 0 is written to IMF3A                                                                                                                                                                                                                                                           |
| 1            | <ul> <li>[Setting conditions]</li> <li>When the TCNT3 value is transferred to GR3A by an input capture signal while GR3A is functioning as an input capture register. However, IMF3A is not set by input capture with a channel 9 compare match as the trigger</li> <li>When TCNT3 = GR3A while GR3A is functioning as an output compare register</li> </ul> |

### Timer Status Registers 6 and 7 (TSR6, TSR7)

TSR6 and TRS7 indicate the channel 6 and 7 free-running counter up-count and down-count status, and cycle register compare status.

| Bit:           | 15   | 14   | 13   | 12   | 11     | 10     | 9      | 8      |
|----------------|------|------|------|------|--------|--------|--------|--------|
|                | 1    | 1    | _    | _    | _      | 1      | 1      | _      |
| Initial value: | 0    | 0    | 0    | 0    | 0      | 0      | 0      | 0      |
| R/W:           | R    | R    | R    | R    | R      | R      | R      | R      |
|                |      |      |      |      |        |        |        |        |
| Bit:           | 7    | 6    | 5    | 4    | 3      | 2      | 1      | 0      |
|                | UDxD | UDxC | UDxB | UDxA | CMFxD  | CMFxC  | CMFxB  | CMFxA  |
| Initial value: | 0    | 0    | 0    | 0    | 0      | 0      | 0      | 0      |
| R/W:           | R    | R    | R    | R    | R/(W)* | R/(W)* | R/(W)* | R/(W)* |

Note: \*Only 0 can be written to clear the flag.

x = 6 or 7

UDxA to UDxD relate to TSR6 only. Bits relating to TSR7 always read 0.

- Bits 15 to 8—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 7—Count-Up/Count-Down Flag 6D (UD6D): Status flag that indicates the TCNT6D count operation.

| Bit 7: UD6D | Description                                            |
|-------------|--------------------------------------------------------|
| 0           | Free-running counter TCNT6D operates as an up-counter  |
| 1           | Free-running counter TCNT6D operates as a down-counter |

• Bit 6—Count-Up/Count-Down Flag 6C (UD6C): Status flag that indicates the TCNT6C count operation.

| Bit 6: UD6C | Description                                            |
|-------------|--------------------------------------------------------|
| 0           | Free-running counter TCNT6C operates as an up-counter  |
| 1           | Free-running counter TCNT6C operates as a down-counter |

• Bit 5—Count-Up/Count-Down Flag 6B (UD6B): Status flag that indicates the TCNT6B count operation.

| Bit 5: UD6B | Description                                            |
|-------------|--------------------------------------------------------|
| 0           | Free-running counter TCNT6B operates as an up-counter  |
| 1           | Free-running counter TCNT6B operates as a down-counter |

• Bit 4—Count-Up/Count-Down Flag 6A (UD6A): Status flag that indicates the TCNT6A count operation.

| Bit 4: UD6A | Description                                            |
|-------------|--------------------------------------------------------|
| 0           | Free-running counter TCNT6A operates as an up-counter  |
| 1           | Free-running counter TCNT6A operates as a down-counter |

• Bit 3—Cycle Register Compare-Match Flag 6D/7D (CMF6D/CMF7D): Status flag that indicates CYLRxD compare-match.

| Bit 3: CMFxD | Description                                                          |                 |
|--------------|----------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition]                                                 | (Initial value) |
|              | When CMFxD is read while set to 1, then 0 is written to CMFxD        | )               |
| 1            | [Setting conditions]                                                 |                 |
|              | <ul> <li>When TCNTxD = CYLRxD (in non-complementary PWM m</li> </ul> | ode)            |
|              | • When TCNT6D = H'0000 in a down-count (in complementa               | ry PWM mode)    |

x = 6 or 7

• Bit 2—Cycle Register Compare-Match Flag 6C/7C (CMF6C/CMF7C): Status flag that indicates CYLRxC compare-match.

| Bit 2: CMFxC | Description                                                                                                                                                              |                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMFxC is read while set to 1, then 0 is written to CMFxC                                                                                       | (Initial value) |
| 1            | <ul> <li>[Setting conditions]</li> <li>When TCNTxC = CYLRxC (in non-complementary PWM m</li> <li>When TCNT6C = H'0000 in a down-count (in complementary PWM m</li> </ul> | ode)            |

x = 6 or 7

• Bit 1—Cycle Register Compare-Match Flag 6B/7B (CMF6B/CMF7B): Status flag that indicates CYLRxB compare-match.

| Bit 1: CMFxB | Description                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When CMFxB is read while set to 1, then 0 is written to CMFxB                                                                               |
| 1            | <ul> <li>[Setting conditions]</li> <li>When TCNTxB = CYLRxB (in non-complementary PWM mode)</li> <li>When TCNT6B = H'0000 in a down-count (in complementary PWM mode)</li> </ul> |

x = 6 or 7

• Bit 0—Cycle Register Compare-Match Flag 6A/7A (CMF6A/CMF7A): Status flag that indicates CYLRxA compare-match.

| Bit 0: CMFxA | Description                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | [Clearing condition] (Initial value) When CMFxA is read while set to 1, then 0 is written to CMFxA                                                                               |
| 1            | <ul> <li>[Setting conditions]</li> <li>When TCNTxA = CYLRxA (in non-complementary PWM mode)</li> <li>When TCNT6A = H'0000 in a down-count (in complementary PWM mode)</li> </ul> |

x = 6 or 7

# **Timer Status Register 8 (TSR8)**

TSR8 indicates the channel 8 one-shot pulse status.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                | OSF8P  | OSF8O  | OSF8N  | OSF8M  | OSF8L  | OSF8K  | OSF8J  | OSF8I  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |
|                |        |        |        |        |        |        |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|                | OSF8H  | OSF8G  | OSF8F  | OSF8E  | OSF8D  | OSF8C  | OSF8B  | OSF8A  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |

Note: \* Only 0 can be written to clear the flag.

• Bit 15—One-Shot Pulse Flag 8P (OSF8P): Status flag that indicates a DCNT8P one-shot pulse.

| Bit 15: OSF8P | Description                                                                        |                 |
|---------------|------------------------------------------------------------------------------------|-----------------|
| 0             | [Clearing condition] When OSF8P is read while set to 1, then 0 is written to OSF8P | (Initial value) |
| 1             | [Setting condition] When DCNT8P underflows                                         |                 |

• Bit 14—One-Shot Pulse Flag 8O (OSF8O): Status flag that indicates a DCNT8O one-shot pulse.

| Bit 14: OSF80 | Description                                                                        |                 |
|---------------|------------------------------------------------------------------------------------|-----------------|
| 0             | [Clearing condition] When OSF8O is read while set to 1, then 0 is written to OSF8C | (Initial value) |
| 1             | [Setting condition] When DCNT8O underflows                                         |                 |

• Bit 13—One-Shot Pulse Flag 8N (OSF8N): Status flag that indicates a DCNT8N one-shot pulse.

| Bit 13: OSF8N | Description                                                                        |                 |
|---------------|------------------------------------------------------------------------------------|-----------------|
| 0             | [Clearing condition] When OSF8N is read while set to 1, then 0 is written to OSF8N | (Initial value) |
| 1             | [Setting condition] When DCNT8N underflows                                         |                 |

• Bit 12—One-Shot Pulse Flag 8M (OSF8M): Status flag that indicates a DCNT8M one-shot pulse.

| Bit 12: OSF8M | Description                                                                        |                 |
|---------------|------------------------------------------------------------------------------------|-----------------|
| 0             | [Clearing condition] When OSF8M is read while set to 1, then 0 is written to OSF8M | (Initial value) |
| 1             | [Setting condition] When DCNT8M underflows                                         |                 |

• Bit 11—One-Shot Pulse Flag 8L (OSF8L): Status flag that indicates a DCNT8L one-shot pulse.

| Bit 11: OSF8L | Description                                                                        |                 |
|---------------|------------------------------------------------------------------------------------|-----------------|
| 0             | [Clearing condition] When OSF8L is read while set to 1, then 0 is written to OSF8L | (Initial value) |
| 1             | [Setting condition] When DCNT8L underflows                                         |                 |

• Bit 10—One-Shot Pulse Flag 8K (OSF8K): Status flag that indicates a DCNT8K one-shot pulse.

| Bit 10: OSF8K | Description                                                                        |                 |
|---------------|------------------------------------------------------------------------------------|-----------------|
| 0             | [Clearing condition] When OSF8K is read while set to 1, then 0 is written to OSF8K | (Initial value) |
| 1             | [Setting condition] When DCNT8K underflows                                         |                 |

• Bit 9—One-Shot Pulse Flag 8J (OSF8J): Status flag that indicates a DCNT8J one-shot pulse.

| Bit 9: OSF8J | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8J is read while set to 1, then 0 is written to OSF8J | (Initial value) |
| 1            | [Setting condition] When DCNT8J underflows                                         |                 |

• Bit 8—One-Shot Pulse Flag 8I (OSF8I): Status flag that indicates a DCNT8I one-shot pulse.

| Bit 8: OSF8I | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8I is read while set to 1, then 0 is written to OSF8I | (Initial value) |
| 1            | [Setting condition] When DCNT8I underflows                                         |                 |

 Bit 7—One-Shot Pulse Flag 8H (OSF8H): Status flag that indicates a DCNT8H one-shot pulse.

| Bit 7: OSF8H | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8H is read while set to 1, then 0 is written to OSF8H | (Initial value) |
| 1            | [Setting condition] When DCNT8H underflows                                         |                 |

• Bit 6—One-Shot Pulse Flag 8G (OSF8G): Status flag that indicates a DCNT8G one-shot pulse.

| Bit 6: OSF8G | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8G is read while set to 1, then 0 is written to OSF8G | (Initial value) |
| 1            | [Setting condition] When DCNT8G underflows                                         |                 |

• Bit 5—One-Shot Pulse Flag 8F (OSF8F): Status flag that indicates a DCNT8F one-shot pulse.

| Bit 5: OSF8F | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8F is read while set to 1, then 0 is written to OSF8F | (Initial value) |
| 1            | [Setting condition] When DCNT8F underflows                                         |                 |

• Bit 4—One-Shot Pulse Flag 8E (OSF8E): Status flag that indicates a DCNT8E one-shot pulse.

| Bit 4: OSF8E | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8E is read while set to 1, then 0 is written to OSF8E | (Initial value) |
| 1            | [Setting condition] When DCNT8E underflows                                         |                 |

• Bit 3—One-Shot Pulse Flag 8D (OSF8D): Status flag that indicates a DCNT8D one-shot pulse.

| Bit 3: OSF8D | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8D is read while set to 1, then 0 is written to OSF8D | (Initial value) |
| 1            | [Setting condition] When DCNT8D underflows                                         |                 |

• Bit 2—One-Shot Pulse Flag 8C (OSF8C): Status flag that indicates a DCNT8C one-shot pulse.

| Bit 2: OSF8C | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8C is read while set to 1, then 0 is written to OSF8C | (Initial value) |
| 1            | [Setting condition] When DCNT8C underflows                                         |                 |

• Bit 1—One-Shot Pulse Flag 8B (OSF8B): Status flag that indicates a DCNT8B one-shot pulse.

| Bit 1: OSF8B | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8B is read while set to 1, then 0 is written to OSF8B | (Initial value) |
| 1            | [Setting condition] When DCNT8B underflows                                         |                 |

• Bit 0—One-Shot Pulse Flag 8A (OSF8A): Status flag that indicates a DCNT8A one-shot pulse.

| Bit 0: OSF8A | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OSF8A is read while set to 1, then 0 is written to OSF8A | (Initial value) |
| 1            | [Setting condition] When DCNT8A underflows                                         |                 |

# Timer Status Register 9 (TSR9)

TSR9 indicates the channel 9 event counter compare-match status.

| Bit:           | 15 | 14 | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|----|----|--------|--------|--------|--------|--------|--------|
|                | _  |    |        |        |        |        |        | _      |
| Initial value: | 0  | 0  | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R      | R      | R      | R      | R      | R      |
|                |    |    |        |        |        |        |        |        |
| Bit:           | 7  | 6  | 5      | 4      | 3      | 2      | 1      | 0      |
|                | _  |    | CMF9F  | CMF9E  | CMF9D  | CMF9C  | CMF9B  | CMF9A  |
| Initial value: | 0  | 0  | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* |

Note: \*Only 0 can be written to clear the flag.

- Bits 15 to 6—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 5—Compare-Match Flag 9F (CMF9F): Status flag that indicates GR9F compare-match.

| Bit 5: CMF9F | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF9F is read while set to 1, then 0 is written to CMF9F | (Initial value) |
| 1            | [Setting condition] When the next edge is input while ECNT9F = GR9F                |                 |

• Bit 4—Compare-Match Flag 9E (CMF9E): Status flag that indicates GR9E compare-match.

| Bit 4: CMF9E | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF9E is read while set to 1, then 0 is written to CMF9E | (Initial value) |
| 1            | [Setting condition] When the next edge is input while ECNT9E = GR9E                |                 |

• Bit 3—Compare-Match Flag 9D (CMF9D): Status flag that indicates GR9D compare-match.

| Bit 3: CMF9D | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF9D is read while set to 1, then 0 is written to CMF9D | (Initial value) |
| 1            | [Setting condition] When the next edge is input while ECNT9D = GR9D                |                 |

• Bit 2—Compare-Match Flag 9C (CMF9C): Status flag that indicates GR9C compare-match.

| Bit 2: CMF9C | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF9C is read while set to 1, then 0 is written to CMF9C | (Initial value) |
| 1            | [Setting condition] When the next edge is input while ECNT9C = GR9C                |                 |

• Bit 1—Compare-Match Flag 9B (CMF9B): Status flag that indicates GR9B compare-match.

| Bit 1: CMF9B | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF9B is read while set to 1, then 0 is written to CMF9B | (Initial value) |
| 1            | [Setting condition] When the next edge is input while ECNT9B = GR9B                |                 |

• Bit 0—Compare-Match Flag 9A (CMF9A): Status flag that indicates GR9A compare-match.

| Bit 0: CMF9A | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When CMF9A is read while set to 1, then 0 is written to CMF9A | (Initial value) |
| 1            | [Setting condition] When the next edge is input while ECNT9A = GR9A                |                 |

### **Timer Status Register 11 (TSR11)**

TSR11 indicates the status of channel 11 input capture, compare-match, and overflow.

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9      | 8      |
|----------------|----|----|----|----|----|----|--------|--------|
|                | _  | _  | _  | _  | _  | _  | _      | OVF11  |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R  | R  | R      | R/(W)* |
|                |    |    |    |    |    |    |        |        |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1      | 0      |
|                | _  | _  | _  | _  | _  | _  | IMF11B | IMF11A |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R  | R  | R/(W)* | R/(W)* |

Note: \* Only 0 can be written to clear the flag.

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Flag 11 (OVF11): Status flag that indicates TCNT11 overflow.

| Bit 8: OVF11 | Description                                                                        |                 |
|--------------|------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] When OVF11 is read while set to 1, then 0 is written to OVF11 | (Initial value) |
| 1            | [Setting condition] When the TCNT11 value overflows (from H'FFFF to H'0000)        |                 |

- Bits 7 to 2—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 1—Input Capture/Compare-Match Flag 11B (IMF11B): Status flag that indicates GR11B input capture or compare-match.

| Bit 1: IMF11B | Description                                                                                                                      |
|---------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0             | [Clearing condition] (Initial value) When IMF11B is read while set to 1, then 0 is written to IMF11B                             |
| 1             | [Setting conditions]                                                                                                             |
| ı             | When the TCNT11 value is transferred to GR11B by an input capture signal while GR11B is functioning as an input capture register |
|               | <ul> <li>When TCNT11 = GR11B while GR11B is functioning as an output<br/>compare register</li> </ul>                             |

• Bit 0—Input Capture/Compare-Match Flag 11A (IMF11A): Status flag that indicates GR11A input capture or compare-match.

| Bit 0: IMF11A | Description                                                                                                                                                                                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | [Clearing condition] (Initial value) When IMF11A is read while set to 1, then 0 is written to IMF11A                                                                                                                                                                     |
| 1             | <ul> <li>[Setting conditions]</li> <li>When the TCNT11 value is transferred to GR11A by an input capture signal while GR11A is functioning as an input capture register</li> <li>When TCNT11 = GR11A while GR11A is functioning as an output compare register</li> </ul> |

#### 11.2.6 Timer Interrupt Enable Registers (TIER)

The timer interrupt enable registers (TIER) are 16-bit registers. The ATU-II has 11 TIER registers: one each for channels 0, 6 to 9, and 11, two each for channels 1 and 2, and one for channels 3 to 5. For details of channel 10, see section 11.2.26, Channel 10 Registers.

| Channel | Abbreviation   | Function                                                                                  |
|---------|----------------|-------------------------------------------------------------------------------------------|
| 0       | TIER0          | Controls input capture, and overflow interrupt request enabling/disabling.                |
| 1       | TIER1A, TIER1B | Control input capture, compare-match, and overflow interrupt                              |
| 2       | TIER2A, TIER2B | request enabling/disabling.                                                               |
| 3       | TIER3          | Controls input capture, compare-match, and overflow interrupt                             |
| 4       | _              | request enabling/disabling.                                                               |
| 5       | _              |                                                                                           |
| 6       | TIER6          | Control cycle register compare-match interrupt request                                    |
| 7       | TIER7          | enabling/disabling.                                                                       |
| 8       | TIER8          | Controls down-counter output end (low) interrupt request enabling/disabling.              |
| 9       | TIER9          | Controls event counter compare-match interrupt request enabling/disabling.                |
| 11      | TIER11         | Controls input capture, compare-match, and overflow interrupt request enabling/disabling. |

The TIER registers are 16-bit readable/writable registers that control enabling/disabling of free-running counter (TCNT) overflow interrupt requests, channel 0 input capture interrupt requests, channel 1 to 5 and 11 general register input capture/compare-match interrupt requests, channel 6 and 7 compare-match interrupt requests, channel 8 down-counter output end interrupt requests, and channel 9 event counter compare-match interrupt requests.

Each TIER is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

# Timer Interrupt Enable Register 0 (TIER0)

TIER0 controls enabling/disabling of channel 0 input capture and overflow interrupt requests.

| Bit:           | 15 | 14 | 13 | 12   | 11    | 10    | 9     | 8     |
|----------------|----|----|----|------|-------|-------|-------|-------|
|                | _  | _  | _  | _    | _     | _     |       | _     |
| Initial value: | 0  | 0  | 0  | 0    | 0     | 0     | 0     | 0     |
| R/W:           | R  | R  | R  | R    | R     | R     | R     | R     |
|                |    |    |    |      |       |       |       |       |
| Bit:           | 7  | 6  | 5  | 4    | 3     | 2     | 1     | 0     |
|                | _  | _  | _  | OVE0 | ICE0D | ICE0C | ICE0B | ICE0A |
| Initial value: | 0  | 0  | 0  | 0    | 0     | 0     | 0     | 0     |
| R/W:           | R  | R  | R  | R/W  | R/W   | R/W   | R/W   | R/W   |

- Bits 15 to 5—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 4—Overflow Interrupt Enable 0 (OVE0): Enables or disables interrupt requests by the overflow flag (OVF0) in TSR0 when OVF0 is set to 1.

| Bit 4: OVE0 | Description                                  |                 |
|-------------|----------------------------------------------|-----------------|
| 0           | OVI0 interrupt requested by OVF0 is disabled | (Initial value) |
| 1           | OVI0 interrupt requested by OVF0 is enabled  |                 |

• Bit 3—Input Capture Interrupt Enable 0D (ICE0D): Enables or disables interrupt requests by the input capture flag (ICF0D) in TSR0 when ICF0D is set to 1. Setting the DMAC while interrupt requests are enabled allows the DMAC to be activated by an interrupt request.

| Bit 3: ICE0D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | ICI0D interrupt requested by ICF0D is disabled | (Initial value) |
| 1            | ICI0D interrupt requested by ICF0D is enabled  |                 |

• Bit 2—Input Capture Interrupt Enable 0C (ICE0C): Enables or disables interrupt requests by the input capture flag (ICF0C) in TSR0 when ICF0C is set to 1. Setting the DMAC while interrupt requests are enabled allows the DMAC to be activated by an interrupt request.

| Bit 2: ICE0C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | ICI0C interrupt requested by ICF0C is disabled | (Initial value) |
| 1            | ICI0C interrupt requested by ICF0C is enabled  | _               |

• Bit 1—Input Capture Interrupt Enable 0B (ICE0B): Enables or disables interrupt requests by the input capture flag (ICF0B) in TSR0 when ICF0B is set to 1. Setting the DMAC while interrupt requests are enabled allows the DMAC to be activated by an interrupt request.

| Bit 1: ICE0B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | ICI0B interrupt requested by ICF0B is disabled | (Initial value) |
| 1            | ICI0B interrupt requested by ICF0B is enabled  | _               |

• Bit 0—Input Capture Interrupt Enable 0A (ICE0A): Enables or disables interrupt requests by the input capture flag (ICF0A) in TSR0 when ICF0A is set to 1. Setting the DMAC while interrupt requests are enabled allows the DMAC to be activated by an interrupt request.

| Bit 0: ICE0A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | ICI0A interrupt requested by ICF0A is disabled | (Initial value) |
| 1            | ICI0A interrupt requested by ICF0A is enabled  |                 |

# Timer Interrupt Enable Registers 1A and 1B (TIER1A, TIER1B)

**TIER1A:** TIER1A controls enabling/disabling of channel 1 input capture, compare-match, and overflow interrupt requests.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit name:      | _     | _     | _     | _     | _     | _     | _     | OVE1A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R     | R     | R     | R     | R     | R     | R     | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
| Bit name:      | IME1H | IME1G | IME1F | IME1E | IME1D | IME1C | IME1B | IME1A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Interrupt Enable 1A (OVE1A): Enables or disables interrupt requests by OVF1A in TSR1A when OVF1A is set to 1.

| Bit 8: OVE1A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OVI1A interrupt requested by OVF1A is disabled | (Initial value) |
| 1            | OVI1A interrupt requested by OVF1A is enabled  |                 |

• Bit 7—Input Capture/Compare-Match Interrupt Enable 1H (IME1H): Enables or disables interrupt requests by IMF1H in TSR1A when IMF1H is set to 1.

| Bit 7: IME1H | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1H interrupt requested by IMF1H is disabled | (Initial value) |
| 1            | IMI1H interrupt requested by IMF1H is enabled  |                 |

• Bit 6—Input Capture/Compare-Match Interrupt Enable 1G (IME1G): Enables or disables interrupt requests by IMF1G in TSR1A when IMF1G is set to 1.

| Bit 6: IME1G | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1G interrupt requested by IMF1G is disabled | (Initial value) |
| 1            | IMI1G interrupt requested by IMF1G is enabled  |                 |

• Bit 5—Input Capture/Compare-Match Interrupt Enable 1F (IME1F): Enables or disables interrupt requests by IMF1F in TSR1A when IMF1F is set to 1.

| Bit 5: IME1F | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1F interrupt requested by IMF1F is disabled | (Initial value) |
| 1            | IMI1F interrupt requested by IMF1F is enabled  |                 |

• Bit 4—Input Capture/Compare-Match Interrupt Enable 1E (IME1E): Enables or disables interrupt requests by IMF1E in TSR1A when IMF1E is set to 1.

| Bit 4: IME1E | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1E interrupt requested by IMF1E is disabled | (Initial value) |
| 1            | IMI1E interrupt requested by IMF1E is enabled  |                 |

• Bit 3—Input Capture/Compare-Match Interrupt Enable 1D (IME1D): Enables or disables interrupt requests by IMF1D in TSR1A when IMF1D is set to 1.

| Bit 3: IME1D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1D interrupt requested by IMF1D is disabled | (Initial value) |
| 1            | IMI1D interrupt requested by IMF1D is enabled  |                 |

• Bit 2—Input Capture/Compare-Match Interrupt Enable 1C (IME1C): Enables or disables interrupt requests by IMF1C in TSR1A when IMF1C is set to 1.

| Bit 2: IME1C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1C interrupt requested by IMF1C is disabled | (Initial value) |
| 1            | IMI1C interrupt requested by IMF1C is enabled  |                 |

• Bit 1—Input Capture/Compare-Match Interrupt Enable 1B (IME1B): Enables or disables interrupt requests by IMF1B in TSR1A when IMF1B is set to 1.

| Bit 1: IME1B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1B interrupt requested by IMF1B is disabled | (Initial value) |
| 1            | IMI1B interrupt requested by IMF1B is enabled  |                 |

• Bit 0—Input Capture/Compare-Match Interrupt Enable 1A (IME1A): Enables or disables interrupt requests by IMF1A in TSR1A when IMF1A is set to 1.

| Bit 0: IME1A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI1A interrupt requested by IMF1A is disabled | (Initial value) |
| 1            | IMI1A interrupt requested by IMF1A is enabled  |                 |

**TIER1B:** TIER1B controls enabling/disabling of channel 1 compare-match and overflow interrupt requests.

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8     |
|----------------|----|----|----|----|----|----|---|-------|
|                | _  | _  | _  | _  | _  | _  | _ | OVE1B |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0     |
| R/W:           | R  | R  | R  | R  | R  | R  | R | R/W   |
|                |    |    |    |    |    |    |   |       |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1 | 0     |
|                | _  | _  | _  | _  | _  | _  | _ | CME1  |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0     |
| R/W:           | R  | R  | R  | R  | R  | R  | R | R/W   |

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Interrupt Enable 1B (OVE1B): Enables or disables interrupt requests by OVF1B in TSR1B when OVF1B is set to 1.

| Bit 8: OVE1B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OVI1B interrupt requested by OVF1B is disabled | (Initial value) |
| 1            | OVI1B interrupt requested by OVF1B is enabled  |                 |

- Bits 7 to 1—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 0—Compare-Match Interrupt Enable 1 (CME1): Enables or disables interrupt requests by CMF1 in TSR1B when CMF1 is set to 1.

| Bit 0: CME1 | Description                                  |                 |
|-------------|----------------------------------------------|-----------------|
| 0           | CMI1 interrupt requested by CMF1 is disabled | (Initial value) |
| 1           | CMI1 interrupt requested by CMF1 is enabled  | _               |

#### Timer Interrupt Enable Registers 2A and 2B (TIER2A, TIER2B)

**TIER2A:** TIER2A controls enabling/disabling of channel 2 input capture, compare-match, and overflow interrupt requests.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | _     | _     |       | _     | _     | _     | -     | OVE2A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R     | R     | R     | R     | R     | R     | R     | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | IME2H | IME2G | IME2F | IME2E | IME2D | IME2C | IME2B | IME2A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Interrupt Enable 2A (OVE2A): Enables or disables interrupt requests by OVF2A in TSR2A when OVF2A is set to 1.

| Bit 8: OVE2A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OVI2A interrupt requested by OVF2A is disabled | (Initial value) |
| 1            | OVI2A interrupt requested by OVF2A is enabled  |                 |

• Bit 7—Input Capture/Compare-Match Interrupt Enable 2H (IME2H): Enables or disables interrupt requests by IMF2H in TSR2A when IMF2H is set to 1.

| Bit 7: IME2H | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2H interrupt requested by IMF2H is disabled | (Initial value) |
| 1            | IMI2H interrupt requested by IMF2H is enabled  |                 |

• Bit 6—Input Capture/Compare-Match Interrupt Enable 2G (IME2G): Enables or disables interrupt requests by IMF2G in TSR2A when IMF2G is set to 1.

| Bit 6: IME2G | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2G interrupt requested by IMF2G is disabled | (Initial value) |
| 1            | IMI2G interrupt requested by IMF2G is enabled  | _               |

• Bit 5—Input Capture/Compare-Match Interrupt Enable 2F (IME2F): Enables or disables interrupt requests by IMF2F in TSR2A when IMF2F is set to 1.

| Bit 5: IME2F | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2F interrupt requested by IMF2F is disabled | (Initial value) |
| 1            | IMI2F interrupt requested by IMF2F is enabled  |                 |

• Bit 4—Input Capture/Compare-Match Interrupt Enable 2E (IME2E): Enables or disables interrupt requests by IMF2E in TSR2A when IMF2E is set to 1.

| Bit 4: IME2E | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2E interrupt requested by IMF2E is disabled | (Initial value) |
| 1            | IMI2E interrupt requested by IMF2E is enabled  |                 |

 Bit 3—Input Capture/Compare-Match Interrupt Enable 2D (IME2D): Enables or disables interrupt requests by IMF2D in TSR2A when IMF2D is set to 1.

| Bit 3: IME2D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2D interrupt requested by IMF2D is disabled | (Initial value) |
| 1            | IMI2D interrupt requested by IMF2D is enabled  |                 |

• Bit 2—Input Capture/Compare-Match Interrupt Enable 2C (IME2C): Enables or disables interrupt requests by IMF2C in TSR2A when IMF2C is set to 1.

| Bit 2: IME2C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2C interrupt requested by IMF2C is disabled | (Initial value) |
| 1            | IMI2C interrupt requested by IMF2C is enabled  |                 |

• Bit 1—Input Capture/Compare-Match Interrupt Enable 2B (IME2B): Enables or disables interrupt requests by IMF2B in TSR2A when IMF2B is set to 1.

| Bit 1: IME2B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2B interrupt requested by IMF2B is disabled | (Initial value) |
| 1            | IMI2B interrupt requested by IMF2B is enabled  |                 |

• Bit 0—Input Capture/Compare-Match Interrupt Enable 2A (IME2A): Enables or disables interrupt requests by IMF2A in TSR2A when IMF2A is set to 1.

| Bit 0: IME2A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI2A interrupt requested by IMF2A is disabled | (Initial value) |
| 1            | IMI2A interrupt requested by IMF2A is enabled  |                 |

**TIER2B:** TIER2B controls enabling/disabling of channel 2 compare-match and overflow interrupt requests.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | _     | _     | _     | _     | _     | _     | _     | OVE2B |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R     | R     | R     | R     | R     | R     | R     | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | CME2H | CME2G | CME2F | CME2E | CME2D | CME2C | CME2B | CME2A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Interrupt Enable 2B (OVE2B): Enables or disables interrupt requests by OVF2B in TSR2B when OVF2B is set to 1.

| Bit 8: OVE2B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OVI2B interrupt requested by OVF2B is disabled | (Initial value) |
| 1            | OVI2B interrupt requested by OVF2B is enabled  |                 |

• Bit 7—Compare-Match Interrupt Enable 2H (CME2H): Enables or disables interrupt requests by CMF2F in TSR2B when CMF2H is set to 1.

| Bit 7: CME2H | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2H interrupt requested by CMF2H is disabled | (Initial value) |
| 1            | CMI2H interrupt requested by CMF2H is enabled  |                 |

• Bit 6—Compare-Match Interrupt Enable 2G (CME2G): Enables or disables interrupt requests by CMF2G in TSR2B when CMF2G is set to 1.

| Bit 6: CME2G | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2G interrupt requested by CMF2G is disabled | (Initial value) |
| 1            | CMI2G interrupt requested by CMF2G is enabled  |                 |

• Bit 5—Compare-Match Interrupt Enable 2F (CME2F): Enables or disables interrupt requests by CMF2F in TSR2B when CMF2F is set to 1.

| Bit 5: CME2F | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2F interrupt requested by CMF2F is disabled | (Initial value) |
| 1            | CMI2F interrupt requested by CMF2F is enabled  |                 |

• Bit 4—Compare-Match Interrupt Enable 2E (CME2E): Enables or disables interrupt requests by CMF2E in TSR2B when CMF2E is set to 1.

| Bit 4: CME2E | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2E interrupt requested by CMF2E is disabled | (Initial value) |
| 1            | CMI2E interrupt requested by CMF2E is enabled  |                 |

• Bit 3—Compare-Match Interrupt Enable 2D (CME2D): Enables or disables interrupt requests by CMF2D in TSR2B when CMF2D is set to 1.

| Bit 3: CME2D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2D interrupt requested by CMF2D is disabled | (Initial value) |
| 1            | CMI2D interrupt requested by CMF2D is enabled  |                 |

• Bit 2—Compare-Match Interrupt Enable 2C (CME2C): Enables or disables interrupt requests by CMF2C in TSR2B when CMF2C is set to 1.

| Bit 2: CME2C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2C interrupt requested by CMF2C is disabled | (Initial value) |
| 1            | CMI2C interrupt requested by CMF2C is enabled  |                 |

• Bit 1—Compare-Match Interrupt Enable 2B (CME2BB): Enables or disables interrupt requests by CMF2B in TSR2B when CMF2B is set to 1.

| Bit 1: CME2B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2B interrupt requested by CMF2B is disabled | (Initial value) |
| 1            | CMI2B interrupt requested by CMF2B is enabled  |                 |

• Bit 0—Compare-Match Interrupt Enable 2A (CME2A): Enables or disables interrupt requests by CMF2A in TSR2B when CMF2A is set to 1.

| Bit 0: CME2A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI2A interrupt requested by CMF2A is disabled | (Initial value) |
| 1            | CMI2A interrupt requested by CMF2A is enabled  |                 |

## **Timer Interrupt Enable Register 3 (TIER3)**

TIER3 controls enabling/disabling of channel 3 to 5 input capture, compare-match, and overflow interrupt requests.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | _     | OVE5  | IME5D | IME5C | IME5B | IME5A | OVE4  | IME4D |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R     | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | IME4C | IME4B | IME4A | OVE3  | IME3D | IME3C | IME3B | IME3A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—Overflow Interrupt Enable 5 (OVE5): Enables or disables interrupt requests by OVF5 in TSR3 when OVF5 is set to 1.

| Bit 14: OVE5 | Description                                  |                 |
|--------------|----------------------------------------------|-----------------|
| 0            | OVI5 interrupt requested by OVF5 is disabled | (Initial value) |
| 1            | OVI5 interrupt requested by OVF5 is enabled  |                 |

• Bit 13—Input Capture/Compare-Match Interrupt Enable 5D (IME5D): Enables or disables interrupt requests by IMF5D in TSR3 when IMF5D is set to 1.

| Bit 13: IME5D | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | IMI5D interrupt requested by IMF5D is disabled | (Initial value) |
| 1             | IMI5D interrupt requested by IMF5D is enabled  | _               |

• Bit 12—Input Capture/Compare-Match Interrupt Enable 5C (IME5C): Enables or disables interrupt requests by IMF5C in TSR3 when IMF5C is set to 1.

| Bit 12: IME5C | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | IMI5C interrupt requested by IMF5C is disabled | (Initial value) |
| 1             | IMI5C interrupt requested by IMF5C is enabled  |                 |

• Bit 11—Input Capture/Compare-Match Interrupt Enable 5B (IME5B): Enables or disables interrupt requests by IMF5B in TSR3 when IMF5B is set to 1.

| Bit 11: IME5B | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | IMI5B interrupt requested by IMF5B is disabled | (Initial value) |
| 1             | IMI5B interrupt requested by IMF5B is enabled  |                 |

• Bit 10—Input Capture/Compare-Match Interrupt Enable 5A (IME5A): Enables or disables interrupt requests by IMF5A in TSR3 when IMF5A is set to 1.

| Bit 10: IME5A | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | IMI5A interrupt requested by IMF5A is disabled | (Initial value) |
| 1             | IMI5A interrupt requested by IMF5A is enabled  |                 |

• Bit 9—Overflow Interrupt Enable 4 (OVE4): Enables or disables interrupt requests by OVF4 in TSR3 when OVF4 is set to 1.

| Bit 9: OVE4 | Description                                  |                 |
|-------------|----------------------------------------------|-----------------|
| 0           | OVI4 interrupt requested by OVF4 is disabled | (Initial value) |
| 1           | OVI4 interrupt requested by OVF4 is enabled  |                 |

• Bit 8—Input Capture/Compare-Match Interrupt Enable 4D (IME4D): Enables or disables interrupt requests by IMF4D in TSR3 when IMF4D is set to 1.

| Bit 8: IME4D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI4D interrupt requested by IMF4D is disabled | (Initial value) |
| 1            | IMI4D interrupt requested by IMF4D is enabled  |                 |

• Bit 7—Input Capture/Compare-Match Interrupt Enable 4C (IME4C): Enables or disables interrupt requests by IMF4C in TSR3 when IMF4C is set to 1.

| Bit 7: IME4C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI4C interrupt requested by IMF4C is disabled | (Initial value) |
| 1            | IMI4C interrupt requested by IMF4C is enabled  |                 |

• Bit 6—Input Capture/Compare-Match Interrupt Enable 4B (IME4B): Enables or disables interrupt requests by IMF4B in TSR3 when IMF4B is set to 1.

| Bit 6: IME4B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI4B interrupt requested by IMF4B is disabled | (Initial value) |
| 1            | IMI4B interrupt requested by IMF4B is enabled  |                 |

• Bit 5—Input Capture/Compare-Match Interrupt Enable 4A (IME4A): Enables or disables interrupt requests by IMF4A in TSR3 when IMF4A is set to 1.

| Bit 5: IME4A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI4A interrupt requested by IMF4A is disabled | (Initial value) |
| 1            | IMI4A interrupt requested by IMF4A is enabled  |                 |

• Bit 4—Overflow Interrupt Enable 3 (OVE3): Enables or disables interrupt requests by OVF3 in TSR3 when OVF3 is set to 1.

| Bit 4: OVE3 | Description                                  |                 |
|-------------|----------------------------------------------|-----------------|
| 0           | OVI3 interrupt requested by OVF3 is disabled | (Initial value) |
| 1           | OVI3 interrupt requested by OVF3 is enabled  |                 |

• Bit 3—Input Capture/Compare-Match Interrupt Enable 3D (IME3D): Enables or disables interrupt requests by IMF3D in TSR3 when IMF3D is set to 1.

| Bit 3: IME3D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI3D interrupt requested by IMF3D is disabled | (Initial value) |
| 1            | IMI3D interrupt requested by IMF3D is enabled  |                 |

• Bit 2—Input Capture/Compare-Match Interrupt Enable 3C (IME3C): Enables or disables interrupt requests by IMF3C in TSR3 when IMF3C is set to 1.

| Bit 2: IME3C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI3C interrupt requested by IMF3C is disabled | (Initial value) |
| 1            | IMI3C interrupt requested by IMF3C is enabled  |                 |

• Bit 1—Input Capture/Compare-Match Interrupt Enable 3B (IME3B): Enables or disables interrupt requests by IMF3B in TSR3 when IMF3B is set to 1.

| Bit 1: IME3B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI3B interrupt requested by IMF3B is disabled | (Initial value) |
| 1            | IMI3B interrupt requested by IMF3B is enabled  |                 |

• Bit 0—Input Capture/Compare-Match Interrupt Enable 3A (IME3A): Enables or disables interrupt requests by IMF3A in TSR3 when IMF3A is set to 1.

| Bit 0: IME3A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | IMI3A interrupt requested by IMF3A is disabled | (Initial value) |
| 1            | IMI3A interrupt requested by IMF3A is enabled  |                 |

### Timer Interrupt Enable Registers 6 and 7 (TIER6, TIER7)

TIER6 and TIER7 control enabling/disabling of channel 6 and 7 cycle register compare interrupt requests.

| Bit:           | 15 | 14 | 13 | 12 | 11    | 10    | 9     | 8     |
|----------------|----|----|----|----|-------|-------|-------|-------|
|                | _  | _  | _  | _  | _     | _     | _     | _     |
| Initial value: | 0  | 0  | 0  | 0  | 0     | 0     | 0     | 0     |
| R/W:           | R  | R  | R  | R  | R     | R     | R     | R     |
|                |    |    |    |    |       |       |       |       |
| Bit:           | 7  | 6  | 5  | 4  | 3     | 2     | 1     | 0     |
|                | _  | _  | _  | _  | CMExD | CMExC | CMExB | CMExA |
| Initial value: | 0  | 0  | 0  | 0  | 0     | 0     | 0     | 0     |
| R/W:           | R  | R  | R  | R  | R/W   | R/W   | R/W   | R/W   |

x = 6 or 7

- Bits 15 to 4—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 3—Cycle Register Compare-Match Interrupt Enable 6D/7D (CME6D/CME7D): Enables
  or disables interrupt requests by CMFxD in TSR6 or TSR7 when CMFxD is set to 1. Setting
  the DMAC while interrupt requests are enabled allows the DMAC to be activated by an
  interrupt request.

| Bit 3: CMExD | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMIxD interrupt requested by CMFxD is disabled | (Initial value) |
| 1            | CMIxD interrupt requested by CMFxD is enabled  |                 |

x = 6 or 7

Bit 2—Cycle Register Compare-Match Interrupt Enable 6C/7C (CME6C/CME7C): Enables or
disables interrupt requests by CMFxC in TSR6 or TSR7 when CMFxC is set to 1. Setting the
DMAC while interrupt requests are enabled allows the DMAC to be activated by an interrupt
request.

| Bit 2: CMExC | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMIxC interrupt requested by CMFxC is disabled | (Initial value) |
| 1            | CMIxC interrupt requested by CMFxC is enabled  |                 |

x = 6 or 7

Bit 1—Cycle Register Compare-Match Interrupt Enable 6B/7B (CME6B/CME7B): Enables or
disables interrupt requests by CMFxB in TSR6 or TSR7 when CMFxB is set to 1. Setting the
DMAC while interrupt requests are enabled allows the DMAC to be activated by an interrupt
request.

| Bit 1: CMExB | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMIxB interrupt requested by CMFxB is disabled | (Initial value) |
| 1            | CMIxB interrupt requested by CMFxB is enabled  |                 |
|              | -                                              |                 |

x = 6 or 7

Bit 0—Cycle Register Compare-Match Interrupt Enable 6A/7A (CME6A/CME7A): Enables
or disables interrupt requests by CMFxA in TSR6 or TSR7 when CMFxA is set to 1. Setting
the DMAC while interrupt requests are enabled allows the DMAC to be activated by an
interrupt request.

| Bit 0: CMExA | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMIxA interrupt requested by CMFxA is disabled | (Initial value) |
| 1            | CMIxA interrupt requested by CMFxA is enabled  |                 |
| x = 6  or  7 |                                                |                 |

# **Timer Interrupt Enable Register 8 (TIER8)**

TIER8 controls enabling/disabling of channel 8 one-shot pulse interrupt requests.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | OSE8P | OSE8O | OSE8N | OSE8M | OSE8L | OSE8K | OSE8J | OSE8I |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | OSE8H | OSE8G | OSE8F | OSE8E | OSE8D | OSE8C | OSE8B | OSE8A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

• Bit 15—One-Shot Pulse Interrupt Enable 8P (OSE8P): Enables or disables interrupt requests by OSF8P in TSR8 when OSF8P is set to 1.

| Bit 15: OSE8P | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | OSI8P interrupt requested by OSF8P is disabled | (Initial value) |
| 1             | OSI8P interrupt requested by OSF8P is enabled  |                 |

• Bit 14—One-Shot Pulse Interrupt Enable 8O (OSE8O): Enables or disables interrupt requests by OSF8O in TSR8 when OSF8O is set to 1.

| Bit 14: OSE80 | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | OSI8O interrupt requested by OSF8O is disabled | (Initial value) |
| 1             | OSI8O interrupt requested by OSF8O is enabled  |                 |

• Bit 13—One-Shot Pulse Interrupt Enable 8N (OSE8N): Enables or disables interrupt requests by OSF8N in TSR8 when OSF8N is set to 1.

| Bit 13: OSE8N | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | OSI8N interrupt requested by OSF8N is disabled | (Initial value) |
| 1             | OSI8N interrupt requested by OSF8N is enabled  |                 |

• Bit 12—One-Shot Pulse Interrupt Enable 8M (OSE8M): Enables or disables interrupt requests by OSF8M in TSR8 when OSF8M is set to 1.

| Bit 12: OSE8M | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | OSI8M interrupt requested by OSF8M is disabled | (Initial value) |
| 1             | OSI8M interrupt requested by OSF8M is enabled  |                 |

• Bit 11—One-Shot Pulse Interrupt Enable 8L (OSE8L): Enables or disables interrupt requests by OSF8L in TSR8 when OSF8L is set to 1.

| Bit 11: OSE8L | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | OSI8L interrupt requested by OSF8L is disabled | (Initial value) |
| 1             | OSI8L interrupt requested by OSF8L is enabled  |                 |

• Bit 10—One-Shot Pulse Interrupt Enable 8K (OSE8K): Enables or disables interrupt requests by OSF8K in TSR8 when OSF8K is set to 1.

| Bit 10: OSE8K | Description                                    |                 |
|---------------|------------------------------------------------|-----------------|
| 0             | OSI8K interrupt requested by OSF8K is disabled | (Initial value) |
| 1             | OSI8K interrupt requested by OSF8K is enabled  |                 |

• Bit 9—One-Shot Pulse Interrupt Enable 8J (OSE8J): Enables or disables interrupt requests by OSF8J in TSR8 when OSF8J is set to 1.

| Bit 9: OSE8J | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8J interrupt requested by OSF8J is disabled | (Initial value) |
| 1            | OSI8J interrupt requested by OSF8J is enabled  |                 |

• Bit 8—One-Shot Pulse Interrupt Enable 8I (OSE8I): Enables or disables interrupt requests by OSF8I in TSR8 when OSF8I is set to 1.

| Bit 8: OSE8I | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8I interrupt requested by OSF8I is disabled | (Initial value) |
| 1            | OSI8I interrupt requested by OSF8I is enabled  |                 |

• Bit 7—One-Shot Pulse Interrupt Enable 8H (OSE8H): Enables or disables interrupt requests by OSF8H in TSR8 when OSF8H is set to 1.

| Bit 7: OSE8H | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8H interrupt requested by OSF8H is disabled | (Initial value) |
| 1            | OSI8H interrupt requested by OSF8H is enabled  |                 |

• Bit 6—One-Shot Pulse Interrupt Enable 8G (OSE8G): Enables or disables interrupt requests by OSF8G in TSR8 when OSF8G is set to 1.

| Bit 6: OSE8G | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8G interrupt requested by OSF8G is disabled | (Initial value) |
| 1            | OSI8G interrupt requested by OSF8G is enabled  |                 |

• Bit 5—One-Shot Pulse Interrupt Enable 8F (OSE8F): Enables or disables interrupt requests by OSF8F in TSR8 when OSF8F is set to 1.

| Bit 5: OSE8F | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8F interrupt requested by OSF8F is disabled | (Initial value) |
| 1            | OSI8F interrupt requested by OSF8F is enabled  |                 |

• Bit 4—One-Shot Pulse Interrupt Enable 8E (OSE8E): Enables or disables interrupt requests by OSF8E in TSR8 when OSF8E is set to 1.

| Bit 4: OSE8E | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8E interrupt requested by OSF8E is disabled | (Initial value) |
| 1            | OSI8E interrupt requested by OSF8E is enabled  |                 |

• Bit 3—One-Shot Pulse Interrupt Enable 8D (OSE8D): Enables or disables interrupt requests by OSF8D in TSR8 when OSF8D is set to 1.

| Bit 3: OSE8D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8D interrupt requested by OSF8D is disabled | (Initial value) |
| 1            | OSI8D interrupt requested by OSF8D is enabled  |                 |

• Bit 2—One-Shot Pulse Interrupt Enable 8C (OSE8C): Enables or disables interrupt requests by OSF8C in TSR8 when OSF8C is set to 1.

| Bit 2: OSE8C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8C interrupt requested by OSF8C is disabled | (Initial value) |
| 1            | OSI8C interrupt requested by OSF8C is enabled  |                 |

• Bit 1—One-Shot Pulse Interrupt Enable 8B (OSE8B): Enables or disables interrupt requests by OSF8B in TSR8 when OSF8B is set to 1.

| Bit 1: OSE8B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8B interrupt requested by OSF8B is disabled | (Initial value) |
| 1            | OSI8B interrupt requested by OSF8B is enabled  |                 |

• Bit 0—One-Shot Pulse Interrupt Enable 8A (OSE8A): Enables or disables interrupt requests by OSF8A in TSR8 when OSF8A is set to 1.

| Bit 0: OSE8A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OSI8A interrupt requested by OSF8A is disabled | (Initial value) |
| 1            | OSI8A interrupt requested by OSF8A is enabled  |                 |

## **Timer Interrupt Enable Register 9 (TIER9)**

TIER9 controls enabling/disabling of channel 9 event counter compare-match interrupt requests.

| Bit:           | 15 | 14 | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|----|----|-------|-------|-------|-------|-------|-------|
|                |    | _  | _     | _     |       |       |       | _     |
| Initial value: | 0  | 0  | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R  | R  | R     | R     | R     | R     | R     | R     |
|                |    |    |       |       |       |       |       |       |
| Bit:           | 7  | 6  | 5     | 4     | 3     | 2     | 1     | 0     |
|                | _  | _  | CME9F | CME9E | CME9D | CME9C | CME9B | CME9A |
| Initial value: | 0  | 0  | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R  | R  | R/W   | R/W   | R/W   | R/W   | R/W   | R/W   |

- Bits 15 to 6—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 5—Compare-Match Interrupt Enable 9F (CME9F): Enables or disables interrupt requests by CMF9F in TSR9 when CMF9F is set to 1.

| Bit 5: CME9F | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI9F interrupt requested by CMF9F is disabled | (Initial value) |
| 1            | CMI9F interrupt requested by CMF9F is enabled  |                 |

• Bit 4—Compare-Match Interrupt Enable 9E (CME9E): Enables or disables interrupt requests by CMF9E in TSR9 when CMF9E is set to 1.

| Bit 4: CME9E | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI9E interrupt requested by CMF9E is disabled | (Initial value) |
| 1            | CMI9E interrupt requested by CMF9E is enabled  |                 |

• Bit 3—Compare-Match Interrupt Enable 9D (CME9D): Enables or disables interrupt requests by CMF9D in TSR9 when CMF9D is set to 1.

| Bit 3: CME9D | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI9D interrupt requested by CMF9D is disabled | (Initial value) |
| 1            | CMI9D interrupt requested by CMF9D is enabled  |                 |

• Bit 2—Compare-Match Interrupt Enable 9C (CME9C): Enables or disables interrupt requests by CMF9C in TSR9 when CMF9C is set to 1.

| Bit 2: CME9C | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI9C interrupt requested by CMF9C is disabled | (Initial value) |
| 1            | CMI9C interrupt requested by CMF9C is enabled  |                 |

• Bit 1—Compare-Match Interrupt Enable 9B (CME9B): Enables or disables interrupt requests by CMF9B in TSR9 when CMF9B is set to 1.

| Bit 1: CME9B | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI9B interrupt requested by CMF9B is disabled | (Initial value) |
| 1            | CMI9B interrupt requested by CMF9B is enabled  |                 |

• Bit 0—Compare-Match Interrupt Enable 9A (CME9A): Enables or disables interrupt requests by CMF9A in TSR9 when CMF9A is set to 1.

| Bit 0: CME9A | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | CMI9A interrupt requested by CMF9A is disabled | (Initial value) |
| 1            | CMI9A interrupt requested by CMF9A is enabled  |                 |

## **Timer Interrupt Enable Register 11 (TIER11)**

TIER11 controls enabling/disabling of channel 11 input capture, compare-match, and overflow interrupt requests.

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9      | 8      |
|----------------|----|----|----|----|----|----|--------|--------|
|                | _  | _  | _  | _  | _  | -  | _      | OVE11  |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R  | R  | R      | R/W    |
|                |    |    |    |    |    |    |        |        |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1      | 0      |
|                | _  | _  | _  | _  | _  | _  | IME11B | IME11A |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R  | R  | R/W    | R/W    |

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—Overflow Interrupt Enable 11 (OVE11): Enables or disables interrupt requests by OVF11 in TSR11 when OVF11 is set to 1.

| Bit 8: OVE11 | Description                                    |                 |
|--------------|------------------------------------------------|-----------------|
| 0            | OVI11 interrupt requested by OVF11 is disabled | (Initial value) |
| 1            | OVI11 interrupt requested by OVF11 is enabled  |                 |

- Bits 7 to 2—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 1—Input Capture/Compare-Match Interrupt Enable 11B (IME11B): Enables or disables interrupt requests by IMF11B in TSR11 when IMF11B is set to 1.

| Bit 1: IME11B | Description                                      |                 |
|---------------|--------------------------------------------------|-----------------|
| 0             | IMI11B interrupt requested by IMF11B is disabled | (Initial value) |
| 1             | IMI11B interrupt requested by IMF11B is enabled  |                 |

• Bit 0—Input Capture/Compare-Match Interrupt Enable 11A (IME11A): Enables or disables interrupt requests by IMF11A in TSR11 when IMF11A is set to 1.

| Bit 0: IME11A | Description                                      |                 |
|---------------|--------------------------------------------------|-----------------|
| 0             | IMI11A interrupt requested by IMF11A is disabled | (Initial value) |
| 1             | IMI11A interrupt requested by IMF11A is enabled  |                 |

### 11.2.7 Interval Interrupt Request Registers (ITVRR)

The interval interrupt request registers (ITVRR) are 8-bit registers. The ATU-II has three ITVRR registers in channel 0.

| Channel | Abbreviation | Function                                                                       |
|---------|--------------|--------------------------------------------------------------------------------|
| 0       | ITVRR1       | TCNT0 bit 6 to 9 interval interrupt generation and A/D2 converter activation   |
|         | ITVRR2A      | TCNT0 bit 10 to 13 interval interrupt generation and A/D0 converter activation |
|         | ITVRR2B      | TCNT0 bit 10 to 13 interval interrupt generation and A/D1 converter activation |

### **Interval Interrupt Request Register 1 (ITVRR1)**

| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | ITVA9 | ITVA8 | ITVA7 | ITVA6 | ITVE9 | ITVE8 | ITVE7 | ITVE6 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W   |

ITVRR1 is an 8-bit readable/writable register that detects the rise of bits corresponding to the channel 0 free-running counter (TCNT0) and controls cyclic interrupt output and A/D2 converter activation.

ITVRR1 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

• Bit 7—A/D2 Converter Interval Activation Bit 9 (ITVA9): A/D2 converter activation setting bit corresponding to bit 9 in TCNT0. The rise of bit 9 in TCNT0 is ANDed with ITVA9, and the result is output to the A/D2 converter as an activation signal.

| Bit 7: ITVA9 | Description                                                  |                 |
|--------------|--------------------------------------------------------------|-----------------|
| 0            | A/D2 converter activation by rise of TCNT0 bit 9 is disabled | (Initial value) |
| 1            | A/D2 converter activation by rise of TCNT0 bit 9 is enabled  | _               |

• Bit 6—A/D2 Converter Interval Activation Bit 8 (ITVA8): A/D2 converter activation setting bit corresponding to bit 8 in TCNT0. The rise of bit 8 in TCNT0 is ANDed with ITVA8, and the result is output to the A/D2 converter as an activation signal.

| Bit 6: ITVA8 | Description                                                  |                 |
|--------------|--------------------------------------------------------------|-----------------|
| 0            | A/D2 converter activation by rise of TCNT0 bit 8 is disabled | (Initial value) |
| 1            | A/D2 converter activation by rise of TCNT0 bit 8 is enabled  | _               |

• Bit 5—A/D2 Converter Interval Activation Bit 7 (ITVA7): A/D2 converter activation setting bit corresponding to bit 7 in TCNT0. The rise of bit 7 in TCNT0 is ANDed with ITVA7, and the result is output to the A/D2 converter as an activation signal.

| Bit 5: ITVA7 | Description                                                  |                 |
|--------------|--------------------------------------------------------------|-----------------|
| 0            | A/D2 converter activation by rise of TCNT0 bit 7 is disabled | (Initial value) |
| 1            | A/D2 converter activation by rise of TCNT0 bit 7 is enabled  |                 |

• Bit 4—A/D2 Converter Interval Activation Bit 6 (ITVA6): A/D2 converter activation setting bit corresponding to bit 6 in TCNT0. The rise of bit 6 in TCNT0 is ANDed with ITVA6, and the result is output to the A/D2 converter as an activation signal.

| Bit 4: ITVA6 | Description                                                  |                 |
|--------------|--------------------------------------------------------------|-----------------|
| 0            | A/D2 converter activation by rise of TCNT0 bit 6 is disabled | (Initial value) |
| 1            | A/D2 converter activation by rise of TCNT0 bit 6 is enabled  |                 |

• Bit 3—Interval Interrupt Bit 9 (ITVE9): INTC interval interrupt setting bit corresponding to bit 9 in TCNT0. The rise of bit 9 in TCNT0 is ANDed with ITVE9, the result is stored in IIF1 in TSR0, and an interrupt request is sent to the CPU.

| Bit 3: ITVE9 | Description                                                 |                 |
|--------------|-------------------------------------------------------------|-----------------|
| 0            | Interrupt request (ITV1) by rise of TCNT0 bit 9 is disabled | (Initial value) |
| 1            | Interrupt request (ITV1) by rise of TCNT0 bit 9 is enabled  |                 |

• Bit 2—Interval Interrupt Bit 8 (ITVE8): INTC interval interrupt setting bit corresponding to bit 8 in TCNT0. The rise of bit 8 in TCNT0 is ANDed with ITVE8, the result is stored in IIF1 in TSR0, and an interrupt request is sent to the CPU.

| Bit 2: ITVE8 | Description                                                 |                 |
|--------------|-------------------------------------------------------------|-----------------|
| 0            | Interrupt request (ITV1) by rise of TCNT0 bit 8 is disabled | (Initial value) |
| 1            | Interrupt request (ITV1) by rise of TCNT0 bit 8 is enabled  |                 |

• Bit 1—Interval Interrupt Bit 7 (ITVE7): INTC interval interrupt setting bit corresponding to bit 7 in TCNT0. The rise of bit 7 in TCNT0 is ANDed with ITVE7, the result is stored in IIF1 in TSR0, and an interrupt request is sent to the CPU.

| Bit 1: ITVE7 | Description                                                 |                 |
|--------------|-------------------------------------------------------------|-----------------|
| 0            | Interrupt request (ITV1) by rise of TCNT0 bit 7 is disabled | (Initial value) |
| 1            | Interrupt request (ITV1) by rise of TCNT0 bit 7 is enabled  |                 |

• Bit 0—Interval Interrupt Bit 6 (ITVE6): INTC interval interrupt setting bit corresponding to bit 6 in TCNT0. The rise of bit 6 in TCNT0 is ANDed with ITVE6, the result is stored in IIF1 in TSR0, and an interrupt request is sent to the CPU.

| Bit 0: ITVE6 | Description                                                 |                 |
|--------------|-------------------------------------------------------------|-----------------|
| 0            | Interrupt request (ITV1) by rise of TCNT0 bit 6 is disabled | (Initial value) |
| 1            | Interrupt request (ITV1) by rise of TCNT0 bit 6 is enabled  |                 |

### Interval Interrupt Request Registers 2A and 2B (ITVRR2A, ITVRR2B)

| Bit:           | 7       | 6       | 5       | 4       | 3       | 2       | 1       | 0       |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|
|                | ITVA13x | ITVA12x | ITVA11x | ITVA10x | ITVE13x | ITVE12x | ITVE11x | ITVE10x |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |
| R/W:           | R/W     |

x = A or B

• Bit 7—A/D0 / A/D1 Converter Interval Activation Bit 13A/13B (ITVA13A/ITVA13B): A/D0 or A/D1 (ITVRR2A: A/D0; ITVRR2B: A/D1) converter activation setting bit corresponding to bit 13 in TCNT0. The rise of bit 13 in TCNT0 is ANDed with ITVA13x, and the result is output to the A/D0 or A/D1 converter as an activation signal.

| Bit 7: ITVA13x | Description                                                           |
|----------------|-----------------------------------------------------------------------|
| 0              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 13 is disabled |
|                | (Initial value)                                                       |
| 1              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 13 is enabled  |
|                |                                                                       |

• Bit 6—A/D0 / A/D1 Converter Interval Activation Bit 12A/12B (ITVA12A/ITVA12B): A/D0 or A/D1 (ITVRR2A: A/D0; ITVRR2B: A/D1) converter activation setting bit corresponding to bit 12 in TCNT0. The rise of bit 12 in TCNT0 is ANDed with ITVA12x, and the result is output to the A/D0 or A/D1 converter as an activation signal.

| Bit 6: ITVA12x | Description                                                                           |
|----------------|---------------------------------------------------------------------------------------|
| 0              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 12 is disabled (Initial value) |
| 1              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 12 is enabled                  |
| x = A  or  B   |                                                                                       |

• Bit 5—A/D0 / A/D1 Converter Interval Activation Bit 11A/11B (ITVA11A/ITVA11B): A/D0 or A/D1 (ITVRR2A: A/D0; ITVRR2B: A/D1) converter activation setting bit corresponding to bit 11 in TCNT0. The rise of bit 11 in TCNT0 is ANDed with ITVA11x, and the result is output to the A/D0 or A/D1 converter as an activation signal.

| Bit 5: ITVA11x | Description                                                                           |
|----------------|---------------------------------------------------------------------------------------|
| 0              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 11 is disabled (Initial value) |
| 1              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 11 is enabled                  |
| x – A or B     |                                                                                       |

• Bit 4—A/D0 / A/D1 Converter Interval Activation Bit 10A/10B (ITVA10A/ITVA10B): A/D0 or A/D1 (ITVRR2A: A/D0; ITVRR2B: A/D1) converter activation setting bit corresponding to bit 10 in TCNT0. The rise of bit 10 in TCNT0 is ANDed with ITVA10x, and the result is output to the A/D0 or A/D1 converter as an activation signal.

| Bit 4: ITVA10x | Description                                                                           |
|----------------|---------------------------------------------------------------------------------------|
| 0              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 10 is disabled (Initial value) |
| 1              | A/D0 or A/D1 converter activation by rise of TCNT0 bit 10 is enabled                  |
| x = A  or  B   |                                                                                       |

• Bit 3—Interval Interrupt Bit 13A/13B (ITVE13A/ITVE13B): INTC interval interrupt setting bit corresponding to bit 13 in TCNT0. The rise of bit 13 in TCNT0 is ANDed with ITVE13x, the result is stored in IIF2x in TSR0, and an interrupt request is sent to the CPU.

| Bit 3: ITVE13x | Description                                                   |                 |
|----------------|---------------------------------------------------------------|-----------------|
| 0              | Interrupt request (ITV2x) by rise of TCNT0 bit 13 is disabled | (Initial value) |
| 1              | Interrupt request (ITV2x) by rise of TCNT0 bit 13 is enabled  |                 |
| x = A  or  B   |                                                               |                 |

• Bit 2—Interval Interrupt Bit 12A/12B (ITVE12A/ITVE12B): INTC interval interrupt setting bit corresponding to bit 12 in TCNT0. The rise of bit 12 in TCNT0 is ANDed with ITVE12x, the result is stored in IIF2x in TSR0, and an interrupt request is sent to the CPU.

| Bit 2: ITVE12x | Description                                                   |                 |
|----------------|---------------------------------------------------------------|-----------------|
| 0              | Interrupt request (ITV2x) by rise of TCNT0 bit 12 is disabled | (Initial value) |
| 1              | Interrupt request (ITV2x) by rise of TCNT0 bit 12 is enabled  |                 |
| v A or D       |                                                               |                 |

x = A or B

• Bit 1—Interval Interrupt Bit 11A/11B (ITVE11A/ITVE11B): INTC interval interrupt setting bit corresponding to bit 11 in TCNT0. The rise of bit 11 in TCNT0 is ANDed with ITVE11x, the result is stored in IIF2x in TSR0, and an interrupt request is sent to the CPU.

| Bit 1: ITVE11x | Description                                                   |                 |
|----------------|---------------------------------------------------------------|-----------------|
| 0              | Interrupt request (ITV2x) by rise of TCNT0 bit 11 is disabled | (Initial value) |
| 1              | Interrupt request (ITV2x) by rise of TCNT0 bit 11 is enabled  |                 |
| x = A  or  B   |                                                               |                 |

• Bit 0—Interval Interrupt Bit 10 (ITVE10): INTC interval interrupt setting bit corresponding to bit 10 in TCNT0. The rise of bit 10 in TCNT0 is ANDed with ITVE10x, the result is stored in IIF2x in TSR0, and an interrupt request is sent to the CPU.

| Bit 0: ITVE10x | Description                                                   |                 |
|----------------|---------------------------------------------------------------|-----------------|
| 0              | Interrupt request (ITV2x) by rise of TCNT0 bit 10 is disabled | (Initial value) |
| 1              | Interrupt request (ITV2x) by rise of TCNT0 bit 10 is enabled  |                 |

x = A or B

For details, see section 11.3.7, Interval Timer Operation.

#### 11.2.8 Trigger Mode Register (TRGMDR)

The trigger mode register (TRGMDR) is an 8-bit register. The ATU-II has one TRGMDR register.

| Bit:           | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|-------|---|---|---|---|---|---|---|
|                | TRGMD | _ | _ | _ |   | _ |   | _ |
| Initial value: | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W:           | R/W   | R | R | R | R | R | R | R |

TRGMDR is an 8-bit readable/writable register that selects whether a channel 1 compare-match is used as a channel 8 one-shot pulse start trigger or as a one-shot pulse terminate trigger when channel 1 and channel 8 are used in combination.

TRGMDR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

• Bit 7—Trigger Mode Selection Register (TRGMD): Selects the channel 8 one-shot pulse start trigger/one-shot pulse terminate trigger setting.

| Bit 7: TRGMD | Description                                           |                 |
|--------------|-------------------------------------------------------|-----------------|
| 0            | One-shot pulse start trigger (TCNT1B = OCR1)          | (Initial value) |
|              | One-shot pulse terminate trigger (TCNT1A = GR1A–GR1H) |                 |
| 1            | One-shot pulse start trigger (TCNT1A = GR1A-GR1H)     |                 |
|              | One-shot pulse terminate trigger (TCNT1B = OCR1)      |                 |

• Bits 6 to 0—Reserved: These bits are always read as 0. The write value should always be 0.

### 11.2.9 Timer Mode Register (TMDR)

The timer mode register (TMDR) is an 8-bit register. The ATU-II has one TDR register.

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2     | 1     | 0     |
|----------------|---|---|---|---|---|-------|-------|-------|
|                |   | _ |   | _ | _ | T5PWM | T4PWM | T3PWM |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0     | 0     | 0     |
| R/W:           | R | R | R | R | R | R/W   | R/W   | R/W   |

TMDR is an 8-bit readable/writable register that specifies whether channels 3 to 5 are used in input capture/output compare mode or PWM mode.

TMDR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

- Bits 7 to 3—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 2—PWM Mode 5 (T5PWM): Selects whether channel 5 operates in input capture/output compare mode or PWM mode.

| Bit 2: T5PWM | Description                                             |                 |
|--------------|---------------------------------------------------------|-----------------|
| 0            | Channel 5 operates in input capture/output compare mode | (Initial value) |
| 1            | Channel 5 operates in PWM mode                          |                 |

When bit T5PWM is set to 1 to select PWM mode, pins TIO5A to TIO5C become PWM output pins, general register 5D (GR5D) functions as a cycle register, and general registers 5A to 5C (GR5A to GR5C) function as duty registers. Settings in the timer I/O control registers (TIOR5A, TIOR5B) are invalid, and general registers 5A to 5D (GR5A to GR5D) can be written to. Do not use the TIO5D pin as a timer output.

• Bit 1—PWM Mode 4 (T4PWM): Selects whether channel 4 operates in input capture/output compare mode or PWM mode.

| Bit 1: T4PWM | Description                                             |                 |
|--------------|---------------------------------------------------------|-----------------|
| 0            | Channel 4 operates in input capture/output compare mode | (Initial value) |
| 1            | Channel 4 operates in PWM mode                          |                 |

When bit T4PWM is set to 1 to select PWM mode, pins TIO4A to TIO4C become PWM output pins, general register 4D (GR4D) functions as a cycle register, and general registers 4A to 4C (GR4A to GR4C) function as duty registers. Settings in the timer I/O control registers (TIOR4A, TIOR4B) are invalid, and general registers 4A to 4D (GR4A to GR4D) can be written to. Do not use the TIO4D pin as a timer output.

• Bit 0—PWM Mode 3 (T3PWM): Selects whether channel 3 operates in input capture/output compare mode or PWM mode.

| Bit 0: T3PWM | Description                                             |                 |
|--------------|---------------------------------------------------------|-----------------|
| 0            | Channel 3 operates in input capture/output compare mode | (Initial value) |
| 1            | Channel 3 operates in PWM mode                          |                 |

When bit T3PWM is set to 1 to select PWM mode, pins TIO3A to TIO3C become PWM output pins, general register 3D (GR3D) functions as a cycle register, and general registers 3A to 3C (GR3A to GR3C) function as duty registers. Settings in the timer I/O control registers (TIOR3A, TIOR3B) are invalid, and general registers 3A to 3D (GR3A to GR3D) can be written to. Do not use the TIO3D pin as a timer output.

#### 11.2.10 PWM Mode Register (PMDR)

The PWM mode register (PMDR) is an 8-bit register. The ATU-II has one PMDR register.

| Bit:           | 7      | 6      | 5      | 4      | 3       | 2       | 1       | 0       |
|----------------|--------|--------|--------|--------|---------|---------|---------|---------|
|                | DTSELD | DTSELC | DTSELB | DTSELA | CNTSELD | CNTSELC | CNTSELB | CNTSELA |
| Initial value: | 0      | 0      | 0      | 0      | 0       | 0       | 0       | 0       |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R/W     | R/W     | R/W     | R/W     |

PMDR is an 8-bit readable/writable register that selects whether channel 6 PWM output is set to on-duty/off-duty, or to non-complementary PWM mode/complementary PWM mode.

PMDR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

• Bit 7—Duty Selection Register D (DTSELD): Selects whether channel 6D TO6D output PWM is set to on-duty or to off-duty.

| Bit 7: DTSELD | Description                 |                 |
|---------------|-----------------------------|-----------------|
| 0             | TO6D PWM output is on-duty  | (Initial value) |
| 1             | TO6D PWM output is off-duty |                 |

• Bit 6—Duty Selection Register C (DTSELC): Selects whether channel 6C TO6C output PWM is set to on-duty or to off-duty.

| Bit 6: DTSELC | Description                 |                 |
|---------------|-----------------------------|-----------------|
| 0             | TO6C PWM output is on-duty  | (Initial value) |
| 1             | TO6C PWM output is off-duty |                 |

• Bit 5—Duty Selection Register B (DTSELB): Selects whether channel 6B TO6B output PWM is set to on-duty or to off-duty.

| Bit 5: DTSELB | Description                 |                 |
|---------------|-----------------------------|-----------------|
| 0             | TO6B PWM output is on-duty  | (Initial value) |
| 1             | TO6B PWM output is off-duty |                 |

• Bit 4—Duty Selection Register A (DTSELA): Selects whether channel 6A TO6A output PWM is set to on-duty or to off-duty.

| Bit 4: DTSELA | Description                 |                 |
|---------------|-----------------------------|-----------------|
| 0             | TO6A PWM output is on-duty  | (Initial value) |
| 1             | TO6A PWM output is off-duty |                 |

• Bit 3—Counter Selection Register D (CNTSELD): Selects whether channel 6D PWM is set to non-complementary PWM mode or to complementary PWM mode.

| Bit 3: CNTSELD | Description                                 |                 |
|----------------|---------------------------------------------|-----------------|
| 0              | TCNT6D is set to non-complementary PWM mode | (Initial value) |
| 1              | TCNT6D is set to complementary PWM mode     |                 |

• Bit 2—Counter Selection Register C (CNTSELC): Selects whether channel 6C PWM is set to non-complementary PWM mode or to complementary PWM mode.

| Bit 2: CNTSELC | Description                                 |                 |
|----------------|---------------------------------------------|-----------------|
| 0              | TCNT6C is set to non-complementary PWM mode | (Initial value) |
| 1              | TCNT6C is set to complementary PWM mode     |                 |

• Bit 1—Counter Selection Register B (CNTSELB): Selects whether channel 6B PWM is set to non-complementary PWM mode or to complementary PWM mode.

| Bit 1: CNTSELB | Description                                 |                 |
|----------------|---------------------------------------------|-----------------|
| 0              | TCNT6B is set to non-complementary PWM mode | (Initial value) |
| 1              | TCNT6B is set to complementary PWM mode     |                 |

• Bit 0—Counter Selection Register A (CNTSELA): Selects whether channel 6A PWM is set to non-complementary PWM mode or to complementary PWM mode.

| Bit 0: CNTSELA | Description                                 |                 |
|----------------|---------------------------------------------|-----------------|
| 0              | TCNT6A is set to non-complementary PWM mode | (Initial value) |
| 1              | TCNT6A is set to complementary PWM mode     |                 |

#### 11.2.11 Down-Count Start Register (DSTR)

The down-count start register (DSTR) is a 16-bit register. The ATU-II has one DSTR register in channel 8.

| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|----------------|-------|-------|-------|-------|-------|-------|-------|-------|
|                | DST8P | DST8O | DST8N | DST8M | DST8L | DST8K | DST8J | DST8I |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  |
|                |       |       |       |       |       |       |       |       |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|                | DST8H | DST8G | DST8F | DST8E | DST8D | DST8C | DST8B | DST8A |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| R/W:           | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  | R/W*  |

Note: \* Only 1 can be written.

DSTR is a 16-bit readable/writable register that starts the channel 8 down-counter (DCNT).

When the one-shot pulse function is used, a value of 1 can be set in a DST8x bit at any time by the user program, except when the corresponding DCNT8x value is H'0000. The DST8x bits are cleared to 0 automatically when the DCNT value overflows.

When the offset one-shot pulse function is used, DST8x is automatically set to 1 (except when the DCNT8x value is H'0000) when a compare-match occurs between the channel 1 or 2 free-running counter (TCNT) and a general register (GR) or the output compare register (OCR1) while the corresponding timer connection register (TCNR) bit is set to 1. As regards DST8I to DST8P, if the RLDEN bit in the reload enable register (RLDENR) is set to 1 and the reload register (RLDR8) value is not H'0000, a reload is performed into the corresponding DCNT8x, and the DST8x bit is set to 1. DST8x is automatically cleared to 0 when the DCNT8x vaue underflows, or by input of a channel 1 or 2 one-shot terminate trigger signal set in the trigger mode register (TRGMDR) while the corresponding one-shot pulse terminate register (OTR) bit is set to 1, whichever occurs first.

DCNT8x is cleared to H'0000 when underflow occurs.

DSTR is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

For details, see sections 11.3.5, One-Shot Pulse Function, and 11.3.6, Offset One-Shot Pulse Function and Output Cutoff Function.

Bit 15—Down-Count Start 8P (DST8P): Starts down-counter 8P (DCNT8P).

| Bit 15: DST8P | Description                                                                                                                            |                 |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0             | DCNT8P is halted                                                                                                                       | (Initial value) |
|               | [Clearing conditions] When the DCNT8P value underflows, or on channel 2 (GR2 match                                                     | 2H) compare-    |
| 1             | DCNT8P counts                                                                                                                          |                 |
|               | <ul><li>[Setting conditions]</li><li>One-shot pulse function: Set by user program (DCNT8F)</li></ul>                                   | P ≠ H'0000)     |
|               | <ul> <li>Offset one-shot pulse function: Set on OCR2H compare         ≠ H'0000 or reload possible) or by user program (DCNT</li> </ul> | `               |

• Bit 14—Down-Count Start 80 (DST80): Starts down-counter 80 (DCNT80).

| Bit 14: DST80 | Description                                                                                                                               |                 |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0             | DCNT8O is halted                                                                                                                          | (Initial value) |
|               | [Clearing conditions] When the DCNT8O value underflows, or on channel 2 (GR2G match                                                       | 6) compare-     |
| 1             | DCNT8O counts                                                                                                                             |                 |
|               | <ul><li>[Setting conditions]</li><li>One-shot pulse function: Set by user program (DCNT8O ≠</li></ul>                                     | ± H'0000)       |
|               | <ul> <li>Offset one-shot pulse function: Set on OCR2G compare-m</li> <li>H'0000 or reload possible) or by user program (DCNT8C</li> </ul> | •               |

• Bit 13—Down-Count Start 8N (DST8N): Starts down-counter 8N (DCNT8N).

| Bit 13: DST8N | Description                                                                                                                          |                 |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0             | DCNT8N is halted                                                                                                                     | (Initial value) |
|               | [Clearing conditions] When the DCNT8N value underflows, or on channel 2 (GR2 match                                                   | F) compare-     |
| 1             | DCNT8N counts                                                                                                                        |                 |
|               | <ul><li>[Setting conditions]</li><li>One-shot pulse function: Set by user program (DCNT8N</li></ul>                                  | ≠ H'0000)       |
|               | <ul> <li>Offset one-shot pulse function: Set on OCR2F compare-<br/>≠ H'0000 or reload possible) or by user program (DCNT8</li> </ul> | •               |

Bit 12—Down-Count Start 8M (DST8M): Starts down-counter 8M (DCNT8M).

| Bit 12: DST8M | Description                                                                                                                                                |        |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0             | DCNT8M is halted (Initial                                                                                                                                  | value) |
|               | [Clearing conditions] When the DCNT8M value underflows, or on channel 2 (GR2E) compar match                                                                | e-     |
| 1             | DCNT8M counts                                                                                                                                              |        |
|               | [Setting conditions]                                                                                                                                       |        |
|               | <ul> <li>One-shot pulse function: Set by user program (DCNT8M ≠ H'0000)</li> </ul>                                                                         |        |
|               | <ul> <li>Offset one-shot pulse function: Set on OCR2E compare-match (DC         ≠ H'0000 or reload possible) or by user program (DCNT8M ≠ H'000</li> </ul> |        |

• Bit 11—Down-Count Start 8L (DST8L): Starts down-counter 8L (DCNT8L).

| Bit 11: DST8L | Description                                                                                                                                            |        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0             | DCNT8L is halted (Initial                                                                                                                              | value) |
|               | [Clearing conditions] When the DCNT8L value underflows, or on channel 2 (GR2D) comparmatch                                                             | e-     |
| 1             | DCNT8L counts                                                                                                                                          |        |
|               | <ul><li>[Setting conditions]</li><li>One-shot pulse function: Set by user program (DCNT8L ≠ H'0000)</li></ul>                                          |        |
|               | <ul> <li>Offset one-shot pulse function: Set on OCR2D compare-match (DO<br/>≠ H'0000 or reload possible) or by user program (DCNT8L ≠ H'000</li> </ul> |        |

• Bit 10—Down-Count Start 8K (DST8K): Starts down-counter 8K (DCNT8K).

| Bit 10: DST8K | Description                                                                                                                                                     |    |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 0             | DCNT8K is halted (Initial value                                                                                                                                 | e) |
|               | [Clearing conditions] When the DCNT8K value underflows, or on channel 2 (GR2C) comparematch                                                                     |    |
| 1             | DCNT8K counts                                                                                                                                                   |    |
|               | <ul> <li>[Setting conditions]</li> <li>One-shot pulse function: Set by user program (DCNT8K ≠ H'0000)</li> </ul>                                                |    |
|               | <ul> <li>Offset one-shot pulse function: Set on OCR2C compare-match (DCNT8         ≠ H'0000 or reload possible) or by user program (DCNT8K ≠ H'0000)</li> </ul> | K  |

• Bit 9—Down-Count Start 8J (DST8J): Starts down-counter 8J (DCNT8J).

| Bit 9: DST8J | Description                                                                                                                                    |                 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0            | DCNT8J is halted                                                                                                                               | (Initial value) |
|              | [Clearing conditions] When the DCNT8J value underflows, or on channel 2 (GR2B) of match                                                        | compare-        |
| 1            | DCNT8J counts                                                                                                                                  |                 |
|              | [Setting conditions]                                                                                                                           |                 |
|              | <ul> <li>One-shot pulse function: Set by user program (DCNT8J ≠ F</li> </ul>                                                                   | 1'0000)         |
|              | <ul> <li>Offset one-shot pulse function: Set on OCR2B compare-ma</li> <li>≠ H'0000 or reload possible) or by user program (DCNT8J ≠</li> </ul> | •               |

• Bit 8—Down-Count Start 8I (DST8I): Starts down-counter 8I (DCNT8I).

| Bit 8: DST8I | Description                                                                                                                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | DCNT8I is halted (Initial value)                                                                                                                             |
|              | [Clearing conditions] When the DCNT8I value underflows, or on channel 2 (GR2A) compare-match                                                                 |
| 1            | DCNT8I counts                                                                                                                                                |
|              | <ul><li>[Setting conditions]</li><li>One-shot pulse function: Set by user program (DCNT8I ≠ H'0000)</li></ul>                                                |
|              | <ul> <li>Offset one-shot pulse function: Set on OCR2A compare-match (DCNT8I ≠<br/>H'0000 or reload possible) or by user program (DCNT8I ≠ H'0000)</li> </ul> |

• Bit 7—Down-Count Start 8H (DST8H): Starts down-counter 8H (DCNT8H).

| Bit 7: DST8H | Description                                                                                                                                                                                                                   |                 |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| 0            | DCNT8H is halted                                                                                                                                                                                                              | (Initial value) |  |
|              | [Clearing conditions] When the DCNT8H value underflows, or on channel 1 (GR1H compare-match                                                                                                                                   | or OCR1)        |  |
| 1            | DCNT8H counts                                                                                                                                                                                                                 |                 |  |
|              | <ul> <li>[Setting conditions]</li> <li>One-shot pulse function: Set by user program (DCNT8H ≠</li> <li>Offset one-shot pulse function: Set on OCR1 compare-mat compare-match, or by user program (DCNT8H ≠ H'0000)</li> </ul> | ,               |  |

• Bit 6—Down-Count Start 8G (DST8G): Starts down-counter 8G (DCNT8G).

| Bit 6: DST8G | Description                                                                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | DCNT8G is halted (Initial value                                                                                                               |
|              | [Clearing conditions] When the DCNT8G value underflows, or on channel 1 (GR1G or OCR1) compare-match                                          |
| 1            | DCNT8G counts                                                                                                                                 |
|              | [Setting conditions]                                                                                                                          |
|              | <ul> <li>One-shot pulse function: Set by user program (DCNT8G ≠ H'0000)</li> </ul>                                                            |
|              | <ul> <li>Offset one-shot pulse function: Set on OCR1 compare-match or GR1G<br/>compare-match, or by user program (DCNT8G ≠ H'0000)</li> </ul> |

• Bit 5—Down-Count Start 8F (DST8F): Starts down-counter 8F (DCNT8F).

| Bit 5: DST8F | Description                                                                                                                           |                 |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| 0            | DCNT8F is halted                                                                                                                      | (Initial value) |  |
|              | [Clearing conditions] When the DCNT8F value underflows, or on channel 1 (GR1F or compare-match                                        | r OCR1)         |  |
| 1            | DCNT8F counts                                                                                                                         |                 |  |
|              | <ul><li>[Setting conditions]</li><li>One-shot pulse function: Set by user program (DCNT8F ≠ F</li></ul>                               | ł'0000)         |  |
|              | <ul> <li>Offset one-shot pulse function: Set on OCR1 compare-match<br/>compare-match, or by user program (DCNT8F ≠ H'0000)</li> </ul> | ch or GR1F      |  |

• Bit 4—Down-Count Start 8E (DST8E): Starts down-counter 8E (DCNT8E).

| Bit 4: DST8E | Description                                                                                                                                                                                 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | DCNT8E is halted (Initial value)                                                                                                                                                            |
|              | [Clearing conditions] When the DCNT8E value underflows, or on channel 1 (GR1E or OCR1) compare-match                                                                                        |
| 1            | DCNT8E counts                                                                                                                                                                               |
|              | <ul> <li>[Setting conditions]</li> <li>One-shot pulse function: Set by user program (DCNT8E ≠ H'0000)</li> <li>Offset one-shot pulse function: Set on OCR1 compare-match or GR1E</li> </ul> |
|              | compare-match, or by user program (DCNT8E ≠ H'0000)                                                                                                                                         |

• Bit 3—Down-Count Start 8D (DST8D): Starts down-counter 8D (DCNT8D).

| Bit 3: DST8D | Description                                                                                                                          |                 |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| 0            | DCNT8D is halted                                                                                                                     | (Initial value) |  |
|              | [Clearing conditions] When the DCNT8D value underflows, or on channel 1 (GR1D compare-match                                          | or OCR1)        |  |
| 1            | DCNT8D counts                                                                                                                        |                 |  |
|              | [Setting conditions]                                                                                                                 |                 |  |
|              | <ul> <li>One-shot pulse function: Set by user program (DCNT8D ≠ I</li> </ul>                                                         | H'0000)         |  |
|              | <ul> <li>Offset one-shot pulse function: Set on OCR1 compare-mate<br/>compare-match, or by user program (DCNT8D ≠ H'0000)</li> </ul> | ch or GR1D      |  |

• Bit 2—Down-Count Start 8C (DST8C): Starts down-counter 8C (DCNT8C).

| Bit 2: DST8C | Description                                                                                                                                                                                                                     |                 |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
| 0            | DCNT8C is halted                                                                                                                                                                                                                | (Initial value) |  |
|              | [Clearing conditions] When the DCNT8C value underflows, or on channel 1 (GR10 compare-match                                                                                                                                     | C or OCR1)      |  |
| 1            | DCNT8C counts                                                                                                                                                                                                                   |                 |  |
|              | <ul> <li>[Setting conditions]</li> <li>One-shot pulse function: Set by user program (DCNT8C =</li> <li>Offset one-shot pulse function: Set on OCR1 compare-match compare-match, or by user program (DCNT8C ≠ H'0000)</li> </ul> | atch or GR1C    |  |

• Bit 1—Down-Count Start 8B (DST8B): Starts down-counter 8B (DCNT8B).

| Bit 1: DST8B | Description                                                                                                                                   |      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------|
| 0            | DCNT8B is halted (Initial val                                                                                                                 | lue) |
|              | [Clearing conditions] When the DCNT8B value underflows, or on channel 1 (GR1B or OCR1) compare-match                                          |      |
| 1            | DCNT8B counts                                                                                                                                 |      |
|              | <ul><li>[Setting conditions]</li><li>One-shot pulse function: Set by user program (DCNT8B ≠ H'0000)</li></ul>                                 |      |
|              | <ul> <li>Offset one-shot pulse function: Set on OCR1 compare-match or GR1E<br/>compare-match, or by user program (DCNT8B ≠ H'0000)</li> </ul> | 3    |

• Bit 0—Down-Count Start 8A (DST8A): Starts down-counter 8A (DCNT8A).

| Bit 0: DST8A | Description                                                                                                                                   |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 0            | DCNT8A is halted (Initial value                                                                                                               |  |  |
|              | [Clearing conditions] When the DCNT8A value underflows, or on channel 1 (GR1A or OCR1) compare-match                                          |  |  |
| 1            | DCNT8A counts                                                                                                                                 |  |  |
|              | [Setting conditions]                                                                                                                          |  |  |
|              | <ul> <li>One-shot pulse function: Set by user program (DCNT8A ≠ H'0000)</li> </ul>                                                            |  |  |
|              | <ul> <li>Offset one-shot pulse function: Set on OCR1 compare-match or GR1A<br/>compare-match, or by user program (DCNT8A ≠ H'0000)</li> </ul> |  |  |

#### 11.2.12 Timer Connection Register (TCNR)

The timer connection register (TCNR) is a 16-bit register. The ATU-II has one TCNR register in channel 8.

| Bit:           | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |
|----------------|------|------|------|------|------|------|------|------|
|                | CN8P | CN8O | CN8N | CN8M | CN8L | CN8K | CN8J | CN8I |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
|                |      |      |      |      |      |      |      |      |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|                | CN8H | CN8G | CN8F | CN8E | CN8D | CN8C | CN8B | CN8A |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |

TCNR is a 16-bit readable/writable register that enables or disables connection between the channel 8 down-count start register (DSTR) and channel 1 and 2 compare-match signals (down-count start triggers). Channel 1 down-count start triggers A to H are channel 1 OCR1 compare-match signals or GR1x compare-match signals (set in TRGMDR). Channel 2 down-count start triggers A to H are channel 2 OCR2x compare-match signals. When GR1x compare-matches are used, set TIOR1A to TIOR1D to allow compare-matches.

TCNR is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

For details, see sections 11.3.5, One-Shot Pulse Function, and 11.3.6, Offset One-Shot Pulse Function and Output Cutoff Function.

• Bit 15—Connection Flag 8P (CN8P): Enables or disables connection between DST8P and the channel 2 down-count start trigger.

| Bit 15: CN8P | Description                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------|
| 0            | Connection between DST8P and channel 2 down-count start trigger H is disabled (Initial value) |
| 1            | Connection between DST8P and channel 2 down-count start trigger H is enabled                  |

• Bit 14—Connection Flag 8O (CN8O): Enables or disables connection between DST8O and the channel 2 down-count start trigger.

| Bit 14: CN8O | Description                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------|
| 0            | Connection between DST8O and channel 2 down-count start trigger G is disabled (Initial value) |
| 1            | Connection between DST8O and channel 2 down-count start trigger G is enabled                  |

• Bit 13—Connection Flag 8N (CN8N): Enables or disables connection between DST8N and the channel 2 down-count start trigger.

| Bit 13: CN8N | Description                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------|
| 0            | Connection between DST8N and channel 2 down-count start trigger F is disabled (Initial value) |
| 1            | Connection between DST8N and channel 2 down-count start trigger F is enabled                  |

• Bit 12—Connection Flag 8M (CN8M): Enables or disables connection between DST8M and the channel 2 down-count start trigger.

| Bit 12: CN8M | Description                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------|
| 0            | Connection between DST8M and channel 2 down-count start trigger E is disabled (Initial value) |
| 1            | Connection between DST8M and channel 2 down-count start trigger E is enabled                  |

• Bit 11—Connection Flag 8L (CN8L): Enables or disables connection between DST8L and the channel 2 down-count start trigger.

| Bit 11: CN8L | Description                                                                                   |
|--------------|-----------------------------------------------------------------------------------------------|
| 0            | Connection between DST8L and channel 2 down-count start trigger D is disabled (Initial value) |
| 1            | Connection between DST8L and channel 2 down-count start trigger D is enabled                  |

• Bit 10—Connection Flag 8K (CN8K): Enables or disables connection between DST8K and the channel 2 down-count start trigger.

| Bit 10: CN8K | Description                                                                       |                    |
|--------------|-----------------------------------------------------------------------------------|--------------------|
| 0            | Connection between DST8K and channel 2 down-count start trigger disabled (Initial | C is<br>ial value) |
| 1            | Connection between DST8K and channel 2 down-count start trigger enabled           | C is               |

• Bit 9—Connection Flag 8J (CN8J): Enables or disables connection between DST8J and the channel 2 down-count start trigger.

| Bit 9: CN8J | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8J and channel 2 down-count start trigger B is disabled (Initial value) |
| 1           | Connection between DST8J and channel 2 down-count start trigger B is enabled                  |

• Bit 8—Connection Flag 8I (CN8I): Enables or disables connection between DST8I and the channel 2 down-count start trigger.

| Bit 8: CN8I | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8I and channel 2 down-count start trigger A is disabled (Initial value) |
| 1           | Connection between DST8I and channel 2 down-count start trigger A is enabled                  |

• Bit 7—Connection Flag 8H (CN8H): Enables or disables connection between DST8H and the channel 1 down-count start trigger.

| Bit 7: CN8H | Description                                                                                  |    |
|-------------|----------------------------------------------------------------------------------------------|----|
| 0           | Connection between DST8H and channel 1 down-count start trigger H is disabled (Initial value | :) |
| 1           | Connection between DST8H and channel 1 down-count start trigger H is enabled                 | _  |

• Bit 6—Connection Flag 8G (CN8G): Enables or disables connection between DST8G and the channel 1 down-count start trigger.

| Bit 6: CN8G | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8G and channel 1 down-count start trigger G is disabled (Initial value) |
| 1           | Connection between DST8G and channel 1 down-count start trigger G is enabled                  |

• Bit 5—Connection Flag 8F (CN8F): Enables or disables connection between DST8F and the channel 1 down-count start trigger.

| Bit 5: CN8F | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8F and channel 1 down-count start trigger F is disabled (Initial value) |
| 1           | Connection between DST8F and channel 1 down-count start trigger F is enabled                  |

• Bit 4—Connection Flag 8E (CN8E): Enables or disables connection between DST8E and the channel 1 down-count start trigger.

| Bit 4: CN8E | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8E and channel 1 down-count start trigger E is disabled (Initial value) |
| 1           | Connection between DST8E and channel 1 down-count start trigger E is enabled                  |

• Bit 3—Connection Flag 8D (CN8D): Enables or disables connection between DST8D and the channel 1 down-count start trigger.

| Bit 3: CN8D | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8D and channel 1 down-count start trigger D is disabled (Initial value) |
| 1           | Connection between DST8D and channel 1 down-count start trigger D is enabled                  |

• Bit 2—Connection Flag 8C (CN8C): Enables or disables connection between DST8C and the channel 1 down-count start trigger.

| Bit 2: CN8C | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8C and channel 1 down-count start trigger C is disabled (Initial value) |
| 1           | Connection between DST8C and channel 1 down-count start trigger C is enabled                  |

• Bit 1—Connection Flag 8B (CN8B): Enables or disables connection between DST8B and the channel 1 down-count start trigger.

| Bit 1: CN8B | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8B and channel 1 down-count start trigger B is disabled (Initial value) |
| 1           | Connection between DST8B and channel 1 down-count start trigger B is enabled                  |

• Bit 0—Connection Flag 8A (CN8A): Enables or disables connection between DST8A and the channel 1 down-count start trigger.

| Bit 0: CN8A | Description                                                                                   |
|-------------|-----------------------------------------------------------------------------------------------|
| 0           | Connection between DST8A and channel 1 down-count start trigger A is disabled (Initial value) |
| 1           | Connection between DST8A and channel 1 down-count start trigger A is enabled                  |

#### 11.2.13 One-Shot Pulse Terminate Register (OTR)

The one-shot pulse terminate register (OTR) is a 16-bit register. The ATU-II has one OTR register in channel 8.

| Bit:           | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |
|----------------|------|------|------|------|------|------|------|------|
|                | OTEP | OTEO | OTEN | OTEM | OTEL | OTEK | OTEJ | OTEI |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
|                |      |      |      |      |      |      |      |      |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|                | OTEH | OTEG | OTEF | OTEE | OTED | OTEC | OTEB | OTEA |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |

OTR is a 16-bit readable/writable register that enables or disables forced termination of channel 8 one-shot pulse output by channel 1 and 2 compare-match signals. When one-shot pulse output is forcibly terminated, the corresponding DSTR bit and down-counter are cleared, and the corresponding TSR8 bit is set. The channel 1 one-shot pulse terminate signal is generated by GR1A to GR1H compare-matches and OCR1 compare-match (see TRGMDR). The channel 2 one-shot pulse terminate signal is generated by GR2A to GR2H compare-matches. To generate the terminate signal with GR1A to GR1H and GR2A to GR2H, select the respective compare-matches in TIOR1A to TIOR1D.

OTR is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

• Bit 15—One-Shot Pulse Terminate Enable P (OTEP): Enables or disables forced termination of output by channel 2 down-counter terminate trigger H.

| Bit 15: OTEP | Description                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| 0            | Forced termination of TO8P by down-counter terminate trigger is disabled (Initial value) |
| 1            | Forced termination of TO8P by down-counter terminate trigger is enabled                  |

• Bit 14—One-Shot Pulse Terminate Enable O (OTEO): Enables or disables forced termination of output by channel 2 down-counter terminate trigger G.

| Bit 14: OTEO | Description                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| 0            | Forced termination of TO8O by down-counter terminate trigger is disabled (Initial value) |
| 1            | Forced termination of TO8O by down-counter terminate trigger is enabled                  |

• Bit 13—One-Shot Pulse Terminate Enable N (OTEN): Enables or disables forced termination of output by channel 2 down-counter terminate trigger F.

| Bit 13: OTEN | Description                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| 0            | Forced termination of TO8N by down-counter terminate trigger is disabled (Initial value) |
| 1            | Forced termination of TO8N by down-counter terminate trigger is enabled                  |

• Bit 12—One-Shot Pulse Terminate Enable M (OTEM): Enables or disables forced termination of output by channel 2 down-counter terminate trigger E.

| Bit 12: OTEM | Description                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| 0            | Forced termination of TO8M by down-counter terminate trigger is disabled (Initial value) |
| 1            | Forced termination of TO8M by down-counter terminate trigger is enabled                  |

• Bit 11—One-Shot Pulse Terminate Enable L (OTEL): Enables or disables forced termination of output by channel 2 down-counter terminate trigger D.

| Bit 11: OTEL | Description                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| 0            | Forced termination of TO8L by down-counter terminate trigger is disabled (Initial value) |
| 1            | Forced termination of TO8L by down-counter terminate trigger is enabled                  |

• Bit 10—One-Shot Pulse Terminate Enable K (OTEK): Enables or disables forced termination of output by channel 2 down-counter terminate trigger C.

| Bit 10: OTEK | Description                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| 0            | Forced termination of TO8K by down-counter terminate trigger is disabled (Initial value) |
| 1            | Forced termination of TO8K by down-counter terminate trigger is enabled                  |

• Bit 9—One-Shot Pulse Terminate Enable J (OTEJ): Enables or disables forced termination of output by channel 2 down-counter terminate trigger B.

| Bit 9: OTEJ | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8J by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8J by down-counter terminate trigger is enabled                  |

• Bit 8—One-Shot Pulse Terminate Enable I (OTEI): Enables or disables forced termination of output by channel 2 down-counter terminate trigger A.

| Bit 8: OTEI | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8I by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8I by down-counter terminate trigger is enabled                  |

• Bit 7—One-Shot Pulse Terminate Enable H (OTEH): Enables or disables forced termination of output by channel 1 down-counter terminate trigger H.

| Bit 7: OTEH | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8H by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8H by down-counter terminate trigger is enabled                  |

• Bit 6—One-Shot Pulse Terminate Enable G (OTEG): Enables or disables forced termination of output by channel 1 down-counter terminate trigger G.

| Bit 6: OTEG | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8G by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8G by down-counter terminate trigger is enabled                  |

• Bit 5—One-Shot Pulse Terminate Enable F (OTEF): Enables or disables forced termination of output by channel 1 down-counter terminate trigger F.

| Bit 5: OTEF | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8F by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8F by down-counter terminate trigger is enabled                  |

• Bit 4—One-Shot Pulse Terminate Enable E (OTEE): Enables or disables forced termination of output by channel 1 down-counter terminate trigger E.

| Bit 4: OTEE | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8E by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8E by down-counter terminate trigger is enabled                  |

• Bit 3—One-Shot Pulse Terminate Enable D (OTED): Enables or disables forced termination of output by channel 1 down-counter terminate trigger D.

| Bit 3: OTED | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8D by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8D by down-counter terminate trigger is enabled                  |

• Bit 2—One-Shot Pulse Terminate Enable C (OTEC): Enables or disables forced termination of output by channel 1 down-counter terminate trigger C.

| Bit 2: OTEC | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8C by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8C by down-counter terminate trigger is enabled                  |

• Bit 1—One-Shot Pulse Terminate Enable B (OTEB): Enables or disables forced termination of output by channel 1 down-counter terminate trigger B.

| Bit 1: OTEB | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8B by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8B by down-counter terminate trigger is enabled                  |

• Bit 0—One-Shot Pulse Terminate Enable A (OTEA): Enables or disables forced termination of output by channel 1 down-counter terminate trigger A.

| Bit 0: OTEA | Description                                                                              |
|-------------|------------------------------------------------------------------------------------------|
| 0           | Forced termination of TO8A by down-counter terminate trigger is disabled (Initial value) |
| 1           | Forced termination of TO8A by down-counter terminate trigger is enabled                  |

#### 11.2.14 Reload Enable Register (RLDENR)

The reload enable register (RLDENR) is an 8-bit register. The ATU-II has one RLDENR register in channel 8.

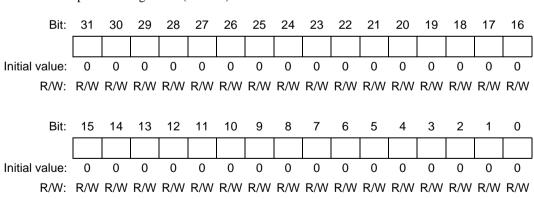
| Bit:           | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|-------|---|---|---|---|---|---|---|
|                | RLDEN | _ | _ | _ | _ | _ | _ | _ |
| Initial value: | 0     | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W:           | R/W   | R | R | R | R | R | R | R |

RLDENR is an 8-bit readable/writable register that enables or disables loading of the reload register8 (RLDR8) value into the down-counters (DCNT8I to DCNT8P). Loading is performed on generation of a channel 2 compare-match signal one-shot pulse start trigger. Reloading is not performed if there is no linkage with channel 2 (one-shot pulse function), or while the down-counter (DCNT8I to DCNT8P) is running.

RLDENR is initialized to H'00 by a power-on reset and in hardware standby mode and software standby mode.

 Bit 7—Reload Enable (RLDEN): Enables or disables loading of the RLDR value into DCNT8I to DCNT8P.

| Bit 7: RLDEN | Description                                                                     |
|--------------|---------------------------------------------------------------------------------|
| 0            | Loading of reload register value into down-counters is disabled (Initial value) |
| 1            | Loading of reload register value into down-counters is enabled                  |


• Bits 6 to 0—Reserved: These bits are always read as 0. The write value should always be 0.

#### 11.2.15 Free-Running Counters (TCNT)

The free-running counters (TCNT) are 32- or 16-bit up- or up/down-counters. The ATU-II has 17 TCNT counters: one 32-bit TCNT in channel 0, and sixteen 16-bit TCNTs in each of channels 1 to 7 and 11. For details of the channel 10 free-running counters, see section 11.2.26, Channel 10 Registers.

| Channel | Abbreviation   | Function                                       |
|---------|----------------|------------------------------------------------|
| 0       | TCNT0H, TCNT0L | 32-bit up-counter (initial value Hí00000000)   |
| 1       | TCNT1A, TCNT1B | 16-bit up-counters (initial value H'0000)      |
| 2       | TCNT2A, TCNT2B | _                                              |
| 3       | TCNT3          | _                                              |
| 4       | TCNT4          | _                                              |
| 5       | TCNT5          |                                                |
| 6       | TCNT6A-D       | 16-bit up/down-counters (initial value H'0001) |
| 7       | TCNT7A-D       | 16-bit up-counters (initial value H'0001)      |
| 11      | TCNT11         | 16-bit up-counter (initial value H'0000)       |

**Free-Running Counter 0 (TCNT0H, TCNT0L):** Free-running counter 0 (comprising TCNT0H and TCNT0L) is a 32-bit readable/writable register that counts on an input clock. The counter is started when the corresponding bit in the timer start register (TSTR1) is set to 1. The input clock is selected with prescaler register 1 (PSCR1).



When TCNT0 overflows (from H'FFFFFFF to H'00000000), the OVF0 overflow flag in the timer status register (TSR0) is set to 1.

TCNT0 can only be accessed by a longword read or write. Word reads or writes cannot be used.

TCNT0 is initialized to H'00000000 by a power-on reset, and in hardware standby mode and software standby mode.

Free-Running Counters 1A, 1B, 2A, 2B, 3, 4, 5, 11 (TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3, TCNT4, TCNT5, TCNT11): Free-running counters 1A, 1B, 2A, 2B, 3, 4, 5, and 11 (TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3, TCNT4, TCNT5, TCNT11) are 16-bit readable/writable registers that count on an input clock. Counting is started when the corresponding bit in the timer start register (TSTR1 or TSTR3) is set to 1. The input clock is selected with prescaler register 1 (PSCR1) and the timer control register (TCR).

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Bit name:      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

The TCNT1A, TCNT1B, TCNT2A, and TCNT2B counters are cleared if incremented during counter clear trigger input from channel 10.

TCNT3 to TCNT5 counter clearing is performed by a compare-match with the corresponding general register, according to the setting in TIOR.

When one of counters TCNT1A/1B/2A/2B/3/4/5/11 overflows (from H'FFFF to H'0000), the overflow flag (OVF) for the corresponding channel in the timer status register (TSR) is set to 1.

TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3, TCNT4, TCNT5, and TCNT11 can only be accessed by a word read or write.

TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3, TCNT4, TCNT5, and TCNT11 are initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3, TCNT4, and TCNT5 can count on external clock (TCLKA or TCLKB) input.

TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3, TCNT4, and TCNT5 can count on an external interrupt clock (TI10) (AGCK) generated in channel 10 and on a channel 10 multiplied clock (AGCKM).

#### Free-Running Counters 6A to 6D and 7A to 7D (TCNT6A to TCNT6D, TCNT7A to

**TCNT7D):** Free-running counters 6A to 6D and 7A to 7D (TCNT6A to TCNT6D, TCNT7A to TCNT7D) are 16-bit readable/writable registers. Channel 6 and 7 counts are started by the timer start register (TSTR2).

The clock input to channels 6 and 7 is selected with prescaler registers 2 and 3 (PSCR2, PSCR3) and timer control registers 6 and 7 (TCR6, TCR7).

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |

TCNT6A to TCNT6D (in non-complementary PWM mode) and TCNT7A to TCNT7D are cleared by a compare-match with the cycle register (CYLR).

TCNT6A to TCNT6D (in complementary PWM mode) count up and down between zero and the cycle register value.

TCNT6A to TCNT6D and TCNT7A to TCNT7D are connected to the CPU by an internal 16-bit bus, and can only be accessed by a word read or write.

TCNT6A to TCNT6D and TCNT7A to TCNT7D are initialized to H'0001 by a power-on reset, and in hardware standby mode and software standby mode.

## 11.2.16 Down-Counters (DCNT)

The DCNT registers are 16-bit down-counters. The ATU-II has 16 DCNT counters in channel 8.

| Channel | Abbreviation                                                                   | Function             |  |
|---------|--------------------------------------------------------------------------------|----------------------|--|
| 8       | DCNT8A, DCNT8B,<br>DCNT8C, DCNT8D,<br>DCNT8E, DCNT8F,                          | 16-bit down-counters |  |
|         | DCNT8G, DCNT8H, DCNT8I, DCNT8J, DCNT8K, DCNT8L, DCNT8M, DCNT8N, DCNT8O, DCNT8P |                      |  |

**Down-Counters 8A to 8P (DCNT8A to DCNT8P):** Down-counters 8A to 8P (DCNT8A to DCNT8P) are 16-bit readable/writable registers that count on an input clock. The input clock is selected with prescaler register 1 (PSCR1) and the timer control register (TCR).

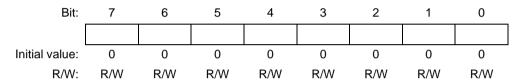
| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Bit name:      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/\/\·         | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/M | R/W |

When the one-shot pulse function is used, DCNT8x starts counting down when the corresponding DSTR bit is set to 1 by the user program after the DCNT8x value has been set. When the DCNT8x value underflows, DSTR and DCNT8x are automatically cleared to 0, and the count is stopped. At the same time, the corresponding channel 8 timer status register 8 (TSR8) status flag is set to 1.

When the offset one-shot pulse function is used, on compare-match with a channel 1 or 2 general register (GR) or output compare register (OCR) (the compare-match setting being made in the trigger mode register (TRGMDR) (for channel 1 only)) when the corresponding timer connection register (TCNR) bit is 1, the corresponding down-count start register (DSTR) bit is automatically set to 1 and the down-count is started. When the DCNT8x value underflows, the corresponding DSTR bit and DCNT8x are automatically cleared to 0, the count is stopped, and the output is inverted, or, if a one-shot terminate register (OTR) setting has been made to forcibly terminate output by means of a trigger, DSTR is cleared to 0 by a channel 1 or 2 compare-match between GR and OCR, the count is forcibly terminated, and the output is inverted. The output is inverted for whichever is first. When the output is inverted, the corresponding channel 8 TSR8 status flag is set to 1.

The DCNT8x counters can only be accessed by a word read or write.

The DCNT8x counters are initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.


For details, see sections 11.3.5, One-Shot Pulse Function, and 11.3.6, Offset One-Shot Pulse Function and Output Cutoff Function.

#### 11.2.17 Event Counters (ECNT)

The event counters (ECNT) are 8-bit up-counters. The ATU-II has six ECNT counters in channel 9.

| Channel | Abbreviation                                         | Function             |
|---------|------------------------------------------------------|----------------------|
| 9       | ECNT9A, ECNT9B,<br>ECNT9C, ECNT9D,<br>ECNT9E, ECNT9F | 8-bit event counters |

The ECNT counters are 8-bit readable/writable registers that count on detection of an input signal from input pins TI9A to TI9F. Rising edge, falling edge, or both rising and falling edges can be selected for edge detection.



When a compare-match with GR9 corresponding to an ECNT9x counter occurs, the compare-match flag (CMF9) in the timer status register (TSR9) is set to 1. When a compare-match with GR occurs, the ECNT9x counter is cleared automatically.

The ECNT9x counters can only be accessed by a byte read or write.

The ECNT9x counters are initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

## 11.2.18 Output Compare Registers (OCR)

The output compare registers (OCR) are 16-bit registers. The ATU-II has nine OCR registers: one in channel 1 and eight in channel 2. For details of the channel 10 free-running counters, see section 11.2.26, Channel 10 Registers.

| Channel | Abbreviation                                                    | Function                 |
|---------|-----------------------------------------------------------------|--------------------------|
| 1       | OCR1                                                            | Output compare registers |
| 2       | OCR2A, OCR2B,<br>OCR2C, OCR2D,<br>OCR2E, OCR2F,<br>OCR2G, OCR2H |                          |

## Output Compare Registers 1 and 2A to 2H (OCR1, OCR2A to OCR2H)

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Initial value: | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

The OCR registers are 16-bit readable/writable registers that have an output compare register function.

The OCR and free-running counter (TCNT1B, TCNT2B) values are constantly compared, and if the two values match, the CMF bit in the timer status register (TSR) is set to 1. If channels 1 and 2 and channel 8 are linked by the timer connection register (TCNR), the corresponding channel 8 down-counter (DCNT) is started at the same time.

The OCR registers can only be accessed by a word read.

The OCR registers are initialized to H'FFFF by a power-on reset, and in hardware standby mode and software standby mode.

## 11.2.19 Input Capture Registers (ICR)

The input capture registers (ICR) are 32-bit registers. The ATU-II has four 32-bit ICR registers in channel 0. For details of the channel 10 free-running counters, see section 11.2.26, Channel 10 Registers.

| Channel | Abbreviation                                                            | Function                          |
|---------|-------------------------------------------------------------------------|-----------------------------------|
| 0       | ICROAH, ICROAL,<br>ICROBH, ICROBL,<br>ICROCH, ICROCL,<br>ICRODH, ICRODL | Dedicated input capture registers |

## Input Capture Registers 0AH, 0AL to 0DH, 0DL (ICR0AH, ICR0AL to ICR0DH, ICR0DL)

| Bit:           | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| R/W:           | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  |
|                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| R/W:           | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  |

The ICR registers are 32-bit read-only registers used exclusively for input capture.

These dedicated input capture registers store the TCNT0 value on detection of an input capture signal from an external source. The corresponding TSR0 bit is set to 1 at this time. The input capture signal edge to be detected is specified by timer I/O control register TIOR0. By setting the TRG0DEN bit in TCR10, ICR0DH and ICR0DL can also be used for input capture in a compare match between TCNT10B and OCR10B.

The ICR registers can only be accessed by a longword read. Word reads cannot be used.

The ICR registers are initialized to H'00000000 by a power-on reset, and in hardware standby mode and software standby mode.

## 11.2.20 General Registers (GR)

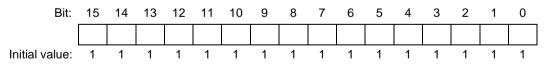
The general registers (GR) are 16-bit registers. The ATU-II has 36 general registers: eight each in channels 1 and 2, four each in channels 3 to 5, six in channel 9, and two in channel 11. For details of the channel 10 free-running counters, see section 11.2.26, Channel 10 Registers.

| Abbreviation | Function                                                    |
|--------------|-------------------------------------------------------------|
| GR1A-GR1H    | Dual-purpose input capture and output compare registers     |
| GR2A-GR2H    | <del></del>                                                 |
| GR3A-GR3D    | <u> </u>                                                    |
| GR4A–GR4D    | <del></del>                                                 |
| GR5A–GR5D    | <del></del>                                                 |
| GR9A-GR9F    | Dedicated output compare registers                          |
| GR11A, GR11B | Dual-purpose input capture and output compare registers     |
|              | GR1A-GR1H GR2A-GR2H GR3A-GR3D GR4A-GR4D GR5A-GR5D GR9A-GR9F |

## General Registers 1A to 1H and 2A to 2H (GR1A to GR1H, GR2A to GR2H)

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Initial value: | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

These GR registers are 16-bit readable/writable registers with both input capture and output compare functions. Function switching is performed by means of the timer I/O control registers (TIOR).


When a general register is used for input capture, it stores the TCNT1A or TCNT2A value on detection of an input capture signal from an external source. The corresponding IMF bit in TSR is set to 1 at this time. The input capture signal edge to be detected is specified by the corresponding TIOR.

When a general register is used for output compare, the GR value and free-running counter (TCNT1A, TCNT2A) value are constantly compared, and when both values match, the IMF bit in the timer status register (TSR) is set to 1. If connection of channels 1 and 2 and channel 8 is specified in the timer connection register (TCNR), the corresponding channel 8 down-counter (DCNT) is started. Compare-match output is specified by the corresponding TIOR.

The GR registers can only be accessed by a word read or write.

The GR registers are initialized to H'FFFF by a power-on reset, and in hardware standby mode and software standby mode.

# General Registers 3A to 3D, 4A to 4D, 5A to 5D, 11A and 11B (GR3A to GR3D, GR4A to GR4D, GR5A to GR5D, GR11A and GR11B)

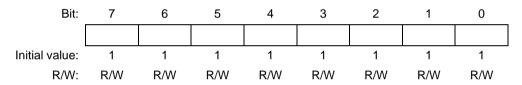


 $\mathsf{R/W}\colon \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}\ \mathsf{R/W}$ 

These GR registers are 16-bit readable/writable registers with both input capture and output compare functions. Function switching is performed by means of the timer I/O control registers (TIOR).

When a general register is used for input capture, it stores the corresponding TCNT value on detection of an input capture signal from an external source. The corresponding IMF bit in TSR is set to 1 at this time. The input capture signal edge to be detected is specified by the corresponding

TIOR. GR3A to GR3D can also be used for input capture with a channel 9 compare-match as the trigger. In this case, the corresponding IMF bit in TSR is not set.


When a general register is used for output compare, the GR value and free-running counter (TCNT) value are constantly compared, and when both values match, the IMF bit in the timer status register (TSR) is set to 1. Compare-match output is specified by the corresponding TIOR.

GRIIA and GR11B compare-match signals are transmitted to the advanced pulse controller (APC). For details, see section 12, Advanced Pulse Controller (APC).

The GR registers can only be accessed by a word read or write.

The GR registers are initialized to H'FFFF by a power-on reset, and in hardware standby mode and software standby mode.

## General Registers 9A to 9F (GR9A to GR9F)



These GR registers are 8-bit readable/writable registers with a compare-match function.

The GR value and event counter (ECNT) value are constantly compared, and when both values match a compare-match signal is generated and the next edge is input, the corresponding CMF bit in TSR is set to 1.

In addition, channel 3 (GR3A to GR3D) input capture can be generated by GR9A to GR9D compare-matches. This function is set by TRG3xEN in the timer control register (TCR).

The GR registers can be accessed by a byte read or write.

The GR registers are initialized to H'FF by a power-on reset, and in hardware standby mode and software standby mode.

#### 11.2.21 Offset Base Registers (OSBR)

The offset base registers (OSBR) are 16-bit registers. The ATU-II has two OSBR registers, one each in channels 1 and 2.

| Channel | Abbreviation | Function                                                     |
|---------|--------------|--------------------------------------------------------------|
| 1       | OSBR1        | Dedicated input capture registers with signal from channel 0 |
| 2       | OSBR2        | ICR0A as input trigger                                       |

## Offset Base Registers 1 and 2 (OSBR1, OSBR2)

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W:           | R  | R  | R  | R  | R  | R  | R | R | R | R | R | R | R | R | R | R |

OSBR1 and OSBR2 are 16-bit read-only registers used exclusively for input capture. OSBR1 and OSBR2 use the channel 0 ICR0A input capture register input as their trigger signal, and store the TCNT1A or TCNT2A value on detection of an edge.

The OSBR registers can only be accessed by a word read.

The OSBR registers are initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

For details, see sections 11.3.8, Twin Capture Function.

## 11.2.22 Cycle Registers (CYLR)

The cycle registers (CYLR) are 16-bit registers. The ATU-II has eight cycle registers, four each in channels 6 and 7.

| Channel | Abbreviation      | Function                   |
|---------|-------------------|----------------------------|
| 6       | CYLR6A-<br>CYLR6D | 16-bit PWM cycle registers |
| 7       | CYLR7A-<br>CYLR7D | _                          |

#### Cycle Registers (CYLR6A to CYLR6D, CYLR7A to CYLR7D)

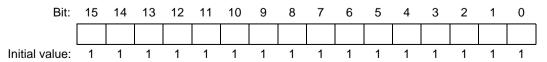
| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Initial value: | 1  | 1  | 1  | 1  | 1  | 1  | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

The CYLR registers are 16-bit readable/writable registers used for PWM cycle storage.

The CYLR value is constantly compared with the corresponding free-running counter (TCNT6A to TCNT6D, TCNT7A to TCNT7D) value, and when the two values match, the corresponding timer start register (TSR) bit (CMF6A to CMF6D, CMF7A to CMF7D) is set to 1, and the free-running counter (TCNT6A to TCNT6D, TCNT7A to TCNT7D) is cleared. At the same time, the buffer register (BFR) value is transferred to the duty register (DTR). Output pin (TO6A to TO6D, TO7A to TO7D) of corresponding channnel will be 0 when H'0000 of BFR is 0 output and otherwise will be 1.

The CYLR registers can only be accessed by a word read or write.

The CYLR registers are initialized to H'FFFF by a power-on reset, and in hardware standby mode and software standby mode.


For details of the CYLR, BFR, and DTR registers, see section 11.3.9, PWM Timer Function.

## 11.2.23 Buffer Registers (BFR)

The buffer registers (BFR) are 16-bit registers. The ATU-II has eight buffer registers, four each in channels 6 and 7.

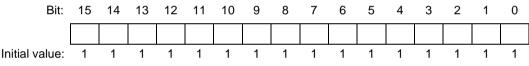
| Channel | Abbreviation | Function                                                                                                                  |
|---------|--------------|---------------------------------------------------------------------------------------------------------------------------|
| 6       | BFR6A-BFR6D  | 16-bit PWM buffer registers                                                                                               |
| 7       | BFR7A-BFR7D  | Buffer register (BFR) value is transferred to duty register (DTR) on compare-match of corresponding cycle register (CYLR) |

## Buffer Registers (BFR6A to BFR6D, BFR7A to BFR7D)



The BFR registers are 16-bit readable/writable registers that store the value to be transferred to the duty register (DTR) in the event of a cycle register (CYLR) compare-match.

The BFR registers can only be accessed by a word read or write.


The BFR registers are initialized to H'FFFF by a power-on reset, and in hardware standby mode and software standby mode.

#### 11.2.24 Duty Registers (DTR)

The duty registers (DTR) are 16-bit registers. The ATU-II has eight duty registers, four each in channels 6 and 7

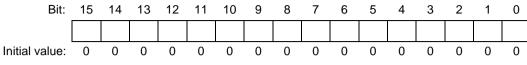
| Channel | Abbreviation | Function                  |
|---------|--------------|---------------------------|
| 6       | DTR6A-DTR6D  | 16-bit PWM duty registers |
| 7       | DTR7A-DTR7D  |                           |

## **Duty Registers (DTR6A to DTR6D, DTR7A to DTR7D)**



The DTR registers are 16-bit readable/writable registers used for PWM duty storage.

The DTR value is constantly compared with the corresponding free-running counter (TCNT6A to TCNT6D, TCNT7A to TCNT7D) value, and when the two values match, the corresponding channel output pin (TO6A to TO6D, TO7A to TO7D) goes to 0 output. Also, when CYLR and the corresponding the free-running counter match, the corresponding BFR value is loaded. Set a value in the range 0 to CYLR for DTR; do not set a value greater than CYLR.


The DTR registers can only be accessed by a word read or write.

The DTR registers are initialized to H'FFFF by a power-on reset, and in hardware standby mode and software standby mode.

#### 11.2.25 Reload Register (RLDR)

The reload register is a 16-bit register. The ATU-II has one RLDR register in channel 8.

## Reload Register 8 (RLDR8)



RLDR8 is a 16-bit readable/writable register. When reload is enabled (by a setting in RLDENR) and DSTR8I to DSTR8P are set to 1 by the channel 2 compare-match signal one-shot pulse start trigger, the reload register value is transferred to DCNT8I to DCNT8P before the down-count is started. The reload register value is not transferred when the one-shot pulse function is used independently, without linkage to channel 2, or when down-counters DCNT8I to DCNT8P are running.

RLDR8 can only be accessed by a word read or write.

RLDR is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

## 11.2.26 Channel 10 Registers

#### **Counters (TCNT)**

Channel 10 has seven TCNT counters: one 32-bit TCNT, four 16-bit TCNTs, and two 8-bit TCNTs.

The input clock is selected with prescaler register 4 (PSCR4). Count operations are performed by setting STR10 to 1 in timer start register 1 (TSTR1).

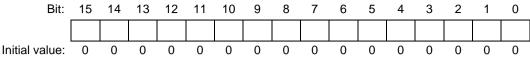
| Channel | Abbreviation | Function                                               |
|---------|--------------|--------------------------------------------------------|
| 10      | TCNT10AH, AL | 32-bit free-running counter (initial value H'00000001) |
|         | TCNT10B      | 8-bit event counter (initial value H'00)               |
|         | TCNT10C      | 16-bit reload counter (initial value H'0001)           |
|         | TCNT10D      | 8-bit correction counter (initial value H'00)          |
|         | TCNT10E      | 16-bit correction counter (initial value H'0000)       |
|         | TCNT10F      | 16-bit correction counter (initial value H'0001)       |
|         | TCNT10G      | 16-bit free-running counter (initial value H'0000)     |
|         |              |                                                        |

**Free-Running Counter 10AH, AL (TCNT10AH, TCNT10AL):** Free-running counter 10AH, AL (comprising TCNT10AH and TCNT10AL) is a 32-bit readable/writable register that counts on an input clock and is cleared to the initial value by input capture input (TI10) (AGCK).

| Bit:           | 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

TCNT10A can only be accessed by a longword read or write. Word reads or writes cannot be used.

TCNT10A is initialized to H'00000001 by a power-on reset, and in hardware standby mode and software standby mode.

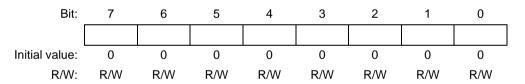

**Event Counter 10B (TCNT10B):** Event counter 10B (TCNT10B) is an 8-bit readable/writable register that counts on external clock input (TI10) (AGCK). For this operation, TI10 input must be set with bits CKEG1 and CKEG0 in TCR10. TI10 input will be counted even if halting of the count operation is specified by bit STR10 in TSTR1.

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

TCNT10B can only be accessed by a byte read or write.

TCNT10B is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

**Reload Counter 10C (TCNT10C):** Reload counter 10C (TCNT10C) is a 16-bit readable/writable register.




When TCNT10C = H'0001 in the down-count operation, the value in the reload register (RLD10C) is transferred to TCNT10C, and a multiplied clock (AGCK1) is generated.

TCNT10C is connected to the CPU via an internal 16-bit bus, and can only be accessed by a word read or write.

TCNT10C is initialized to H'0001 by a power-on reset, and in hardware standby mode and software standby mode.

**Correction Counter 10D (TCNT10D):** Correction counter 10D (TCNT10D) is an 8-bit readable/writable register that counts on external clock input (TI10) after transfer of the counter value to correction counter E (TCNT10E). Set TI10 input with bits CKEG1 and CKEG0 in TCR10. Transfer and counting will not be performed on TI10 input unless the count operation is enabled by bit STR10 in TSTR1.

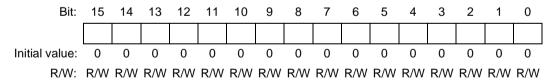


At the external clock input (TI10) (AGCK) timing, the value in this counter is shifted according to the multiplication factor set by bits PIM1 and PIM0 in timer I/O control register 10 (TIOR10) and transferred to correction counter E (TCNT10E).

TCNT10D can only be accessed by a byte read or write.

TCNT10D is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

Correction Counter 10E (TCNT10E): Correction counter 10E (TCNT10E) is a 16-bit readable/writable register that loads the TCNT10D shift value at the external input (TI10) timing, and counts on the multiplied clock (AGCK1) output by reload counter 10C (TCNT10C). However, if CCS in timer I/O control register 10 (TIOR10) is set to 1, when the TCNT10D shifted value is reached the count is halted.


| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

TCNT10E can only be accessed by a word read or write.

TCNT10E is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

Correction Counter 10F (TCNT10F): Correction counter 10F (TCNT10F) is a 16-bit readable/writable register that counts up on P $\phi$  clock cycles if the counter value is smaller than the correction counter 10E (TCNT10E) value when the STR10 bit in TSTR1 has been set for counter operation. The count is halted by a match with the correction counter clear register (TCCLR10). If TI10 is input when TCNT10D = H'00, TCNT10F is initialized and correction is carried out. When TCNT10F = TCCLR10, TCNT10F is cleared to H'0001. While TCNT10F  $\neq$  TCCLR10, TCNT10F is incremented automatically until it reaches the TCCLR10 value, and is then cleared to H'0001.

A corrected clock (AGCKM) is output following correction each time this counter is incremented.



TCNT10F is can only be accessed by a word read or write.

TCNT10F is initialized to H'0001 by a power-on reset, and in hardware standby mode and software standby mode.

**Free-Running Counter 10G (TCNT10G):** Free-running counter 10G (TCNT10G) is a 16-bit readable/writable register that counts up on the multiplied clock (AGCK1). TCNT10G is initialized to H'0000 by input from external input (TI10) (AGCK).

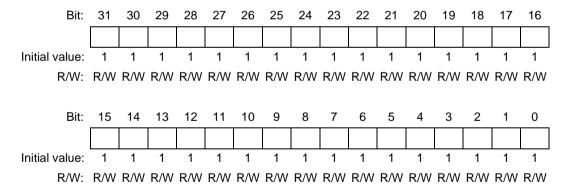
| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|----|----|----|----|----|----|---|---|---|---|---|---|---|---|---|---|
|                |    |    |    |    |    |    |   |   |   |   |   |   |   |   |   |   |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

TCNT10G can only be accessed by a word read or write.

TCNT10G is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

## **Registers**

There are six registers in channel 10: a 32-bit ICR, 32-bit OCR, 16-bit GR, 16-bit RLD, 16-bit TCCLR, and 8-bit OCR.


| Channel | Abbreviation | Function                                                        |
|---------|--------------|-----------------------------------------------------------------|
| 10      | ICR10AH, AL  | 32-bit input capture register (initial value H'00000000)        |
|         | OCR10AH, AL  | 32-bit output compare register (initial value H'FFFFFFF)        |
|         | OCR10B       | 8-bit output compare register (initial value H'FF)              |
|         | RLD10C       | 16-bit reload register (initial value H'0000)                   |
|         | GR10G        | 16-bit general register (initial value H'FFFF)                  |
|         | TCCLR10      | 16-bit correction counter clear register (initial value H'0000) |

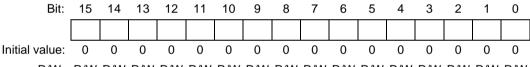
**Input Capture Register 10AH, AL** (**ICR10AH, ICR10AL**): Input capture register 10AH, AL (comprising ICR10AH and ICR10AL) is a 32-bit read-only register to which the TCNT10AH, AL value is transferred on external input (TI10) (AGCK). At the same time, ICF10A in timer status register 10 (TSR10) is set to 1.

| Bit:           | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|----------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| R/W:           | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  |
|                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|                |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| R/W:           | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  |

ICR10A is initialized to H'00000000 by a power-on reset, and in hardware standby mode and software standby mode.

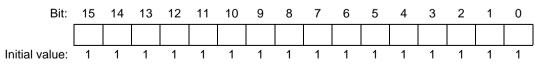
**Output Compare Register 10AH, AL (OCR10AH, OCR10AL):** Output compare register 10AH, AL (comprising OCR10AH and OCR10AL) is a 32-bit readable/writable register that is constantly compared with free-running counter 10AH, AL (TCNT10AH, TCNT10AL). When both values match, CMF10A in timer status register 10 (TSR10) is set to 1.




OCR10A is initialized to H'FFFFFFF by a power-on reset, and in hardware standby mode and software standby mode.

Output Compare Register 10B (OCR10B): Output compare register 10B (OCR10B) is an 8-bit readable/writable register that is constantly compared with free-running counter 10B (TCNT10B). When AGCK is input with both values matching, CMF10B in timer status register 10 (TSR10) is set to 1.

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |


OCR10B is initialized to H'FF by a power-on reset, and in hardware standby mode and software standby mode.

**Reload Register 10C (RLD10C):** Reload register 10C (RLD10C) is a 16-bit readable/writable register. When STR10 in timer start register 1 (TSTR1) is 1 and RLDEN in the timer I/O control register (TIOR10) is 0, and the value of TCNT10A is captured into input capture register 10A (ICR10A), the ICR10A capture value is shifted according to the multiplication factor set by bits PIM1 and PIM0 in TIOR10 before being transferred to RLD10C. The contents of reload register 10C (RLD10C) are loaded when reload counter 10C (TCNT10C) reaches H'0001.



RLD10C is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

**General Register 10G (GR10G):** General register 10G (GR10G) is a 16-bit readable/writable register with an output compare function. Function switching is performed by means of timer I/O control register 10 (TIOR10). The GR10G value and free-running counter 10G (TCNT10G) value are constantly compared, and when AGCK is input with both values matching, CMF10G in timer status register 10 (TSR10) is set to 1.



GR10G is initialized to H'FFFF by a power-on reset, and in hardware standby mode and software standby mode.

**Correction Counter Clear Register 10 (TCCLR10):** Correction counter clear register 10 (TCCLR10) is a 16-bit readable/writable register.

TCCLR10 is constantly compared with TCNT10F, and when the two values match, TCNT10F halts. TCNTxx can be cleared at this time by setting TRGxxEN (xx = 1A, 1B, 2A, 2B) in TCR10. Then, when TCNT10D is H'00 and TI10 is input, TCNT10F is cleared to H'0001.

| Bit:           | 15  | 14  | 13  | 12  | 11   | 10  | 9   | 8   | 7   | 6   | 5   | 4    | 3   | 2   | 1   | 0     |
|----------------|-----|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----|-------|
|                |     |     |     |     |      |     |     |     |     |     |     |      |     |     |     |       |
| Initial value: | 0   | 0   | 0   | 0   | 0    | 0   | 0   | 0   | 0   | 0   | 0   | 0    | 0   | 0   | 0   | 0     |
| ₽/\//·         | R/M | R/M | R/M | R/M | R/\/ | R/M | R/M | R/M | R/M | R/M | R/M | R/\/ | R/M | R/M | R/M | R/\// |

TCCLR10 is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

## **Noise Canceler Registers**

There are two 8-bit noise canceler registers in channel 10: TCNT10H and NCR10.

| Channel | Abbreviation | Function                              |                      |
|---------|--------------|---------------------------------------|----------------------|
| 10      | TCNT10H      | Noise canceler counter                | (Initial value H'00) |
|         | NCR10        | Noise canceler compare-match register | (Initial value H'FF) |

Noise Canceler Counter 10H (TCNT10H): Noise canceler counter 10H (TCNT10H) is an 8-bit readable/writable register. When the noise canceler function is enabled, TCNT10H starts counting up on  $P\phi \times 10$ , with the signal from external input (TI10) (AGCK) as a trigger. The counter operates even if STR10 is cleared to 0 in the timer start register (TSTR1). TI10 input is masked while the counter is running. When the count matches the noise canceler register (NCR10) value, the counter is cleared and TI10 input masking is released.

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

TCNT10H is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

Noise Canceler Register 10 (NCR10): Noise canceler register 10 (NCR10) is an 8-bit readable/writable register used to set the upper count limit of noise canceler counter 10H (TCNT10H). TCNT10H is constantly compared with NCR10 during the count, and when a compare-match occurs the TCNT10H counter is halted and input signal masking is released.

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

NCR10 is initialized to H'FF by a power-on reset, and in hardware standby mode and software standby mode.

## **Channel 10 Control Registers**

There are four control registers in channel 10.

| Channel | Abbreviation | Function                                                                   |                                  |
|---------|--------------|----------------------------------------------------------------------------|----------------------------------|
| 10      | TIOR10       | Reload setting, counter correction settin edge interval multiplier setting | g, external input (TI10)         |
|         |              | GR compare-match setting                                                   | (Initial value H'00)             |
|         | TCR10        | TCCLR10 counter clear source                                               |                                  |
|         |              | Noise canceler function enabling/disabli                                   | ng selection                     |
|         |              | External input (TI10) edge selection                                       | (Initial value H'00)             |
|         | TSR10        | Input capture/compare-match status                                         | (Initial value H'0000)           |
|         | TIER10       | Input capture/compare-match interrupt r enabling/disabling selection       | equest<br>(Initial value H'0000) |

**Timer I/O Control Register 10 (TIOR10):** TIOR10 is an 8-bit readable/writable register that selects the value for multiplication of the external input (TI10) edge interval. It also makes a setting for using the general register (GR10G) for output compare, and makes the edge detection setting.

TIOR10 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 7     | 6   | 5    | 4    | 3 | 2      | 1      | 0      |
|----------------|-------|-----|------|------|---|--------|--------|--------|
|                | RLDEN | ccs | PIM1 | PIM0 | _ | IO10G2 | IO10G1 | IO10G0 |
| Initial value: | 0     | 0   | 0    | 0    | 0 | 0      | 0      | 0      |
| R/W:           | R/W   | R/W | R/W  | R/W  |   | R/W    | R/W    | R/W    |

 Bit 7—Reload Enable (RLDEN): Enables or disables transfer of the input capture register 10A (ICR10A) value to reload register 10C (RLD10C).

| Bit 7: RLDEN | Description                                                                    |
|--------------|--------------------------------------------------------------------------------|
| 0            | Transfer of ICR10A value to RLD10C on input capture is enabled (Initial value) |
| 1            | Transfer of ICR10A value to RLD10C on input capture is disabled                |

• Bit 6—Counter Clock Select (CCS): Selects the operation of correction counter 10E (TCNT10E). Set the multiplication factor with bits PIM1 and PIM0.

| Bit 6: CCS | Description                                                                                 |
|------------|---------------------------------------------------------------------------------------------|
| 0          | TCNT10E count is not halted when TCNT10D x multiplication factor = TCNT10E* (Initial value) |
| 1          | TCNT10E count is halted when TCNT10D x multiplication factor = TCNT10E                      |

Note: \*When [TCNT10D × multiplication factor] matches the value of TCNT10E with bits 8 to 0 masked

• Bits 5 and 4—Pulse Interval Multiplier (PIM1, PIM0): These bits select the external input (TI10) cycle multiplier.

| Bit 5: PIM1 | Bit 4: PIM0 | Description                                          |                                        |
|-------------|-------------|------------------------------------------------------|----------------------------------------|
| 0           | 0           | Counting on external input cycle × 32 (Initial value |                                        |
|             | 1           | Counting on external input cycle $\times$ 64         |                                        |
|             |             | Counting on external input cycle × 128               |                                        |
|             |             | Counting on external input cycle × 256               | Counting on external input cycle × 256 |
|             |             |                                                      |                                        |

- Bit 3—Reserved: This bit always reads 0. The write value should always be 0.
- Bits 2 to 0—I/O Control 10G2 to 10G0 (IO10G2 to IO10G0): These bits select the function of general register 10G (GR10G).

| Bit 2:<br>IO10G2 | Bit 1:<br>IO10G1 | Bit 0:<br>IO10G0 | Description                            |                                        |
|------------------|------------------|------------------|----------------------------------------|----------------------------------------|
| 0                | 0                | 0                | GR is an output                        | Compare-match disabled (Initial value) |
|                  |                  | 1                | compare register GR10G = TCNT10G compa |                                        |
|                  | 1                | *                | <del></del>                            | Cannot be used                         |
| 1                | *                | *                | Cannot be used                         |                                        |

<sup>\*:</sup> Donít care

**Timer Control Register 10 (TCR10):** TCR10 is an 8-bit readable/writable register that selects the correction counter clear register (TCCLR10) compare-match counter clear source, enables or disables the noise canceler function, and selects the external input (TI10) edge.

TCR10 is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 7       | 6       | 5       | 4       | 3       | 2   | 1     | 0     |
|----------------|---------|---------|---------|---------|---------|-----|-------|-------|
|                | TRG2BEN | TRG1BEN | TRG2AEN | TRG1AEN | TRG0DEN | NCE | CKEG1 | CKEG0 |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0   | 0     | 0     |
| R/W:           | R/W     | R/W     | R/W     | R/W     | R/W     | R/W | R/W   | R/W   |

• Bit 7—Trigger 2B Enable (TRG2BEN): Enables or disables counter clearing for channel 2 TCNT2B. When clearing is enabled, set the correction angle clock (AGCKM) as the TCNT2B count clock. If TCNT2B counts while clearing is enabled, TCNT2B will be cleared.

| Bit 7: TRG2BEN | Description                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | Channel 2 counter B (TCNT2B) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is disabled (Initial value) |
| 1              | Channel 2 counter B (TCNT2B) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is enabled                  |

Bit 6—Trigger 1B Enable (TRG1BEN): Enables or disables counter clearing for channel 1
TCNT1B. When clearing is enabled, set the correction angle clock (AGCKM) as the TCNT1B
count clock. If TCNT1B counts while clearing is enabled, TCNT1B will be cleared.

| Bit 6: TRG1BEN | Description                                                                                                                                       |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | Channel 1 counter B (TCNT1B) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is disabled (Initial value) |
| 1              | Channel 1 counter B (TCNT1B) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is enabled                  |

• Bit 5—Trigger 2A Enable (TRG2AEN): Enables or disables counter clearing for channel 2 TCNT2A. When clearing is enabled, set the correction angle clock (AGCKM) as the TCNT2A count clock. If TCNT2A counts while clearing is enabled, TCNT2A will be cleared.

| Bit 5: TRG2AEN | Description                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | Channel 2 counter 2A (TCNT2A) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is disabled (Initial value) |
| 1              | Channel 2 counter 2A (TCNT2A) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is enabled                  |

• Bit 4—Trigger 1A Enable (TRG1AEN): Enables or disables counter clearing for channel 1 TCNT1A. When clearing is enabled, set the correction angle clock (AGCKM) as the TCNT1A count clock. If TCNT1A counts while clearing is enabled, TCNT1A will be cleared.

| Bit 4: TRG1AEN | Description                                                                                                                                        |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | Channel 1 counter 1A (TCNT1A) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is disabled (Initial value) |
| 1              | Channel 1 counter 1A (TCNT1A) clearing when correction counter clear register (TCCLR10) = correction counter (TCNT10F) is enabled                  |

• Bit 3—Trigger 0D Enable (TRG0DEN): Enables or disables channel 0 ICR0D input capture signal requests.

| Bit 3: TRG0DEN | Description                                                                                                                         |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 0              | Capture requests for channel 0 input capture register (ICR0D) on event counter (TCNT10B) compare-match are disabled (Initial value) |
| 1              | Capture requests for channel 0 input capture register (ICR0D) on event counter (TCNT10B) compare-match are enabled                  |

• Bit 2—Noise Canceler Enable (NCE): Enables or disables the noise canceler function.

| Bit 2: NCE | Description                         |                 |
|------------|-------------------------------------|-----------------|
| 0          | Noise canceler function is disabled | (Initial value) |
| 1          | Noise canceler function is enabled  | _               |

• Bits 1 and 0—Clock Edge 1 and 0 (CKEG1, CKEG0): These bits select the channel 10 external input (TI10) edge(s). The clock (AGCK) is generated by the detected edge(s).

| Bit 1: CKEG1 | Bit 0: CKEG0 | Description                                     |                 |  |
|--------------|--------------|-------------------------------------------------|-----------------|--|
| 0            | 0            | TI10 input disabled                             | (Initial value) |  |
|              | 1            | TI10 input rising edges detected                |                 |  |
| 1            | 0            | TI10 input falling edges detected               |                 |  |
|              | 1            | TI10 input rising and falling edges both detect |                 |  |

**Timer Status Register 10 (TSR10):** TSR10 is a 16-bit readable/writable register that indicates the occurrence of channel 10 input capture or compare-match.

Each flag is an interrupt source, and issues an interrupt request to the CPU if the interrupt is enabled by the corresponding bit in timer interrupt enable register 10 (TIER10).

TSR10 is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 15 | 14 | 13 | 12 | 11     | 10     | 9      | 8      |
|----------------|----|----|----|----|--------|--------|--------|--------|
|                | _  |    | _  | _  | _      |        |        | _      |
| Initial value: | 0  | 0  | 0  | 0  | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R      | R      | R      | R      |
|                |    |    |    |    |        |        |        |        |
| Bit:           | 7  | 6  | 5  | 4  | 3      | 2      | 1      | 0      |
|                | _  |    |    |    | CMF10G | CMF10B | ICF10A | CMF10A |
| Initial value: | 0  | 0  | 0  | 0  | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R/(W)* | R/(W)* | R/(W)* | R/(W)* |
|                |    |    |    |    |        |        |        |        |

Note: \* Only 0 can be written to clear the flag.

- Bits 15 to 4—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 3—Compare-Match Flag 10G (CMF10G): Status flag that indicates GR10G comparematch.

| Bit 3: CMF10G | Description                                                                       |                        |
|---------------|-----------------------------------------------------------------------------------|------------------------|
| 0             | [Clearing condition] When CMF10G is read while set to 1, then 0 is written to IMF | (Initial value)<br>10G |
| 1             | [Setting condition] When TCNT10G = GR10G                                          |                        |

Bit 2—Compare-Match Flag 10B (CMF10B): Status flag that indicates OCR10B comparematch.

| Bit 2: CMF10B | Description                                                                        |                 |
|---------------|------------------------------------------------------------------------------------|-----------------|
| 0             | [Clearing condition] When CMF10B is read while set to 1, then 0 is written to CMF1 | (Initial value) |
| 1             | [Setting condition] When TCNT10B is incremented while TCNT10B = OCR10B             |                 |

• Bit 1—Input Capture Flag 10A (ICF10A): Status flag that indicates ICR10A input capture.

| Bit 1: ICF10A | Description                                                                   |                        |
|---------------|-------------------------------------------------------------------------------|------------------------|
| 0             | [Clearing condition] When ICR10A is read while set to 1, then 0 is written to | (Initial value)        |
| 1             | [Setting condition] When the TCNT10A value is transferred to ICR10A by a      | n input capture signal |

• Bit 0—Compare-Match Flag 10A (CMF10A): Status flag that indicates OCR10A comparematch.

| Bit 0: CMF10A | Description                                                                        |                        |
|---------------|------------------------------------------------------------------------------------|------------------------|
| 0             | [Clearing condition] When CMF10A is read while set to 1, then 0 is written to CMF1 | (Initial value)<br>IOA |
| 1             | [Setting condition] When TCNT10A = OCR10A                                          |                        |

**Timer Interrupt Enable Register 10 (TIER10):** TIER10 is a 16-bit readable/writable register that controls enabling/disabling of channel 10 input capture and compare-match interrupt requests.

TIER10 is initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 15 | 14 | 13 | 12   | 11     | 10     | 9      | 8      |
|----------------|----|----|----|------|--------|--------|--------|--------|
|                |    | _  |    |      | _      |        |        | _      |
| Initial value: | 0  | 0  | 0  | 0    | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R    | R      | R      | R      | R      |
|                |    |    |    |      |        |        |        |        |
| Bit:           | 7  | 6  | 5  | 4    | 3      | 2      | 1      | 0      |
|                | _  | _  | _  | IREG | CME10G | CME10B | ICE10A | CME10A |
| Initial value: | 0  | 0  | 0  | 0    | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R/W  | R/W    | R/W    | R/W    | R/W    |

- Bits 15 to 5—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 4—Interrupt Enable Edge G (IREG): Specifies TSR10 CMF10G interrupt request timing.

| Bit 4: IREG | Description                                                                 |                 |
|-------------|-----------------------------------------------------------------------------|-----------------|
| 0           | Interrupt is requested when CMF10G becomes 1                                | (Initial value) |
| 1           | Interrupt is requested by next external input (TI10) (AGCK) after becomes 1 | er CMF10G       |

• Bit 3—Compare-Match Interrupt Enable 10G (CME10G): Enables or disables interrupt requests by CMF10G in TSR10 when CMF10G is set to 1.

| Bit 3: CME10G | Description                                      |                 |
|---------------|--------------------------------------------------|-----------------|
| 0             | CMI10G interrupt requested by CMF10G is disabled | (Initial value) |
| 1             | CMI10G interrupt requested by CMF10G is enabled  | _               |

• Bit 2—Compare-Match Interrupt Enable 10B (CME10B): Enables or disables interrupt requests by CMF10B in TSR10 when CMF10B is set to 1.

| Bit 2: CME10B | Description                                      |                 |
|---------------|--------------------------------------------------|-----------------|
| 0             | CMI10B interrupt requested by CMF10B is disabled | (Initial value) |
| 1             | CMI10B interrupt requested by CMF10B is enabled  |                 |

• Bit 1—Input Capture Interrupt Enable 10A (ICE10A): Enables or disables interrupt requests by ICF10A in TSR10 when ICF10A is set to 1.

| Bit 1: ICE10A | Description                                      |                 |
|---------------|--------------------------------------------------|-----------------|
| 0             | ICI10A interrupt requested by ICF10A is disabled | (Initial value) |
| 1             | ICI10A interrupt requested by ICF10A is enabled  | _               |

• Bit 0—Compare-Match Interrupt Enable 10A (CME10A): Enables or disables interrupt requests by CMF10A in TSR10 when CMF10A is set to 1.

| Bit 0: CME10A | Description                                      |                 |
|---------------|--------------------------------------------------|-----------------|
| 0             | CMI10A interrupt requested by CMF10A is disabled | (Initial value) |
| 1             | CMI10A interrupt requested by CMF10A is enabled  |                 |

## 11.3 Operation

#### 11.3.1 Overview

The ATU-II has twelve timers of eight kinds in channels 0 to 11. It also has a built-in prescaler that generates input clocks, and it is possible to generate or select internal clocks of the required frequency independently of circuitry outside the ATU-II.

The operation of each channel and the prescaler is outlined below.

Channel 0: Channel 0 has a 32-bit free-running counter (TCNT0) and four 32-bit input capture registers (ICR0A to ICR0D). TCNT0 is an up-counter that performs free-running operation. An interrupt request can be generated on counter overflow. The four input capture registers (ICR0A to ICR0D) capture the free-running counter (TCNT0) value by means of input from the corresponding external signal input pin (TI0A to TI0D). For capture by means of input from an external signal input pin, rising edge, falling edge, or both edges can be selected in the timer I/O control register (TIOR0). In the case of input capture register 0D (ICR0D) only, capture can be performed by means of a compare-match between free-running counter 10B (TCNT10B) and compare-match register 10B (OCR10B), by making a setting in timer control register 10 (TCR10). In this case, capture is performed even if an input capture disable setting has been made for TIOR0. In each case, the DMAC can be activated or an interrupt requested when capture occurs.

Channel 0 also has three interval interrupt request registers (ITVRR1, ITVRR2A, and ITVRR2B). A/D converter (AD0 to AD2) activation can be selected by setting 1 in ITVA6 to ITVA13 in ITVRR, and an interrupt request to the CPU by setting 1 in ITVE6 to ITVE13. These operations are performed when the corresponding bit of bits 6 to 13 in TCNT0 changes to 1, enabling use as an interval timer function.

**Channel 1:** Channel 1 has two 16-bit free-running counters (TCNT1A and TCNT1B), eight 16-bit general registers (GR1A to GR1H), and a 16-bit output compare register (OCR1).

TCNT1A and TCNT1B are up-counters that perform free-running operation. When the clock generated in channel 10 (described below) is selected, these counters can be cleared at the count specified in channel 10. Each counter can generate an interrupt request when it overflows.

The eight general registers (GR1A to GR1H) can be used as input capture or output compare registers using the corresponding external signal I/O pin (TIO1A to TIO1H). When used for input capture, the free-running counter (TCNT1A) value is captured by means of input from the corresponding external signal I/O pin (TIO1A to TIO1H). Rising edge, falling edge, or both edges can be selected for the input capture signal in the timer I/O control registers (TIOR1A to TIOR1D). When used for output compare, compare-match with the free-running counter (TCNT1A) is performed. For the output from the external signal I/O pins by compare-match, 0 output, 1 output, or toggle output can be selected in the timer I/O control registers (TIOR1A to TIOR1D). When used as output compare registers, a compare-match can be used as a one-shot pulse start/terminate trigger by setting the channel 8 timer connection register (TCNR) and one-shot pulse terminate register (OTR), and using these in combination with the down-counters (DCNT8A to DCNT8H). Start/terminate trigger selection is performed by means of the trigger mode register (TRGMDR).

The output compare register (OCR1) can be used as a one-shot pulse offset function, in the same way as the general registers, in combination with channel 8 down-counters DCNT8A to DCNT8H. An interrupt can be requested on the occurrence of the respective input capture or compare-match.

In addition, channel 1 has a 16-bit dedicated input capture register (OSBR1). The channel 0 TIOA input pin can also be used as the OSBR1 trigger input, enabling use of a twin-capture function.

**Channel 2:** Channel 2 has two 16-bit free-running counters (TCNT2A and TCNT2B), eight 16-bit general registers (GR2A to GR2H), and eight 16-bit output compare registers (OCR2A to OCR2H).

TCNT2A and TCNT2B are up-counters that perform free-running operation. When the clock generated in channel 10 (described below) is selected, these counters can be cleared at the count specified in channel 10. Each counter can generate an interrupt request when it overflows.

The eight general registers (GR2A to GR2H) can be used as input capture or output compare registers using the corresponding external signal I/O pin (TIO2A to TIO2H). When used for input capture, the free-running counter (TCNT2A) value is captured by means of input from the corresponding external signal I/O pin (TIO2A to TIO2H). Rising edge, falling edge, or both edges can be selected for the input capture signal in the timer I/O control registers (TIOR2A to TIOR2D). When used for output compare, compare-match with the free-running counter (TCNT2A) is performed. For the output from the external signal I/O pins by compare-match, 0 output, 1 output, or toggle output can be selected in the timer I/O control registers (TIOR2A to

TIOR2D). When used as output compare registers, a compare-match can be used as a one-shot pulse terminate trigger by setting the channel 8 one-shot pulse terminate register (OTR), and using this in combination with the down-counters (DCNT8I to DCNT8P).

In the case of the output compare registers (OCR2A to OCR2H), a TCNT2B compare-match can be used as a one-shot pulse start trigger by setting the channel 8 timer connection register (TCNR), and using this in combination with the down-counters (DCNT8I to DCNT8P). An interrupt can be requested on the occurrence of the respective input capture or compare-match.

In addition, channel 2 has a 16-bit dedicated input capture register (OSBR2). The channel 0 TIOA input pin can also be used as the OSBR2 trigger input, enabling use of a twin-capture function.

Channels 3 to 5: Channels 3 to 5 each have a 16-bit free-running counter (TCNT3 to TCNT5) and four 16-bit general registers (GR3A to GR3D, GR4A to GR4D, GR5A to GR5D). TCNT3 to TCNT5 are up-counters that perform free-running operation. Channels 3 to 5 each have a 16-bit free-running counter (TCNT3 to TCNT5) and four 16-bit general registers (GR3A to GR3D, GR4A to GR4D, GR5A to GR5D). TCNT3 to TCNT5 are up-counters that perform free-running operation. In addition, counter clearing can be performed by compare-match by making a setting in the timer I/O control register (TIOR3A, TIOR3B, TIOR4A, TIOR4B, TIOR5A, TIOR5B). Each counter can generate an interrupt request when it overflows.

The four general registers (GR3A to GR3D, GR4A to GR4D, GR5A to GR5D) each have corresponding external signal I/O pins (TIO3A to TIO3D, TIO4A to TIO4D, TIO5A to TIO5D), and can be used as input capture or output compare registers. When used for input capture, the free-running counter (TCNT3 to TCNT5) value is captured by means of input from the corresponding external signal I/O pin (TIO3A to TIO3D, TIO4A to TIO4D, TIO5A to TIO5D). Rising edge, falling edge, or both edges can be selected for the input capture signal in the timer I/O control registers (TIOR3A, TIOR3B, TIOR4A, TIOR4B, TIOR5A, TIOR5B). Also, in use for input capture, input capture can be performed using a compare-match between a channel 9 event counter (ECNT9A to ECNT9D), described later, and a general register (GR9A to GR9D) as the trigger (channel 3 only). In this case, capture is performed even if an input capture disable setting has been made for TIOR3A to TIOR3D. When used for output compare, compare-match with the free-running counter (TCNT3 to TCNT5) is performed. For the output from the external signal I/O pins by compare-match, 0 output, 1 output, or toggle output can be selected in the timer I/O control registers (TIOR3A, TIOR3B, TIOR4A, TIOR4B, TIOR5A, TIOR5B). An interrupt can be requested on the occurrence of the respective input capture or compare-match. However, in the case of input capture using channel 9 as a trigger, an interrupt request from channel 3 cannot be used.

By selecting PWM mode in the timer mode register (TMDR), PWM output can be obtained, with three outputs for each. In this case, GR3D, GR4D, and GR5D are automatically used as cycle registers, and GR3A to GR3C, GR4A to GR4C, GR5A to GR5C, as duty registers. TCNT3 to TCNT5 are cleared by the corresponding GR3D, GR4D, or GR5D compare-match.

Channels 6 and 7: Channels 6 and 7 each have 16-bit free-running counters (TCNT6A to TCNT6D, TCNT7A to TCNT7D), 16-bit cycle registers (CYLR6A to CYLR6D, CYLR7A to CYLR7D), 16-bit duty registers (DTR6A to DTR6D, DTR7A to DTR7D), and buffer registers (BFR6A to BFR6D, BFR7A to BFR7D). Channels 6 and 7 also each have external output pins (TO6A to TO6D, TO7A to TO7D), and can be used as buffered PWM timers. The TCNT registers are up-counters, and 0 is output to the corresponding external output pin when the TCNT value matches the DTR value (when DTR  $\neq$  CYLR). When the TCNT value matches the CYLR value (when DTR  $\neq$  H'0000), 1 is output to the external output pin, TCNT is initialized to H'0001, and the BFR value is transferred to DTR. Thus, the configuration of channels 6 and 7 enables them to perform waveform output with the CYLR value as the cycle and the DTR value as the duty, and to use BFR to absorb the time lag between setting of data in DTR and compare-match occurrence.

When DTR = CYLR, 1 is output continuously to the external output pin, giving a duty of 100%. When DTR = H'0000, 0 is output continuously to the external output pin, giving a duty of 0%. Do not set a value in DTR that will result in the condition DTR > CYLR. When H'0000 is set to DTR, do not have DTR directly read H'0000. Set BFR to H'0000 and set H'0000 by forwarding from BFR to DTR. If H'0000 is directly set to DTR, duty may not be 0%.

In channel 6, TCNT can also be designated for complementary PWM output by means of the PWM mode register (PMDR). When the corresponding TSTR is set to 1, TCNT starts counting up, then switches to a down-count when the count matches the CYLR value. When TCNT reaches H'0000, it starts counting up again. When TCNT = DTR, the corresponding TO6A to TO6D output changes. Whether TCNT is counting up or down can be ascertained from the timer status register (TSR6).

DMAC activation and interrupt request generation, respectively, are possible when TCNT = CYLR in asynchronous PWM mode, and when TCNT = H'0000 in complementary PWM mode.

**Channel 8:** Channel 8 has sixteen 16-bit down-counters (DCNT8A to DCNT8P). The down-counters have corresponding external signal output pins, and can generate one-shot pulses. Setting a value in DCNT and setting the corresponding bit to 1 in the down-count start register (DSTR) starts DCNT operation and simultaneously outputs 1 to the external output pin. When DCNT counts down to H'0000, it stops and outputs 0 to the external output pin. An interrupt can be requested when DCNT underflows.

Down-counter operation can be coupled with the channel 1 or channel 2 output compare function by means of settings in the timer connection register (TCNR) and one-shot pulse terminate register (OTR), respectively, so that DCNT8I to DCNT8H count operations are started and stopped from channel 1, and DCNT8I to DCNT8P count operations from channel 2.

DCNT8I to DCNT8P have a reload register (RLDR), and a setting in the reload enable register (RLDEN) enables count operations to be started after reading the value from this register.

Channel 9: Channel 9 has six 8-bit event counters (ECNT9A to ECNT9F) and six 8-bit general registers (GR9A to GR9F). The event counters are up-counters, each with a corresponding external input pin (ECNT9A to ECNT9F). The event counter value is incremented by input from the corresponding external input pin. Incrementing on the rising edge, falling edge, or both edges can be selected by means of settings in the timer control registers (TCR9A to TCR9C). An event counter is cleared by edge input after a match with the corresponding general register. An interrupt can requested when an event counter is cleared.

Timer control register (TCR9A, TCR9B) settings can be made to enable event counters ECNT9A to ECNT9D to send a compare-match signal to channel 3 when the count matches the corresponding general register (GR9A to GR9D), allowing input capture to be performed on channel 3. This enables the pulse input interval to be measured.

**Channel 10:** Channel 10 generates a multiplied clock based on external input, and supplies this to channels 1 to 5. Channel 10 is divided into three blocks: (1) an inter-edge measurement block, (2) a multiplied clock generation block, and (3) a multiplied clock correction block.

## (1) Inter-edge measurement block

This block has a 32-bit free-running counter (TCNT10A), 32-bit input capture register (ICR10A), 32-bit output compare register (OCR10A), 8-bit event counter (TCNT10B), 8-bit output compare register (OCR10B), 8-bit noise canceler counter (TCNT10H), and 8-bit noise canceler compare-match register (NCR10).

The 32-bit free-running counter (TCNT10A) is an up-counter that performs free-running operations. When input capture is performed by means of TI10 input, this counter is cleared to H'00000001. When free-running counter (TCNT10A) reaches the value set in the output compare register (OCR10A), a compare-match interrupt can be requested.

The input capture register (ICR10A) has an external signal input pin (TI10), and the free-running counter (TCNT10A) value can be captured by means of input from TI10. Rising edge, falling edge, or both edges can be selected by making a setting in bits CKEG1 and CKEG0 in the timer control register (TCR10). The TI10 input has a noise canceler function, which can be enabled by setting the NCE bit in the timer control register (TCR10). When the counter value is captured, TCNT10A is cleared to 0 and an interrupt can be requested. The captured value can be transferred to the multiplied clock generation block reload register (RLD10C).

The 8-bit event counter (TCNT10B) is an up-counter that is incremented by TI10 input. When the event counter (TCNT10B) value reaches the value set in the output compare register (OCR10B), a compare-match interrupt can be requested. By setting the TRG0DEN bit in the timer control register (TCR10), a capture request can also be issued for the channel 0 input capture register 0D (ICR0D) when compare-match occurs.

The 16-bit noise canceler counter (TCNT10H) and 16-bit noise canceler compare-match register (NCR10) are used to set the period for which the noise canceler functions. By setting a

value in the noise canceler compare-match register (TCNT10H) and setting the NCE bit in the timer control register (TCR10), TI10 input is masked when it occurs. At the same time as TI10 input is masked, the noise canceler counter (TCNT10H) starts counting up on the  $P\phi$ x10 clock. When the noise canceler counter (TCNT10H) value matches the noise canceler compare-match register (NCR10) value, the noise canceler counter (TCNT10H) is cleared to H'0000 and TI10 input masking is cleared.

## (2) Multiplied clock generation block

This block has 16-bit reload counters (TCNT10C, RLD10C), a 16-bit register free-running counter (TCNT10G), and a 16-bit general register (GR10G).

16-bit reload counter 10C (RLD10C) is captured by 32-bit input capture register 10A (ICR10A), and when RLDEN in the timer I/O control register (TIOR10) is 0, the value captured in input capture register 10A is transferred to the multiplied clock generation block reload register (RLD10C). The value transferred can be selected from 1/32, 1/64, 1/128, or 1/256 the original value, according to the setting of bits PIM1 and PIM0 in TIOR10.

16-bit reload counter 10C (TCNT10C) performs down-count operations. When TCNT10C reaches H'0001, the value is read automatically from the reload buffer (RLD10C), internal clock AGCK1 is generated, and the down-count operation is repeated. Internally generated AGCK1 is input as a clock to the multiplied clock correction block 16-bit correction counter (TCNT10E) and 16-bit free-running counter 10G (TCNT10G).

16-bit register free-running counter 10G (TCNT10G) counts on AGCK1 generated by TCNT10C. It is initialized to H'0000 by external input from TI10.

The 16-bit general register (GR10G) can be used in a compare-match with free-running counter 10G (TCNT10G) by setting bits IO10G2 to IO10G0 in the timer I/O control register (TIOR10). An interrupt can be requested when a compare-match occurs. Also, by setting timer interrupt enable register 10 (TIER10), an interrupt can be request in the event of TI10 input after a compare-match.

## (3) Multiplied clock correction block

This block has three 16-bit correction counters (TCNT10D, TCNT10E, TCNT10F) and a 16-bit correction counter clear register (TCCLR10). When 32-bit input capture register 10A (ICR10A) performs a capture operation due to input from external input pin TI10, the value in correction counter 10D (TCNT10D) is transferred to TCNT10E and TCNT10D is incremented. The value transferred to TCNT10E is 32, 64, 128, or 256 times the TCNT10D value, according to the setting of bits PIM1 and PIM0 in the timer I/O control register (TIOR10).

16-bit correction counter 10E (TCNT10E) counts up on AGCK1 generated by reload counter 10C (TCNT10C, RLD10C) in the multiplied clock generation block. However, by setting the CCS bit in the timer I/O control register (TIOR10), it is possible to stop free-running counter 10E (TCNT10E) when the free-running counter 10D (TCNT10D) multiplication value specified by PIM1 and PIM0 and the free-running counter 10E (TCNT10E) value match. The multiplied TCNT10D value is transferred when input capture register 10A (ICR10A) performs a capture operation due to TI10 input.

16-bit correction counter 10F (TCNT10F) has Pφ as its input and is constantly compared with 16-bit correction counter 10E (TCNT10E). When the 16-bit correction counter 10F (TCNT10F) value is smaller than that in 16-bit correction counter 10E (TCNT10E), it is incremented and generates count-up AGCKM. When the 16-bit correction counter 10F (TCNT10F) value exceeds that in 16-bit correction counter 10E (TCNT10E) (for example, when TCNT10F reloads TCNT10D), no count-up operation is performed. The TI10 multiplied signal (AGCKM) generated when TCNT10F is incremented is output to the channel 1 to 5 free-running counters (TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3, TCNT4, TCNT5), and an up-count can be performed on AGCKM by setting this as the counter clock on each channel. TCNT10F is constantly compared with the 16-bit correction counter clear register (TCCLR10), and when the free-running counter 10F (TCNT10F) and correction counter clear register (TCCLR10) values match, the TCNT10F up-count stops. Setting TRG1AEN, TRG1BEN, TRG2AEN, and TRG2BEN in the timer control register (TCR10) enables the channel 1 and 2 free-running counters (TCNT1A, TCNT1B, TCNT2A, TCNT2B) to be cleared at this time. If TI10 is input when TCNT10D = H'0000, initialization and correction operations are performed. When TCNT10F = TCCLR10, TCNT10F is cleared to H'0001. When TCNT10F ≠ TCCLR10, TCNT10F automatically counts up to the TCCLR10 value, and is cleared to H'0001.

**Channel 11:** Channel 11 has a 16-bit free-running counter (TCNT11) and two 16-bit general registers (GR11A and GR11B). TCNT11 is an up-counter that performs free-running operation. The counter can generate an interrupt request when it overflows. The two general registers (GR11A and GR11B) each have a corresponding external signal I/O pin (TIO11A, TIO11B), and can be used as input capture or output compare registers.

When used for input capture, the free-running counter (TCNT11) value is captured by means of input from the corresponding external signal I/O pin (TIO11A, TIO11B). Rising edge, falling edge, or both edges can be selected for the input capture signal in the timer I/O control register (TIOR11). When used for output compare, compare-match with the free-running counter (TCNT11) is performed. For the output from the external signal I/O pins by compare-match, 0 output, 1 output, or toggle output can be selected in the timer I/O control register (TIOR11). An interrupt can be requested on the occurrence of the respective input capture or compare-match. When the two general registers (GR11A and GR11B) are designated for compare-match use, a compare-match signal can be output to the APC.

**Prescaler:** The ATU-II has a dedicated prescaler with a 2-stage configuration. The first stage comprises 5-bit prescalers (PSCR1 to PSCR4) that generate a 1/m clock (where m=1 to 32) with respect to clock P $\phi$ . The second prescaler stage allows selection of a clock obtained by further scaling the clock from the first stage by  $2^n$  (where n=0 to 5) according to the timer control registers for the respective channels (TCR1A, TCR1B, TCR2A, TCR2B, TCR3 to TCR5, TCR6A, TCR6B, TCR7A, TCR7B, TCR8, TCR11).

The prescalers of channels 1 to 8 and 11 have a 2-stage configuration, while the channel 0 and 10 prescalers only have a first stage. The first-stage prescaler is common to channels 0 to 5, 8, and 11, and it is not possible to set different first-stage division ratios for each. Channels 6, 7, and 10 each have a first-stage prescaler, and different first-stage division ratios can be set for each.

## 11.3.2 Free-Running Counter Operation and Cyclic Counter Operation

The free-running counters (TCNT) in ATU-II channels 0 to 5 and 11 start counting up as free-running counters when the corresponding timer start register (TSTR) bit is set to 1. When TCNT overflows (channel 0: from H'FFFFFFFF to H'00000000; channels 1 to 5 and 11: from H'FFFFF to H'0000), the OVF bit in the timer status register (TSR) is set to 1. If the OVE bit in the corresponding timer interrupt enable register (TIER) is set to 1 at this time, an interrupt request is sent to the CPU. After overflowing, TCNT starts counting up again from H'00000000 or H'0000.

If the TSTR value is cleared to 0 during TCNT operation, the corresponding TCNT halts. In this case, TCNT is not reset. If external output is being performed from the GR for the corresponding TCNT, the output value does not change.

Channel 0 free-running counter operation is shown in figure 11.13.

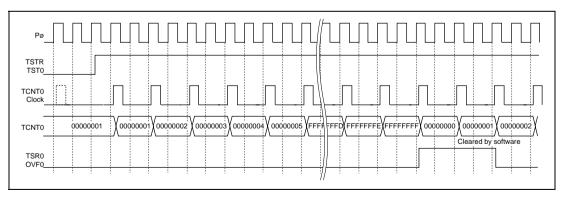



Figure 11.13 Free-Running Counter Operation and Overflow Timing

The free-running counters (TCNT) in ATU-II channels 6 and 7 perform cyclic count operations unconditionally. With channel 3 to 5 free-running counters (TCNT), when the corresponding T3PWM to T5PWM bit in the timer mode register (TMDR) is set to 1, or the corresponding CCI bit in the timer I/O control register (TIOR) is set to 1 when bits T3PWM to T5PWM are 0, the

counter for the relevant channel performs a cyclic count. The relevant TCNT counter is cleared by a compare-match of TCNT with GR3D, GR4D, or GR5D in channel 3 to 5, or CYLR in channels 6 and 7 (counter clear function). TCNT starts counting up as a cyclic counter when the corresponding STR bit in TSTR is set to 1 after the TMDR setting is made. When the count value matches the GR3D, GR4D, GR5D, or CYLR value, the corresponding IMF3D, IMF4D, or IMF5D bit in the timer status register (TSR) (or the CMF bit in TSR6 or TSR7 for channels 6 and 7) is set to 1, and TCNT is cleared to H'0000 (H'0001 in channels 6 and 7).

If the corresponding TIER bit is set to 1 at this time, an interrupt request is sent to the CPU. After the compare-match, TCNT starts counting up again from H'0000 (H'0001 in channels 6 and 7).

Figure 11.14 shows the operation when channel 3 is used as a cyclic counter (with a cycle setting of H'0008).

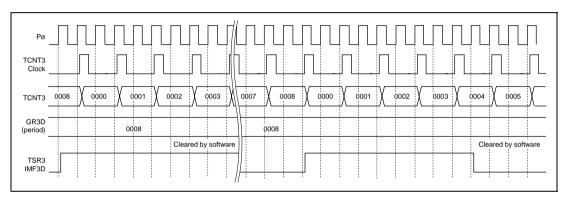



Figure 11.14 Example of Cyclic Counter Operation

## 11.3.3 Compare-Match Function

Designating general registers in channels 1 to 5 and 11 (GR1A to GR1H, GR2A to GR2H, GR3A to GR3D, GR4A to GR4D, GR5A to GR5D, GR11A, GR11B) for compare-match operation in the timer I/O control registers (TIOR1 to TIOR5, TIOR11) enables compare-match output to be performed at the corresponding external pins (TIO1A to TIO1H, TIO2A to TIO2H, TIO3A to TIO3D, TIO4A to TIO4D, TIO5A to TIO5D, TIO11A, TIO11B).

A free-running counter (TCNT) starts counting up when 1 is set in the timer status register (TSTR). When the desired number is set beforehand in GR, and the TCNT value matches the GR value, the timer status register (TSR) bit corresponding to GR is set and a waveform is output from the corresponding external pin.

1 output, 0 output, or toggle output can be selected by means of a setting in TIOR. If the appropriate interrupt enable register (TIER) setting is made, an interrupt request will be sent to the CPU when a compare-match occurs.

To perform internal interrupts by compare-match or compare-match flag polling processing without performing compare-match output, designate the corresponding compare-match output pin as a general I/O pin and select 1 output, 0 output, or toggle output on compare-match in TIOR.

Channel 1 and 2 compare-match registers (OCR1, OCR2A to OCR2H) perform compare-match operations unconditionally. However, there are no corresponding output pins. If the appropriate TIER setting is made, an interrupt request will be sent to the CPU when a compare-match occurs.

Channel 1 and 2 GR and OCR registers can send a trigger/terminate signal to channel 8 when a compare-match occurs. In this case, settings should be made in the trigger mode register (TRGMDR), timer connection register (TCNR), and one-shot pulse terminate register (OTR).

An example of compare-match operation is shown in figure 11.15.

In the example in figure 11.15, channel 1 is activated, and external output is performed with toggle output specified for GR1A, 1 output for GR1B, and 0 output for GR1C.

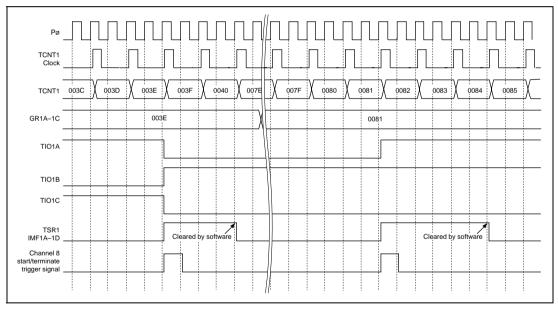



Figure 11.15 Compare-Match Operation

# 11.3.4 Input Capture Function

If input capture registers (ICR0A to ICR0D) and general registers (GR1A to GR1H, GR2A to GR2H, GR3A to GR3D, GR4A to GR4D, GR5A to GR5D, GR11A, GR11B) in channels 1 to 5 and 11 are designated for input capture operation in the timer I/O control registers (TIOR0 to TIOR5, TIOR11), input capture is performed when an edge is input at the corresponding external

pins (TIOA to TIOD, TIO1A to TIO1H, TIO2A to TIO2H, TIO3A to TIO3D, TIO4A to TIO4D, TIO5A to TIO5D).

A free-running counter (TCNT) starts counting up when a setting is made in the timer start register (TSTR). When an edge is input at an external pin corresponding to ICR or GR, the corresponding timer status register (TSR) bit is set and the TCNT value is transferred to ICR or GR. Rising-edge, falling-edge, or both-edge detection can be selected. By making the appropriate setting in the interrupt enable register (TIER), an interrupt request can be sent to the CPU.

An example of input capture operation is shown in figure 11.16.

In the example in figure 11.16, channel 1 is activated, and input capture operation is performed with both-edge detection specified for TIO1A, rising-edge detection for TIO1B, and falling-edge detection for TIO1C.

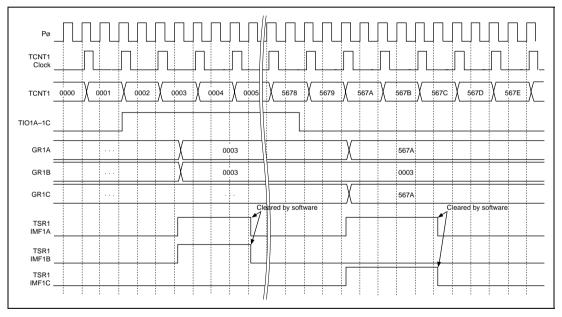



Figure 11.16 Input Capture Operation

#### 11.3.5 One-Shot Pulse Function

Channel 8 has sixteen down-counters (DCNT8A to DCNT8P) and corresponding external pins (TO8A to TO8P) which can be used as one-shot pulse output pins.

When a value is set beforehand in DCNT and the corresponding bit in the down-counter start register (DSTR) is set, DCNT starts counting down, and at the same time 1 is output from the corresponding external pin. When DCNT reaches H'0000 the down-count stops, the corresponding bit in the timer status register (TSR) is set, and 0 is output from the external pin. The

corresponding bit in DSTR is cleared automatically. By making the appropriate setting in the interrupt enable register (TIER), an interrupt request can be sent to the CPU.

An example of one-shot pulse operation is shown in figure 11.17.

In the example in figure 11.17, H'0005 is set in DCNT and a down-count is started.

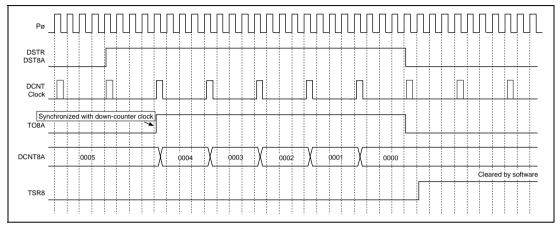



Figure 11.17 One-Shot Pulse Output Operation

## 11.3.6 Offset One-Shot Pulse Function and Output Cutoff Function

By making an appropriate setting in the timer connection register (TCNR), down-counting by channel 8 down-counters (DCNT8A to DCNT8P) can be started using compare-match signals from channel 1 general registers (GR1A to GR1H) or channel 1 and 2 compare-match registers (OCR1, OCR2A to OCR2H). DCNT8A to DCNT8H are connected to channel 1 OCR1 or GR1A to GR1H, and DCNT8I to DCNT8P are connected to channel 2 OCR2A to OCR2H or GR2A to GR2H. This enables one-shot pulse output from the external pin (TO8A to TO8P) corresponding to DCNT. The down-count can be forcibly stopped by making a setting in the one-shot pulse terminate register (OTR). On channel 1, down-count start or termination by a GR or OCR compare-match can be selected with the trigger mode register (TRGMDR).

Making a setting in the timer start register (TSTR) starts an up-count by a free-running counter (TCNT) in channel 1 or 2. When TCNT matches GR or OCR while connection is enabled by TCNR, the corresponding DSTR is automatically set and DCNT starts counting down. At the same time, 1 is output from the corresponding external pin (TO8A to TO8P). By making the appropriate setting in the interrupt enable register (TIER), an interrupt request can be sent to the CPU.

When TCNT1 matches GR or OCR, or TCNT2 matches GR, while channel 8 one-shot pulse termination by a channel 1 or 2 compare-match signal is enabled by OTR, the corresponding

DSTR is automatically cleared and DCNT stops counting down. DCNT is cleared to H'0000 at this time, and must be rewritten before the down-count is restarted.

DCNT8I to DCNT8P are connected to the reload register (RLDR8), and when the DSTR corresponding to DCNT8I to DCNT8P is set, the DCNT8I to DCNT8P counter loads RLDR8 before starting the down-count.

An example of the offset one-shot pulse output function and output cutoff function is shown in figure 11.18.

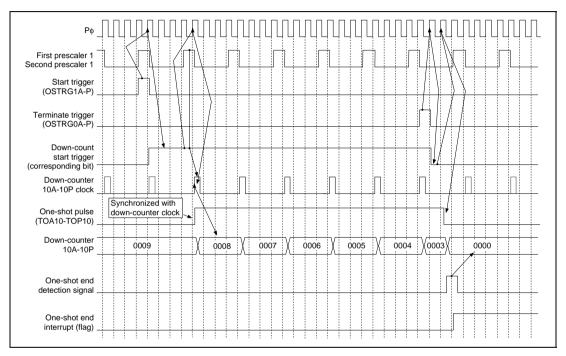



Figure 11.18 Offset One-Shot Pulse Output Function and Output Cutoff Function
Operation

# 11.3.7 Interval Timer Operation

The interval interrupt request registers (ITVRR1, ITVRR2A, ITVRR2B) are connected to bits 6 to 9 and 10 to 13 of the channel 0 free-running counter (TCNT0). The ITVRR registers are 8-bit registers; the upper 4 bits (ITVA) are used for A/D converter activation, and the lower 4 bits (ITVE) are used for interrupt requests. ITVRR1 is connected to A/D converter 2 (AD2), ITVRR2A to A/D converter 0 (AD0), and ITVRR2B to A/D converter 1 (AD1).

When the ITVA bit for the desired timing is set, the A/D converter is activated when the corresponding bit of TCNT0 changes to 1.

When the ITVE bit for the desired timing is set, an interrupt can be requested when the corresponding bit of TCNT0 changes to 1. At this time, the corresponding bit of the timer status register (TSR0) is set. There are four interrupt sources for the respective ITVRR registers, but there is only one interrupt vector.

To suppress interrupts and A/D converter activation, ITVRR bits should be cleared to 0.

An example of interval timer function operation is shown in figure 11.19.

In the example in figure 11.19, TCNT0 is started by setting ITVE to 1 in ITVRR1.

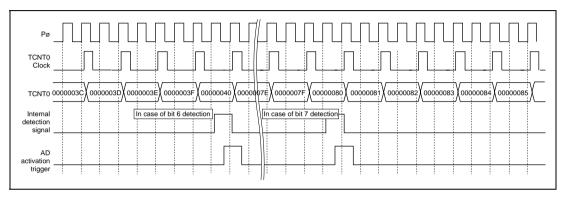



Figure 11.19 Interval Timer Function

## 11.3.8 Twin-Capture Function

Channel 0 input capture register ICR0A, channel 1 offset base register 1 (OSBR1), and channel 2 offset base register 2 (OSBR2) can be made to perform input capture in response to the same trigger by means of a setting in timer I/O control register 0 (TIOR0).

When TCNT0, TCNT1A, and TCNT2A in channel 0, channel 1, and channel 2 are started by a setting in the timer status register (TSR), and an edge detection is carried out by the ICR0A input as a trigger signal, the TCNT1A value is transferred to OSBR1, and the TCNT2A value to OSBR2. Edge detection is as described in section 11.3.4, Input Capture Function.

An example of twin-capture operation is shown in figure 11.20.

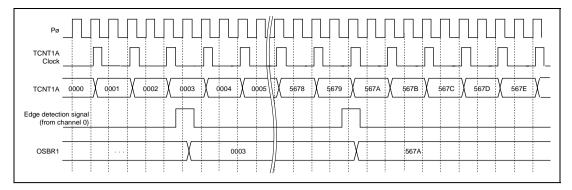



Figure 11.20 Twin-Capture Operation

#### 11.3.9 PWM Timer Function

Channels 6 and 7 can be used unconditionally as PWM timers using external pins (TO6A to TO6D, TO7A to TO7D).

In channels 6 and 7, when the corresponding bit is set in the timer start register (TSTR) and the free-running counter (TCNT) is started, the counter counts up until its value matches the corresponding cycle register (CYLR). When TCNT matches CYLR, it is cleared to H'0001 and starts counting up again from that value. At this time, 1 is output from the corresponding external pin. An interrupt request can be sent to the CPU by setting the corresponding bit in the timer interrupt enable register (TIER). If a value has been set in the duty register (DTR), when TCNT matches DTR, 0 is output to the corresponding external pin. If the DTR value is H'0000, the output does not change (0% duty). However, when H'0000 is set to DTR, do not directly write H'0000 to DTR. Set H'0000 to BFR and forward it from BFR to DTR. If H'0000 is directly set to DTR, duty may not be 0%. A duty of 100% is specified by setting DTR = CYLR. Do not set a value in DTR that will result in the condition DTR > CYLR.

Channels 6 and 7 have buffers (BFR); the BFR value is transferred to DTR when TCNT matches CYLR. The duty value written into BFR is reflected in the output value in the cycle following that in which BFR is written to.

An example of PWM timer operation is shown in figure 11.21.

In the example in figure 11.21, H'0004 is set in channel 6 CYLR6A, and H'0002, H'0000 (0%), H'0004 (100%), and H'0001 in BFR6A.

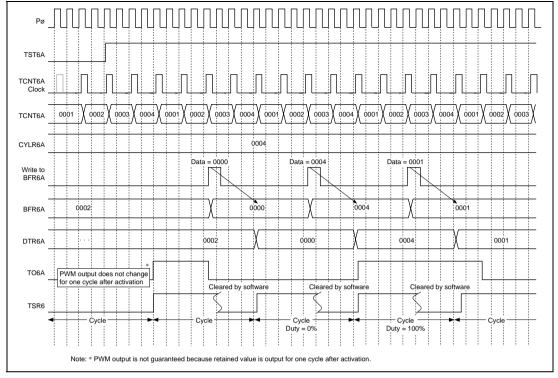



Figure 11.21 PWM Timer Operation

Channel 6 can be used in complementary PWM mode by making a setting in the PWM mode control register (PMDR). On-duty or off-duty can also be selected with a setting in PMDR.

When TCNT6 is started by a setting in TSTR, it starts counting up. When TCNT6 reaches the CYLR6 value, it starts counting down, and on reaching H'000, starts counting up again. The counter status is shown by TSR6. When TCNT6 underflows, an interrupt request can be sent to the CPU by setting the corresponding bit in TIER. When TCNT6 matches the duty register (DTR6) value, the output is inverted. The output prior to the match depends on the PMDR setting. When a value including dead time is set in DTR6, a maximum of 4-phase PWM output is possible. Data transfer from BFR6 to DTR6 is performed when TCNT6 underflows.

An example of channel 6 complementary PWM mode operation is shown in figure 11.22.

In the example in figure 11.22, H'0004 is set in channel 6 CYLR6A, and H'0002, H'0003, H'0004 (100%), and H'0000 (0%) in BFR6A.

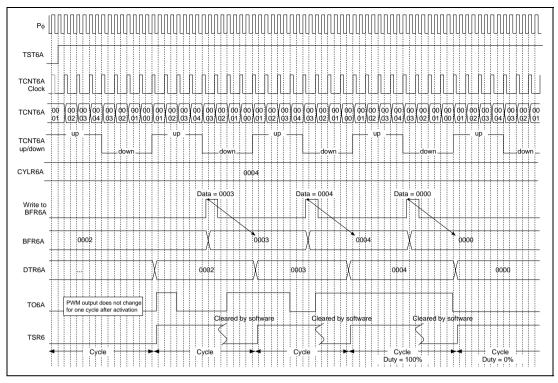



Figure 11.22 Complementary PWM Mode Operation

#### 11.3.10 Channel 3 to 5 PWM Function

PWM mode is selected for channels 3 to 5 by setting the corresponding bits to 1 in the timer mode register (TMDR), enabling the channels to operate as PWM timers with the same cycle.

In PWM mode, general registers D (GR3D, GR4D, GR5D) are used as cycle registers, and general registers A to C (GR3A to GR3C, GR4A to GR4C, GR5A to GR5C) as duty registers. The external pins (TIO3A to TIO3C, TIO4A to TIO4C, TIO5A to TIO5C) corresponding to the GRs used as duty registers are used as PWM outputs. External pins TIO3D, TIO4D, and TIO5D should not be used as timer outputs.

The free-running counter (TCNT) is started by making a setting in the timer start register (TSTR), and when TCNT reaches the cycle register (GR3D, GR4D, GR5D) value, a compare-match is generated and TCNT starts counting up again from H'0000. At the same time, the corresponding bit is set in the timer status register (TSR) and 1 is output from the corresponding external pin. When TCNT reaches the duty register (GR3A to GR3C, GR4A to GR4C, GR5A to GR5C) value, 0 is output to the external pin. The corresponding status flag is not set. When PWM operation is performed by starting the free-running counter from its initial value of H'0000, PWM output is not performed for one cycle. To perform immediate PWM output, the value in the cycle register must be set in the free-running counter before the counter is started. If PWM operation is performed Rev.2.0, 07/03, page 368 of 960

after setting H'FFFF in the cycle register, the cycle register's compare-match flag and overflow flag will be set simultaneously.

Note that 0% or 100% duty output is not possible in channel 3 to 5 PWM mode.

An example of channel 3 to 5 PWM mode operation is shown in figure 11.23.

In the example in figure 11.23, H'0008 is set in GR3D, H'0002 is set in GR3A, GR3B, and GR3C, and channel 3 is activated; then, during operation, H'0000 is set in GR3A, GR3B, and GR3C, and output is performed to external pins TIOA3 to TIOC3. Note that 0% duty output is not possible even though H'0000 is set.

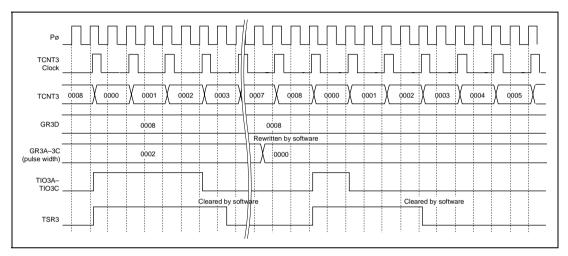



Figure 11.23 Channel 3 to 5 PWM Mode Operation

## 11.3.11 Event Count Function and Event Cycle Measurement

Channel 9 has six 8-bit event counters (ECNT9A to ECNT9F) and corresponding general registers (GR9A to GR9F). Each event counter has an external pin (TI9A to TI9F).

Each ECNT9 operates unconditionally as an event counter. When an edge is input from the external pin, ECNT9 is incremented. When ECNT9 matches the value set in GR9, it is cleared, and then counts up when an edge is again input at the external pin. By making the appropriate setting in the interrupt enable register (TIER) beforehand, an interrupt request can be sent to the CPU on compare-match.

For ECNT9A to ECNT9D, a trigger can be transmitted to channel 3 when a compare-match occurs. In channel 3, if the channel 9 trigger input is set in the timer I/O control register (TIOR) and the corresponding bit is set to 1 in the timer start register (TSTR), the TCNT3 value is captured in the corresponding general register (GR3A to GR3D) when an ECNT9A to ECNT9D compare-match occurs. This enables the event cycle to be measured.

An example of event count operation is shown in figure 11.24. In this example, ECNT9A counts up on both-edge, falling-edge, and rising-edge detection, H'10 is set in GR9A, and a comparematch is generated.

An example of event cycle measurement operation is shown in figure 11.25. In this example, GR3A in channel 3 captures TCNT3 in response to a trigger from channel 9.

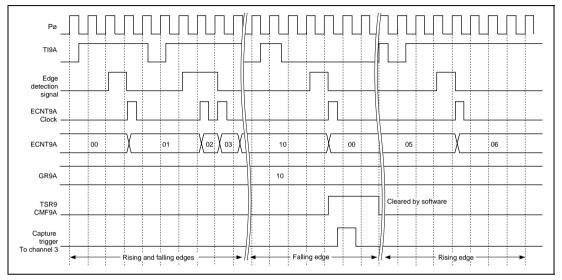



Figure 11.24 Event Count Operation

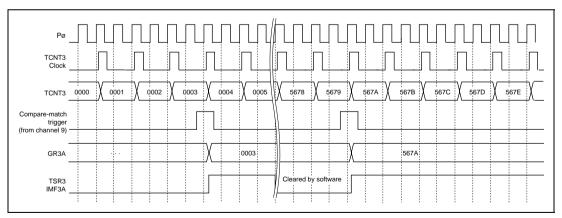



Figure 11.25 Event Cycle Measurement Operation

#### 11.3.12 Channel 10 Functions

Inter-Edge Measurement Function and Edge Input Cessation Detection Function: 32-bit input capture register 10A (ICR10A) and 32-bit output compare register 10A (OCR10A) in channel 10 unconditionally perform input capture and compare-match operations, respectively. These registers are connected to 32-bit free-running counter TCNT10A.

When the corresponding bit is set in the timer start register (TSTR), the entire channel 10 starts operating. ICR10A has an external input pin (TI10), and when an edge is input at this input pin, ICR10A captures the TCNT10A value. At this time, TCNT10A is cleared to H'00000001. The captured value is transferred to the read register (RLD10C) in the multiplied clock generation block. By making the appropriate setting in the interrupt enable register (TIER), an interrupt request can be sent to the CPU. This allows inter-edge measurement to be carried out.

When TCNT10A reaches the value set in OCR10A, a compare-match interrupt can be requested. In this way it is possible to detect the cessation of edge input beyond the time set in OCR10A.

The input edge from TI10 is synchronized internally; the internal signal is AGCK. Noise cancellation is possible for edges input at TI10 using the timer 10H (TCNT10H) input cancellation function by setting the NCE bit in timer control register TCR10. When an edge is input at TI10, TCNT10H starts and input is disabled until it reaches compare-match register NCR10.

Edge input operation without noise cancellation is shown in figure 11.26, edge input operation with noise cancellation in figure 11.27, and TCNT10A capture operation and compare-match operation in figure 11.28.

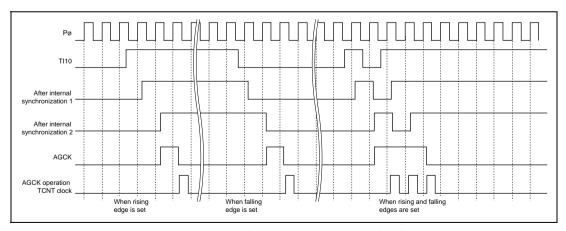



Figure 11.26 Edge Input Operation (Without Noise Cancellation)

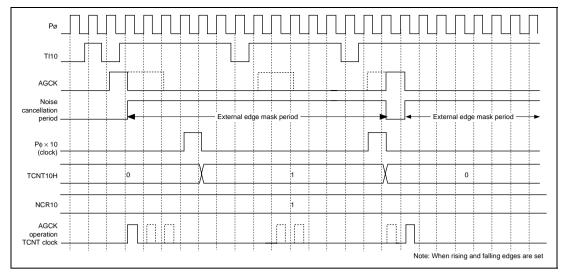



Figure 11.27 Edge Input Operation (With Noise Cancellation)

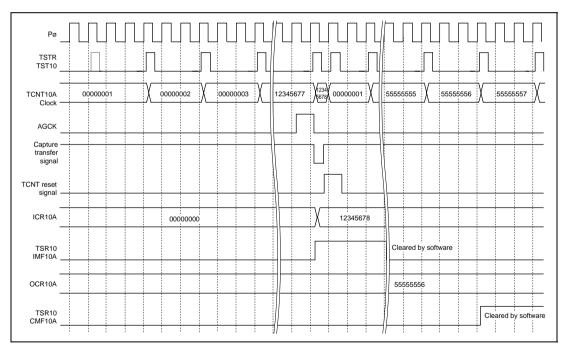



Figure 11.28 TCNT10A Capture Operation and Compare-Match Operation

Internally synchronized AGCK is counted by event count 10B (TCNT10B), and when TCNT10B reaches the value set beforehand in compare-match register 10B (OCR10B), a compare-match occurs, and the compare-match trigger signal is transmitted to channel 0. By setting the corresponding bit in TIER, an interrupt request can be sent to the CPU.

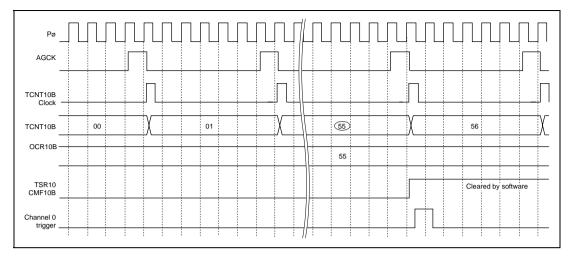



Figure 11.29 TCNT10B Compare-Match Operation

**Multiplied Clock Generation Function:** The channel 10 16-bit reload counter (TCNT10C, RLD10C) and 16-bit free-running counter 10G (TCNT10G) can be used to multiply the interval between edges input from external pin TI10 by 32, 64, 128, or 256.

The value captured in ICR10A above is multiplied by 1/32, 1/64, 1/128, or 1/256 according to the value set in the timer I/O control register (TIOR10), and transferred to the reload buffer (RLD10C). At the same time, the same value is transferred to 16-bit reload counter 10C (TCNT10C) and a down-count operation is started. When this counter reaches H'0001, the value is read automatically from RLD10C and the down-count operation is repeated. When this reload occurs, a multiplied clock signal (AGCK1) is generated. AGCK1 is converted to a corrected clock (AGCKM) by the multiplied clock correction function described in the following section.

Channel 10 can also perform compare-match operation by means of the multiplied clock (AGCK1) using general register 10G (GR10G) and 16-bit free-running counter 10G (TCNT10G). TCNT10G is incremented unconditionally by AGCK1. By making the appropriate setting in the interrupt enable register (TIER), an interrupt request can be sent to the CPU when TCNT10G and GR10G match. The timing of this interrupt can be selected with the IREG bit in TIER as either on occurrence of the compare-match or on input of the first TI10 edge after the compare-match.

TCNT10C operation is shown in figure 11.30, and TCNT10G compare-match operation in figure 11.31.

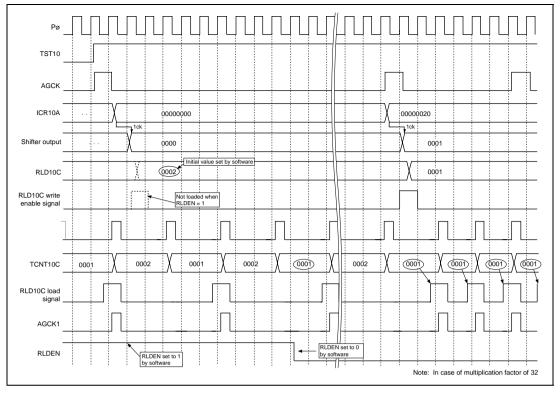



Figure 11.30 TCNT10C Operation

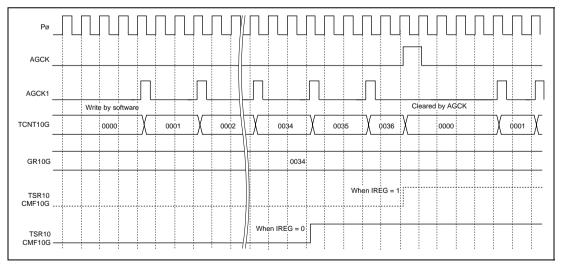



Figure 11.31 TCNT10G Compare-Match Operation

**Multiplied Clock Correction Function:** Channel 10's three 16-bit correction counters (TCNT10D, TCNT10E, TCNT10F) and correction counter clear register (TCCLR10) have a correction function that makes the interval between edges input from TI10 the frequency multiplication value set in TIOR10.

When AGCK is input, the value in TCNT10D multiplied by the multiplication factor set in TIOR10 is transferred to TCNT10E. At the same time, TCNT10D is incremented.

TCNT10E counts up on AGCK1. TCNT10E loads TCNT10D on AGCK, and counts up again on AGCK1. Using the counter correction select bit (CCS) in TIOR10, it is possible to select whether or not TCNT10E is halted when TCNT10D = TCNT10E.

TCNT10F has the peripheral clock ( $P\phi$ ) as its input and is constantly compared with TCNT10E. When the TCNT10F value is smaller than that in TCNT10E, TCNT10F is incremented and outputs a corrected multiplied clock signal (AGCKM).

When the TCNT10E value exceeds the TCNT10F value (when TCNT10E loads TCNT10D), no count-up operation is performed. AGCKM is output to the channel 1 to 5 free-running counters (TCNT1 to TCNT5).

Channel 10 also has a correction counter clear register (TCCLR10). The correction counters (TCNT10D, TCNT10E, TCNT10F) and channel 1 and 2 free-running counters (TCNT1 and TCNT2) can be cleared when TCNT10F reaches the value set in TCCLR10.

TCNT10D operation is shown in figure 11.32, TCNT10E operation in figure 11.33, TCNT10F operation (at startup) in figure 11.34, TCNT10F operation (end of cycle, acceleration, deceleration) in figure 11.35, and TCNT10F operation (end of cycle, steady-state) in figure 11.36.

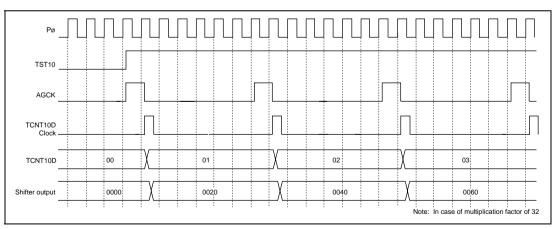



Figure 11.32 TCNT10D Operation

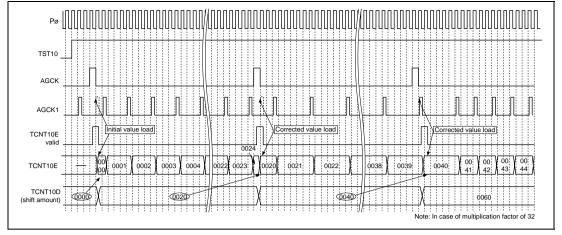



Figure 11.33 TCNT10E Operation

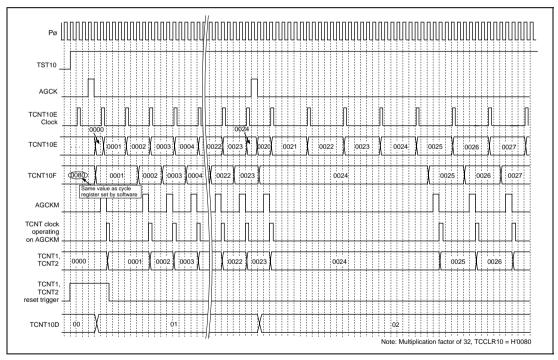



Figure 11.34 TCNT10F Operation (At Startup)

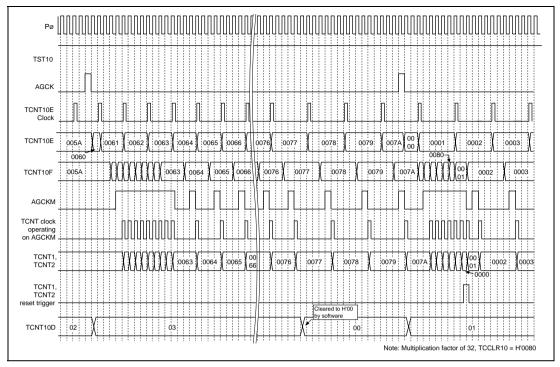



Figure 11.35 TCNT10F Operation (End of Cycle, Acceleration, Deceleration)

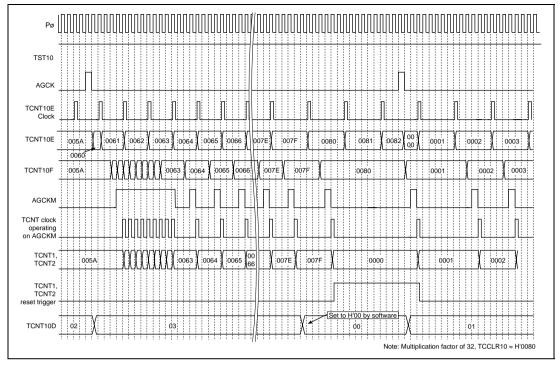



Figure 11.36 TCNT10F Operation (End of Cycle, Steady-State)

## 11.4 Interrupts

The ATU has 75 interrupt sources of five kinds: input capture interrupts, compare-match interrupts, overflow interrupts, underflow interrupts, and interval interrupts.

## 11.4.1 Status Flag Setting Timing

**IMF** (**ICF**) **Setting Timing in Input Capture:** When an input capture signal is generated, the IMF bit and ICF bit are set to 1 in the timer status register (TSR), and the TCNT value is simultaneously transferred to the corresponding GR, ICR, and OSBR.

The timing in this case is shown in figure 11.37.

In the example in figure 11.37, a signal is input from an external pin, and input capture is performed on detection of a rising edge.

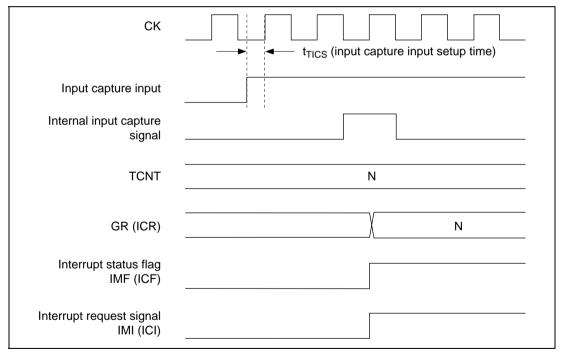



Figure 11.37 IMF (ICF) Setting Timing in Input Capture

**IMF (ICF) Setting Timing in Compare-Match:** The IMF bit and CMF bit are set to 1 in the timer status register (TSR) by the compare-match signal generated when the general register (GR) output compare register (OCR), or cycle register (CYLR) value matches the timer counter (TCNT) value. The compare-match signal is generated in the last state of the match (when the matched TCNT count value is updated).

The timing in this case is shown in figure 11.38.

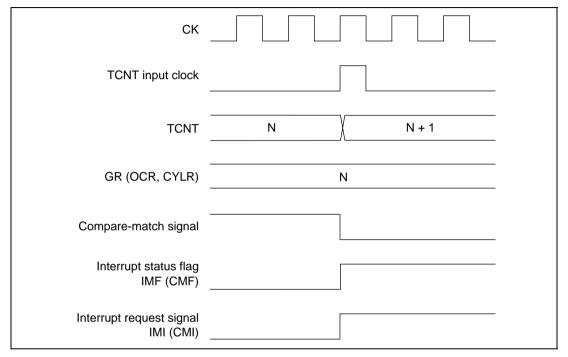



Figure 11.38 IMF (CMF) Setting Timing in Compare-Match

**OVF Setting Timing in Overflow:** When TCNT overflows (from H'FFFF to H'0000, or from H'FFFFFF to H'00000000), the OVF bit is set to 1 in the timer status register (TSR).

The timing in this case is shown in figure 11.39.

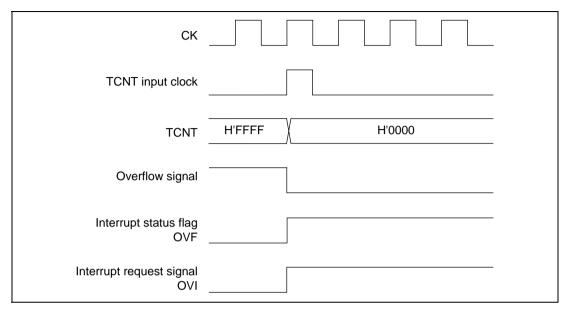



Figure 11.39 OVF Setting Timing in Overflow

**OSF Setting Timing in Underflow:** When a down-counter (DCNT) counts down from H'0001 to H'0000 on DCNT input clock input, the OSF bit is set to 1 in the timer status register (TSR) when the next DCNT input clock pulse is input (when underflow occurs). However, when DCNT is H'0000, it remains unchanged at H'0000 no matter how many DCNT input clock pulses are input.

When DCNT is cleared by means of the one-shot pulse function, the OSF bit is cleared when the next DCNT input clock is input.

The timing in this case is shown in figure 11.40.

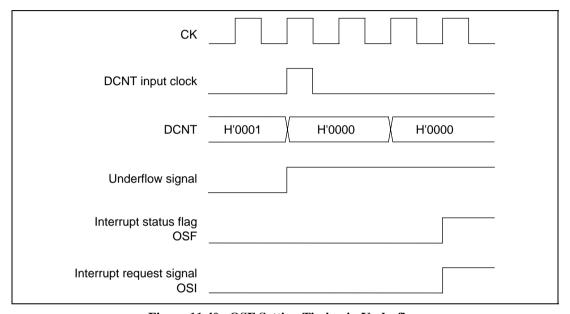



Figure 11.40 OSF Setting Timing in Underflow

**Timing of IIF Setting by Interval Timer:** When 1 is generated by ANDing the rise of bit 10–13 in free-running counter TCNT0L with bit ITVE0–ITVE3 in the interval interrupt request register (ITVRR), the IIF bit is set to 1 in the timer status register (TSR).

The timing in this case is shown in figure 11.41. TCNT0 value N in the figure is the counter value when TCNT0L bit 6-13 changes to 1. (For example, N = H'00000400 in the case of bit 10, H'00000800 in the case of bit 11, etc.)

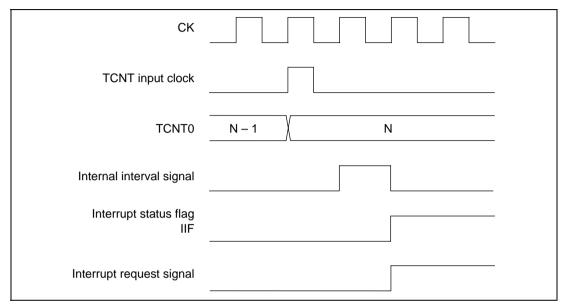



Figure 11.41 Timing of IIF Setting Timing by Interval Timer

## 11.4.2 Status Flag Clearing

**Clearing by CPU Program:** The interrupt status flag is cleared when the CPU writes 0 to the flag after reading it while set to 1.

The procedure and timing in this case are shown in figure 11.42.

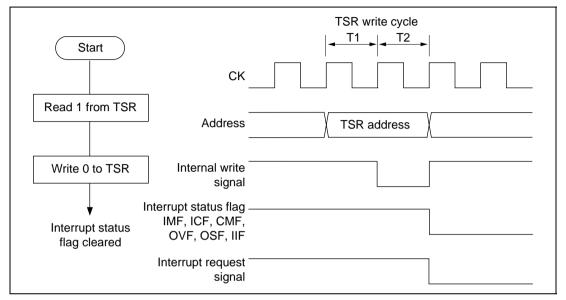



Figure 11.42 Procedure and Timing for Clearing by CPU Program

**Clearing by DMAC:** The interrupt status flag (ICF0A to ICF0D, CMF6A to CMF6D, CMF7A to CMF7D) is cleared automatically during data transfer when the DMAC is activated by input capture or compare-match.

The procedure and timing in this case are shown in figure 11.43.

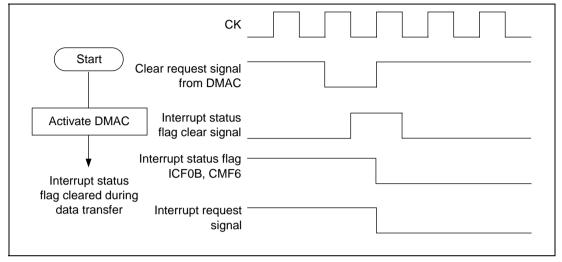



Figure 11.43 Procedure and Timing for Clearing by DMAC

## 11.5 CPU Interface

### 11.5.1 Registers Requiring 32-Bit Access

Free-running counters 0 and 10A (TCNT0, TCNT10A), input capture registers 0A to 0D and 10A (ICR0A to ICR0D, ICR10A), and output compare register 10A (OCR10A) are 32-bit registers. As these registers are connected to the CPU via an internal 16-bit data bus, a read or write (read only, in the case of ICR0A to ICR0D and ICR10A) is automatically divided into two 16-bit accesses.

Figure 11.44 shows a read from TCNT0, and figure 11.45 a write to TCNT0.

When reading TCNT0, in the first read the TCNT0H (upper 16-bit) value is output to the internal data bus, and at the same time, the TCNT0L (lower 16-bit) value is output to an internal buffer register. Then, in the second read, the TCNT0L (lower 16-bit) value held in the internal buffer register is output to the internal data bus.

When writing to TCNT0, in the first write the upper 16 bits are output to an internal buffer register. Then, in the second write, the lower 16 bits are output to TCNT0L, and at the same time, the upper 16 bits held in the internal buffer register are output to TCNT0H to complete the write. The above method performs simultaneous reading and simultaneous writing of 32-bit data, preventing contention with an up-count.

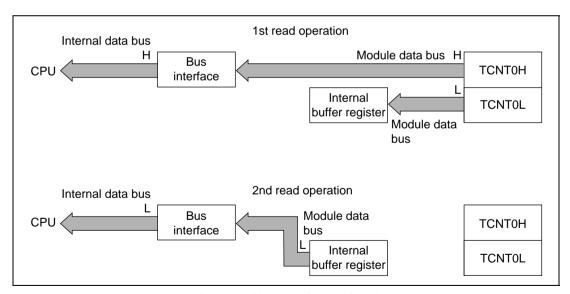



Figure 11.44 Read from TCNT0

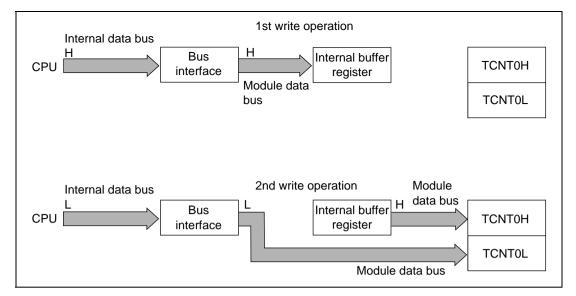



Figure 11.45 Write to TCNT0

## 11.5.2 Registers Permitting 8-Bit, 16-Bit, or 32-Bit Access

Timer registers 1, 2, and 3 (TSTR1, TSTR2, TSTR3) are 8-bit registers. As these registers are connected to the CPU via an internal 16-bit data bus, a simultaneous 32-bit read or write access to TSTR1, TSTR2, and TSTR3 is automatically divided into two 16-bit accesses.

Figure 11.46 shows a read from TSTR, and figure 11.47 a write to TSTR.

When reading TSTR, in the first read the TSTR1 and TSTR2 (upper 16-bit) value is output to the internal data bus. Then, in the second read, the TSTR3 (lower 16-bit) value is output to the internal data bus.

When writing to TSTR, in the first write the upper 16 bits are written to TSTR1 and TSTR2. Then, in the second write, the lower 16 bits are written to TSTR3. Note that, with the above method, in a 32-bit write the write timing is not the same for TSTR1/TSTR2 and TSTR3.

For information on 8-bit and 16-bit access, see section 11.5.4, 8-Bit or 16-Bit Accessible Registers.

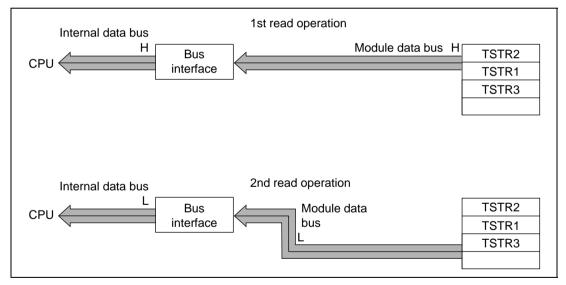



Figure 11.46 Read from TSTR1, TSTR2, and TSTR3

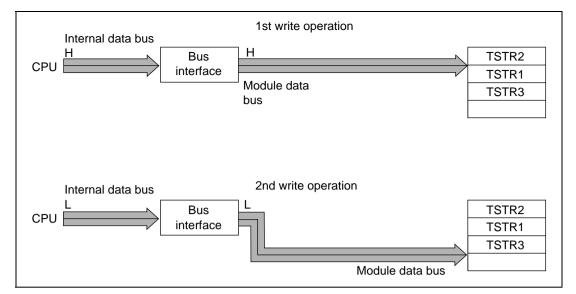



Figure 11.47 Write to TSTR1, TSTR2, and TSTR3

## 11.5.3 Registers Requiring 16-Bit Access

The free-running counters (TCNT; but excluding TCNT0, TCNT10A, TCNT10B, TCNT10D, and TCNT10H), the general registers (GR; but excluding GR9A to GR9D), down-counters (DCNT), offset base register (OSBR), cycle registers (CYLR), buffer registers (BFR), duty registers (DTR), timer connection register (TCNR), one-shot pulse terminate register (OTR), down-count start register (DSTR), output compare registers (OCR: but excluding OCR10B), reload registers (RLDR8, RLD10C), correction counter clear register (TCCLR10), timer interrupt enable register (TIER), and timer status register (TSR) are 16-bit registers. These registers are connected to the CPU via an internal 16-bit data bus, and can be read or written (read only, in the case of OSBR) a word at a time.

Figure 11.48 shows the operation when performing a word read or write access to TCNT1A.

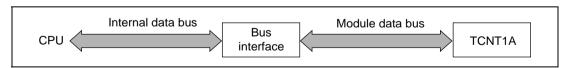



Figure 11.48 TCNT1A Read/Write Operation

## 11.5.4 8-Bit or 16-Bit Accessible Registers

The timer control registers (TCR1A, TCR1B, TCR2A, TCR2B, TCR6A, TCR6B, TCR7A, TCR7B), timer I/O control registers (TIOR1A to TIOR1D, TIOR2A to TIOR2D, TIOR3A, TIOR3B, TIOR4A, TIOR4B, TIOR5A, TIOR5B), and the timer start register (TSTR1, TSTR2, TSTR3) are 8-bit registers. These registers are connected to the upper 8 bits or lower 8 bits of the internal 16-bit data bus, and can be read or written a byte at a time.

In addition, a pair of 8-bit registers for which only the least significant bit of the address is different, such as timer I/O control register 1A (TIOR1A) and timer I/O control register 1B (TIOR1B), can be read or written in combination a word at a time.

Figures 11.49 and 11.50 show the operation when performing individual byte read or write accesses to TIOR1A and TIOR1B. Figure 11.51 shows the operation when performing a word read or write access to TIOR1A and TIOR1B simultaneously.

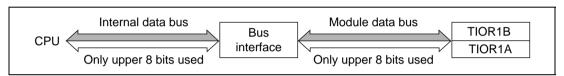



Figure 11.49 Byte Read/Write Access to TIOR1B

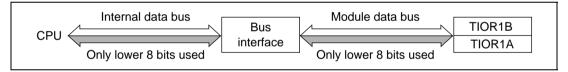



Figure 11.50 Byte Read/Write Access to TIOR1A

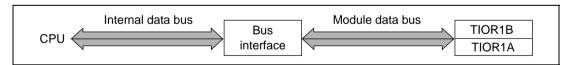



Figure 11.51 Word Read/Write Access to TIOR1A and TIOR1B

## 11.5.5 Registers Requiring 8-Bit Access

The timer mode register (TMDR), prescaler register (PSCR), timer I/O control registers (TIOR0, TIOR10, TIOR11), trigger mode register (TRGMDR), interval interrupt request register (ITVRR), timer control registers (TCR3, TCR4, TCR5, TCR8, TCR9A to TCR9C, TCR10, TCR11), PWM mode register (PMDR), reload enable register (RLDENR), free-running counters (TCNT10B, TCNT10D, TCNT10H), event counter (ECNT), general registers (GR9A to GR9F), output compare register (OCR10B), and noise canceler register (NCR) are 8-bit registers. These registers are connected to the upper 8 bits of the internal 16-bit data bus, and can be read or written a byte at a time.

Figure 11.52 shows the operation when performing individual byte read or write accesses to ITVRR1.

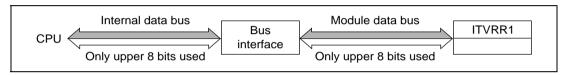



Figure 11.52 Byte Read/Write Access to ITVRR1

# 11.6 Sample Setup Procedures

Sample setup procedures for activating the various ATU-II functions are shown below.

**Sample Setup Procedure for Input Capture:** An example of the setup procedure for input capture is shown in figure 11.53.

- 1. Select the first-stage counter clock ø' in prescaler register (PSCR) and the second-stage counter clock ø" with the CKSEL bit in the timer control register (TCR). When selecting an external clock, also select the external clock edge type with the CKEG bit in TCR.
- 2. Set the port control register, corresponding to the port for signal input as the input capture trigger, to ATU input capture input.
- 3. Select rising edge, falling edge, or both edges as the input capture signal input edge(s) with the timer I/O control register (TIOR).
  - If necessary, a timer interrupt request can be sent to the CPU on input capture by making the appropriate setting in the interrupt enable register (TIER). In channel 0, setting the DMAC allows DMAC activation to be performed.
- 4. Set the corresponding bit to 1 in the timer start register (TSTR) to start the free-running counter (TCNT) for the relevant channel.

Note: When input capture occurs, the counter value is always captured, irrespective of freerunning counter (TCNT) activation.

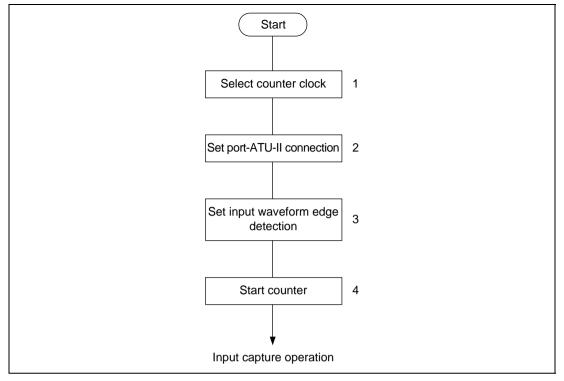



Figure 11.53 Sample Setup Procedure for Input Capture

Sample Setup Procedure for Waveform Output by Output Compare-Match: An example of the setup procedure for waveform output by output compare-match is shown in figure 11.54.

- 1. Select the first-stage counter clock ø' in prescaler register (PSCR), and the second-stage counter clock ø" with the CKSEL bit in the timer control register (TCR). When selecting an external clock, also select the external clock edge type with the CKEG bit in TCR.
- Set the port control register corresponding to the waveform output port to ATU output compare-match output. Also set the corresponding bit to 1 in the port IO register to specify the output attribute for the port.
- 3. Select 0, 1, or toggle output for output compare-match output with the timer I/O control register (TIOR). If necessary, a timer interrupt request can be sent to the CPU on output compare-match by making the appropriate setting in the interrupt enable register (TIER).
- 4. Set the timing for compare-match generation in the ATU general register (GR) corresponding to the port set in 2.
- 5. Set the corresponding bit to 1 in the timer start register (TSTR) to start the free-running counter (TCNT). Waveform output is performed from the relevant port when the TCNT value and GR value match.

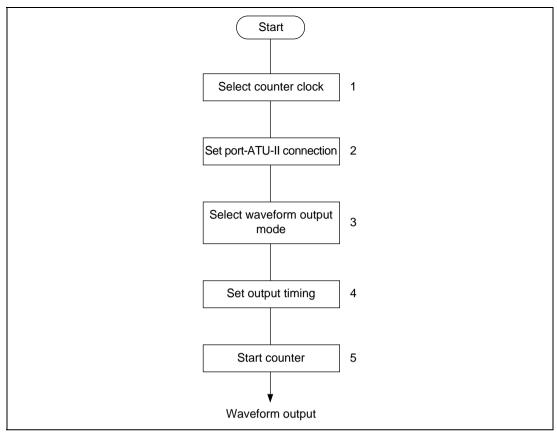



Figure 11.54 Sample Setup Procedure for Waveform Output by Output Compare-Match

Sample Setup Procedure for Channel 0 Input Capture Triggered by Channel 10 Compare-Match: An example of the setup procedure for compare-match signal transmission is shown in figure 11.55.

- 1. Set the timing for compare-match generation in the channel 10 output compare register (OCR10B).
- 2. Set the TRG0DEN bit to 1 in the channel 10 timer control register (TCR10).
- 3. Set the corresponding bit to 1 in the timer start register (TSTR) to start the channel 10 freerunning counter (TCNT10B). On compare-match between TCNT10 and OCR10B, the compare-match signal is transmitted to channel 0 as the channel 0 ICR0D input capture signal.

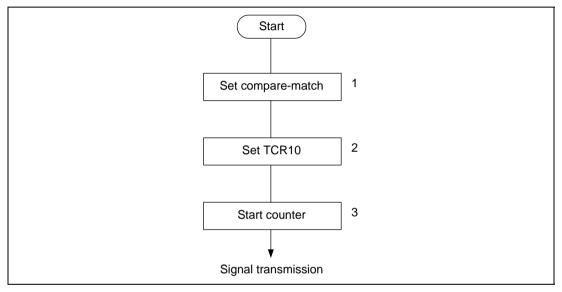



Figure 11.55 Sample Setup Procedure for Compare-Match Signal Transmission

**Sample Setup Procedure for One-Shot pulse Output:** An example of the setup procedure for one-shot pulse output is shown in figure 11.56.

- 1. Set the first-stage counter clock ø' in prescaler register 1 (PSCR1), and select the second-stage counter clock ø" with the CKSEL bit in timer control register8 TCR8.
- 2. Set port K control registers H and L (PKCRH, PKCRL) corresponding to the waveform output port to ATU one-shot pulse output. Also set the corresponding bit to 1 in the port K IO register (PKIOR) to specify the output attribute.
- 3. Set the one-shot pulse width in the down-counter (DCNT) corresponding to the port set in (2). If necessary, a timer interrupt request can be sent to the CPU when the down-counter underflows by making the appropriate setting in the interrupt enable register (TIER8).
- 4. Set the corresponding bit (DST8A to DST8P) to 1 in the down-count start register (DSTR) to start the down-counter (DCNT).

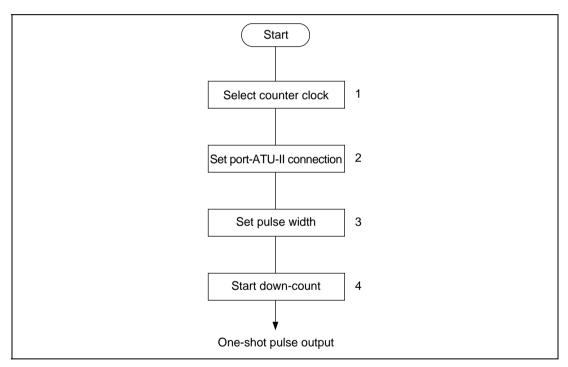



Figure 11.56 Sample Setup Procedure for One-Shot Pulse Output

**Sample Setup Procedure for Offset One-Shot Pulse Output/Cutoff Operation:** An example of the setup procedure for offset one-shot pulse output is shown in figure 11.57.

- 1. Set the first-stage counter clock ø' in prescaler register 1 (PSCR1), and select the second-stage counter clock ø" with the CKSEL bit in the timer control register (TCR1, TCR2, TCR8).
- 2. Set port K control registers H and L (PKCRH, PKCRL) corresponding to the waveform output port to ATU one-shot pulse output. Also set the corresponding bit to 1 in the port K IO register (PKIOR) to specify the output attribute
- 3. Set the one-shot pulse width in the down-counter (DCNT) corresponding to the port set in (2). If necessary, a timer interrupt request can be sent to the CPU when the down-counter underflows by making the appropriate setting in the interrupt enable register (TIER8).
- 4. Set the offset width in the channel 1 or 2 general register (GR1A—GR1H, GR2A—GR2H) connected to the down-counter (DCNT) corresponding to the port set in (2), and in the output compare register (OCR1, OCR2A—OCR2H). Set the timer I/O control register (TIOR1A—TIOR1D, TIOR2A—TIOR2D) to the compare-match enabled state.
- 5. Set the start/terminate trigger by means of the trigger mode register (TRGMDR), timer connection register (TCNR), and one-shot pulse terminate register (OTR), so that it corresponds to the port set in step 2 above.
- 6. Set the corresponding bit to 1 in the timer start register (TSTR) to start the channel 1 or 2 free-running counter (TCNT1, TCNT2). When the TCNT value and GR value or OCR value match, the corresponding DCNT starts counting down or is forcibly cleared, and one-shot pulse output is performed.

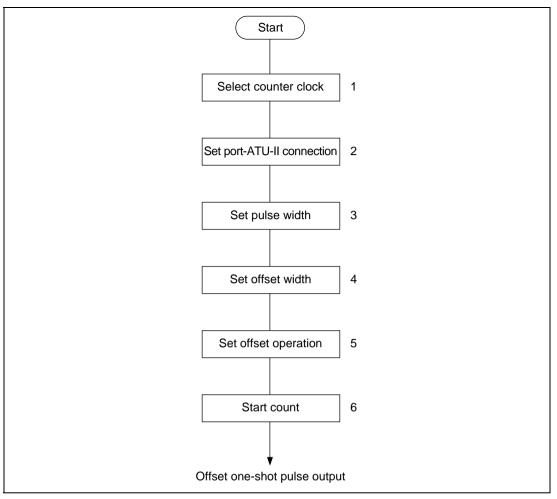



Figure 11.57 Sample Setup Procedure for Offset One-Shot Pulse Output

**Sample Setup Procedure for Interval Timer Operation:** An example of the setup procedure for interval timer operation is shown in figure 11.58.

- 1. Set the first-stage counter clock ø' in prescaler register 1 (PSCR1).
- 2. Set the ITVE bit to be used in the interval interrupt request register (ITVRR) to 1. An interrupt request can be sent to the CPU when the corresponding bit changes to 1 in the channel 0 freerunning counter (TCNT0).
  - To start A/D converter sampling, set the ITVA bit to be used in ITVRR to 1.
- 3. Set bit 0 to 1 in the timer start register (TSTR) to start TCNT0.

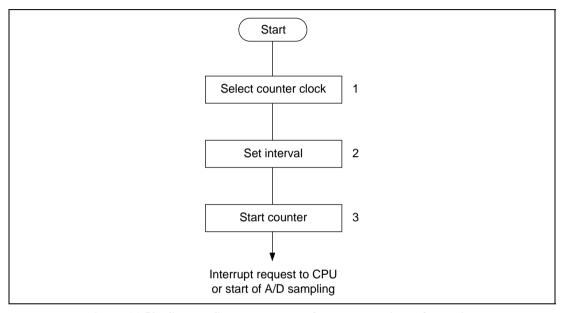



Figure 11.58 Sample Setup Procedure for Interval Timer Operation

**Sample Setup Procedure for PWM Timer Operation (Channels 3 to 5):** An example of the setup procedure for PWM timer operation (channels 3 to 5) is shown in figure 11.59.

- 1. Set the first-stage counter clock ø' in prescaler register 1 (PSCR1), and select the second-stage counter clock ø" with the CKSEL bit in the timer control register (TCR). When selecting an external clock, at the same time select the external clock edge type with the CKEG bit in TCR.
- 2. Set the port control registers (PxCRH, PxCRL) corresponding to the waveform output port to ATU output compare-match output. Also set the corresponding bit to 1 in the port IO register (PxIOR) to specify the output attribute.
- 3. Set bit T3PWM-T5PWM in the timer mode register (TMDR) to PWM mode. When PWM mode is set, the timer operates in PWM mode irrespective of the timer I/O control register (TIOR) contents, and general registers (GR3A to GR3D, GR4A to GR4D, GR5A to GR5D) can be written to.
- 4. The GR3A–GR3C, GR4A–GR4C, and GR5A–GR5C ATU general registers are used as duty registers (DTR), and the GR3D, GR4D, and GR5D ATU general registers as cycle registers (CYLR). Set the PWM waveform output 0 output timing in DTR, and the PWM waveform output 1 output timing in CYLR. Also, if necessary, interrupt requests can be sent to the CPU at the 0/1 output timing by making a setting in the timer interrupt enable register (TIER).
- 5. Set the corresponding bit to 1 in the timer start register (TSTR) to start the free-running counter (TCNT) for the relevant channel.

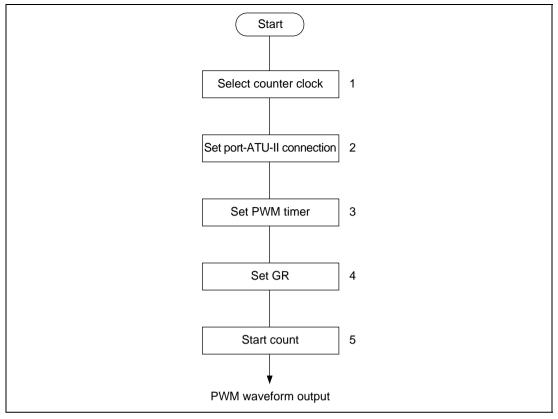



Figure 11.59 Sample Setup Procedure for PWM Timer Operation (Channels 3 to 5)

**Sample Setup Procedure for PWM Timer Operation (Channels 6 and 7):** An example of the setup procedure for PWM timer operation (channels 6 and 7) is shown in figure 11.60.

- 1. Set the first-stage counter clock φ' in prescaler register 2 and 3 (PSCR2, PSCR3), and select the second-stage counter clock φ'' with the CKSEL bit in the timer control register (TCR6A, TCR6B, TCR7A, TCR7B).
- Set the port B control register L (PBCRL) corresponding to the waveform output port to ATU
  PWM output. Also set the corresponding bit to 1 in the port B IO register (PBIOR) to specify
  the output attribute.
- 3. Set PWM waveform output 1 output timing in the cycle register (CYLR6A to CYLR6D, CYLR7A to CYLR7D), and set the PWM waveform output 0 output timing in the buffer register (BFR6A to BFR6D, BFR7A to BFR7D) and duty register (DTR6A to DTR6D, DTR7A to DTR7D). If necessary, an interrupt request can be sent to the CPU on a comparematch between the CYLR value and the free-running counter (TCNT) value by making the appropriate setting in the interrupt enable register (TIERE). In addition, setting the DMAC allows DMAC activation to be performed.
- 4. Set the corresponding bit to 1 in the timer start register (TSTR) to start the TCNT counter for the relevant channel.
- Notes: 1. Do not make a setting in DTR after the counter is started. Use BFR to make a DTR setting.
  - 0% duty is specified by setting H'0000 in the duty register (DTR), and 100% duty is specified by setting buffer register (BFR) = cycle register (CYLR). Do not set BFR > CYLR.

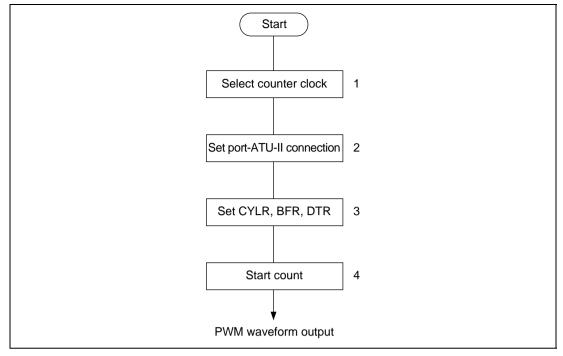



Figure 11.60 Sample Setup Procedure for PWM Timer Operation (Channels 6 and 7)

**Sample Setup Procedure for Event Counter Operation:** An example of the setup procedure for event counter operation is shown in figure 11.61.

- 1. Set the number of events to be counted in a general register (GR9A to GR9D). Also, if necessary, an interrupt request can be sent to the CPU upon compare-match by making a setting in the timer interrupt enable register (TIER).
- 2. Set the port control register, corresponding to the port for signal input to the event counter, to ATU event counter input.
- 3. Select the event counter count edge with the EGSEL bits in the channel 9 timer control register (TCR9A to TCR9C).
- 4. Input a signal to the event counter input pin.

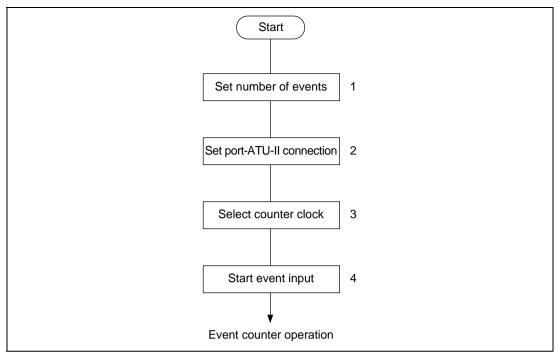



Figure 11.61 Sample Setup Procedure for Event Counter Operation

Sample Setup Procedure for Channel 3 Input Capture Triggered by Channel 9 Compare-Match: An example of the setup procedure for compare-match signal transmission is shown in figure 11.62.

- 1. Set the port control register, corresponding to the port for signal input to the event counter, to ATU event counter input.
- 2. Set the channel 3 timer I/O control register (TIOR3A, TIOR3B), and select the input capture disable setting for the general registers (GR3A to GR3D). Input from pins TIO3A to TIO3D is masked.
- 3. Select the event counter count edge with the EGSEL bits in the channel 9 timer control register (TCR9A, TCR9B), and set the TRG3xEN bit to 1. Set the timing for capture in the general register (GR9A to GR9D).
- 4. Set bit STR3 to 1 in the timer start register (TSTR) to start the channel 3 free-running counter (TCNT3).
- 5. Input a signal to the event counter input pin.

Note: An interrupt request can be sent to the CPU upon channel 9 compare-match by making a setting in the timer interrupt enable register (TIER), but an interrupt request cannot be sent to the CPU upon channel 3 input capture.

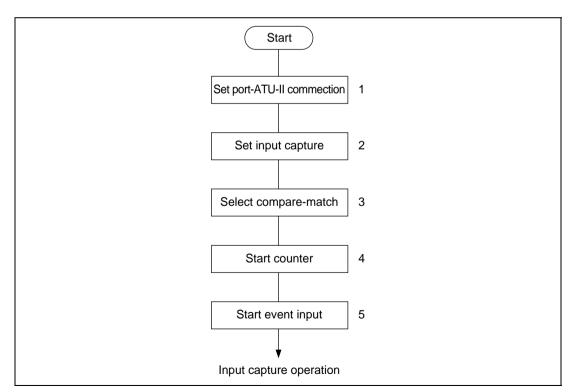



Figure 11.62 Sample Setup Procedure for Compare-Match Signal Transmission

**Sample Setup Procedure for Channel 10 Missing-Teeth Detection:** An example of the setup procedure for missing-teeth detection is shown in figure 11.63.

- 1. Set port B control register H (PBCRH) or port L control register L (PLCRL), corresponding to the port for input of the external signal (missing-teeth signal), to ATU edge input (TI10).
- 2. Set 1st-stage counter clock ø' in prescaler register 4 (PSCR4). Set the external input (TI10) cycle multiplication factor with the PIM bits in timer I/O control register 10 (TIOR10), and enable reload register 10C (RLD10C) updating with the RLDEN bit. Select the external input edge type with the CKEG bits in timer control register 10 (TCR10).
- 3. Set general register 10G (GR10G) to the compare-match function with bit IO10G in TIOR10. Also, an interrupt request can be sent to the CPU upon compare-match by making a setting in interrupt enable register 10 (TIER10).
- 4. Set the timing for compare-match generation in GR10G according to the multiplication factor and number of missing-teeths in the missing-teeth interval set in step 1.
- Set the corresponding bit to 1 in timer start register 1 (TSTR1) to start the channel 10 count. A
  compare-match occurs when the values in free-running counter 10G (TCNT10G) and GR10G
  match.

Note: The TCNT10G counter clock is generated according to the external input edge interval and multiplication factor selected in step 1, and the counter is cleared to H'0000 by an external input edge.

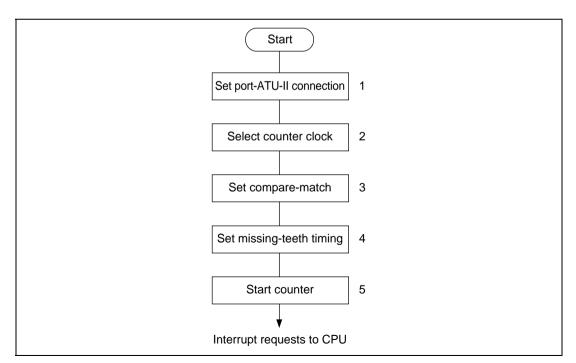



Figure 11.63 Sample Setup Procedure for Missing-Teeth Detection

#### 11.7 Usage Notes

Note that the kinds of operation and contention described below occur during ATU operation.

Contention between TCNT Write and Clearing by Compare-Match: With channel 3 to 7 free-running counters (TCNT3 to TCNT5, TCNT6A to TCNT6D, TCNT7A to TCNT7D), if a compare-match occurs in the T2 state of a CPU write cycle when counter clearing by compare-match has been set, or when PWM mode is used, the write to TCNT has priority and TCNT clearing is not performed.

The compare-match remains valid, and writing of 1 to the interrupt status flag and waveform output to an external destination are performed in the same way as for a normal compare-match.

The timing in this case is shown in figure 11.64.

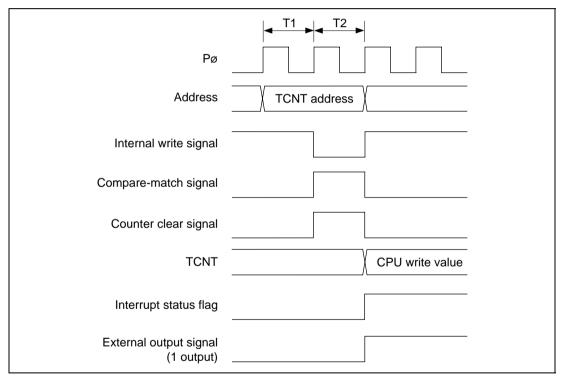



Figure 11.64 Contention between TCNT Write and Clear

Contention between TCNT Write and Increment: If a write to a channel 0 to 11 free-running counter (TCNT0, TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3 to TCNT5, TCNT6A to TCNT6D, TCNT7A to TCNT7D, TCNT10A to TCNT10H, TCNT11), down-counter (DCNT8A to DCNT8P), or event counter 9 (ECNT9A to ECNT9F) is performed while that counter is counting up or down, the write to the counter has priority and the counter is not incremented or decremented.

The timing in this case is shown in figure 11.65. In this example, the CPU writes H'5555 at the point at which TCNT is to be incremented from H'1001 to H'1002.

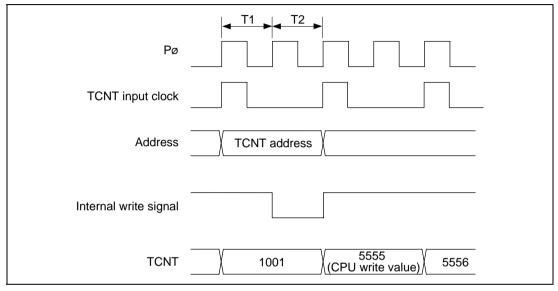



Figure 11.65 Contention between TCNT Write and Increment

**Contention between TCNT Write and Counter Clearing by Overflow:** With channel 0 to 5 and 11 free-running counters (TCNT0, TCNT1A, TCNT1B, TCNT2A, TCNT2B, TCNT3 to TCNT5, TCNT11), if overflow occurs in the T2 state of a CPU write cycle, the write to TCNT has priority and TCNT is not cleared.

Writing of 1 to the interrupt status flag (OVF) due to the overflow is performed in the same way as for normal overflow.

The timing in this case is shown in figure 11.66. In this example, H'5555 is written at the point at which TCNT overflows.

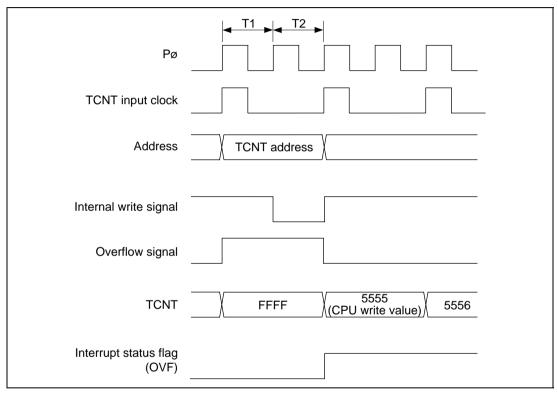



Figure 11.66 Contention between TCNT Write and Overflow

Contention between Interrupt Status Flag Setting by Interrupt Generation and Clearing: If an event such as input capture/compare-match or overflow/underflow occurs in the T2 state of an interrupt status flag 0 write cycle by the CPU, clearing by the 0 write has priority and the interrupt status flag is cleared.

The timing in this case is shown in figure 11.67.

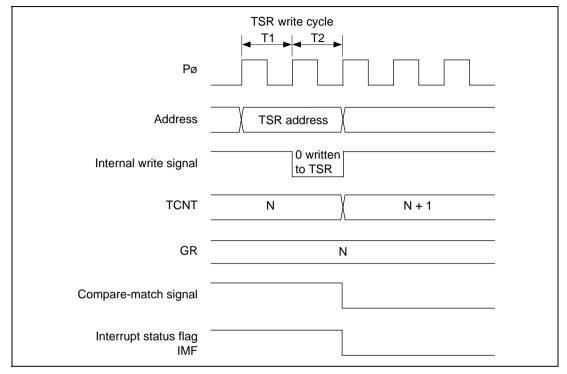



Figure 11.67 Contention between Interrupt Status Flag Setting by Compare-Match and Clearing

Contention between DTR Write and BFR Value transfer by Buffer Function: In channels 6 and 7, if there is contention between transfer of the buffer register (BFR) value to the corresponding duty register (DTR) due to a cycle register (CYLR) compare-match, and a write to DTR by the CPU, the CPU write value is written to DTR.

Figure 11.68 shows an example in which contention arises when the BFR value is H'AAAA and the value to be written to DTR is H'5555.

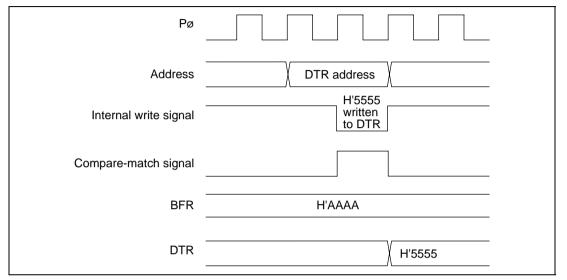



Figure 11.68 Contention between DTR Write and BFR Value Transfer by Buffer Function

# Contention between Interrupt Status Flag Clearing by DMAC and Setting by Input

**Capture/Compare-Match:** If a clear request signal is generated by the DMAC when the interrupt status flag (ICF0A to ICF0D, CMF6A to CMF6D, CMF7A to CMF7D) is set by input capture (ICR0A to ICR0D) or compare-match (CYLR6A to CYLR6D, CYLR7A to CYLR7D), clearing by the DMAC has priority and the interrupt status flag is not set.

The timing in this case is shown in figure 11.69.



Figure 11.69 Contention between Interrupt Status Flag Clearing by DMAC and Setting by Input Capture/Compare-Match

**Halting of a Down-Counter by the CPU:** A down-counter (DCNT) can be halted by writing H'0000 to it. The CPU cannot write 0 directly to the down-count start register (DSTR); instead, by setting DCNT to H'0000, the corresponding DSTR bit is cleared to 0 and the count is stopped. However, the OSF bit in the timer status register (TSR) is set when DCNT underflows.

Note that when H'0000 is written to DCNT, the corresponding DSTR bit is not cleared to 0 immediately; it is cleared to 0, and the down-counter is stopped, when underflow occurs following the H'0000 write.

The timing in this case is shown in figure 11.70.

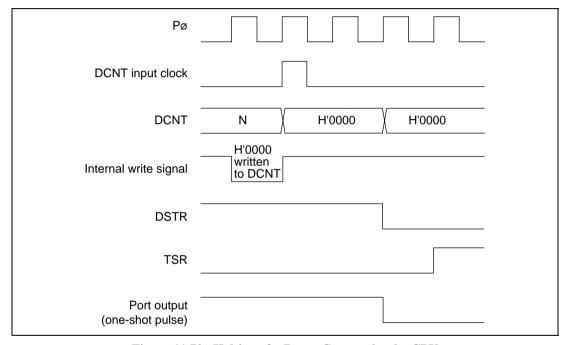



Figure 11.70 Halting of a Down-Counter by the CPU

**Input Capture Operation when Free-Running Counter is Halted:** In channels 0 to 5, channel 10, or channel 11, if input capture setting is performed and a trigger signal is input from the input pin, the TCNT value will be transferred to the corresponding general register (GR) or input capture register (ICR) irrespective of whether the free-running counter (TCNT) is running or halted, and the IMF or ICF bit will be set in the timer status register (TSR).

The timing in this case is shown in figure 11.71.

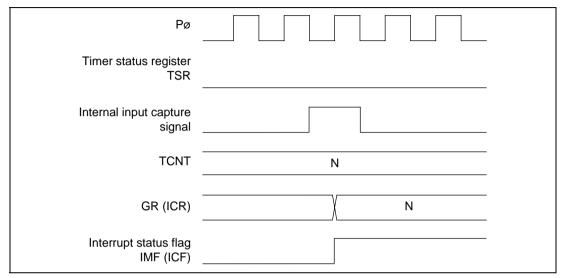



Figure 11.71 Input Capture Operation before Free-Running Counter is Started

Contention between DCNT Write and Counter Clearing by Underflow: If an underflow occurs in the T2 state of the channel 8 down-counter (DCNT8A to DCNT8P) write cycle by the CPU, the DCNT continues counting down because the write to the DCNT by the CPU has priority.

The timing in this case is shown in figure 11.72. In this example, a write of H'5555 to DCNT is attempted at the same time as DCNT underflows.

Note: In the SH7055F, the retention of the H'0000 value has priority and the write to the DCNT by the CPU is not performed. Note that the operation of the channel 8 down-counters differs between SH7055SF and SH7055F.

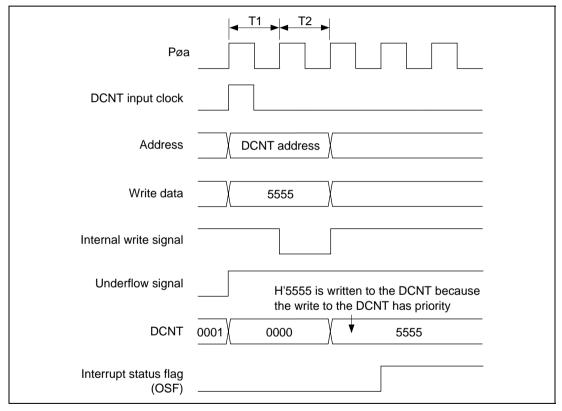



Figure 11.72 Contention between DCNT Write and Underflow

Contention between DSTR Bit Setting by CPU and Clearing by Underflow: If underflow occurs in the T2 state of a down-counter start register (DSTR) "1" write cycle by the CPU, clearing to 0 by the underflow has priority, and the corresponding bit of DSTR is not set to 1.

The timing in this case is shown in figure 11.73.

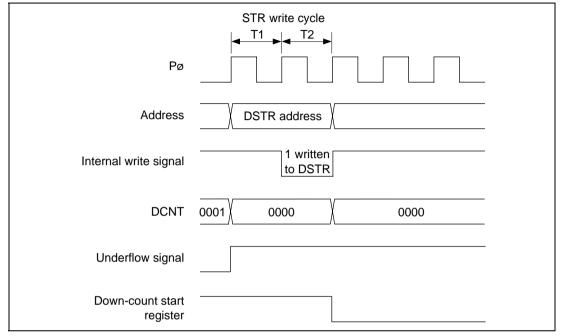



Figure 11.73 Contention between DSTR Bit Setting by CPU and Clearing by Underflow

Timing of Prescaler Register (PSCR), Timer Control Register (TCR), and Timer Mode Register (TMDR) Setting: Settings in the prescaler register (PSCR), timer control register (TCR), and timer mode register (TMDR) should be made before the counter is started. Operation is not guaranteed if these registers are modified while the counter is running.

Also, the counter must not be started until Pø has been input 32 times after setting PSCR1 to PSCR4.

**Interrupt Status Flag Clearing Procedure:** When an interrupt status flag is cleared to 0 by the CPU, it must first be read before 0 is written to it. Correct operation cannot be guaranteed if 0 is written without first reading the flag.

Setting H'0000 in Free-Running Counters 6A to 6D, 7A to 7D (TCNT6A to TCNT6D, TCNT7A to TCNT7D): If H'0000 is written to a channel 6 and 7 free-running counter (TCNT6A to TCNT6D, TCNT7A to TCNT7D), and the counter is started, the interval up to the first compare-match with the cycle register (CYLR) and duty register (DTR) will be a maximum of one TCNT input clock cycle longer than the set value. With subsequent compare-matches, the correct waveform will be output for the CYLR and DTR values.

**Register Values when a Free-Running Counter (TCNT) Halts:** If the timer start register (TSTR) value is set to 0 during counter operation, only incrementing of the corresponding freerunning counter (TCNT) is stopped, and neither the free-running counter (TCNT) nor any other ATU registers are initialized. The external output value at the time TSTR is cleared to 0 will continue to be output.

**TCNT0 Writing and Interval Timer Operation:** If the CPU program writes 1 to a bit in free-running counter 0 (TCNT0) corresponding to a bit set to 1 in the interval interrupt request register (ITVRR) when that TCNT0 bit is 0, TCNT0 bit 6, 7, 8, 9, 10, 11, 12, or 13 will be detected as having changed from 0 to 1, and an interrupt request will be sent to INTC and A/D sampling will be started. While the count is halted with the STR0 bit cleared to 0 in timer start register 1 (TSTR1), the bit transition from 0 to 1 will still be detected.

**Automatic TSR Clearing by DMAC Activation by the ATU:** Automatic clearing of TSR is performed after completion of the transfer when the DMAC is in burst mode, and each time the DMAC returns the bus in cycle steal mode.

**Interrupt Status Flag Setting/Resetting:** With TSR, a 0 write to a bit is possible even if overlapping events occur for the same bit before writing 0 after reading 1 to clear that bit. (The duplicate events are not accepted.)

**External Output Value in Software Standby Mode:** In software standby mode, the ATU register and external output values are cleared to 0. However, while the channel 1, 2, and 11 TIO1A to TIO1H, TIO2A to TIO2H, TIO11A, and TIO11B external output values are cleared to 0 immediately after software standby mode is exited, other external output values and all registers are cleared to 0 immediately after a transition to software standby mode.

Also, when pin output is inverted by the pin function controller's port B invert register (PBIR) or port K invert register (PKIR), the corresponding pins are set to 1.

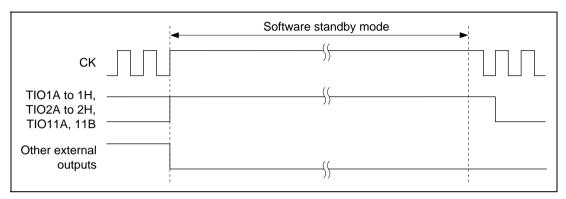



Figure 11.74 External Output Value Transition Points in Relation to Software Standby

Mode

Contention between TCNT Clearing from Channel 10 and TCNT Overflow: When a channel 1 or 2 free-running counter (TCNT1A, TCNT1B, TCNT2A, TCNT2B) overflows, it is cleared to H'0000. If a clear signal from the channel 10 correction counter clear register (TCCLR) is input at the same time, setting 1 to the overflow interrupt status flag (OVF) due to the overflow is still performed in the same way as for a normal overflow.

Contention between Channel 10 Reload Register Transfer Timing and Write: If there is contention between a multiplied-output transfer from the input capture register (ICR10A) to the channel 10 reload register (RLDR10C), and the timing of a CPU write to that register, the CPU write has priority and the multiplied output is ignored.

Contention between Channel 10 Reload Timing and Write to TCNT10C: If there is contention between a multiplied-output transfer from the input capture register (ICR10A) to the channel 10 reload register (RLDR10C), and a CPU write to the reload counter (TCNT10C), the CPU write has priority and the multiplied output is ignored.

**ATU Pin Setting:** When a port is set to the ATU pin function, the following points must be noted because input capture or count operation may occur.

When using a port for input capture input, the corresponding TIOR register must be in the input capture disabled state when the port is set. Regarding channel 10 TI10 input, TCR10 must be in the TI10 input disabled state when the port is set. When using a port for external clock input, the STR bit for the corresponding channel must be in the count operation disabled state when the port is set. When using a port for event input, the corresponding TCR register must be in the count operation disabled state when the port is set.

Regarding TCLKB and TI10 input, although input is assigned to a number of pins, when using TCLKB and TI10 input, only one pin should be enabled.

Writing to ROM Area Immediately after ATU Register Write: If a write cycle for a ROM address for which address bit 11 = 0 and address bit 12 = 1 (H'00001000 to H'000017FF, H'00003000 to H'000037FF, H'00005000 to H'000057FF, ..., H'0007F000 to H'0007F7FF) occurs immediately after an ATU register write cycle, the value, or part of the value, written to ROM will be written to the ATU register. The following measures should be taken to prevent this.

- Do not perform a CPU write to a ROM address immediately after an ATU register write cycle.
   For example, an instruction arrangement in which an MOV instruction that writes to the ATU is located at an even-word address (4n address), and is immediately followed by an MOV instruction that writes to a ROM area, will meet the bug conditions.
- Do not perform an AUD write to any of the above ROM addresses immediately after an ATU
  register write cycle. For example, in the case of a write to overlap RAM when using the RAM
  emulation function, the write should be performed to the on-chip RAM area address, not the
  overlapping ROM area address.
- Do not perform a DMAC write to an ATU register when a ROM address write operation occurs.

## 11.8 ATU-II Registers and Pins

Table 11.4 ATU-II Registers and Pins

| $\sim$ | <br> | _1 |
|--------|------|----|
|        | nn   |    |

| Register<br>Name* <sup>1</sup> | Channel<br>0                                 | Channel<br>1           | Channel<br>2           | Channel<br>3    | Channel<br>4      | Channel<br>5    | Channel<br>6    | Channel<br>7           | Channel<br>8           | Channel<br>9           | Channel<br>10                                      | Channel<br>11   |
|--------------------------------|----------------------------------------------|------------------------|------------------------|-----------------|-------------------|-----------------|-----------------|------------------------|------------------------|------------------------|----------------------------------------------------|-----------------|
| TSTR (3)                       | TSTR1                                        | TSTR1                  | TSTR1                  | TSTR1           | TSTR1             | TSTR1           | TSTR2           | TSTR2                  | _                      | _                      | TSTR1                                              | TSTR3           |
| PSCR (4)                       | PSCR1                                        | PSCR1                  | PSCR1                  | PSCR1           | PSCR1             | PSCR1           | PSCR2           | PSCR3                  | PSCR1                  | _                      | PSCR4                                              | PSCR1           |
| TCNT (25)                      |                                              | TCNT1A,<br>TCNT1B      |                        |                 | TCNT4             | TCNT5           | to              | TCNT7A<br>to<br>TCNT7D |                        | _                      | TCNT10AH,<br>TCNT10AL,<br>TCNT10B<br>to<br>TCNT10H | TCNT11          |
| DCNT (16)                      | )—                                           | _                      | _                      | _               | _                 | _               | _               | _                      | DCNT8A<br>to<br>DCNT8P |                        | _                                                  | _               |
| ECNT (6)                       | _                                            | _                      | _                      | _               | _                 | _               | _               | _                      | _                      | ECNT9A<br>to<br>ECNT9F |                                                    | _               |
| TCR (17)                       | _                                            | TCR1A,<br>TCR1B        | TCR2A,<br>TCR2B        | TCR3            | TCR4              | TCR5            | TCR6A,<br>TCR6B | TCR7A,<br>TCR7B        | TCR8                   | TCR9A<br>to<br>TCR9C   | TCR10                                              | TCR11           |
| TIOR (17)                      | TIOR0                                        | TIOR1A<br>to<br>TIOR1D | TIOR2A<br>to<br>TIOR2D |                 | TIOR4A,<br>TIOR4B |                 | _               | _                      | _                      | _                      | TIOR10                                             | TIOR11          |
| TSR (12)                       | TSR0                                         | TSR1A,<br>TSR1B        | TSR2A,<br>TSR2B        | TSR3            | TSR3              | TSR3            | TSR6            | TSR7                   | TSR8                   | TSR9                   | TSR10                                              | TSR11           |
| TIER (12)                      | TIER0                                        | TIER1A,<br>TIER1B      | TIER2A,<br>TIER2B      | TIER3           | TIER3             | TIER3           | TIER6           | TIER7                  | TIER8                  | TIER9                  | TIER10                                             | TIER11          |
| ITVRR (3)                      | ITVRR1,<br>ITVRR2A,<br>ITVRR2B               | _                      | =                      | _               | _                 | _               | _               | _                      | _                      | _                      | _                                                  | _               |
| GR (37)                        | _                                            | GR1A to<br>GR1H        | GR2A to<br>GR2H        | GR3A to<br>GR3D | GR4A to<br>GR4D   | GR5A to<br>GR5D | _               | _                      | _                      | GR9A to<br>GR9F        | GR10G                                              | GR11A,<br>GR11B |
| ICR (5)                        | ICR0AH,<br>ICR0AL<br>to<br>ICR0DH,<br>ICR0DL | _                      | _                      | _               | _                 | _               | _               | _                      | _                      | _                      | ICR10AH,<br>ICR10AL                                | _               |
| OCR (11)                       | _                                            | OCR1                   | OCR2A<br>to<br>OCR2H   | _               | _                 | _               | _               | _                      | _                      | _                      | OCR10AH,<br>OCR10AL,<br>OCR10B                     | _               |
| OSBR (2)                       | _                                            | OSBR1                  | OSBR2                  | _               | _                 | _               | _               | _                      | _                      | _                      | _                                                  | _               |
| TRGMDR (1)                     | _                                            | TRGMDR                 | -                      | _               | _                 | _               | _               | _                      | _                      | _                      | _                                                  | _               |
| TMDR (1)                       | _                                            | _                      | _                      | TMDR            | TMDR              | TMDR            | _               | _                      | _                      | _                      | _                                                  | _               |

Table 11.4 ATU-II Registers and Pins (cont)

| ha |  |  |
|----|--|--|
|    |  |  |
|    |  |  |

| Register<br>Name* <sup>1</sup> | Channel<br>0 | Channel<br>1                      | Channel<br>2                      | Channel<br>3                      | Channel<br>4                      | Channel<br>5                      | Channel<br>6         | Channel<br>7           | Channel<br>8 | Channel<br>9 | Channel<br>10 | Channel<br>11                         |
|--------------------------------|--------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|----------------------|------------------------|--------------|--------------|---------------|---------------------------------------|
| CYLR (8)                       | _            | _                                 | _                                 | _                                 | _                                 | _                                 | to                   | CYLR7A<br>to<br>CYLR7D |              | _            | _             | _                                     |
| BFR (8)                        | _            | _                                 | _                                 | _                                 | _                                 | _                                 | BFR6A<br>to<br>BFR6D | BFR7A<br>to<br>BFR7D   | _            | _            | _             | _                                     |
| DTR (8)                        | _            | _                                 | _                                 | _                                 | _                                 | _                                 | DTR6A<br>to<br>DTR6D | DTR7A<br>to<br>DTR7D   | _            | _            | _             | _                                     |
| PMDR (1)                       | _            | _                                 | _                                 | _                                 | _                                 | _                                 | PMDR                 | _                      | _            | _            | _             | _                                     |
| RLDR (1)                       | _            | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | RLDR         | _            | _             | _                                     |
| TCNR (1)                       | _            | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | TCNR         | _            | _             | _                                     |
| OTR (1)                        | _            | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | OTR          | _            | _             | _                                     |
| DSTR (1)                       | _            | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | DSTR         | _            | _             | _                                     |
| RLDENR<br>(1)                  | _            | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | RLDENR       | <del>-</del> | _             | _                                     |
| RLD (1)                        | _            | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | _            | _            | RLD10C        | _                                     |
| NCR (1)                        | _            | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | _            | _            | NCR10         | _                                     |
| TCCLR (1                       | )—           | _                                 | _                                 | _                                 | _                                 | _                                 | _                    | _                      | _            | _            | TCCLR10       | _                                     |
| Pins* <sup>2</sup>             | TIOA<br>to D | TIO1A<br>to H,<br>TCLKA,<br>TCLKB | TIO2A<br>to H,<br>TCLKA,<br>TCLKB | TIO3A<br>to D,<br>TCLKA,<br>TCLKB | TIO4A<br>to D,<br>TCLKA,<br>TCLKB | TIO5A<br>to D,<br>TCLKA,<br>TCLKB | TO6A<br>to D         | TO7A<br>to D           | TO8A<br>to P | TI9A<br>to F | T10           | TIO11A,<br>TIO11B,<br>TCLKA,<br>TCLKB |

Notes: \*1 Figures in parentheses show the number of registers. A 32-bit register is shown as a single register.

<sup>\*2</sup> Pin functions should be set as described in section 20, Pin Function Controller (PFC).

# Section 12 Advanced Pulse Controller (APC)

#### 12.1 Overview

The SH7055SF has an on-chip advanced pulse controller (APC) that can generate a maximum of eight pulse outputs, using the advanced timer unit II (ATU-II) as the time base.

#### 12.1.1 Features

The features of the APC are summarized below.

- Maximum eight pulse outputs
   The pulse output pins can be selected from among eight pins. Multiple settings are possible.
- Output trigger provided by advanced timer unit II (ATU-II) channel 2
   Pulse 0 output and 1 output is performed using the compare-match signal generated by the ATU-II channel II compare-match register as the trigger.

#### 12.1.2 Block Diagram

Figure 12.1 shows a block diagram of the advanced pulse controller.

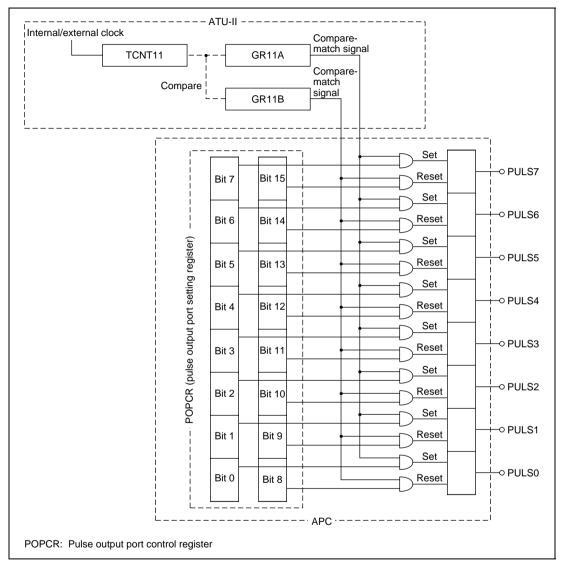



Figure 12.1 Advanced Pulse Controller Block Diagram

#### 12.1.3 Pin Configuration

Table 12.1 summarizes the advanced pulse controller's output pins.

**Table 12.1 Advanced Pulse Controller Pins** 

| Pin Name | I/O    | Function           |
|----------|--------|--------------------|
| PULS0    | Output | APC pulse output 0 |
| PULS1    | Output | APC pulse output 1 |
| PULS2    | Output | APC pulse output 2 |
| PULS3    | Output | APC pulse output 3 |
| PULS4    | Output | APC pulse output 4 |
| PULS5    | Output | APC pulse output 5 |
| PULS6    | Output | APC pulse output 6 |
| PULS7    | Output | APC pulse output 7 |

### 12.1.4 Register Configuration

Table 12.2 summarizes the advanced pulse controller's register.

**Table 12.2 Advanced Pulse Controller Register** 

| Name                               | Abbreviation | R/W | Initial Value | Address    | Access Size |
|------------------------------------|--------------|-----|---------------|------------|-------------|
| Pulse output port control register | POPCR        | R/W | H'0000        | H'FFFFF700 | 8, 16       |

Note: Register access requires 4 or 5 cycles.

## 12.2 Register Descriptions

#### 12.2.1 Pulse Output Port Control Register (POPCR)

The pulse output port control register (POPCR) is a 16-bit readable/writable register.

POPCR is initialized to H'0000 by a power-on reset and in hardware standby mode. It is not initialized in software standby mode.

| Bit:           | 15           | 14           | 13           | 12           | 11           | 10           | 9            | 8            |
|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                | PULS7<br>ROE | PULS6<br>ROE | PULS5<br>ROE | PULS4<br>ROE | PULS3<br>ROE | PULS2<br>ROE | PULS1<br>ROE | PULS0<br>ROE |
| Initial value: | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| R/W:           | R/W          |
|                |              |              |              |              |              |              |              |              |
| Bit:           | 7            | 6            | 5            | 4            | 3            | 2            | 1            | 0            |
|                | PULS7<br>SOE | PULS6<br>SOE | PULS5<br>SOE | PULS4<br>SOE | PULS3<br>SOE | PULS2<br>SOE | PULS1<br>SOE | PULS0<br>SOE |
| Initial value: | 0            | 0            | 0            | 0            | 0            | 0            | 0            | 0            |
| R/W:           | R/W          |

• Bits 15 to 8—PULS7 to PULS0 Reset Output Enable (PULS7ROE to PULS0ROE): These bits enable or disable 0 output to the APC pulse output pins (PULS7 to PULS0) bit by bit.

Bits 15 to 8: PULS7ROE to PULS0ROE Description

| 0 | 0 output to APC pulse output pin (PULS7–PULS0) is disabled |
|---|------------------------------------------------------------|
|   | (Initial value)                                            |
| 1 | 0 output to APC pulse output pin (PULS7–PULS0) is enabled  |

When one of these bits is set to 1, 0 is output from the corresponding pin on a compare-match between the GR11B and TCNT11 values.

• Bits 7 to 0—PULS7 to PULS0 Set Output Enable (PULS7SOE to PULS0SOE): These bits enable or disable 1 output to the APC pulse output pins (PULS7 to PULS0) bit by bit.

| Bits 7 to 0:         |             |
|----------------------|-------------|
| PULS7SOE to PULS0SOE | Description |

| 0 | 1 output to APC pulse output pin (PULS7–PULS0) is disabled (Initial value) |
|---|----------------------------------------------------------------------------|
| 1 | 1 output to APC pulse output pin (PULS7–PULS0) is enabled                  |

When one of these bits is set to 1, 1 is output from the corresponding pin on a compare-match between the GR11A and TCNT11 values.

### 12.3 Operation

#### 12.3.1 Overview

APC pulse output is enabled by designating multiplex pins for APC pulse output with the pin function controller (PFC), and setting the corresponding bits to 1 in the pulse output port control register (POPCR).

When general register IIA (GRIIA) in the advanced timer unit II (ATU-II) subsequently generates a compare-match signal, 1 is output from the pins set to 1 by bits 7 to 0 in POPCR. When general register 11B (GR11B) generates a compare-match signal, 0 is output from the pins set to 1 by bits 15 to 8 in POPCR.

0 is output from the output-enabled state until the first compare-match occurs.

The advanced pulse controller output operation is shown in figure 12.2.

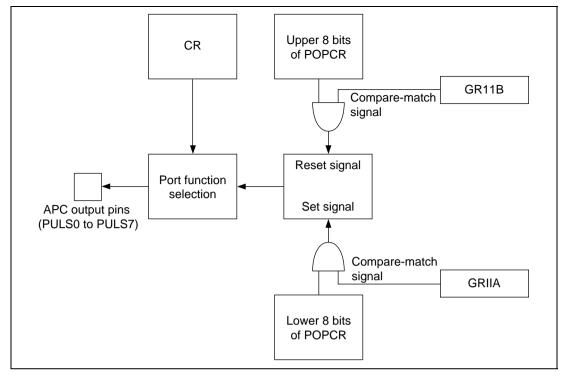



Figure 12.2 Advanced Pulse Controller Output Operation

#### 12.3.2 Advanced Pulse Controller Output Operation

**Example of Setting Procedure for Advanced Pulse Controller Output Operation:** Figure 12.3 shows an example of the setting procedure for advanced pulse controller output operation.

- 1. Set general registers GR11A and GR11B as output compare registers with the timer I/O control register (TIOR).
- 2. Set the pulse rise point with GR11A and the pulse fall point with GR11B.
- 3. Select the timer counter 11 (TCNT11) counter clock with the timer prescale register (PSCR). TCNT11 can only be cleared by an overflow.
- 4. Enable the respective interrupts with the timer interrupt enable register (TIER).
- 5. Set the pins for 1 output and 0 output with POPCR.
- 6. Set the control register for the port to be used by the APC to the APC output pin function.
- 7. Set the STR bit to 1 in the timer start register (TSTR) to start timer counter 11 (TCNT11).
- 8. Each time a compare-match interrupt is generated, update the GR value and set the next pulse output time.
- 9. Each time a compare-match interrupt is generated, update the POPCR value and set the next pin for pulse output.



Figure 12.3 Example of Setting Procedure for Advanced Pulse Controller Output Operation

**Example of Advanced Pulse Controller Output Operation:** Figure 12.4 shows an example of advanced pulse controller output operation.

- 1. Set ATU-11 registers GR11A and GR11B (to be used for output trigger generation) as output compare registers. Set the rise point in GR11A and the fall point in GR11B, and enable the respective compare-match interrupts.
- 2. Write H'0101 to POPCR.
- 3. Start the TCNT11 count, when a GR11A compare-match occurs, 1 is output from the PULS0 pin. When a GR11B compare-match occurs, 0 is output from the PULS0 pin.
- 4. Pulse output widths and output pins can be continually changed by successively rewriting GR11A, GR11B, and POPCR in response to compare-match interrupts.
- 5. By setting POPCR to a value such as H'E0E0, pulses can be output from up to 8 pins in response to a single compare-match.

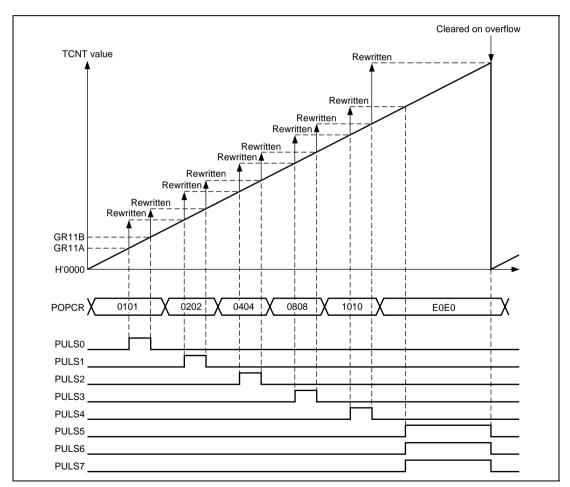



Figure 12.4 Example of Advanced Pulse Controller Output Operation

# 12.4 Usage Notes

**Contention between Compare-Match Signals:** If the same value is set for both GR11A and GR11B, and 0 output and 1 output are both enabled for the same pin by the POPCR settings, 0 output has priority on pins PULS0 to PULS7 when compare-matches occur.

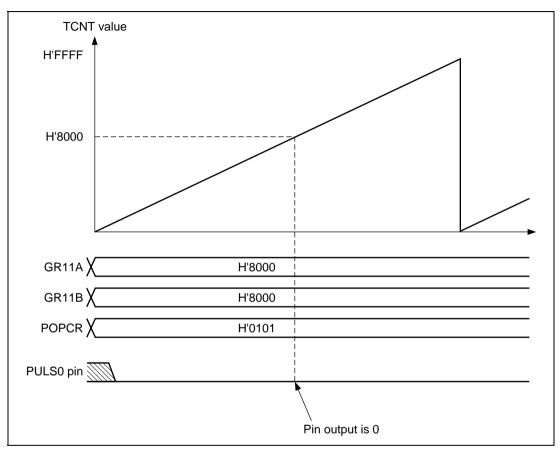



Figure 12.5 Example of Compare-Match Contention

# Section 13 Watchdog Timer (WDT)

#### 13.1 Overview

The watchdog timer (WDT) is a 1-channel timer for monitoring system operations. If a system encounters a problem (crashes, for example) and the timer counter overflows without being rewritten correctly by the CPU, an overflow signal (WDTOVF) is output externally. The WDT can simultaneously generate an internal reset signal for the entire chip.

When the watchdog function is not needed, the WDT can be used as an interval timer. In the interval timer operation, an interval timer interrupt is generated at each counter overflow.

#### 13.1.1 Features

The WDT has the following features:

- Works in watchdog timer mode or interval timer mode
- Outputs WDTOVF in watchdog timer mode
   When the counter overflows in watchdog timer mode, overflow signal WDTOVF is output externally. It is possible to select whether to reset the chip internally when this happens. Either the power-on reset or manual reset signal can be selected as the internal reset signal.
- Generates interrupts in interval timer mode
   When the counter overflows, it generates an interval timer interrupt.
- Works with eight counter input clocks

#### 13.1.2 Block Diagram

Figure 13.1 is the block diagram of the WDT.

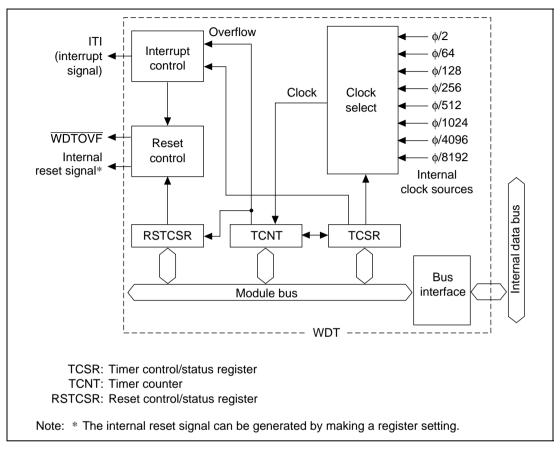



Figure 13.1 WDT Block Diagram

# 13.1.3 Pin Configuration

Table 13.1 shows the pin configuration.

**Table 13.1 Pin Configuration** 

| Pin                     | Abbreviation | I/O | Function                                                   |
|-------------------------|--------------|-----|------------------------------------------------------------|
| Watchdog timer overflow | WDTOVF       | 0   | Outputs the counter overflow signal in watchdog timer mode |

#### 13.1.4 Register Configuration

Table 13.2 summarizes the three WDT registers. They are used to select the clock, switch the WDT mode, and control the reset signal.

Table 13.2 WDT Registers

|                               |              |                     |               | Ad          | dress              |
|-------------------------------|--------------|---------------------|---------------|-------------|--------------------|
| Name                          | Abbreviation | R/W                 | Initial Value | Write*1     | Read* <sup>2</sup> |
| Timer control/status register | TCSR         | R/(W)* <sup>3</sup> | H'18          | H'FFFFEC10  | H'FFFFEC10         |
| Timer counter                 | TCNT         | R/W                 | H'00          | <del></del> | H'FFFFEC11         |
| Reset control/status register | RSTCSR       | R/(W) *3            | H'1F          | H'FFFFEC12  | H'FFFFEC13         |

Notes: In register access, three cycles are required for both byte access and word access.

## 13.2 Register Descriptions

#### 13.2.1 Timer Counter (TCNT)

TCNT is an 8-bit readable/writable upcounter. (TCNT differs from other registers in that it is more difficult to write to. See section 13.2.4, Register Access, for details.) When the timer enable bit (TME) in the timer control/status register (TCSR) is set to 1, the watchdog timer counter starts counting pulses of an internal clock selected by clock select bits 2 to 0 (CKS2 to CKS0) in TCSR. When the value of TCNT overflows (changes from H'FF to H'00), a watchdog timer overflow signal ( $\overline{\text{WDTOVF}}$ ) or interval timer interrupt (ITI) is generated, depending on the mode selected in the WT/ $\overline{\text{IT}}$  bit of TCSR.

TCNT is initialized to H'00 by a power-on reset, in hardware and software standby modes, and when the TME bit is cleared to 0.

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

<sup>\*1</sup> Write by word transfer. These registers cannot be written in byte or longword.

<sup>\*2</sup> Read by byte transfer. These registers cannot be read in word or longword.

<sup>\*3</sup> Only 0 can be written to bit 7 to clear the flag.

#### 13.2.2 Timer Control/Status Register (TCSR)

The timer control/status register (TCSR) is an 8-bit readable/writable register. (TCSR differs from other registers in that it is more difficult to write to. See section 13.2.4, Register Access, for details.) TCSR performs selection of the timer counter (TCNT) input clock and mode.

TCSR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 7      | 6                 | 5   | 4 | 3 | 2    | 1    | 0    |
|----------------|--------|-------------------|-----|---|---|------|------|------|
|                | OVF    | WT/ <del>IT</del> | TME | _ | _ | CKS2 | CKS1 | CKS0 |
| Initial value: | 0      | 0                 | 0   | 1 | 1 | 0    | 0    | 0    |
| R/W:           | R/(W)* | R/W               | R/W | R | R | R/W  | R/W  | R/W  |

Note: \* The only operation permitted on the OVF bit is a write of 0 after reading 1.

• Bit 7—Overflow Flag (OVF): Indicates that TCNT has overflowed from H'FF to H'00 in interval timer mode. This flag is not set in the watchdog timer mode.

| Bit 7: OVF | Description                                |                 |
|------------|--------------------------------------------|-----------------|
| 0          | No overflow of TCNT in interval timer mode | (Initial value) |
|            | [Clearing condition]                       |                 |
|            | When 0 is written to OVF after reading OVF |                 |
| 1          | TCNT overflow in interval timer mode       |                 |

• Bit 6—Timer Mode Select (WT/IT): Selects whether to use the WDT as a watchdog timer or interval timer. When TCNT overflows, the WDT either generates an interval timer interrupt (ITI) or generates a WDTOVF signal, depending on the mode selected.

| Bit 6: WT/ <del>IT</del> | Description                                                                                                                                                        |                                           |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 0                        | Interval timer mode: interval timer interrupt (I' when TCNT overflows                                                                                              | TI) request to the CPU<br>(Initial value) |
| 1                        | Watchdog timer mode: WDTOVF signal outp<br>overflows. (Section 13.2.3, Reset Control/Sta<br>describes in detail what happens when TCN <sup>-</sup><br>timer mode.) | atus Register (RSTCSR),                   |

Bit 5—Timer Enable (TME): Enables or disables the timer.

| Bit 5: TME | Description                                                                                         |
|------------|-----------------------------------------------------------------------------------------------------|
| 0          | Timer disabled: TCNT is initialized to H'00 and count-up stops                                      |
|            | (Initial value)                                                                                     |
| 1          | Timer enabled: TCNT starts counting. A WDTOVF signal or interrupt is generated when TCNT overflows. |

- Bits 4 and 3—Reserved: These bits always read 1. The write value should always be 1.
- Bits 2 to 0: Clock Select 2 to 0 (CKS2 to CKS0): These bits select one of eight internal clock sources for input to TCNT. The clock signals are obtained by dividing the frequency of the system clock (φ).

|             |             |             | Description         |                                    |  |  |
|-------------|-------------|-------------|---------------------|------------------------------------|--|--|
| Bit 2: CKS2 | Bit 1: CKS1 | Bit 0: CKS0 | Clock Source        | Overflow Interval*<br>(φ = 40 MHz) |  |  |
| 0           | 0           | 0           | φ/2 (Initial value) | 12.8 µs                            |  |  |
| 0           | 0           | 1           | φ/64                | 409.6 μs                           |  |  |
| 0           | 1           | 0           | φ/128               | 0.8 ms                             |  |  |
| 0           | 1           | 1           | φ/256               | 1.6 ms                             |  |  |
| 1           | 0           | 0           | φ/512               | 3.3 ms                             |  |  |
| 1           | 0           | 1           | φ/1024              | 6.6 ms                             |  |  |
| 1           | 1           | 0           | φ/4096              | 26.2 ms                            |  |  |
| 1           | 1           | 1           | φ/8192              | 52.4 ms                            |  |  |

Note: \* The overflow interval listed is the time from when the TCNT begins counting at H'00 until an overflow occurs.

#### 13.2.3 Reset Control/Status Register (RSTCSR)

RSTCSR is an 8-bit readable/writable register. (RSTCSR differs from other registers in that it is more difficult to write. See section 13.2.4, Register Access, for details.) It controls output of the internal reset signal generated by timer counter (TCNT) overflow. RSTCR is initialized to H'1F by input of a reset signal from the RES pin, but is not initialized by the internal reset signal generated by overflow of the WDT. It is initialized to H'1F in hardware standby mode and software standby mode.

| Bit:           | 7      | 6    | 5    | 4 | 3 | 2 | 1 | 0 |
|----------------|--------|------|------|---|---|---|---|---|
|                | WOVF   | RSTE | RSTS | _ |   | _ | _ | _ |
| Initial value: | 0      | 0    | 0    | 1 | 1 | 1 | 1 | 1 |
| R/W:           | R/(W)* | R/W  | R/W  | R | R | R | R | R |

Note: \*Only 0 can be written to bit 7 to clear the flag.

• Bit 7—Watchdog Timer Overflow Flag (WOVF): Indicates that TCNT has overflowed (H'FF to H'00) in watchdog timer mode. This flag is not set in interval timer mode.

| Bit 7: WOVF | Description                                  |                 |
|-------------|----------------------------------------------|-----------------|
| 0           | No TCNT overflow in watchdog timer mode      | (Initial value) |
|             | [Clearing condition]                         |                 |
|             | When 0 is written to WOVF after reading WOVF |                 |
| 1           | Set by TCNT overflow in watchdog timer mode  |                 |

• Bit 6—Reset Enable (RSTE): Selects whether to reset the chip internally if TCNT overflows in watchdog timer mode.

| Bit 6: RSTE | Description                                      |                 |
|-------------|--------------------------------------------------|-----------------|
| 0           | Not reset when TCNT overflows                    | (Initial value) |
|             | LSI not reset internally, but TCNT and TCSR rese | et within WDT.  |
| 1           | Reset when TCNT overflows                        |                 |

Bit 5—Reset Select (RSTS): Selects the kind of internal reset to be generated when TCNT overflows in watchdog timer mode.

| Bit 5: RSTS | Description    |                 |
|-------------|----------------|-----------------|
| 0           | Power-on reset | (Initial value) |
| 1           | Manual reset   |                 |

• Bits 4 to 0—Reserved: These bits are always read as 1. The write value should always be 1. Rev.2.0, 07/03, page 436 of 960

#### 13.2.4 Register Access

The watchdog timer's TCNT, TCSR, and RSTCSR registers differ from other registers in that they are more difficult to write to. The procedures for writing and reading these registers are given below.

**Writing to TCNT and TCSR:** These registers must be written by a word transfer instruction. They cannot be written by byte transfer instructions.

TCNT and TCSR both have the same write address. The write data must be contained in the lower byte of the written word. The upper byte must be H'5A (for TCNT) or H'A5 (for TCSR) (figure 13.2). This transfers the write data from the lower byte to TCNT or TCSR.

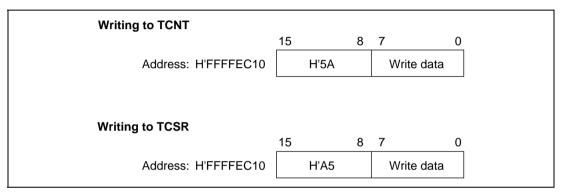



Figure 13.2 Writing to TCNT and TCSR

**Writing to RSTCSR:** RSTCSR must be written by a word access to address H'FFFFEC12. It cannot be written by byte transfer instructions.

Procedures for writing 0 to WOVF (bit 7) and for writing to RSTE (bit 6) and RSTS (bit 5) are different, as shown in figure 13.3.

To write 0 to the WOVF bit, the write data must be H'A5 in the upper byte and H'00 in the lower byte. This clears the WOVF bit to 0. The RSTE and RSTS bits are not affected. To write to the RSTE and RSTS bits, the upper byte must be H'5A and the lower byte must be the write data. The values of bits 6 and 5 of the lower byte are transferred to the RSTE and RSTS bits, respectively. The WOVF bit is not affected.

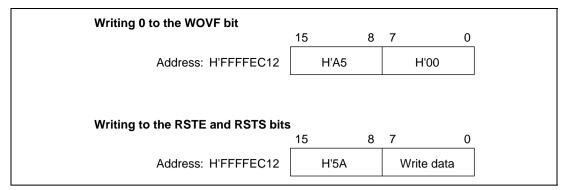



Figure 13.3 Writing to RSTCSR

**Reading from TCNT, TCSR, and RSTCSR:** TCNT, TCSR, and RSTCSR are read like other registers. Use byte transfer instructions. The read addresses are H'FFFFEC10 for TCSR, H'FFFFEC11 for TCNT, and H'FFFFEC13 for RSTCSR.

## 13.3 Operation

#### 13.3.1 Watchdog Timer Mode

To use the WDT as a watchdog timer, set the WT/ $\overline{\text{IT}}$  and TME bits of TCSR to 1. Software must prevent TCNT overflow by rewriting the TCNT value (normally by writing H'00) before overflow occurs. No TCNT overflows will occur while the system is operating normally, but if TCNT fails to be rewritten and overflows occur due to a system crash or the like, a  $\overline{\text{WDTOVF}}$  signal is output externally (figure 13.4). The  $\overline{\text{WDTOVF}}$  signal can be used to reset the system. The  $\overline{\text{WDTOVF}}$  signal is output for 128  $\phi$  clock cycles.

If the RSTE bit in RSTCSR is set to 1, a signal to reset the chip will be generated internally simultaneous to the  $\overline{WDTOVF}$  signal when TCNT overflows. Either a power-on reset or a manual reset can be selected by the RSTS bit in RSTCSR. The internal reset signal is output for 512  $\varphi$  clock cycles.

When a WDT overflow reset is generated simultaneously with a reset input at the  $\overline{RES}$  pin, the  $\overline{RES}$  reset takes priority, and the WOVF bit in RSTCSR is cleared to 0.

The following are not initialized by a WDT reset signal:

- PFC (pin function controller) registers
- I/O port registers

These registers are initialized only by an external power-on reset.

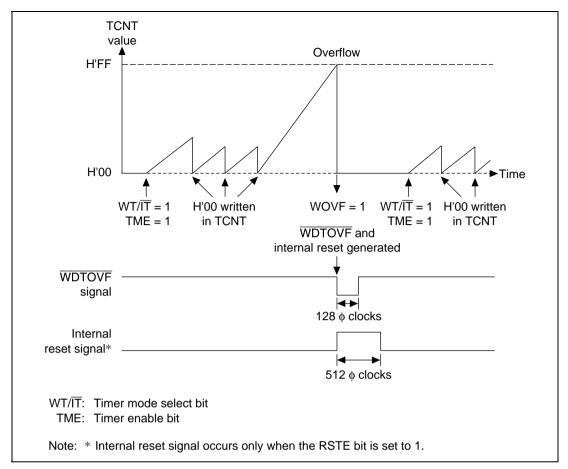



Figure 13.4 Operation in Watchdog Timer Mode

#### 13.3.2 Interval Timer Mode

To use the WDT as an interval timer, clear WT/IT to 0 and set TME to 1 in TCSR. An interval timer interrupt (ITI) is generated each time the timer counter overflows. This function can be used to generate interval timer interrupts at regular intervals (figure 13.5).

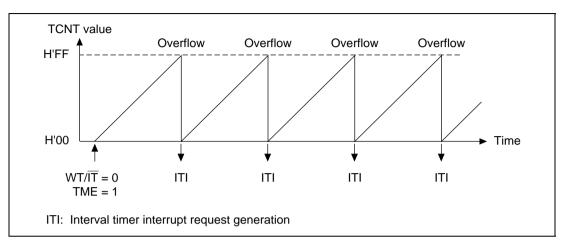



Figure 13.5 Operation in Interval Timer Mode

### 13.3.3 Timing of Setting the Overflow Flag (OVF)

In interval timer mode, when TCNT overflows, the OVF flag of TCSR is set to 1 and an interval timer interrupt (ITI) is simultaneously requested (figure 13.6).

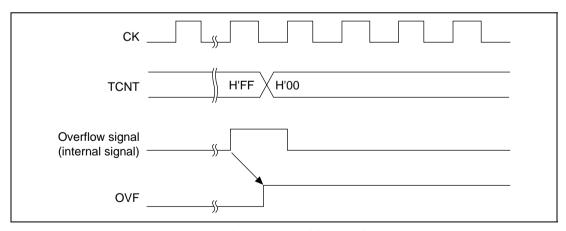



Figure 13.6 Timing of Setting OVF

### 13.3.4 Timing of Setting the Watchdog Timer Overflow Flag (WOVF)

When TCNT overflows in watchdog timer mode, the WOVF bit of RSTCSR is set to 1 and a  $\overline{\text{WDTOVF}}$  signal is output. When the RSTE bit in RSTCSR is set to 1, TCNT overflow enables an internal reset signal to be generated for the entire chip (figure 13.7).

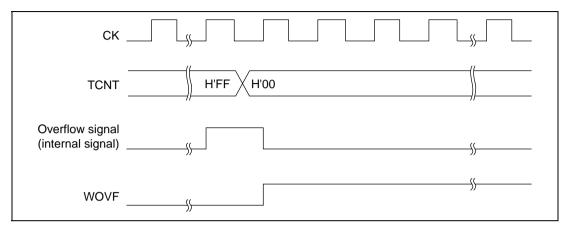



Figure 13.7 Timing of Setting WOVF

### 13.4 Usage Notes

#### 13.4.1 TCNT Write and Increment Contention

If a timer counter increment clock pulse is generated during the T3 state of a write cycle to TCNT, the write takes priority and the timer counter is not incremented (figure 13.8).

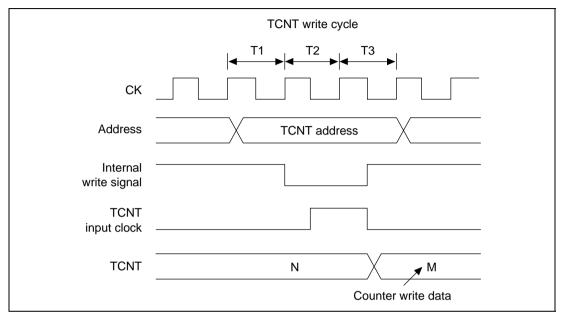



Figure 13.8 Contention between TCNT Write and Increment

### 13.4.2 Changing CKS2 to CKS0 Bit Values

If the values of bits CKS2 to CKS0 in the timer control/status register (TCSR) are rewritten while the WDT is running, the count may not increment correctly. Always stop the watchdog timer (by clearing the TME bit to 0) before changing the values of bits CKS2 to CKS0.

### 13.4.3 Changing between Watchdog Timer/Interval Timer Modes

To prevent incorrect operation, always stop the watchdog timer (by clearing the TME bit to 0) before switching between interval timer mode and watchdog timer mode.

### 13.4.4 System Reset by WDTOVF Signal

If a WDTOVF signal is input to the RES pin, the chip cannot initialize correctly.

Avoid logical input of the  $\overline{WDTOVF}$  output signal to the  $\overline{RES}$  input pin. To reset the entire system with the  $\overline{WDTOVF}$  signal, use the circuit shown in figure 13.9.

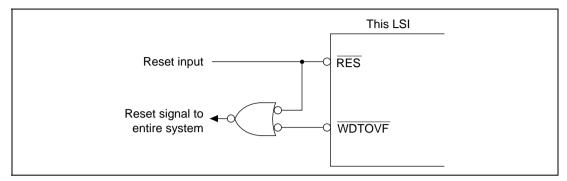



Figure 13.9 Example of System Reset Circuit Using WDTOVF Signal

#### 13.4.5 Internal Reset in Watchdog Timer Mode

If the RSTE bit is cleared to 0 in watchdog timer mode, the chip will not be reset internally when a TCNT overflow occurs, but TCNT and TCSR in the WDT will be reset.

Because the internal clock obtained by dividing the system  $clock(\phi)$  is also reset at this time, the SCI, A/D converter, and CMT that use the internal clock may not operate correctly from hereafter. To continue using these modules, initialize them before use.

### 13.4.6 Manual Reset in Watchdog Timer

When an internal reset is effected by TCNT overflow in watchdog timer mode, the processor waits until the end of the bus cycle at the time of manual reset generation before making the transition to manual reset exception processing. Therefore, the bus cycle is retained in a manual reset, but if a manual reset occurs while the bus is released or during DMAC burst transfer, manual reset exception processing will be deferred until the CPU acquires the bus. However, if the interval from generation of the manual reset until the end of the bus cycle is equal to or longer than the internal manual reset interval of 512 cycles, the internal manual reset source is ignored instead of being deferred, and manual reset exception processing is not executed.

# Section 14 Compare Match Timer (CMT)

### 14.1 Overview

The SH7055SF has an on-chip compare match timer (CMT) comprising two 16-bit timer channels. The CMT has 16-bit counters and can generate interrupts at set intervals.

#### 14.1.1 Features

The CMT has the following features:

- Four types of counter input clock can be selected
  - One of four internal clocks (P $\phi$ /8, P $\phi$ /32, P $\phi$ /128, P $\phi$ /512) can be selected independently for each channel.
- Interrupt sources
  - A compare match interrupt can be requested independently for each channel.

### 14.1.2 Block Diagram

Figure 14.1 shows a block diagram of the CMT.

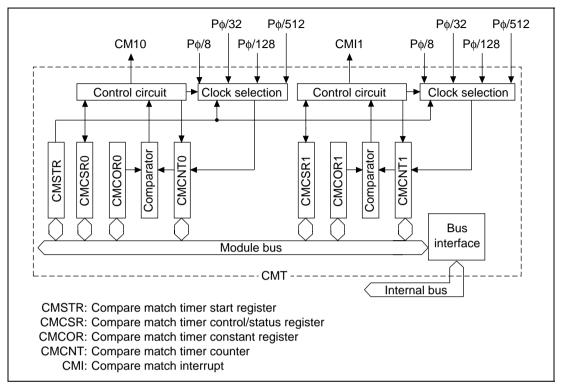



Figure 14.1 CMT Block Diagram

### 14.1.3 Register Configuration

Table 14.1 summarizes the CMT register configuration.

**Table 14.1 Register Configuration** 

| Channel | Name                                          | Abbreviation | R/W    | Initial<br>Value | Address    | Access Size<br>(Bits) |
|---------|-----------------------------------------------|--------------|--------|------------------|------------|-----------------------|
| Shared  | Compare match timer start register            | CMSTR        | R/W    | H'0000           | H'FFFFF710 | 8, 16, 32             |
| 0       | Compare match timer control/status register ( |              | R/(W)* | H'0000           | H'FFFFF712 | 8, 16, 32             |
|         | Compare match timer counter 0                 | CMCNT0       | R/W    | H'0000           | H'FFFFF714 | 8, 16, 32             |
|         | Compare match timer constant register 0       | CMCOR0       | R/W    | H'FFFF           | H'FFFFF716 | 8, 16, 32             |
| 1       | Compare match timer control/status register 1 |              | R/(W)* | H'0000           | H'FFFFF718 | 8, 16, 32             |
|         | Compare match timer counter 1                 | CMCNT1       | R/W    | H'0000           | H'FFFFF71A | 8, 16, 32             |
|         | Compare match timer constant register 1       | CMCOR1       | R/W    | H'FFFF           | H'FFFFF71C | 8, 16, 32             |

Notes: With regard to access size, four of five cycles are required for byte access and word access, and eight or nine cycles for longword access.

<sup>\*</sup> Only 0 can be written to the CMCSR0 and CMCSR1 CMF bits to clear the flags.

# 14.2 Register Descriptions

### 14.2.1 Compare Match Timer Start Register (CMSTR)

The compare match timer start register (CMSTR) is a 16-bit register that selects whether to operate or halt the channel 0 and channel 1 counters (CMCNT). It is initialized to H'0000 by a power-on reset and in the standby modes.

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9    | 8    |
|----------------|----|----|----|----|----|----|------|------|
|                | _  | 1  | _  | _  | _  | 1  | _    | _    |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    |
| R/W:           | R  | R  | R  | R  | R  | R  | R    | R    |
|                |    |    |    |    |    |    |      |      |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1    | 0    |
|                | _  |    | _  | _  | _  |    | STR1 | STR0 |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0    | 0    |
| R/W:           | R  | R  | R  | R  | R  | R  | R/W  | R/W  |

- Bits 15–2—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 1—Count Start 1 (STR1): Selects whether to operate or halt compare match timer counter 1.

| Bit 1: STR1 | Description                   |                 |
|-------------|-------------------------------|-----------------|
| 0           | CMCNT1 count operation halted | (Initial value) |
| 1           | CMCNT1 count operation        |                 |

• Bit 0—Count Start 0 (STR0): Selects whether to operate or halt compare match timer counter 0.

| Bit 0: STR0 | Description                   |                 |
|-------------|-------------------------------|-----------------|
| 0           | CMCNT0 count operation halted | (Initial value) |
| 1           | CMCNT0 count operation        |                 |

#### 14.2.2 Compare Match Timer Control/Status Register (CMCSR)

The compare match timer control/status register (CMCSR) is a 16-bit register that indicates the occurrence of compare matches, sets the enable/disable status of interrupts, and establishes the clock used for incrementation. It is initialized to H'0000 by a power-on reset and in the standby modes.

| Bit:           | 15     | 14   | 13 | 12 | 11 | 10 | 9    | 8    |
|----------------|--------|------|----|----|----|----|------|------|
|                | _      | _    | _  | _  | _  | 1  | _    | _    |
| Initial value: | 0      | 0    | 0  | 0  | 0  | 0  | 0    | 0    |
| R/W:           | R      | R    | R  | R  | R  | R  | R    | R    |
|                |        |      |    |    |    |    |      |      |
| Bit:           | 7      | 6    | 5  | 4  | 3  | 2  | 1    | 0    |
|                | CMF    | CMIE | _  | _  | _  | _  | CKS1 | CKS0 |
| Initial value: | 0      | 0    | 0  | 0  | 0  | 0  | 0    | 0    |
| R/W:           | R/(W)* | R/W  | R  | R  | R  | R  | R/W  | R/W  |

Note: \*Only 0 can be written to clear the flag.

- Bits 15–8 and 5–2—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 7—Compare Match Flag (CMF): This flag indicates whether or not the CMCNT and CMCOR values have matched.

| Bit 7: CMF | Description                             |                 |
|------------|-----------------------------------------|-----------------|
| 0          | CMCNT and CMCOR values have not matched | (Initial value) |
|            | [Clearing condition]                    |                 |
|            | Write 0 to CMF after reading 1 from it  |                 |
| 1          | CMCNT and CMCOR values have matched     |                 |

• Bit 6—Compare Match Interrupt Enable (CMIE): Selects whether to enable or disable a compare match interrupt (CMI) when the CMCNT and CMCOR values have matched (CMF = 1).

| Bit 6: CMIE | Description                            |                 |
|-------------|----------------------------------------|-----------------|
| 0           | Compare match interrupt (CMI) disabled | (Initial value) |
| 1           | Compare match interrupt (CMI) enabled  |                 |

 Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): These bits select the clock input to CMCNT from among the four internal clocks obtained by dividing the peripheral clock (Pφ).
 When the STR bit of CMSTR is set to 1, CMCNT begins incrementing with the clock selected by CKS1 and CKS0.

| Bit 1: CKS1 | Bit 0: CKS0 | Description |                 |
|-------------|-------------|-------------|-----------------|
| 0           | 0           | Рф/8        | (Initial value) |
|             | 1           | Pø/32       |                 |
| 1           | 0           | Pø/128      |                 |
|             | 1           | Ρφ/512      |                 |

#### 14.2.3 Compare Match Timer Counter (CMCNT)

The compare match timer counter (CMCNT) is a 16-bit register used as an up-counter for generating interrupt requests.

When an internal clock is selected with the CKS1 and CKS0 bits of the CMCSR register and the STR bit of CMSTR is set to 1, CMCNT begins incrementing with that clock. When the CMCNT value matches that of the compare match timer constant register (CMCOR), CMCNT is cleared to H'0000 and the CMF flag of CMCSR is set to 1. If the CMIE bit of CMCSR is set to 1 at this time, a compare match interrupt (CMI) is requested.

CMCNT is initialized to H'0000 by a power-on reset and in the standby modes. It is not initialized by a manual reset.

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                |     |     |     |     |     |     |     |     |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

#### 14.2.4 Compare Match Timer Constant Register (CMCOR)

The compare match timer constant register (CMCOR) is a 16-bit register that sets the period for compare match with CMCNT.

CMCOR is initialized to HFFFF by a power-on reset and in the standby modes. It is not initialized by a manual reset.

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                |     |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

### 14.3 Operation

### 14.3.1 Cyclic Count Operation

When an internal clock is selected with the CKS1, CKS0 bits of the CMCSR register and the STR bit of CMSTR is set to 1, CMCNT begins incrementing with the selected clock. When the CMCNT counter value matches that of the compare match constant register (CMCOR), the CMCNT counter is cleared to H'0000 and the CMF flag of the CMCSR register is set to 1. If the CMIE bit of the CMCSR register is set to 1 at this time, a compare match interrupt (CMI) is requested. The CMCNT counter begins counting up again from H'0000.

Figure 14.2 shows the compare match counter operation.

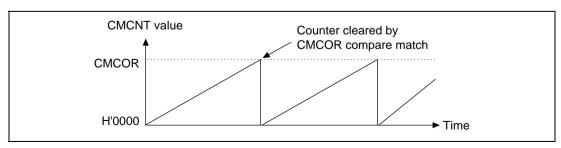



Figure 14.2 Counter Operation

#### 14.3.2 CMCNT Count Timing

One of four clocks ( $P\phi/8$ ,  $P\phi/32$ ,  $P\phi/128$ ,  $P\phi/512$ ) obtained by dividing the peripheral clock ( $P\phi$ ) can be selected by the CKS1 and CKS0 bits of CMCSR. Figure 14.3 shows the timing.

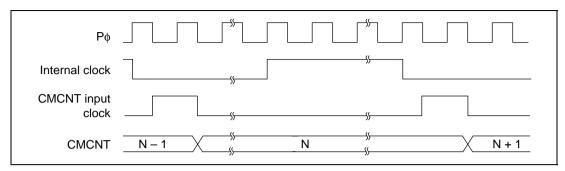



Figure 14.3 Count Timing

### 14.4 Interrupts

#### **14.4.1** Interrupt Sources and DTC Activation

The CMT has a compare match interrupt for each channel, with independent vector addresses allocated to each of them. The corresponding interrupt request is output when interrupt request flag CMF is set to 1 and interrupt enable bit CMIE has also been set to 1.

When activating CPU interrupts by interrupt request, the priority between the channels can be changed by means of interrupt controller settings. See section 7, Interrupt Controller (INTC), for details.

# 14.4.2 Compare Match Flag Set Timing

The CMF bit of the CMCSR register is set to 1 by the compare match signal generated when the CMCOR register and the CMCNT counter match. The compare match signal is generated upon the final state of the match (timing at which the CMCNT counter matching count value is updated). Consequently, after the CMCOR register and the CMCNT counter match, a compare match signal will not be generated until a CMCNT counter input clock occurs. Figure 14.4 shows the CMF bit set timing.

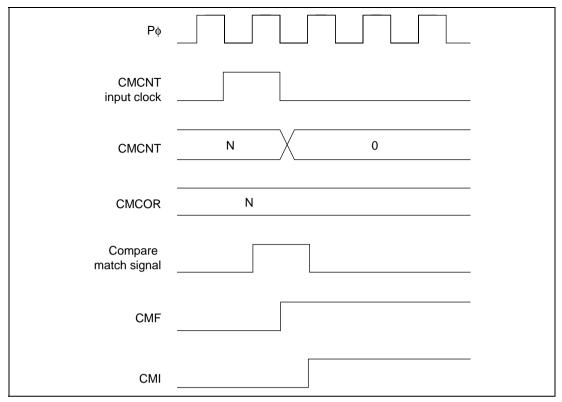



Figure 14.4 CMF Set Timing

### 14.4.3 Compare Match Flag Clear Timing

The CMF bit of the CMCSR register is cleared by writing a 0 to it after reading a 1. Figure 14.5 shows the timing when the CMF bit is cleared by the CPU.

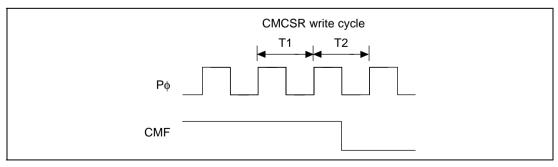



Figure 14.5 Timing of CMF Clear by the CPU

# 14.5 Usage Notes

Take care that the contentions described in sections 14.5.1 to 14.5.3 do not arise during CMT operation.

### 14.5.1 Contention between CMCNT Write and Compare Match

If a compare match signal is generated during the T2 state of the CMCNT counter write cycle, the CMCNT counter clear has priority, so the write to the CMCNT counter is not performed. Figure 14.6 shows the timing.

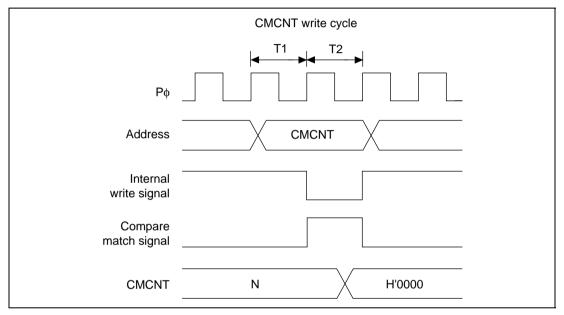



Figure 14.6 CMCNT Write and Compare Match Contention

#### 14.5.2 Contention between CMCNT Word Write and Incrementation

If an increment occurs during the T2 state of the CMCNT counter word write cycle, the counter write has priority, so no increment occurs. Figure 14.7 shows the timing.

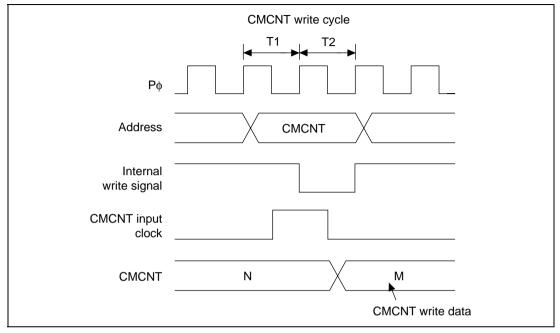



Figure 14.7 CMCNT Word Write and Increment Contention

### 14.5.3 Contention between CMCNT Byte Write and Incrementation

If an increment occurs during the T2 state of the CMCNT byte write cycle, the counter write has priority, so no increment of the write data results on the side on which the write was performed. The byte data on the side on which writing was not performed is also not incremented, so the contents are those before the write.

Figure 14.8 shows the timing when an increment occurs during the T2 state of the CMCNTH write cycle.



Figure 14.8 CMCNT Byte Write and Increment Contention

# Section 15 Serial Communication Interface (SCI)

#### 15.1 Overview

The SH7055SF has a serial communication interface (SCI) with five independent channels.

The SCI supports both asynchronous and synchronous serial communication. It also has a multiprocessor communication function for serial communication between two or more processors, and a clock inverted input/output function.

#### 15.1.1 Features

The SCI has the following features:

- · Selection of asynchronous or synchronous as the serial communication mode
  - Asynchronous mode

Serial data communication is synchronized in character units. The SCI can communicate with a universal asynchronous receiver/transmitter (UART), an asynchronous communication interface adapter (ACIA), or any other chip that employs standard asynchronous serial communication. It can also communicate with two or more other processors using the multiprocessor communication function. There are twelve selectable serial data communication formats.

- Data length: seven or eight bits
- Stop bit length: one or two bits
- Parity: even, odd, or none
- Multiprocessor bit: one or none
- Receive error detection: parity, overrun, and framing errors
- Break detection: by reading the RxD level directly when a framing error occurs
- Synchronous mode

Serial data communication is synchronized with a clock signal. The SCI can communicate with other chips having a synchronous communication function. There is one serial data communication format.

- Data length: eight bits
- Receive error detection: overrun errors
- Serial clock inverted input/output
- Full duplex communication: The transmitting and receiving sections are independent, so the SCI can transmit and receive simultaneously. Both sections use double buffering, so continuous data transfer is possible in both the transmit and receive directions.
- On-chip baud rate generator with selectable bit rates

- Internal or external transmit/receive clock source: baud rate generator (internal) or SCK pin (external)
- Four types of interrupts: Transmit-data-empty, transmit-end, receive-data-full, and receive-error interrupts are requested independently. The transmit-data-empty and receive-data-full interrupts can start the direct memory access controller (DMAC) to transfer data.
- Selection of LSB-first or MSB-first transfer (8-bit length)
   This selection is available regardless of the communication mode. (The descriptions in this section are based on LSB-first transfer.)

#### 15.1.2 Block Diagram

Figure 15.1 shows a block diagram of the SCI.

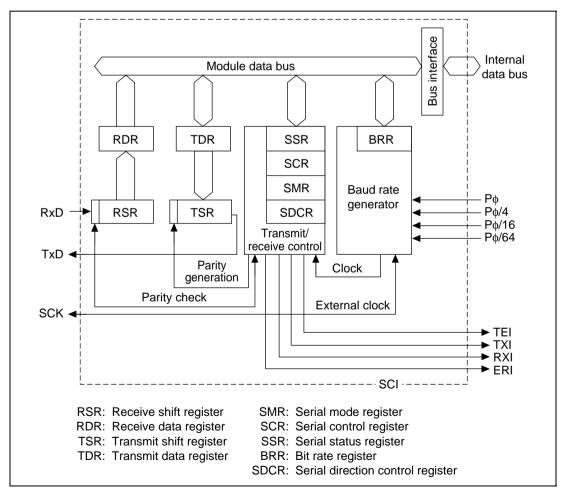



Figure 15.1 SCI Block Diagram

# 15.1.3 Pin Configuration

Table 15.1 summarizes the SCI pins by channel.

Table 15.1 SCI Pins

| Channel | Pin Name          | Abbreviation | Input/Output | Function                  |
|---------|-------------------|--------------|--------------|---------------------------|
| 0       | Serial clock pin  | SCK0         | Input/output | SCI0 clock input/output   |
|         | Receive data pin  | RxD0         | Input        | SCI0 receive data input   |
|         | Transmit data pin | TxD0         | Output       | SCI0 transmit data output |
| 1       | Serial clock pin  | SCK1         | Input/output | SCI1 clock input/output   |
|         | Receive data pin  | RxD1         | Input        | SCI1 receive data input   |
|         | Transmit data pin | TxD1         | Output       | SCI1 transmit data output |
| 2       | Serial clock pin  | SCK2         | Input/output | SCI2 clock input/output   |
|         | Receive data pin  | RxD2         | Input        | SCI2 receive data input   |
|         | Transmit data pin | TxD2         | Output       | SCI2 transmit data output |
| 3       | Serial clock pin  | SCK3         | Input/output | SCI3 clock input/output   |
|         | Receive data pin  | RxD3         | Input        | SCI3 receive data input   |
|         | Transmit data pin | TxD3         | Output       | SCI3 transmit data output |
| 4       | Serial clock pin  | SCK4         | Input/output | SCI4 clock input/output   |
|         | Receive data pin  | RxD4         | Input        | SCI4 receive data input   |
|         | Transmit data pin | TxD4         | Output       | SCI4 transmit data output |

Note: In the text the pins are referred to as SCK, RxD, and TxD, omitting the channel number.

# 15.1.4 Register Configuration

Table 15.2 summarizes the SCI internal registers. These registers select the communication mode (asynchronous or synchronous), specify the data format and bit rate, and control the transmitter and receiver sections.

Table 15.2 Registers

| Access<br>Size |
|----------------|
| 3, 16          |
|                |
|                |
|                |
|                |
|                |
| 3              |
| 3, 16          |
|                |
|                |
|                |
|                |
|                |
| 3              |
| 3, 16          |
|                |
|                |
|                |
|                |
|                |
| 3              |
| }              |

Table 15.2 Registers (cont)

| Channel | Name                                | Abbreviation | R/W      | Initial<br>Value | Address* <sup>2</sup> | Access<br>Size |
|---------|-------------------------------------|--------------|----------|------------------|-----------------------|----------------|
| 3       | Serial mode register 3              | SMR3         | R/W      | H'00             | H'FFFFF018            | 8, 16          |
|         | Bit rate register 3                 | BRR3         | R/W      | H'FF             | H'FFFFF019            | _              |
|         | Serial control register 3           | SCR3         | R/W      | H'00             | H'FFFFF01A            | <del>_</del>   |
|         | Transmit data register 3            | TDR3         | R/W      | H'FF             | H'FFFFF01B            | <del>_</del>   |
|         | Serial status register 3            | SSR3         | R/(W) *1 | H'84             | H'FFFFF01C            | <del>_</del>   |
|         | Receive data register 3             | RDR3         | R        | H'00             | H'FFFFF01D            | _              |
|         | Serial direction control register 3 | SDCR3        | R/W      | H'F2             | H'FFFFF01E            | 8              |
| 4       | Serial mode register 4              | SMR4         | R/W      | H'00             | H'FFFFF020            | 8, 16          |
|         | Bit rate register 4                 | BRR4         | R/W      | H'FF             | H'FFFFF021            | _              |
|         | Serial control register 4           | SCR4         | R/W      | H'00             | H'FFFFF022            | _              |
|         | Transmit data register 4            | TDR4         | R/W      | H'FF             | H'FFFFF023            | <del>_</del>   |
|         | Serial status register 4            | SSR4         | R/(W) *1 | H'84             | H'FFFFF024            | <del>_</del>   |
|         | Receive data register 4             | RDR4         | R        | H'00             | H'FFFFF025            | <del>_</del>   |
|         | Serial direction control register 4 | SDCR4        | R/W      | H'F2             | H'FFFFF026            | 8              |

Notes: In register access, four or five cycles are required for byte access, and eight or nine cycles for word access.

# 15.2 Register Descriptions

# 15.2.1 Receive Shift Register (RSR)

The receive shift register (RSR) receives serial data. Data input at the RxD pin is loaded into RSR in the order received, LSB (bit 0) first, converting the data to parallel form. When one byte has been received, it is automatically transferred to RDR.

The CPU cannot read or write to RSR directly.

| Bit: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |   |
|------|---|---|---|---|---|---|---|---|---|
|      |   |   |   |   |   |   |   |   | Ī |
| R/W: | _ | _ | _ | _ | _ | _ | _ | _ | _ |

<sup>\*1</sup> Only 0 can be written to clear the flags.

<sup>\*2</sup> Do not access empty addresses.

#### 15.2.2 Receive Data Register (RDR)

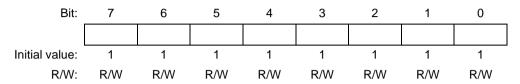
The receive data register (RDR) stores serial receive data. The SCI completes the reception of one byte of serial data by moving the received data from the receive shift register (RSR) into RDR for storage. RSR is then ready to receive the next data. This double buffering allows the SCI to receive data continuously.

The CPU can read but not write to RDR. RDR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode. It is not initialized by a manual reset.

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|---|---|---|---|---|---|---|---|
|                |   |   |   |   |   |   |   |   |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W:           | R | R | R | R | R | R | R | R |

#### 15.2.3 Transmit Shift Register (TSR)

The transmit shift register (TSR) transmits serial data. The SCI loads transmit data from the transmit data register (TDR) into TSR, then transmits the data serially from the TxD pin, LSB (bit 0) first. After transmitting one data byte, the SCI automatically loads the next transmit data from TDR into TSR and starts transmitting again. If the TDRE bit of SSR is 1, however, the SCI does not load the TDR contents into TSR.


The CPU cannot read or write to TSR directly.

| Bit: | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|------|---|---|---|---|---|---|---|---|
|      |   |   |   |   |   |   |   |   |
| R/W: |   |   |   |   |   |   |   |   |

#### 15.2.4 Transmit Data Register (TDR)

The transmit data register (TDR) is an 8-bit register that stores data for serial transmission. When the SCI detects that the transmit shift register (TSR) is empty, it moves transmit data written in TDR into TSR and starts serial transmission. Continuous serial transmission is possible by writing the next transmit data in TDR during serial transmission from TSR.

The CPU can always read and write to TDR. TDR is initialized to HFF by a power-on reset, and in hardware standby mode and software standby mode. It is not initialized by a manual reset.



#### 15.2.5 Serial Mode Register (SMR)

The serial mode register (SMR) is an 8-bit register that specifies the SCI serial communication format and selects the clock source for the baud rate generator.

The CPU can always read and write to SMR. SMR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode. It is not initialized by a manual reset.

| Bit:           | 7   | 6   | 5   | 4   | 3    | 2   | 1    | 0    |
|----------------|-----|-----|-----|-----|------|-----|------|------|
|                | C/A | CHR | PE  | O/E | STOP | MP  | CKS1 | CKS0 |
| Initial value: | 0   | 0   | 0   | 0   | 0    | 0   | 0    | 0    |
| R/W:           | R/W | R/W | R/W | R/W | R/W  | R/W | R/W  | R/W  |

• Bit 7—Communication Mode (C/A): Selects whether the SCI operates in asynchronous or synchronous mode.

| Bit 7: C/Ā | Description       |                 |
|------------|-------------------|-----------------|
| 0          | Asynchronous mode | (Initial value) |
| 1          | Synchronous mode  |                 |

• Bit 6—Character Length (CHR): Selects 7-bit or 8-bit data in asynchronous mode. In synchronous mode, the data length is always eight bits, regardless of the CHR setting.

| Bit 6: CHR | Description                                                                      |                 |
|------------|----------------------------------------------------------------------------------|-----------------|
| 0          | Eight-bit data                                                                   | (Initial value) |
| 1          | Seven-bit data                                                                   |                 |
|            | When 7-bit data is selected, the MSB (lis not transmitted. LSB-first/MSB-first s | ,               |

Bit 5—Parity Enable (PE): Selects whether to add a parity bit to transmit data and to check the
parity of receive data, in asynchronous mode. In synchronous mode and when using a
multiprocessor format, a parity bit is neither added nor checked, regardless of the PE bit
setting.

| Bit 5: PE | Description                                                                                                                                                                                     |                 |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0         | Parity bit not added or checked                                                                                                                                                                 | (Initial value) |
| 1         | Parity bit added and checked                                                                                                                                                                    |                 |
|           | When PE is set to 1, an even or odd parity bit is added depending on the parity mode ( $O/\overline{E}$ bit) setting. Receiv checked according to the even/odd ( $O/\overline{E}$ bit) setting. |                 |

• Bit 4—Parity Mode (O/E): Selects even or odd parity when parity bits are added and checked. The O/E setting is used only in asynchronous mode and only when the parity enable bit (PE) is set to 1 to enable parity addition and checking. The O/E setting is invalid in synchronous mode, in asynchronous mode when parity bit addition and checking is disabled, and when using a multiprocessor format.

| Bit 4: O/E | Description                                                                                                                                                                                                                                                              |                                         |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
| 0          | Even parity                                                                                                                                                                                                                                                              | (Initial value)                         |  |  |  |
|            | If even parity is selected, the parity bit is added to transmit data to make an even number of 1s in the transmitted character and parity bit combined. Receive data is checked to see if it has an even number of 1s in the received character and parity bit combined. |                                         |  |  |  |
| 1          | Odd parity                                                                                                                                                                                                                                                               |                                         |  |  |  |
|            | If odd parity is selected, the parity bit is added to to<br>an odd number of 1s in the transmitted character<br>combined. Receive data is checked to see if it has<br>in the received character and parity bit combined.                                                 | and parity bit<br>s an odd number of 1s |  |  |  |

 Bit 3—Stop Bit Length (STOP): Selects one or two bits as the stop bit length in asynchronous mode. This setting is used only in asynchronous mode. It is ignored in synchronous mode because no stop bits are added.

In receiving, only the first stop bit is checked, regardless of the STOP bit setting. If the second stop bit is 1, it is treated as a stop bit, but if the second stop bit is 0, it is treated as the start bit of the next incoming character.

| Bit 3: STOP | Description                                                      |                        |
|-------------|------------------------------------------------------------------|------------------------|
| 0           | One stop bit                                                     | (Initial value)        |
|             | In transmitting, a single bit of 1 is added at the er character. | nd of each transmitted |
| 1           | Two stop bits                                                    |                        |
|             | In transmitting, two 1-bits are added at the end of character.   | f each transmitted     |

Bit 2—Multiprocessor Mode (MP): Selects multiprocessor format. When multiprocessor format is selected, settings of the parity enable (PE) and parity mode (O/E) bits are ignored.
 The MP bit setting is used only in asynchronous mode; it is ignored in synchronous mode. For the multiprocessor communication function, see section 15.3.3, Multiprocessor Communication.

| Bit 2: MP | Description                      |                 |
|-----------|----------------------------------|-----------------|
| 0         | Multiprocessor function disabled | (Initial value) |
| 1         | Multiprocessor format selected   | _               |

Bits 1 and 0—Clock Select 1 and 0 (CKS1, CKS0): These bits select the internal clock source of the on-chip baud rate generator. Four clock sources are available: Pφ, Pφ/4, Pφ/16, or Pφ/64 (Pφ is the peripheral clock). For further information on the clock source, bit rate register settings, and baud rate, see section 15.2.8, Bit Rate Register (BRR).

| Bit 1: CKS1 | Bit 0: CKS0 | Description |                 |
|-------------|-------------|-------------|-----------------|
| 0           | 0           | Рф          | (Initial value) |
|             | 1           | Ρφ/4        |                 |
| 1           | 0           | Pø/16       |                 |
|             | 1           | Ρφ/64       |                 |

### 15.2.6 Serial Control Register (SCR)

The serial control register (SCR) operates the SCI transmitter/receiver, selects the serial clock output in asynchronous mode, enables/disables interrupt requests, and selects the transmit/receive clock source. The CPU can always read and write to SCR. SCR is initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode. It is not initialized by a manual reset.

| Bit:           | 7   | 6   | 5   | 4   | 3    | 2    | 1    | 0    |
|----------------|-----|-----|-----|-----|------|------|------|------|
|                | TIE | RIE | TE  | RE  | MPIE | TEIE | CKE1 | CKE0 |
| Initial value: | 0   | 0   | 0   | 0   | 0    | 0    | 0    | 0    |
| R/W:           | R/W | R/W | R/W | R/W | R/W  | R/W  | R/W  | R/W  |

• Bit 7—Transmit Interrupt Enable (TIE): Enables or disables the transmit-data-empty interrupt (TXI) requested when the transmit data register empty bit (TDRE) in the serial status register (SSR) is set to 1 by transfer of serial transmit data from TDR to TSR.

| Bit 7: TIE | Description                                                                                                                            |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 0          | Transmit-data-empty interrupt request (TXI) is disabled (Initial value)                                                                |
|            | The TXI interrupt request can be cleared by reading TDRE after it has been set to 1, then clearing TDRE to 0, or by clearing TIE to 0. |
| 1          | Transmit-data-empty interrupt request (TXI) is enabled                                                                                 |

• Bit 6—Receive Interrupt Enable (RIE): Enables or disables the receive-data-full interrupt (RXI) requested when the receive data register full bit (RDRF) in the serial status register (SSR) is set to 1 by transfer of serial receive data from RSR to RDR. It also enables or disables receive-error interrupt (ERI) requests.

| Bit 6: RIE | Description                                                                                                                                                                                |                      |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
| 0          | Receive-data-full interrupt (RXI) and receive-error interrupt (ERI) requests are disabled (Initial value)                                                                                  |                      |  |  |  |
|            | RXI and ERI interrupt requests can be cleared by reading the RDRF flag or error flag (FER, PER, or ORER) after it has been set to 1, then clearing the flag to 0, or by clearing RIE to 0. |                      |  |  |  |
| 1          | Receive-data-full interrupt (RXI) and receive-el requests are enabled                                                                                                                      | rror interrupt (ERI) |  |  |  |

• Bit 5—Transmit Enable (TE): Enables or disables the SCI serial transmitter.

| Bit 5: TE | Description                                                                                                                                                                                                                       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0         | Transmitter disabled (Initial value)                                                                                                                                                                                              |
|           | The transmit data register empty bit (TDRE) in the serial status register (SSR) is locked at 1.                                                                                                                                   |
| 1         | Transmitter enabled                                                                                                                                                                                                               |
|           | Serial transmission starts when the transmit data register empty (TDRE bit in the serial status register (SSR) is cleared to 0 after writing of transmit data into TDR. Select the transmit format in SMR before setting TE to 1. |

• Bit 4—Receive Enable (RE): Enables or disables the SCI serial receiver.

| Bit 4: RE | Description                                                                                                                                                                                   |       |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 0         | Receiver disabled (Initial v                                                                                                                                                                  | alue) |
|           | Clearing RE to 0 does not affect the receive flags (RDRF, FER, Pt ORER). These flags retain their previous values.                                                                            | ĒR,   |
| 1         | Receiver enabled                                                                                                                                                                              |       |
|           | Serial reception starts when a start bit is detected in asynchronous mode, or synchronous clock input is detected in synchronous mod Select the receive format in SMR before setting RE to 1. |       |

• Bit 3—Multiprocessor Interrupt Enable (MPIE): Enables or disables multiprocessor interrupts. The MPIE setting is used only in asynchronous mode, and only if the multiprocessor mode bit (MP) in the serial mode register (SMR) is set to 1 during reception. The MPIE setting is ignored in synchronous mode or when the MP bit is cleared to 0.

| Bit 3: MPIE | Description                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0           | Multiprocessor interrupts are disabled (normal receive operation) (Initial value)                                                                                                                                                                                                                                                                                                                                 |
|             | [Clearing conditions]                                                                                                                                                                                                                                                                                                                                                                                             |
|             | <ul> <li>When the MPIE bit is cleared to 0</li> </ul>                                                                                                                                                                                                                                                                                                                                                             |
|             | <ul> <li>When data with MPB = 1 is received</li> </ul>                                                                                                                                                                                                                                                                                                                                                            |
| 1           | Multiprocessor interrupts are enabled. Receive-data-full interrupt requests (RXI), receive-error interrupt requests (ERI), and setting of the RDRF, FER, and ORER status flags in the serial status register (SSR) are disabled until data with the multiprocessor bit set to 1 is received.                                                                                                                      |
|             | The SCI does not transfer receive data from RSR to RDR, does not detect receive errors, and does not set the RDRF, FER, and ORER flags in the serial status register (SSR). When it receives data that includes MPB = 1, MPB is set to 1, and the SCI automatically clears MPIE to 0, generates RXI and ERI interrupts (if the TIE and RIE bits in SCR are set to 1), and allows the FER and ORER bits to be set. |

• Bit 2—Transmit-End Interrupt Enable (TEIE): Enables or disables the transmit-end interrupt (TEI) requested if TDR does not contain valid transmit data when the MSB is transmitted.

| Bit 2: TEIE | Description                                         |                 |
|-------------|-----------------------------------------------------|-----------------|
| 0           | Transmit-end interrupt (TEI) requests are disabled* | (Initial value) |
| 1           | Transmit-end interrupt (TEI) requests are enabled*  | _               |

Note: \*The TEI request can be cleared by reading the TDRE bit in the serial status register (SSR) after it has been set to 1, then clearing TDRE to 0 and clearing the transmit end (TEND) bit to 0; or by clearing the TEIE bit to 0.

• Bits 1 and 0—Clock Enable 1 and 0 (CKE1, CKE0): These bits select the SCI clock source and enable or disable clock output from the SCK pin. Depending on the combination of CKE1 and CKE0, the SCK pin can be used for serial clock output, or serial clock input. Select the SCK pin function by using the pin function controller (PFC).

The CKE0 setting is valid only in asynchronous mode, and only when the SCI is internally clocked (CKE1 = 0). The CKE0 setting is ignored in synchronous mode, or when an external clock source is selected (CKE1 = 1). For further details on selection of the SCI clock source, see table 15.9 in section 15.3, Operation.

Bit 1: Bit 0: CKE1 CKE0 Description\*1

| 0 | 0 | Asynchronous mode | Internal clock, SCK pin used for input pin (input signal is ignored) or output pin (output level is undefined)*2 |
|---|---|-------------------|------------------------------------------------------------------------------------------------------------------|
|   |   | Synchronous mode  | Internal clock, SCK pin used for synchronous clock output*2                                                      |
| 0 | 1 | Asynchronous mode | Internal clock, SCK pin used for clock output*3                                                                  |
|   |   | Synchronous mode  | Internal clock, SCK pin used for synchronous clock output                                                        |
| 1 | 0 | Asynchronous mode | External clock, SCK pin used for clock input*4                                                                   |
|   |   | Synchronous mode  | External clock, SCK pin used for synchronous clock input                                                         |
| 1 | 1 | Asynchronous mode | External clock, SCK pin used for clock input*4                                                                   |
|   |   | Synchronous mode  | External clock, SCK pin used for synchronous clock input                                                         |

Notes: \*1 The SCK pin is multiplexed with other functions. Use the pin function controller (PFC) to select the SCK function for this pin, as well as the I/O direction.

<sup>\*2</sup> Initial value.

<sup>\*3</sup> The output clock frequency is the same as the bit rate.

<sup>\*4</sup> The input clock frequency is 16 times the bit rate.

### 15.2.7 Serial Status Register (SSR)

The serial status register (SSR) is an 8-bit register containing multiprocessor bit values, and status flags that indicate the SCI operating status.

The CPU can always read and write to SSR, but cannot write 1 in the status flags (TDRE, RDRF, ORER, PER, and FER). These flags can be cleared to 0 only if they have first been read (after being set to 1). Bits 2 (TEND) and 1 (MPB) are read-only bits that cannot be written. SSR is initialized to H'84 by a power-on reset, and in hardware standby mode and software standby mode. It is not initialized by a manual reset.

| Bit:           | 7      | 6      | 5      | 4      | 3      | 2    | 1   | 0    |
|----------------|--------|--------|--------|--------|--------|------|-----|------|
|                | TDRE   | RDRF   | ORER   | FER    | PER    | TEND | MPB | MPBT |
| Initial value: | 1      | 0      | 0      | 0      | 0      | 1    | 0   | 0    |
| R/W:           | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R/(W)* | R    | R   | R/W  |

Note: \*The only value that can be written is a 0 to clear the flag.

• Bit 7—Transmit Data Register Empty (TDRE): Indicates that the SCI has loaded transmit data from TDR into TSR and new serial transmit data can be written in TDR.

| Bit 7: TDRE | Description                                                                           |                    |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|
| 0           | TDR contains valid transmit data                                                      |                    |  |  |  |  |  |
|             | [Clearing conditions]                                                                 |                    |  |  |  |  |  |
|             | <ul> <li>When 0 is written to TDRE after reading TDRE = 1</li> </ul>                  |                    |  |  |  |  |  |
|             | When the DMAC writes data in TDR                                                      |                    |  |  |  |  |  |
| 1           | TDR does not contain valid transmit data                                              | (Initial value)    |  |  |  |  |  |
|             | [Setting conditions]                                                                  |                    |  |  |  |  |  |
|             | Power-on reset, hardware standby mode, or software stan                               | ndby mode          |  |  |  |  |  |
|             | <ul> <li>When the TE bit in SCR is 0</li> </ul>                                       |                    |  |  |  |  |  |
|             | <ul> <li>When data is transferred from TDR to TSR, enabling new<br/>in TDR</li> </ul> | data to be written |  |  |  |  |  |

• Bit 6—Receive Data Register Full (RDRF): Indicates that RDR contains received data.

| Bit 6: RDRF | Description                                                                            |  |  |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0           | RDR does not contain valid receive data (Initial value)                                |  |  |  |  |  |  |
|             | [Clearing conditions]                                                                  |  |  |  |  |  |  |
|             | <ul> <li>Power-on reset, hardware standby mode, or software standby mode</li> </ul>    |  |  |  |  |  |  |
|             | <ul> <li>When 0 is written to RDRF after reading RDRF = 1</li> </ul>                   |  |  |  |  |  |  |
|             | When the DMAC reads data from RDR                                                      |  |  |  |  |  |  |
| 1           | RDR contains valid received data                                                       |  |  |  |  |  |  |
|             | [Setting condition]                                                                    |  |  |  |  |  |  |
|             | RDRF is set to 1 when serial data is received normally and transferred from RSR to RDR |  |  |  |  |  |  |

Note: RDR and RDRF are not affected by detection of receive errors or by clearing of the RE bit to 0 in the serial control register. They retain their previous contents. If RDRF is still set to 1 when reception of the next data ends, an overrun error (ORER) occurs and the receive data is lost.

• Bit 5—Overrun Error (ORER): Indicates that data reception ended abnormally due to an overrun error.

| Bit 5: ORER | Description                                                                                                                                                                                                         |                  |  |  |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| 0           | Receiving is in progress or has ended normally (Initial value)                                                                                                                                                      |                  |  |  |  |  |  |
|             | Clearing the RE bit to 0 in the serial control register does not affect the ORER bit, which retains its previous value.                                                                                             |                  |  |  |  |  |  |
|             | [Clearing conditions]                                                                                                                                                                                               |                  |  |  |  |  |  |
|             | <ul> <li>Power-on reset, hardware standby mode, or software standby mode</li> </ul>                                                                                                                                 |                  |  |  |  |  |  |
|             | <ul> <li>When 0 is written to ORER after reading ORER = 1</li> </ul>                                                                                                                                                |                  |  |  |  |  |  |
| 1           | A receive overrun error occurred                                                                                                                                                                                    |                  |  |  |  |  |  |
|             | RDR continues to hold the data received before the overrun error, so subsequer receive data is lost. Serial receiving cannot continue while ORER is set to 1. In synchronous mode, serial transmitting is disabled. |                  |  |  |  |  |  |
|             | [Setting condition]                                                                                                                                                                                                 |                  |  |  |  |  |  |
|             | ORER is set to 1 if reception of the next serial data ends when                                                                                                                                                     | RDRF is set to 1 |  |  |  |  |  |

• Bit 4—Framing Error (FER): Indicates that data reception ended abnormally due to a framing error in asynchronous mode.

| Bit 4: FER | Description                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 0          | Receiving is in progress or has ended normally (Initial value)                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|            | Clearing the RE bit to 0 in the serial control register does not affect the FER bit, which retains its previous value.                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|            | [Clearing conditions]                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|            | <ul> <li>Power-on reset, hardware standby mode, or software standby mode</li> </ul>                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|            | <ul> <li>When 0 is written to FER after reading FER = 1</li> </ul>                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
| 1          | A receive framing error occurred                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |
|            | When the stop bit length is two bits, only the first bit is checked to see if it is a 1. The second stop bit is not checked. When a framing error occurs, the SCI transfers the receive data into RDR but does not set RDRF. Serial receiving cannot continue while FER is set to 1. In synchronous mode, serial transmitting is also disabled. |  |  |  |  |  |  |  |
|            | [Setting condition]                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |
|            | FER is set to 1 if the stop bit at the end of receive data is checked and found to be 0                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |

• Bit 3—Parity Error (PER): Indicates that data reception (with parity) ended abnormally due to a parity error in asynchronous mode.

| Bit 3: PER | Description                                                                                                                                                                                              |                |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| 0          | Receiving is in progress or has ended normally (Initial value                                                                                                                                            | <del>)</del> ) |  |  |  |  |  |
|            | Clearing the RE bit to 0 in the serial control register does not affect the PER bit, which retains its previous value.                                                                                   | ,              |  |  |  |  |  |
|            | [Clearing conditions]                                                                                                                                                                                    |                |  |  |  |  |  |
|            | <ul> <li>Power-on reset, hardware standby mode, or software standby mode</li> </ul>                                                                                                                      |                |  |  |  |  |  |
|            | <ul> <li>When 0 is written to PER after reading PER = 1</li> </ul>                                                                                                                                       |                |  |  |  |  |  |
| 1          | A receive parity error occurred                                                                                                                                                                          | _              |  |  |  |  |  |
|            | When a parity error occurs, the SCI transfers the receive data into RDR but doe not set RDRF. Serial receiving cannot continue while PER is set to 1.                                                    | <del>)</del> S |  |  |  |  |  |
|            | [Setting condition]                                                                                                                                                                                      |                |  |  |  |  |  |
|            | PER is set to 1 if the number of 1s in receive data, including the parity bit, does not match the even or odd parity setting of the parity mode bit $(O/\overline{E})$ in the serial mode register (SMR) |                |  |  |  |  |  |

Bit 2—Transmit End (TEND): Indicates that when the last bit of a serial character was
transmitted, TDR did not contain valid data, so transmission has ended. TEND is a read-only
bit and cannot be written.

| Bit 2: TEND                                     | Description                                                                                         |                 |  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| 0                                               | Transmission is in progress                                                                         |                 |  |  |  |  |  |  |
|                                                 | [Clearing conditions]                                                                               |                 |  |  |  |  |  |  |
|                                                 | <ul> <li>When 0 is written to TDRE after reading TDRE = 1</li> </ul>                                |                 |  |  |  |  |  |  |
|                                                 | When the DMAC writes data in TDR                                                                    |                 |  |  |  |  |  |  |
| 1                                               | End of transmission                                                                                 | (Initial value) |  |  |  |  |  |  |
|                                                 | [Setting conditions]                                                                                |                 |  |  |  |  |  |  |
|                                                 | <ul> <li>Power-on reset, hardware standby mode, or software standby mode</li> </ul>                 |                 |  |  |  |  |  |  |
| <ul> <li>When the TE bit in SCR is 0</li> </ul> |                                                                                                     |                 |  |  |  |  |  |  |
|                                                 | <ul> <li>If TDRE = 1 when the last bit of a one-byte serial transmit cha<br/>transmitted</li> </ul> | aracter is      |  |  |  |  |  |  |

Bit 1—Multiprocessor Bit (MPB): Stores the value of the multiprocessor bit in receive data
when a multiprocessor format is selected for receiving in asynchronous mode. MPB is a readonly bit and cannot be written.

| Bit 1: MPB | Description                                                                                         |                 |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| 0          | Multiprocessor bit value in receive data is 0                                                       | (Initial value) |  |  |  |  |
|            | If RE is cleared to 0 when a multiprocessor format is selected, the MPB retains its previous†value. |                 |  |  |  |  |
| 1          | Multiprocessor bit value in receive data is 1                                                       |                 |  |  |  |  |

Bit 0—Multiprocessor Bit Transfer (MPBT): Stores the value of the multiprocessor bit added
to transmit data when a multiprocessor format is selected for transmitting in asynchronous
mode. The MPBT setting is ignored in synchronous mode, when a multiprocessor format is not
selected, or when the SCI is not transmitting.

| Bit 0: MPBT | Description                                    |                 |
|-------------|------------------------------------------------|-----------------|
| 0           | Multiprocessor bit value in transmit data is 0 | (Initial value) |
| 1           | Multiprocessor bit value in transmit data is 1 |                 |

### 15.2.8 Bit Rate Register (BRR)

The bit rate register (BRR) is an 8-bit register that, together with the baud rate generator clock source selected by the CKS1 and CKS0 bits in the serial mode register (SMR), determines the serial transmit/receive bit rate.

The CPU can always read and write to BRR. BRR is initialized to H'FF by a power-on reset, and in hardware standby mode and software standby mode. It is not initialized by a manual reset. Each channel has independent baud rate generator control, so different values can be set for each channel.

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

Table 15.3 lists examples of BRR settings in the asynchronous mode; table 15.4 lists examples of BBR settings in the clock synchronous mode.

The BRR setting is calculated as follows:

Asynchronous mode:

$$N = \frac{P_{\phi}}{64 \times 2^{2n-1} \times B} \times 10^{6} - 1$$

Synchronous mode:

$$N = \frac{P_{\phi}}{64 \times 2^{2n-1} \times B} \times 10^{6} - 1$$

B: Bit rate (bits/s)

N: Baud rate generator BRR setting  $(0 \le N \le 255)$ 

Pφ: Peripheral module operating frequency (MHz) (1/2 of system clock)

n: Baud rate generator input clock (n = 0 to 3)

(See the following table for the clock sources and value of n.)

|   |                | SMR Settings |      |  |  |  |  |
|---|----------------|--------------|------|--|--|--|--|
| n | Clock Source   | CKS1         | CKS2 |  |  |  |  |
| 0 | Pφ             | 0            | 0    |  |  |  |  |
| 1 | Pφ/4           | 0            | 1    |  |  |  |  |
| 2 | P <i>∲</i> /16 | 1            | 0    |  |  |  |  |
| 3 | Pφ/64          | 1            | 1    |  |  |  |  |

The bit rate error in asynchronous mode is calculated as follows:

Error (%) = 
$$\left\{ \frac{P\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{2n-1}} - 1 \right\} \times 100$$

Table 15.3 Bit Rates and BRR Settings in Asynchronous Mode

|          |   |     |           |   | Рф      | (MHz)     |   |     |           |  |
|----------|---|-----|-----------|---|---------|-----------|---|-----|-----------|--|
| Bit Rate |   | 10  |           |   | 11.0592 |           |   | 12  |           |  |
| (Bits/s) | n | N   | Error (%) | n | N       | Error (%) | n | N   | Error (%) |  |
| 110      | 2 | 177 | -0.25     | 2 | 195     | 0.19      | 2 | 212 | 0.03      |  |
| 150      | 2 | 129 | 0.16      | 2 | 143     | 0.00      | 2 | 155 | 0.16      |  |
| 300      | 2 | 64  | 0.16      | 2 | 71      | 0.00      | 2 | 77  | 0.16      |  |
| 600      | 1 | 129 | 0.16      | 1 | 143     | 0.00      | 1 | 155 | 0.16      |  |
| 1200     | 1 | 64  | 0.16      | 1 | 71      | 0.00      | 1 | 77  | 0.16      |  |
| 2400     | 0 | 129 | 0.16      | 0 | 143     | 0.00      | 0 | 155 | 0.16      |  |
| 4800     | 0 | 64  | 0.16      | 0 | 71      | 0.00      | 0 | 77  | 0.16      |  |
| 9600     | 0 | 32  | -1.36     | 0 | 35      | 0.00      | 0 | 28  | 0.16      |  |
| 14400    | 0 | 21  | -1.36     | 0 | 23      | 0.00      | 0 | 25  | 0.16      |  |
| 19200    | 0 | 15  | 1.73      | 0 | 19      | 0.00      | 0 | 19  | -2.34     |  |
| 28800    | 0 | 10  | -1.36     | 0 | 11      | 0.00      | 0 | 12  | 0.16      |  |
| 31250    | 0 | 9   | 0.00      | 0 | 10      | 0.54      | 0 | 11  | 0.00      |  |
| 38400    | 0 | 7   | 1.73      | 0 | 8       | 0.00      | 0 | 9   | -2.34     |  |

Table 15.3 Bit Rates and BRR Settings in Asynchronous Mode (cont)

Pφ (MHz)

| Bit Rate |   | 12.288 |           |   | 14  |           |   | 14.7456 |           |  |  |
|----------|---|--------|-----------|---|-----|-----------|---|---------|-----------|--|--|
| (Bits/s) | n | N      | Error (%) | n | N   | Error (%) | n | N       | Error (%) |  |  |
| 110      | 2 | 217    | 0.08      | 2 | 248 | -0.17     | 3 | 64      | 0.70      |  |  |
| 150      | 2 | 159    | 0.00      | 2 | 181 | 0.16      | 2 | 191     | 0.00      |  |  |
| 300      | 2 | 79     | 0.00      | 2 | 90  | 0.16      | 2 | 95      | 0.00      |  |  |
| 600      | 1 | 159    | 0.00      | 1 | 181 | 0.16      | 1 | 191     | 0.00      |  |  |
| 1200     | 1 | 79     | 0.00      | 1 | 90  | 0.16      | 1 | 95      | 0.00      |  |  |
| 2400     | 0 | 159    | 0.00      | 0 | 181 | 0.16      | 0 | 191     | 0.00      |  |  |
| 4800     | 0 | 79     | 0.00      | 0 | 90  | 0.16      | 0 | 95      | 0.00      |  |  |
| 9600     | 0 | 39     | 0.00      | 0 | 45  | -0.93     | 0 | 47      | 0.00      |  |  |
| 14400    | 0 | 26     | -1.23     | 0 | 29  | 1.27      | 0 | 31      | 0.00      |  |  |
| 19200    | 0 | 19     | 0.00      | 0 | 22  | -0.93     | 0 | 23      | 0.00      |  |  |
| 28800    | 0 | 12     | 2.56      | 0 | 14  | 1.27      | 0 | 15      | 0.00      |  |  |
| 31250    | 0 | 11     | 2.40      | 0 | 13  | 0.00      | 0 | 14      | -1.70     |  |  |
| 38400    | 0 | 9      | 0.00      | 0 | 10  | 3.57      | 0 | 11      | 0.00      |  |  |

Table 15.3 Bit Rates and BRR Settings in Asynchronous Mode (cont)

Pφ (MHz)

| Bit Rate | Rate 16 17.2032 |     |           |   |     |           | 18 |     |           |
|----------|-----------------|-----|-----------|---|-----|-----------|----|-----|-----------|
| (Bits/s) | n               | N   | Error (%) | n | N   | Error (%) | n  | N   | Error (%) |
| 110      | 3               | 70  | 0.03      | 3 | 75  | 0.48      | 3  | 79  | -0.12     |
| 150      | 2               | 207 | 0.16      | 2 | 223 | 0.00      | 2  | 233 | 0.16      |
| 300      | 2               | 103 | 0.16      | 2 | 111 | 0.00      | 2  | 116 | 0.16      |
| 600      | 1               | 207 | 0.16      | 1 | 223 | 0.00      | 1  | 233 | 0.16      |
| 1200     | 1               | 103 | 0.16      | 1 | 111 | 0.00      | 1  | 116 | 0.16      |
| 2400     | 0               | 207 | 0.16      | 0 | 223 | 0.00      | 0  | 233 | 0.16      |
| 4800     | 0               | 103 | 0.16      | 0 | 111 | 0.00      | 0  | 116 | 0.16      |
| 9600     | 0               | 51  | 0.16      | 0 | 55  | 0.00      | 0  | 58  | -0.69     |
| 14400    | 0               | 34  | -0.79     | 0 | 36  | 0.90      | 0  | 38  | 0.16      |
| 19200    | 0               | 25  | 0.16      | 0 | 27  | 0.00      | 0  | 28  | 1.02      |
| 28800    | 0               | 16  | 2.12      | 0 | 18  | -1.75     | 0  | 19  | -2.34     |
| 31250    | 0               | 15  | 0.00      | 0 | 16  | 1.20      | 0  | 17  | 0.00      |
| 38400    | 0               | 12  | 0.16      | 0 | 13  | 0.00      | 0  | 14  | -2.34     |

Table 15.3 Bit Rates and BRR Settings in Asynchronous Mode (cont)

φ (MHz)

| Bit Rate |   | 18.432 |           |   | 19  | .6608     | 20 |     |           |
|----------|---|--------|-----------|---|-----|-----------|----|-----|-----------|
| (Bits/s) | n | N      | Error (%) | n | N   | Error (%) | n  | N   | Error (%) |
| 110      | 3 | 81     | -0.22     | 3 | 86  | 0.31      | 3  | 88  | -0.25     |
| 150      | 2 | 239    | 0.00      | 2 | 255 | 0.00      | 3  | 64  | 0.16      |
| 300      | 2 | 119    | 0.00      | 2 | 127 | 0.00      | 2  | 129 | 0.16      |
| 600      | 1 | 239    | 0.00      | 1 | 255 | 0.00      | 2  | 64  | 0.16      |
| 1200     | 1 | 119    | 0.00      | 1 | 127 | 0.00      | 1  | 129 | 0.16      |
| 2400     | 0 | 239    | 0.00      | 0 | 255 | 0.00      | 1  | 64  | 0.16      |
| 4800     | 0 | 119    | 0.00      | 0 | 127 | 0.00      | 0  | 129 | 0.16      |
| 9600     | 0 | 59     | 0.00      | 0 | 63  | 0.00      | 0  | 64  | 0.16      |
| 14400    | 0 | 39     | 0.00      | 0 | 42  | -0.78     | 0  | 42  | 0.94      |
| 19200    | 0 | 29     | 0.00      | 0 | 31  | 0.00      | 0  | 32  | -1.36     |
| 28800    | 0 | 19     | 0.00      | 0 | 20  | 1.59      | 0  | 21  | -1.36     |
| 31250    | 0 | 17     | 2.40      | 0 | 19  | -1.70     | 0  | 19  | 0.00      |
| 38400    | 0 | 14     | 0.00      | 0 | 15  | 0.00      | 0  | 15  | 1.73      |

Table 15.4 Bit Rates and BRR Settings in Synchronous Mode

|          |     | - Ψ (Μ.12) |   |     |   |     |   |     |  |  |  |  |  |  |
|----------|-----|------------|---|-----|---|-----|---|-----|--|--|--|--|--|--|
| Bit Rate |     | 10         |   | 12  |   | 16  |   | 20  |  |  |  |  |  |  |
| (Bits/s) | n   | N          | n | N   | n | N   | n | N   |  |  |  |  |  |  |
| 250      | _   | _          | 3 | 187 | 3 | 249 |   |     |  |  |  |  |  |  |
| 500      | _   | _          | 3 | 93  | 3 | 124 | _ | _   |  |  |  |  |  |  |
| 1 k      | _   | _          | 2 | 187 | 2 | 249 | _ | _   |  |  |  |  |  |  |
| 2.5 k    | 1   | 249        | 2 | 74  | 2 | 99  | 2 | 124 |  |  |  |  |  |  |
| 5 k      | 1   | 124        | 1 | 149 | 1 | 199 | 2 | 249 |  |  |  |  |  |  |
| 10 k     | 0   | 249        | 1 | 74  | 1 | 99  | 1 | 124 |  |  |  |  |  |  |
| 25 k     | 0   | 99         | 0 | 119 | 0 | 159 | 1 | 199 |  |  |  |  |  |  |
| 50 k     | 0   | 49         | 0 | 59  | 0 | 79  | 0 | 99  |  |  |  |  |  |  |
| 100 k    | 0   | 24         | 0 | 29  | 0 | 39  | 0 | 49  |  |  |  |  |  |  |
| 250 k    | 0   | 9          | 0 | 11  | 0 | 15  | 0 | 19  |  |  |  |  |  |  |
| 500 k    | 0   | 4          | 0 | 5   | 0 | 7   | 0 | 9   |  |  |  |  |  |  |
| 1 M      |     |            | 0 | 2   | 0 | 3   | 0 | 4   |  |  |  |  |  |  |
| 2.5 M    | 0   | 0*         | 0 | 0*  | _ | _   | 0 | 1   |  |  |  |  |  |  |
| 5 M      |     |            |   |     |   |     | 0 | 0*  |  |  |  |  |  |  |
| N ( 0 () | *41 | 1.40       |   |     |   |     |   |     |  |  |  |  |  |  |

På (MHz)

Note: Settings with an error of 1% or less are recommended.

## Legend

Blank: No setting available

—: Setting possible, but error occurs

\*: Continuous transmission/reception not possible

Table 15.5 indicates the maximum bit rates in asynchronous mode when the baud rate generator is being used for various frequencies. Tables 15.6 and 15.7 show the maximum rates for external clock input.

Table 15.5 Maximum Bit Rates for Various Frequencies with Baud Rate Generator (Asynchronous Mode)

|          |                           | Settings |   |  |  |  |
|----------|---------------------------|----------|---|--|--|--|
| Pφ (MHz) | Maximum Bit Rate (Bits/s) | n        | N |  |  |  |
| 10       | 312500                    | 0        | 0 |  |  |  |
| 11.0592  | 345600                    | 0        | 0 |  |  |  |
| 12       | 375000                    | 0        | 0 |  |  |  |
| 12.288   | 384000                    | 0        | 0 |  |  |  |
| 14       | 437500                    | 0        | 0 |  |  |  |
| 14.7456  | 460800                    | 0        | 0 |  |  |  |
| 16       | 500000                    | 0        | 0 |  |  |  |
| 17.2032  | 537600                    | 0        | 0 |  |  |  |
| 18       | 562500                    | 0        | 0 |  |  |  |
| 18.432   | 576000                    | 0        | 0 |  |  |  |
| 19.6608  | 614400                    | 0        | 0 |  |  |  |
| 20       | 625000                    | 0        | 0 |  |  |  |

 Table 15.6
 Maximum Bit Rates during External Clock Input (Asynchronous Mode)

| Pφ (MHz) | External Input Clock (MHz) | Maximum Bit Rate (Bits/s) |  |  |  |
|----------|----------------------------|---------------------------|--|--|--|
| 10       | 2.5000                     | 156250                    |  |  |  |
| 11.0592  | 2.7648                     | 172800                    |  |  |  |
| 12       | 3.0000                     | 187500                    |  |  |  |
| 12.288   | 3.0720                     | 192000                    |  |  |  |
| 14       | 3.5000                     | 218750                    |  |  |  |
| 14.7456  | 3.6864                     | 230400                    |  |  |  |
| 16       | 4.0000                     | 250000                    |  |  |  |
| 17.2032  | 4.3008                     | 268800                    |  |  |  |
| 18       | 4.5000                     | 281250                    |  |  |  |
| 18.432   | 4.6080                     | 288000                    |  |  |  |
| 19.6608  | 4.9152                     | 307200                    |  |  |  |
| 20       | 5.0000                     | 312500                    |  |  |  |

Table 15.7 Maximum Bit Rates during External Clock Input (Clock Synchronous Mode)

| Pφ (MHz) | External Input Clock (MHz) | Maximum Bit Rate (Bits/s) |
|----------|----------------------------|---------------------------|
| 10       | 1.6667                     | 1666666.7                 |
| 12       | 2.0000                     | 2000000.0                 |
| 14       | 2.3333                     | 2333333.3                 |
| 16       | 2.6667                     | 2666666.7                 |
| 18       | 3.0000                     | 3000000.0                 |
| 20       | 3.3333                     | 3333333.3                 |

### 15.2.9 Serial Direction Control Register (SDCR)

| Bit:           | 7 | 6 | 5 | 4 | 3   | 2 | 1 | 0 |
|----------------|---|---|---|---|-----|---|---|---|
|                |   | _ |   | _ | DIR | _ | _ | _ |
| Initial value: | 1 | 1 | 1 | 1 | 0   | 0 | 1 | 0 |
| R/W:           | R | R | R | R | R/W | R | R | R |

The DIR bit in the serial direction control register (SDCR) selects LSB-first or MSB-first transfer. With an 8-bit data length, LSB-first/MSB-first selection is available regardless of the communication mode. With a 7-bit data length, LSB-first transfer must be selected. The description in this section assumes LSB-first transfer.

SDCR is initialized to HF2 by a power-on reset, and in the hardware standby mode and software standby mode. It is not initialized by a manual reset.

- Bits 7–4—Reserved: The write value should always be 1. If 0 is written to these bits, correct operation cannot be guaranteed.
- Bit 3—Data Transfer Direction (DIR): Selects the serial/parallel conversion format. Valid for an 8-bit transmit/receive format.

| Bit 3: DIR | Description                                      |                 |
|------------|--------------------------------------------------|-----------------|
| 0          | TDR contents are transmitted in LSB-first order  | (Initial value) |
|            | Receive data is stored in RDR in LSB-first order |                 |
| 1          | TDR contents are transmitted in MSB-first order  |                 |
|            | Receive data is stored in RDR in MSB-first order |                 |

- Bit 2—Reserved: The write value should always be 0. If 1 is written to this bit, correct operation cannot be guaranteed.
- Bit 1—Reserved: This bit is always read as 1, and cannot be modified.

• Bit 0—Reserved: The write value should always be 0. If 1 is written to this bit, correct operation cannot be guaranteed.

### 15.2.10 Inversion of SCK Pin Signal

The signal input from the SCK pin and the signal output from the SCK pin can be inverted by means of a port control register setting. See section 20, Pin function Controller (PFC), for details.

# 15.3 Operation

#### 15.3.1 Overview

For serial communication, the SCI has an asynchronous mode in which characters are synchronized individually, and a synchronous mode in which communication is synchronized with clock pulses. Asynchronous synchronous mode and the transmission format are selected in the serial mode register (SMR), as shown in table 15.8. The SCI clock source is selected by the  $C/\overline{A}$  bit in the serial mode register (SMR) and the CKE1 and CKE0 bits in the serial control register (SCR), as shown in table 15.9.

### **Asynchronous Mode:**

- Data length is selectable: seven or eight bits.
- Parity and multiprocessor bits are selectable, as well as the stop bit length (one or two bits). These selections determine the transmit/receive format and character length.
- In receiving, it is possible to detect framing errors (FER), parity errors (PER), overrun errors (ORER), and the break state.
- An internal or external clock can be selected as the SCI clock source.
  - When an internal clock is selected, the SCI operates using the on-chip baud rate generator clock, and can output a clock with a frequency matching the bit rate.
  - When an external clock is selected, the external clock input must have a frequency 16 times the bit rate. (The on-chip baud rate generator is not used.)

# **Synchronous Mode:**

- The communication format has a fixed 8-bit data length.
- In receiving, it is possible to detect overrun errors (ORER).
- An internal or external clock can be selected as the SCI clock source.
  - When an internal clock is selected, the SCI operates using the on-chip baud rate generator clock, and outputs a serial clock signal to external devices.
  - When an external clock is selected, the SCI operates on the input serial clock. The on-chip baud rate generator is not used.

Table 15.8 Serial Mode Register Settings and SCI Communication Formats

|                         |              | S            | MR Sett     | tings       |               | SCI Communication Format |               |                         |                    |  |
|-------------------------|--------------|--------------|-------------|-------------|---------------|--------------------------|---------------|-------------------------|--------------------|--|
| Mode                    | Bit 7<br>C/A | Bit 6<br>CHR | Bit 5<br>PE | Bit 2<br>MP | Bit 3<br>STOP | Data<br>Length           | Parity<br>Bit | Multipro-<br>cessor Bit | Stop Bit<br>Length |  |
| Asynchronous            | 0            | 0            | 0           | 0           | 0             | 8-bit                    | Absent        | Absent                  | 1 bit              |  |
|                         |              |              |             |             | 1             |                          |               |                         | 2 bits             |  |
|                         |              |              | 1           | _           | 0             |                          | Present       | =                       | 1 bit              |  |
|                         |              |              |             |             | 1             |                          |               |                         | 2 bits             |  |
|                         |              | 1            | 0           | _           | 0             | 7-bit                    | Absent        | _                       | 1 bit              |  |
|                         |              |              |             |             | 1             |                          |               |                         | 2 bits             |  |
|                         |              |              | 1           | _           | 0             |                          | Present       | _                       | 1 bit              |  |
|                         |              |              |             |             | 1             |                          |               |                         | 2 bits             |  |
| Asynchronous            | _            | 0            | *           | 1           | 0             | 8-bit                    | Absent        | Present                 | 1 bit              |  |
| (multiprocessor format) |              |              | *           | _           | 1             |                          |               |                         | 2 bits             |  |
| ioiniat)                |              | 1            | *           | _           | 0             | 7-bit                    | _             |                         | 1 bit              |  |
|                         |              |              | *           | <del></del> | 1             |                          |               |                         | 2 bits             |  |
| Synchronous             | 1            | *            | *           | *           | *             | 8-bit                    | _             | Absent                  | None               |  |

Note: Asterisks (\*) in the table indicate donít-care bits.

Table 15.9 SMR and SCR Settings and SCI Clock Source Selection

|              | SMR          | SCR           | Settings      | SCI Transmit/Receive Clock |                                                       |  |  |  |
|--------------|--------------|---------------|---------------|----------------------------|-------------------------------------------------------|--|--|--|
| Mode         | Bit 7<br>C/Ā | Bit 1<br>CKE1 | Bit 0<br>CKE0 | Clock Source               | SCK Pin Function*                                     |  |  |  |
| Asynchronous | 0            | 0             | 0             | Internal                   | SCI does not use the SCK pin                          |  |  |  |
|              |              |               | 1             | •                          | Outputs a clock with frequency matching the bit rate  |  |  |  |
|              |              | 1             | 0 1           | External                   | Inputs a clock with frequency 16 times the bit rate   |  |  |  |
| Synchronous  | 1            | 0             | 0             | Internal                   | Outputs the serial clock or the inverted serial clock |  |  |  |
|              |              | 1             | 0             | External                   | Inputs the serial clock or the inverted serial clock  |  |  |  |

Note: \* Select the function in combination with the pin function controller (PFC).

### 15.3.2 Operation in Asynchronous Mode

In asynchronous mode, each transmitted or received character begins with a start bit and ends with a stop bit. Serial communication is synchronized one character at a time.

The transmitting and receiving sections of the SCI are independent, so full duplex communication is possible. The transmitter and receiver are both double buffered, so data can be written and read while transmitting and receiving are in progress, enabling continuous transmitting and receiving.

Figure 15.2 shows the general format of asynchronous serial communication. In asynchronous serial communication, the communication line is normally held in the marking (high) state. The SCI monitors the line and starts serial communication when the line goes to the space (low) state, indicating a start bit. One serial character consists of a start bit (low), data (LSB first), parity bit (high or low), and stop bit (high), in that order.

When receiving in asynchronous mode, the SCI synchronizes on the falling edge of the start bit. The SCI samples each data bit on the eighth pulse of a clock with a frequency 16 times the bit rate. Receive data is latched at the center of each bit.

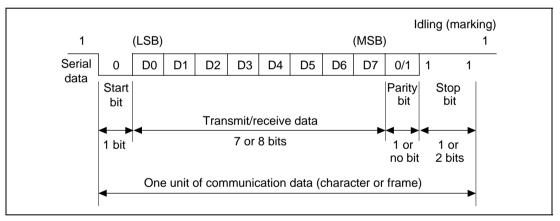



Figure 15.2 Data Format in Asynchronous Communication (Example: 8-bit Data with Parity and Two Stop Bits)

**Transmit/Receive Formats:** Table 15.10 shows the 12 communication formats that can be selected in asynchronous mode. The format is selected by settings in the serial mode register (SMR).

**Table 15.10 Serial Communication Formats (Asynchronous Mode)** 

|     | SM | R Bits     | S    | Serial Transmit/Receive Format and Frame Length |                  |            |     |        |       |      |      |      |      |      |      |
|-----|----|------------|------|-------------------------------------------------|------------------|------------|-----|--------|-------|------|------|------|------|------|------|
| CHR | PE | MP         | STOP | 1                                               | 2                | 3          | 4   | 5      | 6     | 7    | 8    | 9    | 10   | 11   | 12   |
| 0   | 0  | 0          | 0    | START                                           |                  |            |     | 8-b    | it da | ta   |      |      | STOP |      |      |
| 0   | 0  | 0          | 1    | START                                           | START 8-bit data |            |     |        |       | STOP | STOP |      |      |      |      |
| 0   | 1  | 0          | 0    | START                                           | ART 8-bit data   |            |     |        |       | Р    | STOP |      |      |      |      |
| 0   | 1  | 0          | 1    | START                                           |                  | 8-bit data |     |        |       | Р    | STOP | STOP |      |      |      |
| 1   | 0  | 0          | 0    | START                                           |                  |            | 7-l | oit da | ıta   |      |      | STOP |      |      |      |
| 1   | 0  | 0          | 1    | START                                           |                  |            | 7-I | oit da | ıta   |      |      | STOP | STOP |      |      |
| 1   | 1  | 0          | 0    | START                                           |                  |            | 7-I | oit da | ata   |      |      | Р    | STOP |      |      |
| 1   | 1  | 0          | 1    | START                                           |                  |            | 7-l | oit da | ıta   |      |      | Р    | STOP | STOP |      |
| 0   | _  | 1          | 0    | START                                           |                  |            |     | 8-b    | it da | ta   |      |      | MPB  | STOP |      |
| 0   | _  | 1          | 1    | START                                           |                  |            |     | 8-b    | it da | ta   |      |      | MPB  | STOP | STOP |
| 1   | _  | 1          | 0    | START                                           |                  |            | 7-I | oit da | ıta   |      |      | MPB  | STOP |      |      |
| 1   | _  | 1          | 1    | START                                           |                  |            | 7-l | oit da | ıta   |      |      | MPB  | STOP | STOP |      |
|     | 14 | - u - l-:4 | _    |                                                 |                  |            |     |        |       |      |      |      |      |      |      |

-: Don't care bits.

Notes: START: Start bit STOP: Stop bit P: Parity bit

MPB: Multiprocessor bit

**Clock:** An internal clock generated by the on-chip baud rate generator or an external clock input from the SCK pin can be selected as the SCI transmit/receive clock. The clock source is selected by the  $C/\overline{A}$  bit in the serial mode register (SMR) and bits CKE1 and CKE0 in the serial control register (SCR) (table 15.9).

When an external clock is input at the SCK pin, it must have a frequency equal to 16 times the desired bit rate.

When the SCI operates on an internal clock, it can output a clock signal at the SCK pin. The frequency of this output clock is equal to the bit rate. The phase is aligned as in figure 15.3 so that the rising edge of the clock occurs at the center of each transmit data bit.

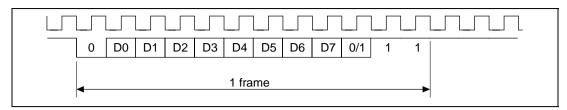



Figure 15.3 Output Clock and Communication Data Phase Relationship (Asynchronous Mode)

### **Data Transmit/Receive Operation**

**SCI Initialization** (**Asynchronous Mode**): Before transmitting or receiving, clear the TE and RE bits to 0 in the serial control register (SCR), then initialize the SCI as follows.

When changing the operation mode or communication format, always clear the TE and RE bits to 0 before following the procedure given below. Clearing TE to 0 sets TDRE to 1 and initializes the transmit shift register (TSR). Clearing RE to 0, however, does not initialize the RDRF, PER, and ORER flags and receive data register (RDR), which retain their previous contents.

When an external clock is used, the clock should not be stopped during initialization or subsequent operation. SCI operation becomes unreliable if the clock is stopped.

Figure 15.4 is a sample flowchart for initializing the SCI. The procedure is as follows (the steps correspond to the numbers in the flowchart):

- 1. Select the clock source in the serial control register (SCR). Leave RIE, TIE, TEIE, MPIE, TE, and RE cleared to 0. If clock output is selected in asynchronous mode, clock output starts immediately after the setting is made in SCR.
- 2. Select the communication format in the serial mode register (SMR) and serial direction control register (SDCR).
- 3. Write the value corresponding to the bit rate in the bit rate register (BRR) (unless an external clock is used).
- 4. Wait for at least the interval required to transmit or receive one bit, then set TE or RE in the serial control register (SCR) to 1.\* Also set RIE, TIE, TEIE and MPIE as necessary. Setting TE or RE enables the SCI to use the TxD or RxD pin.

Note: \* In simultaneous transmit/receive operation, the TE bit and RE bit must be cleared to 0 or set to 1 simultaneously.

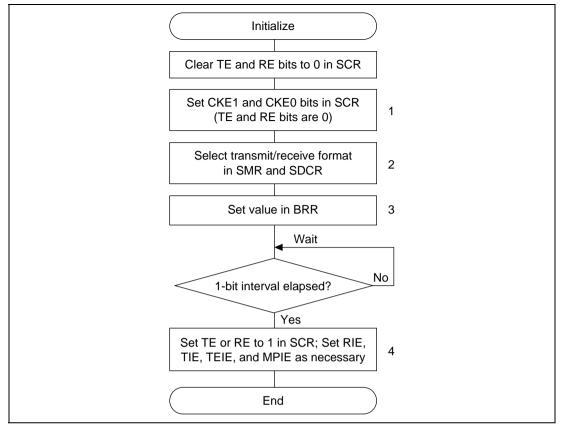



Figure 15.4 Sample Flowchart for SCI Initialization

**Transmitting Serial Data (Asynchronous Mode):** Figure 15.5 shows a sample flowchart for transmitting serial data. The procedure is as follows (the steps correspond to the numbers in the flowchart):

- 1. SCI initialization: Set the TxD pin using the PFC.
- 2. SCI status check and transmit data write: Read the serial status register (SSR), check that the TDRE bit is 1, then write transmit data in the transmit data register (TDR) and clear TDRE to 0.
- 3. Continue transmitting serial data: Read the TDRE bit to check whether it is safe to write (if it reads 1); if so, write data in TDR, then clear TDRE to 0. When the DMAC is started by a transmit-data-empty interrupt request (TXI) in order to write data in TDR, the TDRE bit is checked and cleared automatically.
- 4. To output a break at the end of serial transmission, first clear the port data register (DR) to 0, then clear the TE bit to 0 in SCR and use the PFC to establish the TxD pin as an output port.

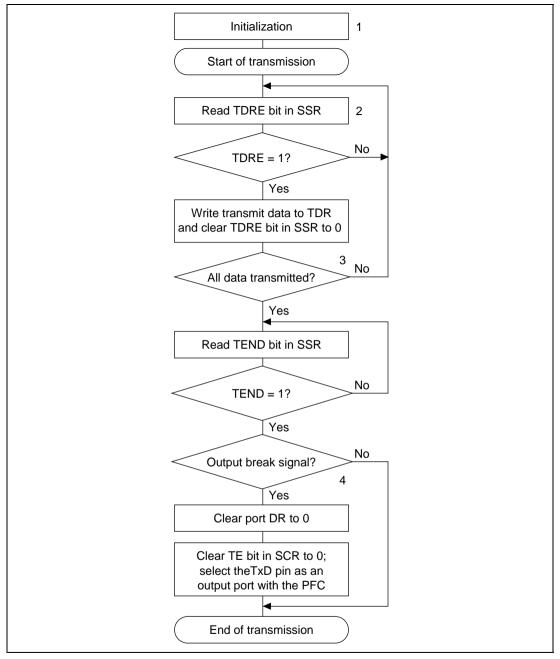



Figure 15.5 Sample Flowchart for Transmitting Serial Data

In transmitting serial data, the SCI operates as follows:

- 1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0, the SCI recognizes that the transmit data register (TDR) contains new data, and loads this data from TDR into the transmit shift register (TSR).
- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the transmit-data-empty interrupt enable bit (TIE) is set to 1 in SCR, the SCI requests a transmit-data-empty interrupt (TXI) at this time.

Serial transmit data is transmitted in the following order from the TxD pin:

- a. Start bit: one 0-bit is output.
- b. Transmit data: seven or eight bits of data are output, LSB first.
- c. Parity bit or multiprocessor bit: one parity bit (even or odd parity) or one multiprocessor bit is output. Formats in which neither a parity bit nor a multiprocessor bit is output can also be selected.
- d. Stop bit: one or two 1-bits (stop bits) are output.
- e. Marking: output of 1-bits continues until the start bit of the next transmit data.
- 3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is 0, the SCI loads new data from TDR into TSR, outputs the stop bit, then begins serial transmission of the next frame. If TDRE is 1, the SCI sets the TEND bit to 1 in SSR, outputs the stop bit, then continues output of 1-bits (marking). If the transmit-end interrupt enable bit (TEIE) in SCR is set to 1, a transmit-end interrupt (TEI) is requested.

Figure 15.6 shows an example of SCI transmit operation in asynchronous mode.

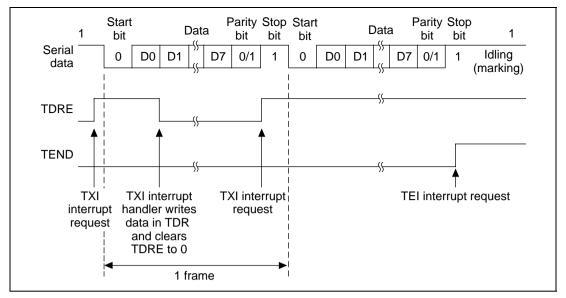



Figure 15.6 SCI Transmit Operation in Asynchronous Mode (Example: 8-Bit Data with Parity and One Stop Bit)

**Receiving Serial Data (Asynchronous Mode):** Figures 15.7 and 15.8 show a sample flowchart for receiving serial data. The procedure is as follows (the steps correspond to the numbers in the flowchart).

- 1. SCI initialization: Set the RxD pin using the PFC.
- 2. Receive error handling and break detection: If a receive error occurs, read the ORER, PER, and FER bits of SSR to identify the error. After executing the necessary error handling, clear ORER, PER, and FER all to 0. Receiving cannot resume if ORER, PER or FER remain set to 1. When a framing error occurs, the RxD pin can be read to detect the break state.
- 3. SCI status check and receive-data read: Read the serial status register (SSR), check that RDRF is set to 1, then read receive data from the receive data register (RDR) and clear RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has changed from 0 to 1.
- 4. Continue receiving serial data: Read RDR and the RDRF bit and clear RDRF to 0 before the stop bit of the current frame is received. If the DMAC is started by a receive-data-full interrupt (RXI) to read RDR, the RDRF bit is cleared automatically so this step is unnecessary.

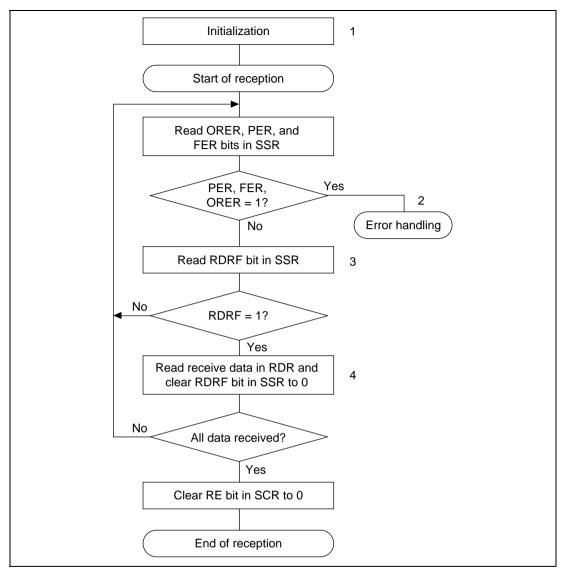
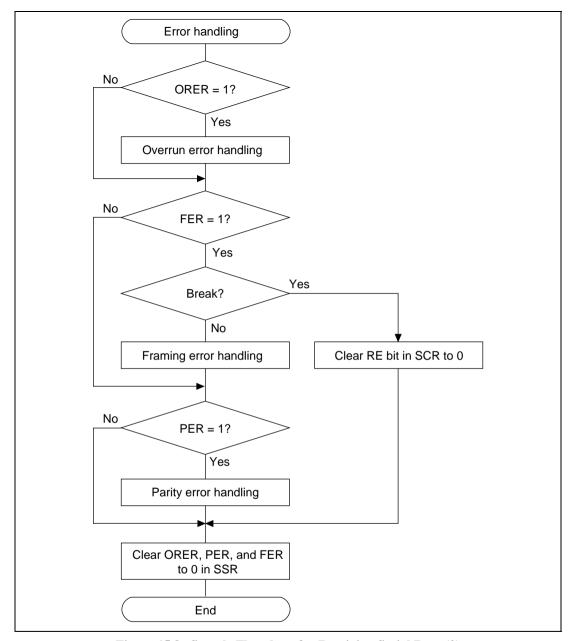




Figure 15.7 Sample Flowchart for Receiving Serial Data (1)



Figure~15.8~~Sample~Flowchart~for~Receiving~Serial~Data~(2)

In receiving, the SCI operates as follows:

- 1. The SCI monitors the communication line. When it detects a start bit (0), the SCI synchronizes internally and starts receiving.
- 2. Receive data is shifted into RSR in order from the LSB to the MSB.
- 3. The parity bit and stop bit are received. After receiving these bits, the SCI makes the following checks:
  - a. Parity check. The number of 1s in the receive data must match the even or odd parity setting of the  $O/\overline{E}$  bit in SMR.
  - b. Stop bit check. The stop bit value must be 1. If there are two stop bits, only the first stop bit is checked.
  - c. Status check. RDRF must be 0 so that receive data can be loaded from RSR into RDR. If the data passes these checks, the SCI sets RDRF to 1 and stores the receive data in RDR. If one of the checks fails (receive error), the SCI operates as indicated in table 15.11.
  - Note: When a receive error occurs, further receiving is disabled. While receiving, the RDRF bit is not set to 1, so be sure to clear the error flags.
- 4. After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to 1 in SCR, the SCI requests a receive-data-full interrupt (RXI). If one of the error flags (ORER, PER, or FER) is set to 1 and the receive-data-full interrupt enable bit (RIE) in SCR is also set to 1, the SCI requests a receive-error interrupt (ERI).

Table 15.11 Receive Error Conditions and SCI Operation

| Receive Error | Abbreviation | Condition                                                          | Data Transfer                             |  |  |
|---------------|--------------|--------------------------------------------------------------------|-------------------------------------------|--|--|
| Overrun error | ORER         | Receiving of next data ends while RDRF is still set to 1 in SSR    | Receive data not loaded from RSR into RDR |  |  |
| Framing error | FER          | Stop bit is 0                                                      | Receive data loaded from RSR into RDR     |  |  |
| Parity error  | PER          | Parity of receive data differs from even/odd parity setting in SMR | Receive data loaded from RSR into RDR     |  |  |

Figure 15.9 shows an example of SCI receive operation in asynchronous mode.

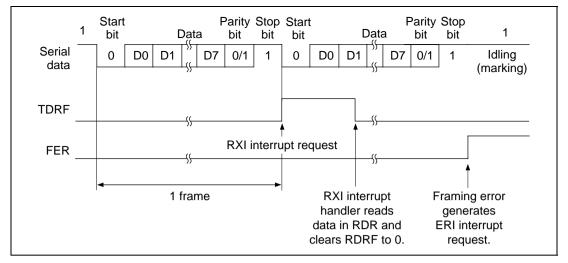



Figure 15.9 SCI Receive Operation (Example: 8-Bit Data with Parity and One Stop Bit)

## 15.3.3 Multiprocessor Communication

The multiprocessor communication function enables several processors to share a single serial communication line for sending and receiving data. The processors communicate in the asynchronous mode using a format with an additional multiprocessor bit (multiprocessor format).

In multiprocessor communication, each receiving processor is addressed by a unique ID. A serial communication cycle consists of an ID-sending cycle that identifies the receiving processor, and a data-sending cycle. The multiprocessor bit distinguishes ID-sending cycles from data-sending cycles. The transmitting processor starts by sending the ID of the receiving processor with which it wants to communicate as data with the multiprocessor bit set to 1. Next the transmitting processor sends transmit data with the multiprocessor bit cleared to 0.

Receiving processors skip incoming data until they receive data with the multiprocessor bit set to 1. When they receive data with the multiprocessor bit set to 1, receiving processors compare the data with their IDs. The receiving processor with a matching ID continues to receive further incoming data. Processors with IDs not matching the received data skip further incoming data until they again receive data with the multiprocessor bit set to 1. Multiple processors can send and receive data in this way.

Figure 15.10 shows an example of communication among processors using the multiprocessor format.

**Communication Formats:** Four formats are available. Parity-bit settings are ignored when the multiprocessor format is selected. For details see table 15.8.

**Clock:** See the description in the asynchronous mode section.

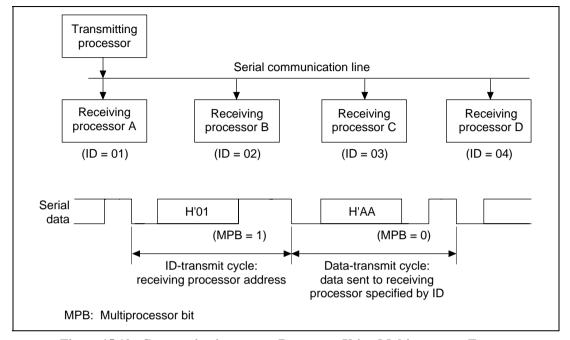



Figure 15.10 Communication among Processors Using Multiprocessor Format (Example: Sending Data H'AA to Receiving Processor A)

### **Data Transmit/Receive Operation**

**Transmitting Multiprocessor Serial Data:** Figure 15.11 shows a sample flowchart for transmitting multiprocessor serial data. The procedure is as follows (the steps correspond to the numbers in the flowchart):

- 1. SCI initialization: Set the TxD pin using the PFC.
- 2. SCI status check and transmit data write: Read the serial status register (SSR), check that the TDRE bit is 1, then write transmit data in the transmit data register (TDR). Also set MPBT (multiprocessor bit transfer) to 0 or 1 in SSR. Finally, clear TDRE to 0.
- 3. Continue transmitting serial data: Read the TDRE bit to check whether it is safe to write (if it reads 1); if so, write data in TDR, then clear TDRE to 0. When the DMAC is started by a transmit-data-empty interrupt request (TXI) to write data in TDR, the TDRE bit is checked and cleared automatically.
- 4. Output a break at the end of serial transmission: Set the data register (DR) of the port to 0, then clear TE to 0 in SCR and set the TxD pin function as output port with the PFC.

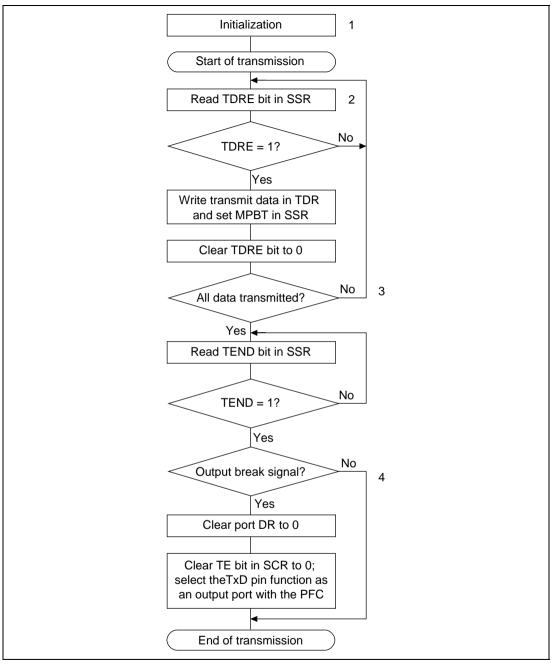



Figure 15.11 Sample Flowchart for Transmitting Multiprocessor Serial Data

In transmitting serial data, the SCI operates as follows:

- 1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0 the SCI recognizes that the transmit data register (TDR) contains new data, and loads this data from TDR into the transmit shift register (TSR).
- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the transmit-data-empty interrupt enable bit (TIE) in SCR is set to 1, the SCI requests a transmit-data-empty interrupt (TXI) at this time.

Serial transmit data is transmitted in the following order from the TxD pin:

- a. Start bit: one 0-bit is output.
- b. Transmit data: seven or eight bits are output, LSB first.
- c. Multiprocessor bit: one multiprocessor bit (MPBT value) is output.
- d. Stop bit: one or two 1-bits (stop bits) are output.
- e. Marking: output of 1-bits continues until the start bit of the next transmit data.
- 3. The SCI checks the TDRE bit when it outputs the stop bit. If TDRE is 0, the SCI loads data from TDR into TSR, outputs the stop bit, then begins serial transmission of the next frame. If TDRE is 1, the SCI sets the TEND bit in SSR to 1, outputs the stop bit, then continues output of 1-bits in the marking state. If the transmit-end interrupt enable bit (TEIE) in SCR is set to 1, a transmit-end interrupt (TEI) is requested at this time.

Figure 15.12 shows an example of SCI receive operation in the multiprocessor format.

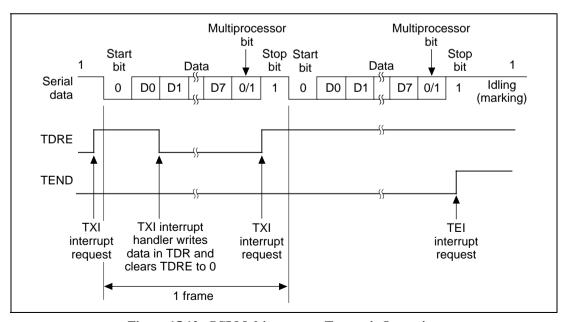



Figure 15.12 SCI Multiprocessor Transmit Operation (Example: 8-Bit Data with Multiprocessor Bit and One Stop Bit)

**Receiving Multiprocessor Serial Data:** Figure 15.13 shows a sample flowchart for receiving multiprocessor serial data. The procedure for receiving multiprocessor serial data is as follows (the steps correspond to the numbers in the flowchart):

- 1. SCI initialization: Set the RxD pin using the PFC.
- 2. ID receive cycle: Set the MPIE bit in the serial control register (SCR) to 1.
- 3. SCI status check and compare to ID reception: Read the serial status register (SSR), check that RDRF is set to 1, then read data from the receive data register (RDR) and compare with the processor's own ID. If the ID does not match the receive data, set MPIE to 1 again and clear RDRF to 0. If the ID matches the receive data, clear RDRF to 0.
- 4. Receive error handling and break detection: If a receive error occurs, read the ORER and FER bits in SSR to identify the error. After executing the necessary error handling, clear both ORER and FER to 0. Receiving cannot resume if ORER or FER remain set to 1. When a framing error occurs, the RxD pin can be read to detect the break state.
- 5. SCI status check and data receiving: Read SSR, check that RDRF is set to 1, then read data from the receive data register (RDR).

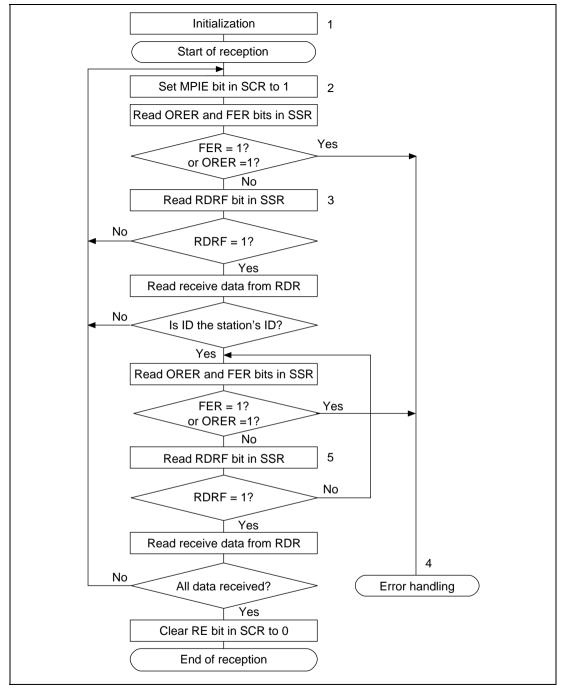



Figure 15.13 Sample Flowchart for Receiving Multiprocessor Serial Data (1)



 $Figure\ 15.14\quad Sample\ Flowchart\ for\ Receiving\ Multiprocessor\ Serial\ Data\ (2)$ 

Figures 15.15 and 15.16 show examples of SCI receive operation using a multiprocessor format.

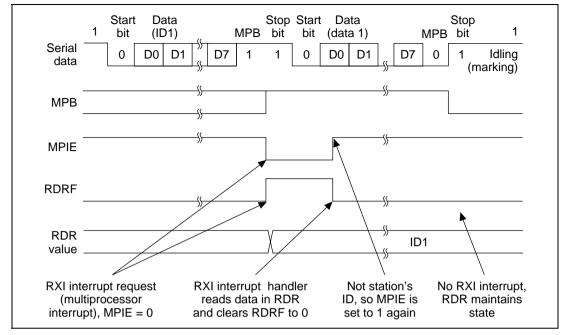



Figure 15.15 SCI Receive Operation (ID Does Not Match) (Example: 8-Bit Data with Multiprocessor Bit and One Stop Bit)

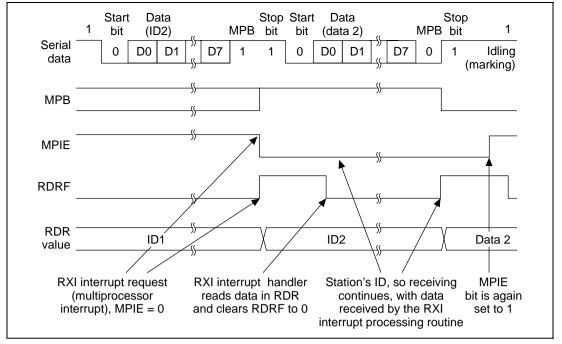



Figure 15.16 Example of SCI Receive Operation (ID Matches) (Example: 8-Bit Data with Multiprocessor Bit and One Stop Bit)

## 15.3.4 Synchronous Operation

In synchronous mode, the SCI transmits and receives data in synchronization with clock pulses. This mode is suitable for high-speed serial communication.

The SCI transmitter and receiver are independent, so full duplex communication is possible while sharing the same clock. The transmitter and receiver are also double buffered, so continuous transmitting or receiving is possible by reading or writing data while transmitting or receiving is in progress.

Figure 15.17 shows the general format in synchronous serial communication.

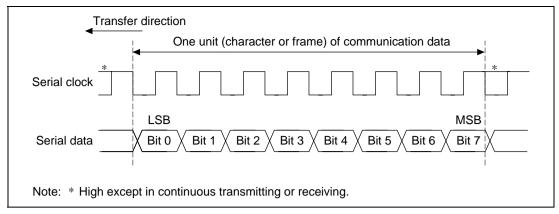



Figure 15.17 Data Format in Synchronous Communication

In synchronous serial communication, each data bit is output on the communication line from one falling edge of the serial clock to the next. Data is guaranteed valid at the rising edge of the serial clock. In each character, the serial data bits are transmitted in order from the LSB (first) to the MSB (last). After output of the MSB, the communication line remains in the state of the MSB. In synchronous mode, the SCI transmits or receives data by synchronizing with the rise of the serial clock.

**Communication Format:** The data length is fixed at eight bits. No parity bit or multiprocessor bit can be added.

**Clock:** An internal clock generated by the on-chip baud rate generator or an external clock input from the SCK pin can be selected as the SCI transmit/receive clock. The clock source is selected by the  $C/\overline{A}$  bit in the serial mode register (SMR) and bits CKE1 and CKE0 in the serial control register (SCR). See table 15.9.

When the SCI operates on an internal clock, it outputs the clock signal at the SCK pin. Eight clock pulses are output per transmitted or received character. When the SCI is not transmitting or receiving, the clock signal remains in the high state. An overrun error occurs only during the receive operation, and the serial clock is output until the RE bit is cleared to 0. To perform a receive operation in one-character units, select an external clock for the clock source.

#### **Transmitting and Receiving Data**

**SCI Initialization (Synchronous Mode):** Before transmitting or receiving, software must clear the TE and RE bits to 0 in the serial control register (SCR), then initialize the SCI as follows.

When changing the mode or communication format, always clear the TE and RE bits to 0 before following the procedure given below. Clearing TE to 0 sets TDRE to 1 and initializes the transmit shift register (TSR). Clearing RE to 0, however, does not initialize the RDRF, PER, FER, and ORER flags and receive data register (RDR), which retain their previous contents.

Figure 15.18 is a sample flowchart for initializing the SCI.

- 1. Select the clock source in the serial control register (SCR). Leave RIE, TIE, TEIE, MPIE, TE, and RE cleared to 0.
- 2. Select the communication format in the serial mode register (SMR) and serial direction control register (SDCR).
- 3. Write the value corresponding to the bit rate in the bit rate register (BRR) (unless an external clock is used).
- 4. Wait for at least the interval required to transmit or receive one bit, then set TE or RE in the serial control register (SCR) to 1.\* Also set RIE, TIE, TEIE, and MPIE. The TxD, RxD pins becomes usable in response to the PFC corresponding bits and the TE, RE bit settings.

Note: \* In simultaneous transmit/receive operation, the TE bit and RE bit must be cleared to 0 or set to 1 simultaneously.

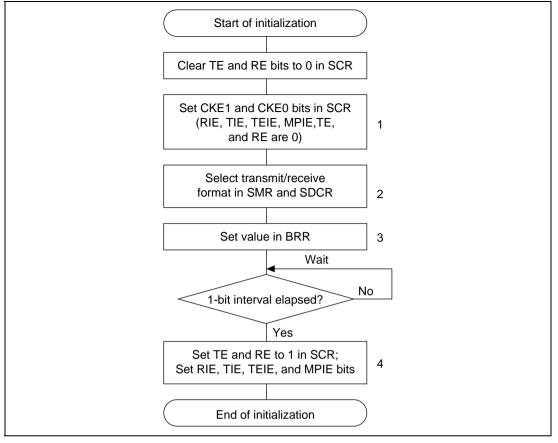



Figure 15.18 Sample Flowchart for SCI Initialization

**Transmitting Serial Data (Synchronous Mode):** Figure 15.19 shows a sample flowchart for transmitting serial data. The procedure is as follows (the steps correspond to the numbers in the flowchart):

- 1. SCI initialization: Set the TxD pin function with the PFC.
- 2. SCI status check and transmit data write: Read SSR, check that the TDRE flag is 1, then write transmit data in TDR and clear the TDRE flag to 0.
- 3. To continue transmitting serial data: After checking that the TDRE flag is 1, indicating that data can be written, write data in TDR, then clear the TDRE flag to 0. When the DMAC is activated by a transmit-data-empty interrupt request (TXI) to write data in TDR, the TDRE flag is checked and cleared automatically.

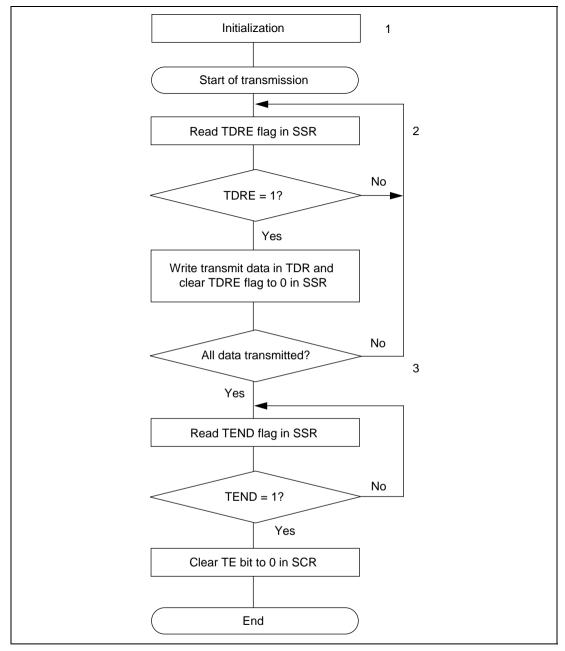



Figure 15.19 Sample Flowchart for Serial Transmitting

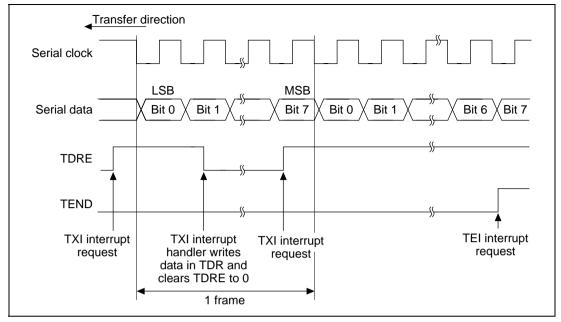



Figure 15.20 Example of SCI Transmit Operation

SCI serial transmission operates as follows.

- 1. The SCI monitors the TDRE bit in SSR. When TDRE is cleared to 0 the SCI recognizes that the transmit data register (TDR) contains new data and loads this data from TDR into the transmit shift register (TSR).
- 2. After loading the data from TDR into TSR, the SCI sets the TDRE bit to 1 and starts transmitting. If the transmit-data-empty interrupt enable bit (TIE) in SCR is set to 1, the SCI requests a transmit-data-empty interrupt (TXI) at this time.
  - If clock output mode is selected, the SCI outputs eight serial clock pulses. If an external clock source is selected, the SCI outputs data in synchronization with the input clock. Data is output from the TxD pin in order from the LSB (bit 0) to the MSB (bit 7).
- 3. The SCI checks the TDRE bit when it outputs the MSB (bit 7). If TDRE is 0, the SCI loads data from TDR into TSR, then begins serial transmission of the next frame. If TDRE is 1, the SCI sets the TEND bit in SSR to 1, transmits the MSB, then holds the transmit data pin (TxD) in the MSB state. If the transmit-end interrupt enable bit (TEIE) in SCR is set to 1, a transmit-end interrupt (TEI) is requested at this time.
- 4. After the end of serial transmission, the SCK pin is held in the high state.

**Receiving Serial Data (Synchronous Mode):** Figures 15.21 and 15.22 show a sample flowchart for receiving serial data. When switching from asynchronous mode to synchronous mode, make sure that ORER, PER, and FER are cleared to 0. If PER or FER is set to 1, the RDRF bit will not be set and both transmitting and receiving will be disabled.

The procedure for receiving serial data is as follows (the steps correspond to the numbers in the flowchart):

- 1. SCI initialization: Set the RxD pin using the PFC.
- 2. Receive error handling: If a receive error occurs, read the ORER bit in SSR to identify the error. After executing the necessary error handling, clear ORER to 0. Transmitting/receiving cannot resume if ORER remains set to 1.
- 3. SCI status check and receive data read: Read the serial status register (SSR), check that RDRF is set to 1, then read receive data from the receive data register (RDR) and clear RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has changed from 0 to 1.
- 4. Continue receiving serial data: Read RDR, and clear RDRF to 0 before the MSB (bit 7) of the current frame is received. If the DMAC is started by a receive-data-full interrupt (RXI) to read RDR, the RDRF bit is cleared automatically so this step is unnecessary.

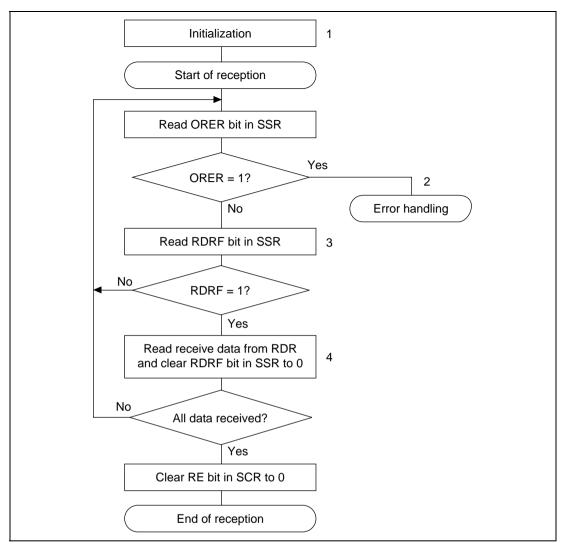



Figure 15.21 Sample Flowchart for Serial Receiving (1)

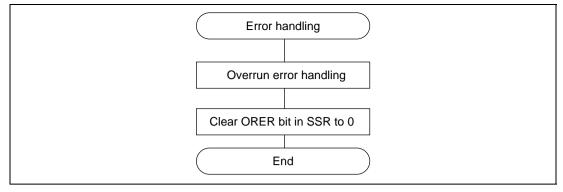



Figure 15.22 Sample Flowchart for Serial Receiving (2)

Figure 15.23 shows an example of the SCI receive operation.

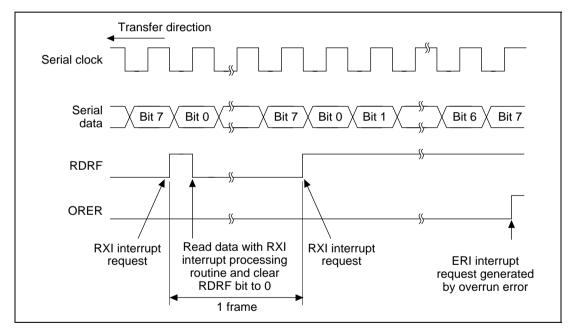



Figure 15.23 Example of SCI Receive Operation

In receiving, the SCI operates as follows:

- 1. The SCI synchronizes with serial clock input or output and initializes internally.
- 2. Receive data is shifted into RSR in order from the LSB to the MSB. After receiving the data, the SCI checks that RDRF is 0 so that receive data can be loaded from RSR into RDR. If this check passes, the SCI sets RDRF to 1 and stores the receive data in RDR. If the check does not pass (receive error), the SCI operates as indicated in table 15.11 and no further transmission or

- reception is possible. If the error flag is set to 1, the RDRF bit is not set to 1 during reception, even if the RDRF bit is 0 cleared. When restarting reception, be sure to clear the error flag.
- 3. After setting RDRF to 1, if the receive-data-full interrupt enable bit (RIE) is set to 1 in SCR, the SCI requests a receive-data-full interrupt (RXI). If the ORER bit is set to 1 and the receive-data-full interrupt enable bit (RIE) in SCR is also set to 1, the SCI requests a receive-error interrupt (ERI).

**Transmitting and Receiving Serial Data Simultaneously (Synchronous Mode):** Figure 15.24 shows a sample flowchart for transmitting and receiving serial data simultaneously. The procedure is as follows (the steps correspond to the numbers in the flowchart):

- 1. SCI initialization: Set the TxD and RxD pins using the PFC.
- 2. SCI status check and transmit data write: Read the serial status register (SSR), check that the TDRE bit is 1, then write transmit data in the transmit data register (TDR) and clear TDRE to 0. The TXI interrupt can also be used to determine if the TDRE bit has changed from 0 to 1.
- 3. Receive error handling: If a receive error occurs, read the ORER bit in SSR to identify the error. After executing the necessary error handling, clear ORER to 0. Transmitting/receiving cannot resume if ORER remains set to 1.
- 4. SCI status check and receive data read: Read the serial status register (SSR), check that RDRF is set to 1, then read receive data from the receive data register (RDR) and clear RDRF to 0. The RXI interrupt can also be used to determine if the RDRF bit has changed from 0 to 1.
- 5. Continue transmitting and receiving serial data: Read the RDRF bit and RDR, and clear RDRF to 0 before the MSB (bit 7) of the current frame is received. Also read the TDRE bit to check whether it is safe to write (if it reads 1); if so, write data in TDR, then clear TDRE to 0 before the MSB (bit 7) of the current frame is transmitted. When the DMAC is started by a transmitdata-empty interrupt request (TXI) to write data in TDR, the TDRE bit is checked and cleared automatically. When the DMAC is started by a receive-data-full interrupt (RXI) to read RDR, the RDRF bit is cleared automatically.

Note: In switching from transmitting or receiving to simultaneous transmitting and receiving, clear both TE and RE to 0, then set both TE and RE to 1 simultaneously.

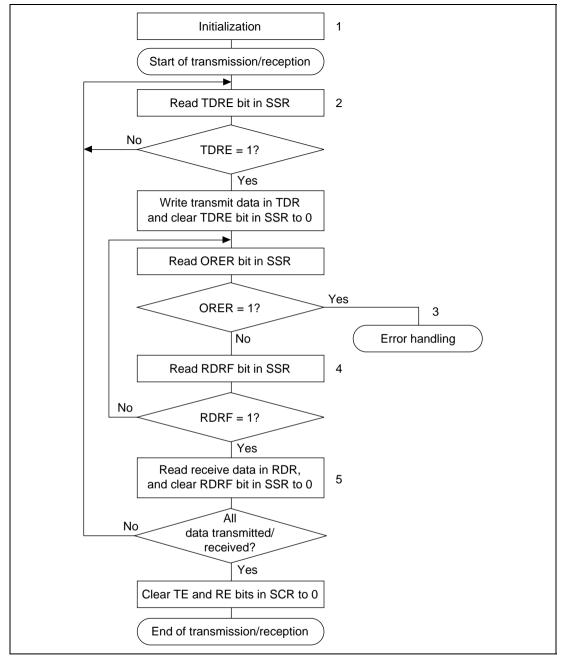



Figure 15.24 Sample Flowchart for Serial Transmission and Reception

## 15.4 SCI Interrupt Sources and the DMAC

The SCI has four interrupt sources: transmit-end (TEI), receive-error (ERI), receive-data-full (RXI), and transmit-data-empty (TXI). Table 15.12 lists the interrupt sources and indicates their priority. These interrupts can be enabled and disabled by the TIE, RIE, and TEIE bits in the serial control register (SCR). Each interrupt request is sent separately to the interrupt controller.

TXI is requested when the TDRE bit in SSR is set to 1. TXI can start the direct memory access controller (DMAC) to transfer data. TDRE is automatically cleared to 0 when the DMAC writes data in the transmit data register (TDR).

RXI is requested when the RDRF bit in SSR is set to 1. RXI can start the DMAC to transfer data. RDRF is automatically cleared to 0 when the DMAC reads the receive data register (RDR).

ERI is requested when the ORER, PER, or FER bit in SSR is set to 1. ERI cannot start the DMAC.

TEI is requested when the TEND bit in SSR is set to 1. TEI cannot start the DMAC. Where the TXI interrupt indicates that transmit data writing is enabled, the TEI interrupt indicates that the transmit operation is complete.

**Table 15.12 SCI Interrupt Sources** 

| Interrupt Source | Description                       | DMAC Activation | Priority |
|------------------|-----------------------------------|-----------------|----------|
| ERI              | Receive error (ORER, PER, or FER) | No              | High     |
| RXI              | Receive data full (RDRF)          | Yes             | <u> </u> |
| TXI              | Transmit data empty (TDRE)        | Yes             |          |
| TEI              | Transmit end (TEND)               | No              | Low      |

## 15.5 Usage Notes

Sections 15.5.1 through 15.5.9 provide information concerning use of the SCI.

#### 15.5.1 TDR Write and TDRE Flag

The TDRE bit in the serial status register (SSR) is a status flag indicating loading of transmit data from TDR into TSR. The SCI sets TDRE to 1 when it transfers data from TDR to TSR. Data can be written to TDR regardless of the TDRE bit status. If new data is written in TDR when TDRE is 0, however, the old data stored in TDR will be lost because the data has not yet been transferred to TSR. Before writing transmit data to TDR, be sure to check that TDRE is set to 1.

#### 15.5.2 Simultaneous Multiple Receive Errors

Table 15.13 indicates the state of the SSR status flags when multiple receive errors occur simultaneously. When an overrun error occurs, the RSR contents cannot be transferred to RDR, so receive data is lost.

Table 15.13 SSR Status Flags and Transfer of Receive Data

|                                              |               | SSR Stat | Receive Data Transfe |           |   |
|----------------------------------------------|---------------|----------|----------------------|-----------|---|
| Receive Error Status                         | RDRF ORER FER |          | PER                  | RSR → RDR |   |
| Overrun error                                | 1             | 1        | 0                    | 0         | X |
| Framing error                                | 0             | 0        | 1                    | 0         | 0 |
| Parity error                                 | 0             | 0        | 0                    | 1         | 0 |
| Overrun error + framing error                | 1             | 1        | 1                    | 0         | X |
| Overrun error + parity error                 | 1             | 1        | 0                    | 1         | X |
| Framing error + parity error                 | 0             | 0        | 1                    | 1         | 0 |
| Overrun error + framing error + parity error | 1             | 1        | 1                    | 1         | X |

Notes: O: Receive data is transferred from RSR to RDR.

X: Receive data is not transferred from RSR to RDR.

#### 15.5.3 Break Detection and Processing

Break signals can be detected by reading the RxD pin directly when a framing error (FER) is detected. In the break state, the input from the RxD pin consists of all 0s, so FER is set and the parity error flag (PER) may also be set. In the break state, the SCI receiver continues to operate, so if the FER bit is cleared to 0, it will be set to 1 again.

#### 15.5.4 Sending a Break Signal

The TxD pin becomes a general I/O pin with the I/O direction and level determined by the I/O port data register (DR) and pin function controller (PFC) control register (CR). These conditions allow break signals to be sent. The DR value is substituted for the marking status until the PFC is set. Consequently, the output port is set to initially output a 1. To send a break in serial transmission, first clear the DR to 0, then establish the TxD pin as an output port using the PFC. When TE is cleared to 0, the transmission section is initialized regardless of the present transmission status.

#### 15.5.5 Receive Error Flags and Transmitter Operation (Synchronous Mode Only)

When a receive error flag (ORER, PER, or FER) is set to 1, the SCI will not start transmitting even if TDRE is set to 1. Be sure to clear the receive error flags to 0 before starting to transmit. Note that clearing RE to 0 does not clear the receive error flags.

## 15.5.6 Receive Data Sampling Timing and Receive Margin in Asynchronous Mode

In asynchronous mode, the SCI operates on a base clock with a frequency of 16 times the transfer rate. In receiving, the SCI synchronizes internally with the falling edge of the start bit, which it samples on the base clock. Receive data is latched on the rising edge of the eighth base clock pulse (figure 15.25).

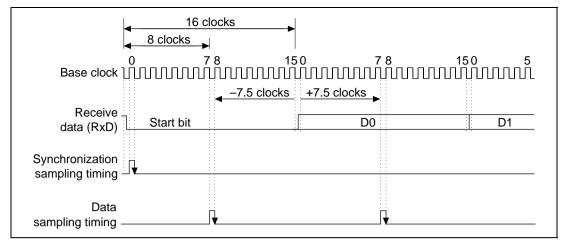



Figure 15.25 Receive Data Sampling Timing in Asynchronous Mode

The receive margin in asynchronous mode can therefore be expressed as:

$$M = \left| \left( 0.5 - \frac{1}{2N} \right) - (L - 0.5) F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100\%$$

M: Receive margin (%)

N: Ratio of clock frequency to bit rate (N = 16)

D : Clock duty cycle (D = 0-1.0)

L: Frame length (L = 9-12)

F: Absolute deviation of clock frequency

From the equation above, if F=0 and D=0.5 the receive margin is 46.875%:

D = 0.5, F = 0  
M = 
$$(0.5 - 1/(2 \times 16)) \times 100\%$$
  
= 46.875%

This is a theoretical value. A reasonable margin to allow in system designs is 20–30%.

#### 15.5.7 Constraints on DMAC Use

- When using an external clock source for the serial clock, update TDR with the DMAC, and
  then after the elapse of five peripheral clocks (Pφ) or more, input a transmit clock. If a transmit
  clock is input in the first four Pφ clocks after TDR is written, an error may occur (figure
  15.26).
- Before reading the receive data register (RDR) with the DMAC, select the receive-data-full (RXI) interrupt of the SCI as a start-up source.

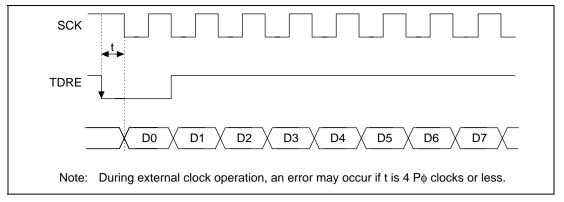



Figure 15.26 Example of Synchronous Transmission with DMAC

#### 15.5.8 Cautions on Synchronous External Clock Mode

- Set TE = RE = 1 only when external clock SCK is 1.
- Do not set TE = RE = 1 until at least four Pφ clocks after external clock SCK has changed from 0 to 1.
- When receiving, RDRF is 1 when RE is cleared to zero 2.5–3.5 P\$\phi\$ clocks after the rising edge of the RxD D7 bit SCK input, but copying to RDR is not possible.

## 15.5.9 Caution on Synchronous Internal Clock Mode

When receiving, RDRF is 1 when RE is cleared to zero 1.5 P\$\phi\$ clocks after the rising edge of the RxD D7 bit SCK output, but copying to RDR is not possible.

# Section 16 Controller Area Network (HCAN)

#### 16.1 Overview

The HCAN is a module for controlling a controller area network (CAN) for realtime communication in vehicular and industrial equipment systems, etc. The SH7055SF has a 2-channel on-chip HCAN module.

Reference: Bosch CAN Specification Version 2.0 1991, Robert Bosch GmbH

#### 16.1.1 Features

The HCAN has the following features:

- CAN version: Bosch 2.0B active compatible
  - Communication systems:
    - NRZ (Non-Return to Zero) system (with bit-stuffing function)
    - Broadcast communication system
  - Transmission path: Bidirectional 2-wire serial communication
  - Communication speed: Max. 1 Mbps (at 40 MHz operation)
  - Data length: 0 to 8 bytes
- Number of channels: 2 (HCAN0, HCAN1)
- Data buffers: 16 per channel (one receive-only buffer and 15 buffers settable for transmission/reception)
- Data transmission: Choice of two methods:
  - Mailbox (buffer) number order (low-to-high)
  - Message priority (identifier) high-to-low order
- Data reception: Two methods:
  - Message identifier match (transmit/receive-setting buffers)
  - Reception with message identifier masked (receive-only)
- CPU interrupts: Four independent interrupt vectors per channel:
  - Error interrupt
  - Reset processing interrupt
  - Message reception interrupt
  - Message transmission interrupt
- HCAN operating modes: Support for various modes:
  - Hardware reset
  - Software reset
  - Normal status (error-active, error-passive)

- Bus off status
- HCAN configuration mode
- HCAN sleep mode
- HCAN halt mode
- HCAN connection methods: Choice of two methods of use:
  - Two-channel 16-buffer HCANs (two transmit pins, two receive pins)
  - One-channel 32-buffer HCAN (wired-AND) (one transmit pin, one receive pin)
- Other features: DMAC can be activated by message reception mailbox (HCAN0 mailbox 0 only)

#### 16.1.2 Block Diagram

Figure 16.1 shows a block diagram of the HCAN.

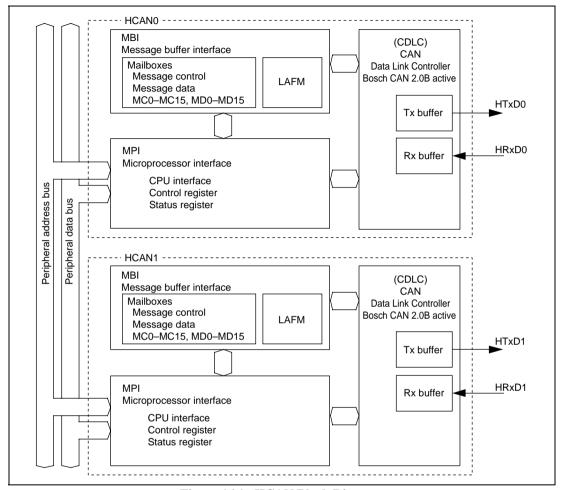



Figure 16.1 HCAN Block Diagram

**Message Buffer Interface (MBI):** The MBI, consisting of mailboxes and a local acceptance filter mask (LAFM), stores CAN transmit/receive messages (identifiers, data, etc.). Transmit messages are written by the CPU. For receive messages, the data received by the CDLC is stored automatically.

**Microprocessor Interface (MPI):** The MPI, consisting of a bus interface, control register, status register, etc., controls HCAN internal data, statuses, and so forth.

**CAN Data Link Controller (CDLC):** The CDLC performs transmission and reception of messages conforming to the Bosch CAN Ver. 2.0B active standard (data frames, remote frames,

error frames, overload frames, inter-frame spacing), as well as CRC checking, bus arbitration, and other functions.

#### 16.1.3 Pin Configuration

Table 16.1 shows the HCAN's pins. When using the functions of these external pins, the pin function controller (PFC) must also be set in line with the HCAN settings.

When using HCAN pins, settings must be made in the HCAN configuration mode (during initialization: MCR0 = 1 and GSR3 = 1).

Table 16.1 HCAN Pins

| Channel | Name                     | Abbreviation | Input/Output | Function                           |
|---------|--------------------------|--------------|--------------|------------------------------------|
| 0       | HCAN transmit data pin 0 | HTxD0        | Output       | Channel 0 CAN bus transmission pin |
|         | HCAN receive data pin 0  | HRxD0        | Input        | Channel 0 CAN bus reception pin    |
| 1       | HCAN transmit data pin 1 | HTxD1        | Output       | Channel 1 CAN bus transmission pin |
|         | HCAN receive data pin 1  | HRxD1        | Input        | Channel 1 CAN bus reception pin    |

A bus transceiver IC is necessary between the pins and the CAN bus. A Philips PCA82C250 compatible model is recommended.

These pins are multiplexed, and can be set in either of the following ways.

- Setting each channel as an independent 16-message-buffer HCAN (two HCAN channels: two transmit pins and two receive pins)
- Setting one HCAN channel, using wired-AND connection of the pins for the two channels (one 32-message-buffer HCAN channel: one transmit pin and one receive pin)

See section 16.3, Operation, for details.

The pin numbers of the pins that can be set for each channel are shown in table 16.2.

Table 16.2 Pin Numbers of Pins Settable as HCAN Pins

|      | HCAN0              | HCAN1              | HCAN0,1 (Wired AND) |
|------|--------------------|--------------------|---------------------|
|      | 16 Message Buffers | 16 Message Buffers | 32 Message Buffers  |
| HTxD | 6,157,228          | 6,228              | 228                 |
| HRxD | 158,170,229        | 170,229            | 229                 |

## 16.1.4 Register Configuration

Table 16.3 lists the HCAN's registers.

Table 16.3 HCAN Registers

| Chan-<br>nel | Name                            | Abbre-<br>viation | R/W | Initial<br>Value | Address     | Access Size    |
|--------------|---------------------------------|-------------------|-----|------------------|-------------|----------------|
| 0            | Master control register         | MCR               | R/W | H'01             | H'FFFF E400 | 8 bits 16 bits |
|              | General status register         | GSR               | R   | H'0C             | H'FFFF E401 | 8 bits         |
|              | Bit configuration register      | BCR               | R/W | H'0000           | H'FFFF E402 | 8/16 bits      |
|              | Mailbox configuration register  | MBCR              | R/W | H'0100           | H'FFFF E404 | 8/16 bits      |
|              | Transmit wait register          | TXPR              | R/W | H'0000           | H'FFFF E406 | 8/16 bits      |
|              | Transmit wait cancel register   | TXCR              | R/W | H'0000           | H'FFFF E408 | 8/16 bits      |
|              | Transmit acknowledge register   | TXACK             | R/W | H'0000           | H'FFFF E40A | 8/16 bits      |
|              | Abort acknowledge register      | ABACK             | R/W | H'0000           | H'FFFF E40C | 8/16 bits      |
|              | Receive complete register       | RXPR              | R/W | H'0000           | H'FFFF E40E | 8/16 bits      |
|              | Remote request register         | RFPR              | R/W | H'0000           | H'FFFF E410 | 8/16 bits      |
|              | Interrupt register              | IRR               | R/W | H'0100           | H'FFFF E412 | 8/16 bits      |
|              | Mailbox interrupt mask register | MBIMR             | R/W | H'FFFF           | H'FFFF E414 | 8/16 bits      |
|              | Interrupt mask register         | IMR               | R/W | H'FEFF           | H'FFFF E416 | 8/16 bits      |
|              | Receive error counter           | REC               | R   | H'00             | H'FFFF E418 | 8 bits 16 bits |
|              | Transmit error counter          | TEC               | R   | H'00             | H'FFFF E419 | 8 bits         |
|              | Unread message status register  | UMSR              | R/W | H'0000           | H'FFFF E41A | 8/16 bits      |
|              | Local acceptance filter mask L  | LAFML             | R/W | H'0000           | H'FFFF E41C | 8/16 bits      |
|              | Local acceptance filter mask H  | LAFMH             | R/W | H'0000           | H'FFFF E41E | 8/16 bits      |

Table 16.3 HCAN Registers (cont)

| Chan-<br>nel | Name                     | Abbre-<br>viation | R/W | Initial<br>Value | Address     | Access Size |
|--------------|--------------------------|-------------------|-----|------------------|-------------|-------------|
| 0            | Message control 0 [1:8]  | MC0 [1:8]         | R/W | Undefined        | H'FFFF E420 | 8/16 bits   |
|              | Message control 1 [1:8]  | MC1 [1:8]         | R/W | Undefined        | H'FFFF E428 | 8/16 bits   |
|              | Message control 2 [1:8]  | MC2 [1:8]         | R/W | Undefined        | H'FFFF E430 | 8/16 bits   |
|              | Message control 3 [1:8]  | MC3 [1:8]         | R/W | Undefined        | H'FFFF E438 | 8/16 bits   |
|              | Message control 4 [1:8]  | MC4 [1:8]         | R/W | Undefined        | H'FFFF E440 | 8/16 bits   |
|              | Message control 5 [1:8]  | MC5 [1:8]         | R/W | Undefined        | H'FFFF E448 | 8/16 bits   |
|              | Message control 6 [1:8]  | MC6 [1:8]         | R/W | Undefined        | H'FFFF E450 | 8/16 bits   |
|              | Message control 7 [1:8]  | MC7 [1:8]         | R/W | Undefined        | H'FFFF E458 | 8/16 bits   |
|              | Message control 8 [1:8]  | MC8 [1:8]         | R/W | Undefined        | H'FFFF E460 | 8/16 bits   |
|              | Message control 9 [1:8]  | MC9 [1:8]         | R/W | Undefined        | H'FFFF E468 | 8/16 bits   |
|              | Message control 10 [1:8] | MC10 [1:8]        | R/W | Undefined        | H'FFFF E470 | 8/16 bits   |
|              | Message control 11 [1:8] | MC11 [1:8]        | R/W | Undefined        | H'FFFF E478 | 8/16 bits   |
|              | Message control 12 [1:8] | MC12 [1:8]        | R/W | Undefined        | H'FFFF E480 | 8/16 bits   |
|              | Message control 13 [1:8] | MC13 [1:8]        | R/W | Undefined        | H'FFFF E488 | 8/16 bits   |
|              | Message control 14 [1:8] | MC14 [1:8]        | R/W | Undefined        | H'FFFF E490 | 8/16 bits   |
|              | Message control 15 [1:8] | MC15 [1:8]        | R/W | Undefined        | H'FFFF E498 | 8/16 bits   |
|              | Message data 0 [1:8]     | MD0 [1:8]         | R/W | Undefined        | H'FFFF E4B0 | 8/16 bits   |
|              | Message data 1 [1:8]     | MD1 [1:8]         | R/W | Undefined        | H'FFFF E4B8 | 8/16 bits   |
|              | Message data 2 [1:8]     | MD2 [1:8]         | R/W | Undefined        | H'FFFF E4C0 | 8/16 bits   |
|              | Message data 3 [1:8]     | MD3 [1:8]         | R/W | Undefined        | H'FFFF E4C8 | 8/16 bits   |
|              | Message data 4 [1:8]     | MD4 [1:8]         | R/W | Undefined        | H'FFFF E4D0 | 8/16 bits   |
|              | Message data 5 [1:8]     | MD5 [1:8]         | R/W | Undefined        | H'FFFF E4D8 | 8/16 bits   |
|              | Message data 6 [1:8]     | MD6 [1:8]         | R/W | Undefined        | H'FFFF E4E0 | 8/16 bits   |
|              | Message data 7 [1:8]     | MD7 [1:8]         | R/W | Undefined        | H'FFFF E4E8 | 8/16 bits   |
|              | Message data 8 [1:8]     | MD8 [1:8]         | R/W | Undefined        | H'FFFF E4F0 | 8/16 bits   |
|              | Message data 9 [1:8]     | MD9 [1:8]         | R/W | Undefined        | H'FFFF E4F8 | 8/16 bits   |
|              | Message data 10 [1:8]    | MD10 [1:8]        | R/W | Undefined        | H'FFFF E500 | 8/16 bits   |
|              | Message data 11 [1:8]    | MD11 [1:8]        | R/W | Undefined        | H'FFFF E508 | 8/16 bits   |
|              | Message data 12 [1:8]    | MD12 [1:8]        | R/W | Undefined        | H'FFFF E510 | 8/16 bits   |
|              | Message data 13 [1:8]    | MD13 [1:8]        | R/W | Undefined        | H'FFFF E518 | 8/16 bits   |
|              | Message data 14 [1:8]    | MD14 [1:8]        | R/W | Undefined        | H'FFFF E520 | 8/16 bits   |
|              | Message data 15 [1:8]    | MD15 [1:8]        | R/W | Undefined        | H'FFFF E528 | 8/16 bits   |

Table 16.3 HCAN Registers (cont)

| Chan-<br>nel | Name                            | Abbre-<br>viation | R/W | Initial<br>Value | Address     | Access Size    |
|--------------|---------------------------------|-------------------|-----|------------------|-------------|----------------|
| 1            | Master control register         | MCR               | R/W | H'01             | H'FFFF E600 | 8 bits 16 bits |
|              | General status register         | GSR               | R   | H'0C             | H'FFFF E601 | 8 bits         |
|              | Bit configuration register      | BCR               | R/W | H'0000           | H'FFFF E602 | 8/16 bits      |
|              | Mailbox configuration register  | MBCR              | R/W | H'0100           | H'FFFF E604 | 8/16 bits      |
|              | Transmit wait register          | TXPR              | R/W | H'0000           | H'FFFF E606 | 8/16 bits      |
|              | Transmit wait cancel register   | TXCR              | R/W | H'0000           | H'FFFF E608 | 8/16 bits      |
|              | Transmit acknowledge register   | TXACK             | R/W | H'0000           | H'FFFF E60A | 8/16 bits      |
|              | Abort acknowledge register      | ABACK             | R/W | H'0000           | H'FFFF E60C | 8/16 bits      |
|              | Receive complete register       | RXPR              | R/W | H'0000           | H'FFFF E60E | 8/16 bits      |
|              | Remote request register         | RFPR              | R/W | H'0000           | H'FFFF E610 | 8/16 bits      |
|              | Interrupt register              | IRR               | R/W | H'0100           | H'FFFF E612 | 8/16 bits      |
|              | Mailbox interrupt mask register | MBIMR             | R/W | H'FFFF           | H'FFFF E614 | 8/16 bits      |
|              | Interrupt mask register         | IMR               | R/W | H'FEFF           | H'FFFF E616 | 8/16 bits      |
|              | Receive error counter           | REC               | R   | H'00             | H'FFFF E618 | 8 bits 16 bits |
|              | Transmit error counter          | TEC               | R   | H'00             | H'FFFF E619 | 8 bits         |
|              | Unread message status register  | UMSR              | R/W | H'0000           | H'FFFF E61A | 8/16 bits      |
|              | Local acceptance filter mask L  | LAFML             | R/W | H'0000           | H'FFFF E61C | 8/16 bits      |
|              | Local acceptance filter mask H  | LAFMH             | R/W | H'0000           | H'FFFF E61E | 8/16 bits      |

**Table 16.3 HCAN Registers (cont)** 

| Chan-<br>nel | Name                     | Abbre-<br>viation | R/W | Initial<br>Value | Address     | Access Size |
|--------------|--------------------------|-------------------|-----|------------------|-------------|-------------|
| 1            | Message control 0 [1:8]  | MC0 [1:8]         | R/W | Undefined        | H'FFFF E620 | 8/16 bits   |
|              | Message control 1 [1:8]  | MC1 [1:8]         | R/W | Undefined        | H'FFFF E628 | 8/16 bits   |
|              | Message control 2 [1:8]  | MC2 [1:8]         | R/W | Undefined        | H'FFFF E630 | 8/16 bits   |
|              | Message control 3 [1:8]  | MC3 [1:8]         | R/W | Undefined        | H'FFFF E638 | 8/16 bits   |
|              | Message control 4 [1:8]  | MC4 [1:8]         | R/W | Undefined        | H'FFFF E640 | 8/16 bits   |
|              | Message control 5 [1:8]  | MC5 [1:8]         | R/W | Undefined        | H'FFFF E648 | 8/16 bits   |
|              | Message control 6 [1:8]  | MC6 [1:8]         | R/W | Undefined        | H'FFFF E650 | 8/16 bits   |
|              | Message control 7 [1:8]  | MC7 [1:8]         | R/W | Undefined        | H'FFFF E658 | 8/16 bits   |
|              | Message control 8 [1:8]  | MC8 [1:8]         | R/W | Undefined        | H'FFFF E660 | 8/16 bits   |
|              | Message control 9 [1:8]  | MC9 [1:8]         | R/W | Undefined        | H'FFFF E668 | 8/16 bits   |
|              | Message control 10 [1:8] | MC10 [1:8]        | R/W | Undefined        | H'FFFF E670 | 8/16 bits   |
|              | Message control 11 [1:8] | MC11 [1:8]        | R/W | Undefined        | H'FFFF E678 | 8/16 bits   |
|              | Message control 12 [1:8] | MC12 [1:8]        | R/W | Undefined        | H'FFFF E680 | 8/16 bits   |
|              | Message control 13 [1:8] | MC13 [1:8]        | R/W | Undefined        | H'FFFF E688 | 8/16 bits   |
|              | Message control 14 [1:8] | MC14 [1:8]        | R/W | Undefined        | H'FFFF E690 | 8/16 bits   |
|              | Message control 15 [1:8] | MC15 [1:8]        | R/W | Undefined        | H'FFFF E698 | 8/16 bits   |
|              | Message data 0 [1:8]     | MD0 [1:8]         | R/W | Undefined        | H'FFFF E6B0 | 8/16 bits   |
|              | Message data 1 [1:8]     | MD1 [1:8]         | R/W | Undefined        | H'FFFF E6B8 | 8/16 bits   |
|              | Message data 2 [1:8]     | MD2 [1:8]         | R/W | Undefined        | H'FFFF E6C0 | 8/16 bits   |
|              | Message data 3 [1:8]     | MD3 [1:8]         | R/W | Undefined        | H'FFFF E6C8 | 8/16 bits   |
|              | Message data 4 [1:8]     | MD4 [1:8]         | R/W | Undefined        | H'FFFF E6D0 | 8/16 bits   |
|              | Message data 5 [1:8]     | MD5 [1:8]         | R/W | Undefined        | H'FFFF E6D8 | 8/16 bits   |
|              | Message data 6 [1:8]     | MD6 [1:8]         | R/W | Undefined        | H'FFFF E6E0 | 8/16 bits   |
|              | Message data 7 [1:8]     | MD7 [1:8]         | R/W | Undefined        | H'FFFF E6E8 | 8/16 bits   |
|              | Message data 8 [1:8]     | MD8 [1:8]         | R/W | Undefined        | H'FFFF E6F0 | 8/16 bits   |
|              | Message data 9 [1:8]     | MD9 [1:8]         | R/W | Undefined        | H'FFFF E6F8 | 8/16 bits   |
|              | Message data 10 [1:8]    | MD10 [1:8]        | R/W | Undefined        | H'FFFF E700 | 8/16 bits   |
|              | Message data 11 [1:8]    | MD11 [1:8]        | R/W | Undefined        | H'FFFF E708 | 8/16 bits   |
|              | Message data 12 [1:8]    | MD12 [1:8]        | R/W | Undefined        | H'FFFF E710 | 8/16 bits   |
|              | Message data 13 [1:8]    | MD13 [1:8]        | R/W | Undefined        | H'FFFF E718 | 8/16 bits   |
|              | Message data 14 [1:8]    | MD14 [1:8]        | R/W | Undefined        | H'FFFF E720 | 8/16 bits   |
|              | Message data 15 [1:8]    | MD15 [1:8]        | R/W | Undefined        | H'FFFF E728 | 8/16 bits   |

## 16.2 Register Descriptions

## 16.2.1 Master Control Register (MCR)

The master control register (MCR) is an 8-bit readable/writable register that controls the CAN interface.

| Bit:           | 7    | 6 | 5    | 4 | 3 | 2    | 1    | 0    |
|----------------|------|---|------|---|---|------|------|------|
|                | MCR7 | _ | MCR5 | _ | _ | MCR2 | MCR1 | MCR0 |
| Initial value: | 0    | 0 | 0    | 0 | 0 | 0    | 0    | 1    |
| R/W:           | R/W  | R | R/W  | R | R | R/W  | R/W  | R/W  |

• Bit 7—HCAN Sleep Mode Release (MCR7): Enables or disables HCAN sleep mode release by bus operation.

| Bit 7: MCR7 | Description                                           |                 |
|-------------|-------------------------------------------------------|-----------------|
| 0           | HCAN sleep mode release by CAN bus operation disabled | (Initial value) |
| 1           | HCAN sleep mode release by CAN bus operation enabled  |                 |

- Bit 6—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 5—HCAN Sleep Mode (MCR5): Enables or disables HCAN sleep mode transition.

| Bit 5: MCR5 | Description                           |                 |
|-------------|---------------------------------------|-----------------|
| 0           | HCAN sleep mode released              | (Initial value) |
| 1           | Transition to HCAN sleep mode enabled | _               |

- Bits 4 and 3—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 2—Message Transmission Method (MCR2): Selects the transmission method for transmit messages.

| Bit 2: MCR2 | Description                                                                        |
|-------------|------------------------------------------------------------------------------------|
| 0           | Transmission order determined by message identifier priority (Initial value)       |
| 1           | Transmission order determined by mailbox (buffer) number priority (TXPR1 > TXPR15) |

• Bit 1—Halt Request (MCR1): Controls halting of the HCAN module.

| Bit 1: MCR1 | Description                  |                 |
|-------------|------------------------------|-----------------|
| 0           | Normal operating mode        | (Initial value) |
| 1           | Halt mode transition request |                 |

• Bit 0—Reset Request (MCR0): Controls resetting of the HCAN module.

| Bit 0: MCR0 | Description                                               |                 |
|-------------|-----------------------------------------------------------|-----------------|
| 0           | Normal operating mode (MCR0 = 0 and GSR3 = 0)             | _               |
|             | [Setting condition] When 0 is written after an HCAN reset |                 |
| 1           | Reset mode transition request                             | (Initial value) |

In order for GSR3 to change from 1 to 0 after 0 is written to MCR0, time is required before the HCAN is internally reset. There is consequently a delay before GSR3 is cleared to 0 after MCR0 is cleared to 0.

## 16.2.2 General Status Register (GSR)

The general status register (GSR) is an 8-bit readable register that indicates the status of the CAN bus.

| Bit:           | 7 | 6 | 5 | 4 | 3    | 2    | 1    | 0    |
|----------------|---|---|---|---|------|------|------|------|
|                | _ | _ | _ | _ | GSR3 | GSR2 | GSR1 | GSR0 |
| Initial value: | 0 | 0 | 0 | 0 | 1    | 1    | 0    | 0    |
| R/W:           | R | R | R | R | R    | R    | R    | R    |

- Bits 7 to 4—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 3—Reset Status Bit (GSR3): Indicates whether the HCAN module is in the normal operating state or the reset state. This bit cannot be modified.

| Bit 3: GSR3 | Description                                                |                 |
|-------------|------------------------------------------------------------|-----------------|
| 0           | Normal operating state                                     |                 |
|             | [Setting condition] After an HCAN internal reset           |                 |
| 1           | Configuration mode                                         | (Initial value) |
|             | [Reset condition] MCR0-initiated reset state or sleep mode |                 |

• Bit 2—Message Transmission Status Flag (GSR2): Flag that indicates whether the module is currently in the message transmission period. The "message transmission period" is the period from the start of message transmission (SOF) until the end of a 3-bit intermission interval after EOF (End of Frame). This bit cannot be modified.

| Bit 2: GSR2 | Description                   |                 |
|-------------|-------------------------------|-----------------|
| 0           | Transmission in progress      |                 |
| 1           | [Reset condition] Idle period | (Initial value) |

• Bit 1—Transmit/Receive Warning Flag (GSR1): Flag that indicates an error warning. This bit cannot be modified.

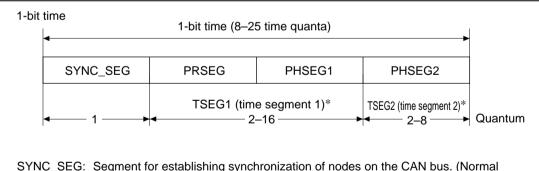
| it 1: GSR1 | Description                                                  |                 |
|------------|--------------------------------------------------------------|-----------------|
| 0          | [Reset condition]<br>When TEC < 96 and REC < 96 or TEC ≥ 256 | (Initial value) |
| 1          | When TEC $\geq$ 96 or REC $\geq$ 96                          | _               |

• Bit 0—Bus Off Flag (GSR0): Flag that indicates the bus off state. This bit cannot be modified.

| Bit 0: GSR0 | Description                                   |                 |
|-------------|-----------------------------------------------|-----------------|
| 0           | [Reset condition] Recovery from bus off state | (Initial value) |
| 1           | When TEC ≥ 256 (bus off state)                |                 |

## 16.2.3 Bit Configuration Register (BCR)

The bit configuration register (BCR) is a 16-bit readable/writable register that is used to set CAN bit timing parameters and the baud rate prescaler.


| Bit:           | 15    | 14    | 13    | 12    | 11    | 10    | 9    | 8    |
|----------------|-------|-------|-------|-------|-------|-------|------|------|
|                | BCR7  | BCR6  | BCR5  | BCR4  | BCR3  | BCR2  | BCR1 | BCR0 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |
| R/W:           | R/W    R/W  |
|                |       |       |       |       |       |       |      |      |
| Bit:           | 7     | 6     | 5     | 4     | 3     | 2     | 1    | 0    |
|                | BCR15 | BCR14 | BCR13 | BCR12 | BCR11 | BCR10 | BCR9 | BCR8 |
| Initial value: | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |
| R/W:           | R/W    R/W  |

Bits 15 and 14—Re-synchronization Jump Width (SJW): These bits set the maximum bit synchronization range.

| Bit 15:<br>BCR7 | Bit 14:<br>BCR6 | Description                                        |
|-----------------|-----------------|----------------------------------------------------|
| 0               | 0               | Maximum bit synchronization width = 1 time quantum |
|                 | 1               | Maximum bit synchronization width = 2 time quanta  |
| 1               | 0               | Maximum bit synchronization width = 3 time quanta  |
|                 | 1               | Maximum bit synchronization width = 4 time quanta  |

Bits 13 to 8—Baud Rate Prescaler (BRP): These bits are used to set the CAN bus baud rate.

| Bit 13:<br>BCR5 | Bit 12:<br>BCR4 | Bit 11:<br>BCR3 | Bit 10:<br>BCR2 | Bit 9:<br>BCR1 | Bit 8:<br>BCR0 | Description        |                 |
|-----------------|-----------------|-----------------|-----------------|----------------|----------------|--------------------|-----------------|
| 0               | 0               | 0               | 0               | 0              | 0              | 2 × system clock   | (Initial value) |
| 0               | 0               | 0               | 0               | 0              | 1              | 4 × system clock   |                 |
| 0               | 0               | 0               | 0               | 1              | 0              | 6 × system clock   |                 |
|                 |                 |                 |                 |                |                | •                  |                 |
|                 | •               | •               | •               |                | •              | •                  |                 |
|                 |                 |                 |                 |                | •              |                    |                 |
| 1               | 1               | 1               | 1               | 1              | 1              | 128 × system clock |                 |



bit edge transitions occur in this segment.)

Segment for compensating for physical delay between networks. PRSEG:

PHSEG1: Buffer segment for correcting phase drift (positive). (This segment is extended

when synchronization (re-synchronization) is established.)

PHSEG2: Buffer segment for correcting phase drift (negative). (This segment is

shortened when synchronization (re-synchronization) is established.)

Note: \* The time quanta value for TSEG1 and TSEG2 is the TSEG value + 1.

Figure 16.2 Detailed Description of One Bit

HCAN bit rate calculation:

Bit rate [b/s] = 
$$\frac{f_{CLK}}{2 \times (BRP + 1) \times (3 + TSEG1 + TSEG2)}$$

Note:  $f_{CLK} = P\phi$  (peripheral clock  $(\phi/2)$ )

The BCR values are used for BRP, TSEG1, and TSEG2.

## **BCR Setting Constraints**

$$TSEG1 > TSEG2 = SJW$$
 (SJW = 1 to 4)

3 + TSEG1 + TSEG2 = 8 to 25 time quanta

TSEG2 > B'001 (BRP = B'000000)

TSEG2 > B'000 (BRP > B'000000)

These constraints allow the setting range shown in table 16.4 for TSEG1 and TSEG2 in BCR.

Table 16.4 Setting Range for TSEG1 and TSEG2 in BCR

|              |      |      |     | TSEG | 2 (BCR [1 | 4:12]) |     |     |
|--------------|------|------|-----|------|-----------|--------|-----|-----|
|              |      | 001  | 010 | 011  | 100       | 101    | 110 | 111 |
| TSEG1        | 0011 | No   | Yes | No   | No        | No     | No  | No  |
| (BCR [11:8]) | 0100 | Yes* | Yes | Yes  | No        | No     | No  | No  |
|              | 0101 | Yes* | Yes | Yes  | Yes       | No     | No  | No  |
|              | 0110 | Yes* | Yes | Yes  | Yes       | Yes    | No  | No  |
|              | 0111 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | No  |
|              | 1000 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |
|              | 1001 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |
|              | 1010 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |
|              | 1011 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |
|              | 1100 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |
|              | 1101 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |
|              | 1110 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |
|              | 1111 | Yes* | Yes | Yes  | Yes       | Yes    | Yes | Yes |

Notes: The time quanta value for TSEG1 and TSEG2 is the TSEG value + 1.

<sup>\*</sup> Setting is enabled except when BRP[13:8] = B'000000.

• Bit 7—Bit Sample Point (BSP): Sets the point at which data is sampled.

| Bit 7: BCR15 | Description                                                                                       |
|--------------|---------------------------------------------------------------------------------------------------|
| 0            | Bit sampling at one point (end of time segment 1 (TSEG1)) (Initial value)                         |
| 1            | Bit sampling at three points (end of time segment 1 (TSEG1), and 1 time quantum before and after) |

• Bits 6 to 4—Time Segment 2 (TSEG2): These bits are used to set the segment for correcting 1-bit time error. A value from 2 to 8 can be set.

| Bit 6:<br>BCR14 | Bit 5:<br>BCR13 | Bit 4:<br>BCR12 | Description                    |                 |
|-----------------|-----------------|-----------------|--------------------------------|-----------------|
| 0               | 0               | 0               | Setting prohibited             | (Initial value) |
|                 |                 | 1               | TSEG2 (PHSEG2) = 2 time quanta |                 |
|                 | 1               | 0               | TSEG2 (PHSEG2) = 3 time quanta |                 |
|                 |                 | 1               | TSEG2 (PHSEG2) = 4 time quanta |                 |
| 1               | 0               | 0               | TSEG2 (PHSEG2) = 5 time quanta |                 |
|                 |                 | 1               | TSEG2 (PHSEG2) = 6 time quanta |                 |
|                 | 1               | 0               | TSEG2 (PHSEG2) = 7 time quanta |                 |
|                 |                 | 1               | TSEG2 (PHSEG2) = 8 time quanta |                 |

• Bits 3 to 0—Time Segment 1 (TSEG1): These bits are used to set the segment for absorbing output buffer, CAN bus, and input buffer delay. A value from 4 to 16 can be set.

| Bit 3:<br>BCR11 | Bit 2:<br>BCR10 | Bit 1:<br>BCR9 | Bit 0:<br>BCR8 | Description                             |
|-----------------|-----------------|----------------|----------------|-----------------------------------------|
| 0               | 0               | 0              | 0              | Setting prohibited (Initial value)      |
| 0               | 0               | 0              | 1              | Setting prohibited                      |
| 0               | 0               | 1              | 0              | Setting prohibited                      |
| 0               | 0               | 1              | 1              | TSEG1 (PRSEG + PHSEG1) = 4 time quanta  |
| 0               | 1               | 0              | 0              | TSEG1 (PRSEG + PHSEG1) = 5 time quanta  |
|                 |                 |                | •              |                                         |
| •               | •               | •              | •              | •                                       |
| •               | •               | •              | •              | ·                                       |
| 1               | 1               | 1              | 1              | TSEG1 (PRSEG + PHSEG1) = 16 time quanta |

#### 16.2.4 Mailbox Configuration Register (MBCR)

The mailbox configuration register (MBCR) is a 16-bit readable/writable register that is used to set mailbox (buffer) transmission/reception.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                | MBCR7  | MBCR6  | MBCR5  | MBCR4  | MBCR3  | MBCR2  | MBCR1 | _     |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 1     |
| R/W:           | R/W     R     |
|                |        |        |        |        |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|                | MBCR15 | MBCR14 | MBCR13 | MBCR12 | MBCR11 | MBCR10 | MBCR9 | MBCR8 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |

• Bits 15 to 9 and 7 to 0—Mailbox Setting Register (MBCR7 to 1, MBCR15 to 8): These bits set the polarity of the corresponding mailboxes.

| Bit x: MBCRx | Description                                   |                 |
|--------------|-----------------------------------------------|-----------------|
| 0            | Corresponding mailbox is set for transmission | (Initial value) |
| 1            | Corresponding mailbox is set for reception    |                 |

• Bit 8—Reserved: This bit always reads 1. The write value should always be 1.

## 16.2.5 Transmit Wait Register (TXPR)

The transmit wait register (TXPR) is a 16-bit readable/writable register that is used to set a transmit wait after a transmit message is stored in a mailbox (buffer) (CAN bus arbitration wait).

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                | TXPR7  | TXPR6  | TXPR5  | TXPR4  | TXPR3  | TXPR2  | TXPR1 | _     |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R     |
|                |        |        |        |        |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|                | TXPR15 | TXPR14 | TXPR13 | TXPR12 | TXPR11 | TXPR10 | TXPR9 | TXPR8 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |

• Bits 15 to 9 and 7 to 0—Transmit Wait Register (TXPR7 to 1, TXPR15 to 8): These bits set a CAN bus arbitration wait for the corresponding mailboxes.

| Bit x: TXPRx | Description                                                                      |        |  |  |  |  |
|--------------|----------------------------------------------------------------------------------|--------|--|--|--|--|
| 0            | Transmit message idle state in corresponding mailbox (Initial value)             |        |  |  |  |  |
|              | [Clearing condition] Message transmission completion and cancellation completion |        |  |  |  |  |
| 1            | Transmit message transmit wait in corresponding mailbox (CA arbitration)         | AN bus |  |  |  |  |

x = 1 to 15

• Bit 8—Reserved: This bit always reads 0. The write value should always be 0.

#### 16.2.6 Transmit Wait Cancel Register (TXCR)

The transmit wait cancel register (TXCR) is a 16-bit readable/writable register that controls cancellation of transmit wait messages in mailboxes (buffers).

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                | TXCR7  | TXCR6  | TXCR5  | TXCR4  | TXCR3  | TXCR2  | TXCR1 | _     |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R     |
|                |        |        |        |        |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|                | TXCR15 | TXCR14 | TXCR13 | TXCR12 | TXCR11 | TXCR10 | TXCR9 | TXCR8 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |

• Bits 15 to 9 and 7 to 0—Transmit Wait Cancel Register (TXCR7 to 1, TXCR15 to 8): These bits control cancellation of transmit wait messages in the corresponding HCAN mailboxes.

| Bit x: TXCRx | Description                                                              |
|--------------|--------------------------------------------------------------------------|
| 0            | Transmit message cancellation idle state in corresponding mailbox        |
|              | (Initial value)                                                          |
|              | [Clearing condition]                                                     |
|              | Completion of TXPR clearing (when transmit message is canceled normally) |
| 1            | TXPR cleared for corresponding mailbox (transmit message cancellation)   |

• Bit 8—Reserved: This bit always reads 0. The write value should always be 0.

## 16.2.7 Transmit Acknowledge Register (TXACK)

The transmit acknowledge register (TXACK) is a 16-bit readable/writable register containing status flags that indicate normal completion of mailbox (buffer) message transmission.

| Bit:           | 15      | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|----------------|---------|---------|---------|---------|---------|---------|--------|--------|
|                | TXACK7  | TXACK6  | TXACK5  | TXACK4  | TXACK3  | TXACK2  | TXACK1 | _      |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W      R      |
|                |         |         |         |         |         |         |        |        |
| Bit:           | 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|                | TXACK15 | TXACK14 | TXACK13 | TXACK12 | TXACK11 | TXACK10 | TXACK9 | TXACK8 |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W      R/W    |

• Bits 15 to 9 and 7 to 0—Transmit Acknowledge Register (TXACK7 to 1, TXACK15 to 8): These bits indicate that transmission of a message in the corresponding HCAN mailbox has been completed normally.

| Bit x: TXACKx | Description                                                 |                 |  |  |  |  |  |
|---------------|-------------------------------------------------------------|-----------------|--|--|--|--|--|
| 0             | [Clearing condition] Writing 1                              | (Initial value) |  |  |  |  |  |
| 1             | Completion of message transmission for corresponding mailbo |                 |  |  |  |  |  |

• Bit 8—Reserved: This bit is always read as 0. The write value should always be 0.

## 16.2.8 Abort Acknowledge Register (ABACK)

The abort acknowledge register (ABACK) is a 16-bit readable/writable register containing status flags that indicate normal cancellation (aborting) of a mailbox (buffer) transmit messages.

| Bit:           | 15      | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|----------------|---------|---------|---------|---------|---------|---------|--------|--------|
|                | ABACK7  | ABACK6  | ABACK5  | ABACK4  | ABACK3  | ABACK2  | ABACK1 | _      |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W      R      |
|                |         |         |         |         |         |         |        |        |
| Bit:           | 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|                | ABACK15 | ABACK14 | ABACK13 | ABACK12 | ABACK11 | ABACK10 | ABACK9 | ABACK8 |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W      R/W    |

• Bits 15 to 9 and 7 to 0—Abort Acknowledge Register (ABACK7 to 1, ABACK15 to 8): These bits indicate that a transmit message in the corresponding mailbox has been canceled (aborted) normally.

| Bit x: ABACKx | Description                                           |                   |
|---------------|-------------------------------------------------------|-------------------|
| 0             | [Clearing condition] Writing 1                        | (Initial value)   |
| 1             | Completion of transmit message cancellation for corre | esponding mailbox |

• Bit 8—Reserved: This bit is always read as 0. The write value should always be 0.

# 16.2.9 Receive Complete Register (RXPR)

The receive complete register (RXPR) is a 16-bit readable/writable register containing status flags that indicate normal reception of messages (data frames or remote frames) in mailboxes (buffers). In the case of remote frame reception, the corresponding bit in the remote request register (RFPR) is also set.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                | RXPR7  | RXPR6  | RXPR5  | RXPR4  | RXPR3  | RXPR2  | RXPR1 | RXPR0 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |
|                |        |        |        |        |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|                | RXPR15 | RXPR14 | RXPR13 | RXPR12 | RXPR11 | RXPR10 | RXPR9 | RXPR8 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |

• Bits 15 to 0—Receive Complete Register (RXPR7 to 0, RXPR15 to 8): These bits indicate that a receive message has been received normally in the corresponding mailbox.

| Bit x: RXPRx | Description                                                                |                 |
|--------------|----------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1                                             | (Initial value) |
| 1            | Completion of message (data frame or remote frame) recorresponding mailbox | ception in      |

# 16.2.10 Remote Request Register (RFPR)

The remote request register (RFPR) is a 16-bit readable/writable register containing status flags that indicate normal reception of remote frames in mailboxes (buffers). When a bit in this register is set, the corresponding bit in the receive complete register (RXPR) is also set.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                | RFPR7  | RFPR6  | RFPR5  | RFPR4  | RFPR3  | RFPR2  | RFPR1 | RFPR0 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |
|                |        |        |        |        |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|                | RFPR15 | RFPR14 | RFPR13 | RFPR12 | RFPR11 | RFPR10 | RFPR9 | RFPR8 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |

• Bits 15 to 0—Remote Request Register (RFPR7 to 0, RFPR15 to 8): These bits indicate that a remote frame has been received normally in the corresponding mailbox.

| Bit x: RFPRx | Description                                        |                 |
|--------------|----------------------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1                     | (Initial value) |
| 1            | Completion of remote frame reception in correspond | ling mailbox    |

# 16.2.11 Interrupt Register (IRR)

The interrupt register (IRR) is a 16-bit readable/writable register containing status flags for the various interrupt sources.

| Bit:           | 15   | 14   | 13   | 12    | 11   | 10   | 9    | 8    |
|----------------|------|------|------|-------|------|------|------|------|
|                | IRR7 | IRR6 | IRR5 | IRR4  | IRR3 | IRR2 | IRR1 | IRR0 |
| Initial value: | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 1    |
| R/W:           | R/W  | R/W  | R/W  | R/W   | R/W  | R    | R    | R/W  |
|                |      |      |      |       |      |      |      |      |
| Bit:           | 7    | 6    | 5    | 4     | 3    | 2    | 1    | 0    |
|                | _    | _    | _    | IRR12 | _    | _    | IRR9 | IRR8 |
| Initial value: | 0    | 0    | 0    | 0     | 0    | 0    | 0    | 0    |
| R/W:           | R    | R    | R    | R/W   | R    | R    | R    | R/W  |

 Bit 15—Overload Frame Interrupt Flag (IRR7): Status flag indicating that the HCAN has transmitted an overload frame.

| Bit 15: IRR7 | Description                                                                                                                |                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1                                                                                             | (Initial value) |
| 1            | Overload frame transmission                                                                                                |                 |
|              | <ul><li>[Setting conditions]</li><li>Error active/error passive state</li><li>When overload frame is transmitted</li></ul> |                 |

• Bit 14—Bus Off Interrupt Flag (IRR6): Status flag indicating the bus off state caused by the transmit error counter.

| Bit 14: IRR6 | Description                             |                 |
|--------------|-----------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1          | (Initial value) |
| 1            | Bus off state caused by transmit error  | <u> </u>        |
|              | [Setting condition] When TEC $\geq$ 256 |                 |

• Bit 13—Error Passive Interrupt Flag (IRR5): Status flag indicating the error passive state caused by the transmit/receive error counter.

| Bit 13: IRR5 | Description                                          |                 |
|--------------|------------------------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1                       | (Initial value) |
| 1            | Error passive state caused by transmit/receive error | _               |
|              | [Setting condition] When TEC ≥ 128 or REC ≥ 128      |                 |

• Bit 12—Receive Overload Warning Interrupt Flag (IRR4): Status flag indicating the error warning state caused by the receive error counter.

| Bit 12: IRR4 | Description                                 |                 |
|--------------|---------------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1              | (Initial value) |
| 1            | Error warning state caused by receive error |                 |
|              | [Setting condition] When REC $\geq$ 96      |                 |

• Bit 11—Transmit Overload Warning Interrupt Flag (IRR3): Status flag indicating the error warning state caused by the transmit error counter.

| Bit 11: IRR3 | Description                                  |                 |
|--------------|----------------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1               | (Initial value) |
| 1            | Error warning state caused by transmit error |                 |
|              | [Setting condition] When TEC $\geq$ 96       |                 |

• Bit 10—Remote Frame Request Interrupt Flag (IRR2): Status flag indicating that a remote frame has been received in a mailbox.

| Bit 10: IRR2 | Description                                                                                  |                 |
|--------------|----------------------------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] Clearing of all bits in RFPR (remote request wait register)             | (Initial value) |
| 1            | Remote frame received and stored in mailbox                                                  |                 |
|              | [Setting conditions] When remote frame reception is completed. When corresponding MBIMR = 0. |                 |

• Bit 9—Receive Message Interrupt Flag (IRR1): Status flag indicating that a mailbox receive message has been received normally.

| Bit 9: IRR1 | Description                                                                                                   |
|-------------|---------------------------------------------------------------------------------------------------------------|
| 0           | [Clearing condition] Clearing of all bits in RXPR (receive complete register) when MBIMR is 0 (Initial value) |
| 1           | Data frame or remote frame received and stored in mailbox                                                     |
|             | [Setting conditions] When data frame or remote frame reception is completed. When corresponding MBIMR = 0.    |

• Bit 8—Reset Interrupt Flag (IRR0): Status flag indicating that the HCAN module has been reset. This bit cannot be masked in the interrupt mask register (IMR). If this bit is not cleared after a power-on reset or recovery from software standby mode, interrupt processing will be executed immediately when interrupts are enabled by the interrupt controller.

| Bit 8: IRR0 | Description                                                                                                     |   |
|-------------|-----------------------------------------------------------------------------------------------------------------|---|
| 0           | [Clearing condition] Writing 1                                                                                  | • |
| 1           | Interrupt request (OVR) due to power-on reset or transition to software standby mode (Initial value)            | - |
|             | [Setting condition] When reset processing is completed after power-on reset or software standby mode transition |   |

- Bits 7 to 5, 3, and 2—Reserved: These bits always read 0. The write value should always be 0.
- Bit 4—Bus Operation Interrupt Flag (IRR12): Status flag indicating detection of a dominant bit due to bus operation when the HCAN module is in HCAN sleep mode.

| Bit 4: IRR12 | Description                                                                   |                 |
|--------------|-------------------------------------------------------------------------------|-----------------|
| 0            | CAN bus idle state                                                            | (Initial value) |
|              | [Clearing condition] Writing 1                                                |                 |
| 1            | CAN bus operation in HCAN sleep mode                                          |                 |
|              | [Setting condition] Bus operation (dominant bit detection) in HCAN sleep mode |                 |

• Bit 1—Unread Interrupt Flag (IRR9): Status flag indicating that a receive message has been overwritten while still unread.

| Bit 1: IRR9 | Description                                                                                        |
|-------------|----------------------------------------------------------------------------------------------------|
| 0           | [Clearing condition] Clearing of all bits in UMSR (unread message status register) (Initial value) |
| 1           | Unread message overwrite                                                                           |
|             | [Setting condition] When UMSR (unread message status register) is set                              |

• Bit 0—Mailbox Empty Interrupt Flag (IRR8): Status flag indicating that the next transmit message can be stored in the mailbox.

| Bit 0: IRR8 | Description                                                                                                   |                        |
|-------------|---------------------------------------------------------------------------------------------------------------|------------------------|
| 0           | [Clearing condition] Writing 1                                                                                | (Initial value)        |
| 1           | Transmit message has been transmitted or aborted, and be stored                                               | d new message can      |
|             | [Setting condition] When TXPR (transmit wait register) is cleared by complor completion of transmission abort | letion of transmission |

# 16.2.12 Mailbox Interrupt Mask Register (MBIMR)

The mailbox interrupt mask register (MBIMR) is a 16-bit readable/writable register containing flags that enable or disable individual mailbox (buffer) interrupt requests.

| Bit:           | 15      | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|----------------|---------|---------|---------|---------|---------|---------|--------|--------|
|                | MBIMR7  | MBIMR6  | MBIMR5  | MBIMR4  | MBIMR3  | MBIMR2  | MBIMR1 | MBIMR0 |
| Initial value: | 1       | 1       | 1       | 1       | 1       | 1       | 1      | 1      |
| R/W:           | R/W      R/W    |
|                |         |         |         |         |         |         |        |        |
| Bit:           | 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|                | MBIMR15 | MBIMR14 | MBIMR13 | MBIMR12 | MBIMR11 | MBIMR10 | MBIMR9 | MBIMR8 |
| Initial value: | 1       | 1       | 1       | 1       | 1       | 1       | 1      | 1      |
| R/W:           | R/W      R/W    |

• Bits 15 to 0—Mailbox Interrupt Mask (MBIMR7 to 0, MBIMR15 to 8): Flags that enable or disable individual mailbox interrupt requests.

| Bit x: MBIMRx | Description                                                  |                 |
|---------------|--------------------------------------------------------------|-----------------|
| 0             | [Transmitting] Interrupt request to CPU due to TXPR clearing | _               |
|               | [Receiving] Interrupt request to CPU due to RXPR setting     |                 |
| 1             | Interrupt requests to CPU disabled                           | (Initial value) |

# 16.2.13 Interrupt Mask Register (IMR)

The interrupt mask register (IMR) is a 16-bit readable/writable register containing flags that enable or disable requests by individual interrupt sources.

| Bit:           | 15   | 14   | 13   | 12    | 11   | 10   | 9    | 8    |
|----------------|------|------|------|-------|------|------|------|------|
|                | IMR7 | IMR6 | IMR5 | IMR4  | IMR3 | IMR2 | IMR1 | _    |
| Initial value: | 1    | 1    | 1    | 1     | 1    | 1    | 1    | 0    |
| R/W:           | R/W  | R/W  | R/W  | R/W   | R/W  | R/W  | R/W  | _    |
|                |      |      |      |       |      |      |      |      |
| Bit:           | 7    | 6    | 5    | 4     | 3    | 2    | 1    | 0    |
|                | _    | —    | _    | IMR12 | _    | _    | IMR9 | IMR8 |
| Initial value: | 1    | 1    | 1    | 1     | 1    | 1    | 1    | 1    |
| R/W:           | R    | R    | R    | R/W   | R    | R    | R/W  | R/W  |

• Bit 15—Overload Frame Interrupt Mask (IMR7): Enables or disables overload frame interrupt requests.

| Bit 15: IMR7 | Description                                                                    |
|--------------|--------------------------------------------------------------------------------|
| 0            | Overload frame interrupt request (OVR) to CPU by IRR7 enabled                  |
| 1            | Overload frame interrupt request (OVR) to CPU by IRR7 disabled (Initial value) |

• Bit 14—Bus Off Interrupt Mask (IMR6): Enables or disables bus off interrupt requests caused by the transmit error counter.

| Bit 14: IMR6 | Description                                             |                 |
|--------------|---------------------------------------------------------|-----------------|
| 0            | Bus off interrupt request (ERS) to CPU by IRR6 enabled  | _               |
| 1            | Bus off interrupt request (ERS) to CPU by IRR6 disabled | (Initial value) |

• Bit 13—Error Passive Interrupt Mask (IMR5): Enables or disables error passive interrupt requests caused by the transmit/receive error counter.

| Bit 13: IMR5 | Description                                                                   |
|--------------|-------------------------------------------------------------------------------|
| 0            | Error passive interrupt request (ERS) to CPU by IRR5 enabled                  |
| 1            | Error passive interrupt request (ERS) to CPU by IRR5 disabled (Initial value) |

• Bit 12—Receive Overload Warning Interrupt Mask (IMR4): Enables or disables error warning interrupt requests caused by the receive error counter.

| Bit 12: IMR4 | Description                                                       |
|--------------|-------------------------------------------------------------------|
| 0            | REC error warning interrupt request (OVR) to CPU by IRR4 enabled  |
| 1            | REC error warning interrupt request (OVR) to CPU by IRR4 disabled |
|              | (Initial value)                                                   |

• Bit 11—Transmit Overload Warning Interrupt Mask (IMR3): Enables or disables error warning interrupt requests caused by the transmit error counter.

| Bit 11: IMR3 | Description                                                       |
|--------------|-------------------------------------------------------------------|
| 0            | TEC error warning interrupt request (OVR) to CPU by IRR3 enabled  |
| 1            | TEC error warning interrupt request (OVR) to CPU by IRR3 disabled |
|              | (Initial value)                                                   |

• Bit 10—Remote Frame Request Interrupt Mask (IMR2): Enables or disables remote frame reception interrupt requests.

| Bit 10: IMR2 | Description                                                                            |
|--------------|----------------------------------------------------------------------------------------|
| 0            | Remote frame reception interrupt request (OVR) to CPU by IRR2 enabled                  |
| 1            | Remote frame reception interrupt request (OVR) to CPU by IRR2 disabled (Initial value) |

• Bit 9—Receive Message Interrupt Mask (IMR1): Enables or disables message reception interrupt requests.

| Bit 9: IMR1 | Description                                                      |
|-------------|------------------------------------------------------------------|
| 0           | Message reception interrupt request (RM) to CPU by IRR1 enabled  |
| 1           | Message reception interrupt request (RM) to CPU by IRR1 disabled |
|             | (Initial value)                                                  |

- Bit 8—Reserved: This bit is always read as 0. The write value should always be 0.
- Bits 7 to 5, 3, and 2—Reserved: These bits are always read as 1. The write value should always be 1.

• Bit 4—Bus Operation Interrupt Mask (IMR12): Enables or disables interrupt requests due to bus operation in sleep mode.

| Bit 4: IMR12 | Description                                                    |
|--------------|----------------------------------------------------------------|
| 0            | Bus operation interrupt request (OVR) to CPU by IRR12 enabled  |
| 1            | Bus operation interrupt request (OVR) to CPU by IRR12 disabled |
|              | (Initial value)                                                |

• Bit 1—Unread Interrupt Mask (IMR9): Enables or disables unread receive message overwrite interrupt requests.

| Bit 1: IMR9 | Description                                                                             |              |
|-------------|-----------------------------------------------------------------------------------------|--------------|
| 0           | Unread message overwrite interrupt request (OVR) to CPU by IRR9 enable                  | ∍d           |
| 1           | Unread message overwrite interrupt request (OVR) to CPU by IRR9 disabled (Initial value | <del>-</del> |

• Bit 0—Mailbox Empty Interrupt Mask (IMR8): Enables or disables mailbox empty interrupt requests.

| Bit 0: IMR8 | Description                                                   |
|-------------|---------------------------------------------------------------|
| 0           | Mailbox empty interrupt request (SLE) to CPU by IRR8 enabled  |
| 1           | Mailbox empty interrupt request (SLE) to CPU by IRR8 disabled |
|             | (Initial value)                                               |

# 16.2.14 Receive Error Counter (REC)

The receive error counter (REC) is an 8-bit read-only register that functions as a counter indicating the number of receive message errors on the CAN bus. The count value is stipulated in the CAN protocol. This register cannot be modified.

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|---|---|---|---|---|---|---|---|
|                |   |   |   |   |   |   |   |   |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W:           | R | R | R | R | R | R | R | R |

### 16.2.15 Transmit Error Counter (TEC)

The transmit error counter (TEC) is an 8-bit read-only register that functions as a counter indicating the number of transmit message errors on the CAN bus. The count value is stipulated in the CAN protocol. This register cannot be modified.

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|---|---|---|---|---|---|---|---|
|                |   |   |   |   |   |   |   |   |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| R/W:           | R | R | R | R | R | R | R | R |

## 16.2.16 Unread Message Status Register (UMSR)

The unread message status register (UMSR) is a 16-bit readable/writable register containing status flags that indicate, for individual mailboxes (buffers), that a received message has been overwritten by a new receive message before being read.

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                | UMSR7  | UMSR6  | UMSR5  | UMSR4  | UMSR3  | UMSR2  | UMSR1 | UMSR0 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |
|                |        |        |        |        |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|                | UMSR15 | UMSR14 | UMSR13 | UMSR12 | UMSR11 | UMSR10 | UMSR9 | UMSR8 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |

Bits 15 to 0—Unread Message Status Flags (UMSR7 to 0, UMSR15 to 8): Status flags
indicating that an unread receive message has been overwritten. When an unread receive
message is overwritten by a new receive message, the old data is lost.

| Bit x: UMSRx | Description                                                               |                 |
|--------------|---------------------------------------------------------------------------|-----------------|
| 0            | [Clearing condition] Writing 1                                            | (Initial value) |
| 1            | Unread receive message is overwritten by a new message                    |                 |
|              | [Setting condition] When a new message is received before RXPR is cleared |                 |

# 16.2.17 Local Acceptance Filter Masks (LAFML, LAFMH)

The local acceptance filter masks (LAFML, LAFMH) are 16-bit readable/writable registers that filter receive messages to be stored in the receive-only mailbox (MC0, MD0) according to the identifier. In these registers, consist of LAFMH15: MSB to LAFMH5: LSB are 11 standard/extended identifier bits, and LAFMH1: MSB to LAFML0: LSB are 18 extended identifier bits.

| LAFML          |         |         |         |         |         |         |        |        |
|----------------|---------|---------|---------|---------|---------|---------|--------|--------|
| Bit:           | 15      | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|                | LAFML7  | LAFML6  | LAFML5  | LAFML4  | LAFML3  | LAFML2  | LAFML1 | LAFML0 |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W      R/W    |
|                |         |         |         |         |         |         |        |        |
| Bit:           | 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|                | LAFML15 | LAFML14 | LAFML13 | LAFML12 | LAFML11 | LAFML10 | LAFML9 | LAFML8 |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W      R/W    |
|                |         |         |         |         |         |         |        |        |
| LAFMH          |         |         |         |         |         |         |        |        |
| Bit:           | 15      | 14      | 13      | 12      | 11      | 10      | 9      | 8      |
|                | LAFMH7  | LAFMH6  | LAFMH5  | _       | _       | _       | LAFMH1 | LAFMH0 |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W     | R/W     | R/W     | R       | R       | R       | R/W    | R/W    |
|                |         |         |         |         |         |         |        |        |
| Bit:           | 7       | 6       | 5       | 4       | 3       | 2       | 1      | 0      |
|                | LAFMH15 | LAFMH14 | LAFMH13 | LAFMH12 | LAFMH11 | LAFMH10 | LAFMH9 | LAFMH8 |
| Initial value: | 0       | 0       | 0       | 0       | 0       | 0       | 0      | 0      |
| R/W:           | R/W      R/W    |

• LAFMH Bits 7 to 0 and 15 to 13–11-Bit Identifier Filter (LAFMH7 to 5, LAFMH15 to 8): Filter mask bits for the first 11 bits of the receive message identifier (for both standard and extended identifiers).

| Bit x: LAFMHx | Description                                                                                                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0             | Stored in MC0, MD0 (receive-only mailbox) depending on bit match between MC0 message identifier and receive message identifier (Initial value) |
| 1             | Stored in MC0, MD0 (receive-only mailbox) regardless of bit match between MC0 message identifier and receive message identifier                |

- LAFMH Bits 12 to 10—Reserved: These bits are always read as 0. The write value should always be 0.
- LAFMH Bits 9 and 8, LAFML bits 15 to 0–18-Bit Identifier Filter (LAFMH1, 0, LAFML7 to 0, LAFML15 to 8): Filter mask bits for the 18 bits of the receive message identifier (extended).

| Bit x: LAFMHx<br>LAFMLx | Description                                                                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0                       | Stored in MC0 (receive-only mailbox) depending on bit match between MC0 message identifier and receive message identifier (Initial value) |
| 1                       | Stored in MC0 (receive-only mailbox) regardless of bit match between MC0 message identifier and receive message identifier                |

# 16.2.18 Message Control (MC0 to MC15)

The message control register sets (MC0 to MC15) consist of eight 8-bit readable/writable registers (MCx[1] to MCx[8]). The HCAN has 16 sets of these registers (MC0 to MC15).

The initial value of these registers is undefined, so they must be initialized (by writing 0 or 1).

| MCx [1]        |          |         |         |          |      |      |          |            |
|----------------|----------|---------|---------|----------|------|------|----------|------------|
| Bit:           | 7        | 6       | 5       | 4        | 3    | 2    | 1        | 0          |
|                |          |         |         |          | DLC3 | DLC2 | DLC1     | DLC0       |
| Initial value: | _        | _       | _       | _        | _    | _    | _        | _          |
| R/W:           | R/W      | R/W     | R/W     | R/W      | R/W  | R/W  | R/W      | R/W        |
|                |          |         |         |          |      |      |          |            |
| MCx [2]        |          |         |         |          |      |      |          |            |
| Bit:           | 7        | 6       | 5       | 4        | 3    | 2    | 1        | 0          |
|                |          |         |         |          |      |      |          |            |
| Initial value: | _        | _       | _       | _        | _    | _    | _        | _          |
| R/W:           | R/W      | R/W     | R/W     | R/W      | R/W  | R/W  | R/W      | R/W        |
|                |          |         |         |          |      |      |          |            |
| MCx [3]        |          |         |         |          |      |      |          |            |
| Bit:           | 7        | 6       | 5       | 4        | 3    | 2    | 1        | 0          |
|                |          |         |         |          |      |      |          |            |
| Initial value: | _        | _       | _       | _        | _    | _    | _        | _          |
| R/W:           | R/W      | R/W     | R/W     | R/W      | R/W  | R/W  | R/W      | R/W        |
|                |          |         |         |          |      |      |          |            |
| MCx [4]        | _        | _       | _       | _        |      | _    |          | _          |
| Bit:           | 7        | 6       | 5       | 4        | 3    | 2    | 1        | 0          |
|                |          |         |         |          |      |      |          |            |
| Initial value: |          | _       | _       | _        | _    | _    | _        | _          |
| R/W:           | R/W      | R/W     | R/W     | R/W      | R/W  | R/W  | R/W      | R/W        |
| MO 151         |          |         |         |          |      |      |          |            |
| MCx [5]        | 7        | 0       | _       | 4        | 2    | 0    | 4        | 0          |
| Bit:           | 7        | 6       | 5       | 4<br>DTD | 3    | 2    | 1        | 0          |
| Lateral I      | STD_ID2  | STD_ID1 | STD_ID0 | RTR      | IDE  |      | EXD_ID17 | EXD_ID16   |
| Initial value: | —<br>D/M |         |         |          | -    |      | —<br>D/M | —<br>D 444 |
| R/W:           | R/W      | R/W     | R/W     | R/W      | R/W  | R/W  | R/W      | R/W        |

| MCx [6]        |          |          |          |          |          |          |         |         |
|----------------|----------|----------|----------|----------|----------|----------|---------|---------|
| Bit:           | 7        | 6        | 5        | 4        | 3        | 2        | 1       | 0       |
|                | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4 | STD_ID3 |
| Initial value: | _        | _        | _        | _        | _        | _        | _       | _       |
| R/W:           | R/W       R/W     |
|                |          |          |          |          |          |          |         |         |
| MCx [7]        |          |          |          |          |          |          |         |         |
| Bit:           | 7        | 6        | 5        | 4        | 3        | 2        | 1       | 0       |
|                | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1 | EXD_ID0 |
| Initial value: | _        | _        | _        | _        | _        | _        | _       | _       |
| R/W:           | R/W       R/W     |
|                |          |          |          |          |          |          |         |         |
| MCx [8]        |          |          |          |          |          |          |         |         |
| Bit:           | 7        | 6        | 5        | 4        | 3        | 2        | 1       | 0       |
|                | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9 | EXD_ID8 |
| Initial value: | _        | _        | _        | _        | _        | _        | _       | _       |
| R/W:           | R/W       R/W     |

- MCx[1] Bits 7 to 4—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).
- MCx[1] Bits 3 to 0: Data Length Code (DLC3 to 0): These bits indicate the required length of data frames and remote frames.

| Bit 3:<br>DLC3 | Bit 2:<br>DLC2 | Bit 1:<br>DLC1 | Bit 0:<br>DLC0 | Description           |
|----------------|----------------|----------------|----------------|-----------------------|
| 0              | 0              | 0              | 0              | Data length = 0 bytes |
|                |                |                | 1              | Data length = 1 byte  |
|                |                | 1              | 0              | Data length = 2 bytes |
|                |                |                | 1              | Data length = 3 bytes |
|                | 1              | 0              | 0              | Data length = 4 bytes |
|                |                |                | 1              | Data length = 5 bytes |
|                |                | 1              | 0              | Data length = 6 bytes |
|                |                |                | 1              | Data length = 7 bytes |
| 1              | *              | *              | *              | Data length = 8 bytes |

<sup>\*:</sup> Don't care

• MCx[2] Bits 7 to 0—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).

Rev.2.0, 07/03, page 550 of 960

- MCx[3] Bits 7 to 0—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).
- MCx[4] Bits 7 to 0—Reserved: The initial value of these bits is undefined; they must be initialized (by writing 0 or 1).
- MCx[6] Bits 7 to 0: Standard Identifier (STD ID10 to STD ID3)
  - MCx[5] Bits 7 to 5: Standard Identifier (STD\_ID2 to STD\_ID0)

These bits set the identifier (standard identifier) of data frames and remote frames.

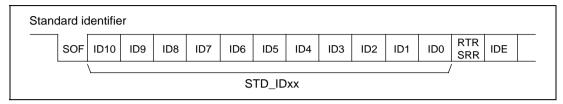



Figure 16.3 Standard Identifier

 MCx[5] Bit 4: Remote Transmission Request (RTR): Used to distinguish between data frames and remote frames.

| Bit 4: RTR | Description  |
|------------|--------------|
| 0          | Data frame   |
| 1          | Remote frame |

• MCx[5] Bit 3: Identifier Extension (IDE): Used to distinguish between the standard format and extended format of data frames and remote frames.

| Bit 3: IDE | Description     |
|------------|-----------------|
| 0          | Standard format |
| 1          | Extended format |

- MCx[5] Bit 2—Reserved: The initial value of this bit is undefined; it must be initialized (by writing 0 or 1).
- MCx[5] Bits 1 and 0: Extended Identifier (EXD\_ID17, EXD\_ID16)
  - MCx[8] Bits 7 to 0: Extended Identifier (EXD\_ID15 to EXD\_ID8)
  - MCx[7] Bits 7 to 0: Extended Identifier (EXD\_ID7 to EXD\_ID0)
  - These bits set the identifier (extended identifier) of data frames and remote frames.

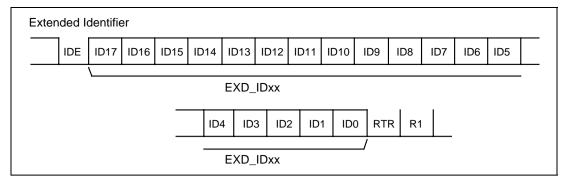
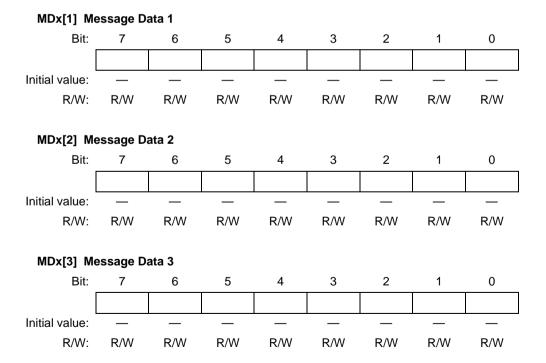




Figure 16.4 Extended Identifier

### **16.2.19** Message Data (MD0 to MD15)

The message data register sets (MD0 to MD15) consist of eight 8-bit readable/writable registers (MDx[1] to MDx[8]). The HCAN has 16 sets of these registers (MD0 to MD15).

The initial value of these registers is undefined, so they must be initialized (by writing 0 or 1).



| MDx[4] M       | essage Da | ata 4   |         |       |       |       |              |         |
|----------------|-----------|---------|---------|-------|-------|-------|--------------|---------|
| Bit:           | 7         | 6       | 5       | 4     | 3     | 2     | 1            | 0       |
|                |           |         |         |       |       |       |              |         |
| Initial value: | _         | _       | _       | _     | _     | _     | _            | _       |
| R/W:           | R/W       | R/W     | R/W     | R/W   | R/W   | R/W   | R/W          | R/W     |
|                |           |         |         |       |       |       |              |         |
| MDx[5] M       | essage D  | ata 5   |         |       |       |       |              |         |
| Bit:           | 7         | 6       | 5       | 4     | 3     | 2     | 1            | 0       |
|                |           |         |         |       |       |       |              |         |
| Initial value: | _         | _       | _       | _     | _     | _     | _            | _       |
| R/W:           | R/W       | R/W     | R/W     | R/W   | R/W   | R/W   | R/W          | R/W     |
|                |           |         |         |       |       |       |              |         |
| MDx[6] M       | essage Da | ata 6   |         |       |       |       |              |         |
| Bit:           | 7         | 6       | 5       | 4     | 3     | 2     | 1            | 0       |
|                |           |         |         |       |       |       |              |         |
| Initial value: | _         | _       | _       | _     | _     | _     | _            | _       |
| R/W:           | R/W       | R/W     | R/W     | R/W   | R/W   | R/W   | R/W          | R/W     |
|                |           |         |         |       |       |       |              |         |
| MDx[7] M       | essage D  | ata 7   |         |       |       |       |              |         |
| Bit:           | 7         | 6       | 5       | 4     | 3     | 2     | 1            | 0       |
|                |           |         |         |       |       |       |              |         |
| Initial value: | _         | _       | _       | _     | _     | _     | _            | _       |
| R/W:           | R/W       | R/W     | R/W     | R/W   | R/W   | R/W   | R/W          | R/W     |
|                |           |         |         |       |       |       |              |         |
| MDx[8] M       | essage D  | ata 8   |         |       |       |       |              |         |
| Bit:           | 7         | 6       | 5       | 4     | 3     | 2     | 1            | 0       |
|                |           |         |         |       |       |       |              |         |
| Initial value: | _         | _       | _       | _     | _     | _     | _            | _       |
| D/M.           | D ///     | D // // | D // // | D /// | D /// | D /// | $D \wedge M$ | D // // |

# 16.3 Operation

The SH7055SF has an on-chip HCAN module with two channels, each of which can be controlled independently. Except for pin states, both channels have identical specifications, and so control should be carried out in the same way for both.

#### 16.3.1 Hardware Reset and Software Reset

There are two ways of resetting the HCAN: Hardware reset and software reset.

Hardware Reset (Power-on Reset or Hardware/Software Standby): The MCR reset request bit (MCR0) in MCR and the reset state bit (GSR3) in GSR within the HCAN are automatically set and initialized (hardware reset). At the same time, all internal registers are initialized. However mailbox (RAM) contents are not initialized. A flowchart of this reset is shown in figure 16.5.

**Software Reset (Write to MCR0):** In normal operation HCAN is initialized by setting the MCR reset request bit (MCR0) in MCR (software reset). With this kind of reset, if the CAN controller is performing a communication operation (transmission or reception), the initialization state is not entered until the message has been completed. During initialization, the reset state bit (GSR3) in GSR is set. In this kind of initialization, the error counters (TEC and REC) are initialized but other registers and RAM are not. A flowchart of this reset is shown in figure 16.6.

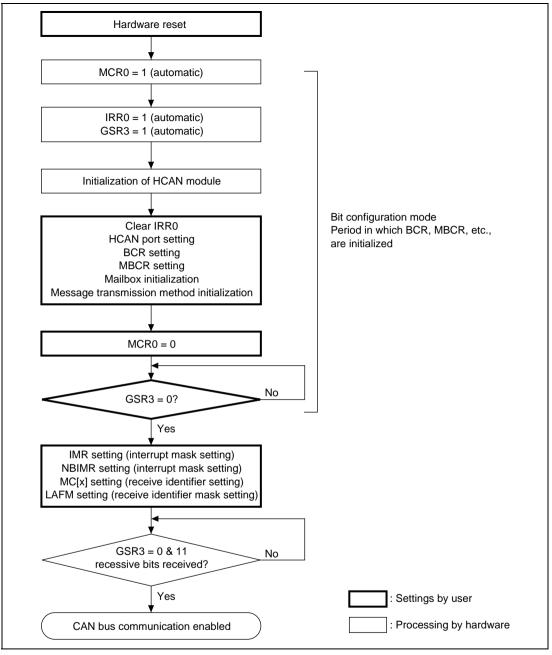



Figure 16.5 Hardware Reset Flowchart

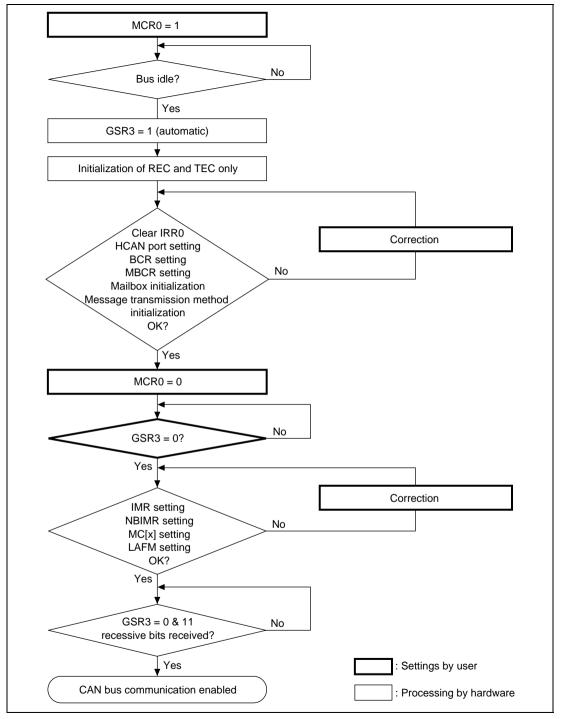



Figure 16.6 Software Reset Flowchart

#### 16.3.2 Initialization after a Hardware Reset

After a hardware reset, the following initialization processing should be carried out:

- 1. Clearing of IRR0 bit in interrupt register (IRR)
- 2. HCAN pin port settings
- 3. Bit rate setting
- 4. Mailbox transmit/receive settings
- 5. Mailbox (buffer) initialization
- 6. Message transmission method setting

These initial settings must be made while the HCAN is in bit configuration mode. Configuration mode is a state in which the reset request bit (MCR0) in the master control register (MCR) is 1 and the reset status bit in the general status register (GSR) is also 1 (GSR3 = 1). Configuration mode is exited by clearing the reset request bit in MCR to 0; when MCR0 is cleared to 0, the HCAN automatically clears the reset state bit (GSR3) in the general status register (GSR). The power-up sequence then begins, and communication with the CAN bus is possible as soon as the sequence ends. The power-up sequence consists of the detection of 11 consecutive recessive bits.

**IRR0 Clearing:** The reset interrupt flag (IRR0) is always set after a power-on reset or recovery from software standby mode. As an HCAN interrupt is initiated immediately when interrupts are enabled. IRR0 should be cleared.

**HCAN Pin Port Settings:** HCAN pin port settings must be made during or before bit configuration. Refer to the section 20, Pin Function Controller (PFC), for details of the setting method.

The SH7055SF has two on-chip HCAN channels, which can be used in either of the following ways:

- 1. Two-channel 16-buffer HCAN
- One-channel 32-buffer HCAN

An example of 2-channel/16-buffer independent use is shown in figure 16.7, and an example of 2-channel/32-buffer use in figure 16.8.

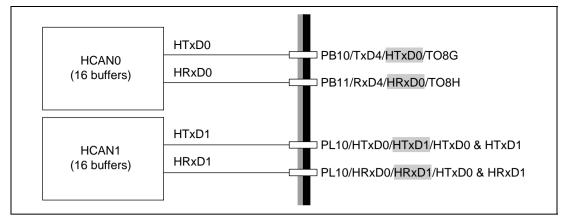



Figure 16.7 Example of 2-Channel/16-Buffer Independent Use

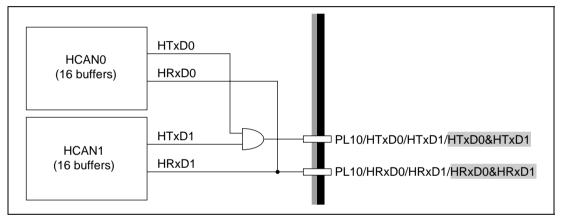



Figure 16.8 Example of 1-Channel/32-Buffer Use

**Bit Rate Settings:** As bit rate settings, a baud rate setting and bit timing setting must be made each time a CAN node begins communication. The baud rate and bit timing settings are made in the bit configuration register (BCR).

Notes: 1. BCR can be written to at all times, but should only be modified in configuration mode.

- 2. Settings should be made so that all CAN controllers connected to the CAN bus have the same baud rate and bit width.
- 3. Limits for the settable variables (TSEG1, TSEG2, BRP, sample point, and SJW) are shown in table 16.5.

Table 16.5 BCR Setting Limits

| Name                          | Abbreviation | Min. Value | Max. Value | Unit         |
|-------------------------------|--------------|------------|------------|--------------|
| Time segment 1                | TSEG1        | 4          | 16         | TQ           |
| Time segment 2                | TSEG2        | 2          | 8          | TQ           |
| Baud rate prescaler           | BRP          | 2          | 128        | System clock |
| Sample point                  | SAM          | 1          | 3          | Point        |
| Re-synchronization jump width | SJW          | 1          | 4          | TQ           |

#### Settable Variable Limits

• The bit width consists of the total of the settable time quanta (TQ). TQ (number of system clocks) is determined by the baud rate prescaler (BRP).

$$TQ = (2 \times (BRP + 1))/(f_{CLK/2})$$
  
$$f_{CLK} = P\phi$$

• The minimum value of SJW is stipulated in the CAN specifications.

$$4 \ge SJW \ge 1$$

• The minimum value of TSEG1 is stipulated in the CAN specifications.

• The minimum value of TSEG2 is stipulated in the CAN specifications.

$$TSEG2 \ge (1 + SJW)$$

The following formula is used to calculate the baud rate.

Bit rate [b/s] = 
$$\frac{f_{CLK}}{2 \times (BRP + 1) \times (3 + TSEG1 + TSEG2)}$$

Note:  $f_{CLK} = P\phi$  (peripheral clock:  $\phi/2$ ]

The BCR values are used for BRP, TSEG1, and TSEG2.

Example: With a 1 Mb/s baud rate and a 40 MHz input clock:

1 Mb/s = 
$$\frac{20 \text{ MHz}}{2 \times (0+1) \times (3+4+3)}$$

|                  | Set Values   | Actual Values    |
|------------------|--------------|------------------|
| f <sub>CLK</sub> | 40 MHz/2     | _                |
| BRP              | 0 (B'000000) | System clock × 2 |
| TSEG1            | 4 (B'0100)   | 5TQ              |
| TSEG2            | 3 (B'011)    | 4TQ              |

Mailbox Transmit/Receive Settings: HCAN0 and HCAN1 each have 16 mailboxes. Mailbox 0 is receive-only, while mailboxes 1 to 15 can be set for transmission or reception. Mailboxes that can be set for transmission or reception must be designated either for transmission use or for reception use before communication begins. The Initial status of mailboxes 1 to 15 is for transmission (while mailbox 0 is for reception only). Mailbox transmit/receive settings are not initialized by a software reset.

- Setting for transmission
  - Transmit mailbox setting (mailboxes 1 to 15)

Clearing a bit to 0 in the mailbox configuration register (MBCR) designates the corresponding mailbox for transmission use. After a reset, mailboxes are initialized for transmission use, so this setting is not necessary.

- Setting for reception
  - Transmit/receive mailbox setting (mailboxes 1 to 15)
  - Setting a bit to 1 in the mailbox configuration register (MBCR) designates the corresponding mailbox for reception use. When setting mailboxes for reception, to improve message transmission efficiency, high-priority messages should be set in low-to-high mailbox order (priority order: mailbox 1 (MCx[1]) > mailbox 15 (MCx[15])).
- Receive-only mailbox (mailbox 0)
   No setting is necessary, as this mailbox is always used for reception.

Mailbox (Message Control/Data (MCx[x], MDx[x]) Initial Settings: After power is supplied, all registers and RAM (message control/data, control registers, status registers, etc.) are initialized. Message control/data (MCx[x], MDx[x]) only are in RAM, and so their values are undefined. Initial values must therefore be set in all the mailboxes (by writing 0s or 1s).

**Setting the Message Transmission Method:** Either of the following message transmission methods can be selected with the message transmission method bit (MCR2) in the master control register (MCR):

- 1. Transmission order determined by message identifier priority
- 2. Transmission order determined by mailbox number priority

When the message identifier priority method is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), messages are stored in the transmit buffer in low-to-high mailbox order (priority order: mailbox 1 > 15). CAN bus arbitration is then carried out for the messages in the transmit buffer, and message transmission is performed when the bus is acquired.

When the mailbox number priority method is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), the message with the highest priority set in the message identifier (MCx[5]–MCx[8]) is stored in the transmit buffer. CAN bus arbitration is then carried out for the message in the transmit buffer, and message transmission is performed when the transmission right is acquired. When the TXPR bit is set, internal arbitration is performed again, and the highest-priority message is found and stored in the transmit buffer.

#### 16.3.3 Transmit Mode

Message transmission is performed using mailboxes 1 to 15. The transmission procedure is described below, and a transmission flowchart is shown in figure 16.9.

- 1. Initialization (after hardware reset only)
  - a. Clearing of IRR0 bit in interrupt register (IRR)
  - b. HCAN pin port settings
  - c. Bit rate settings
  - d. Mailbox transmit/receive settings
  - e. Mailbox initialization
  - f. Message transmission method setting
- 2. Interrupt and transmit data settings
  - a. Interrupt setting
  - b. Arbitration field setting
  - c. Control field setting
  - d. Data field setting
- 3. Message transmission and interrupts
  - a. Message transmission wait
  - b. Message transmission completion and interrupt
  - c. Message transmission abort
  - d. Message retransmission

**Initialization** (after Hardware Reset Only): These settings should be made while the HCAN is in bit configuration mode.

## 1. IRR0 clearing

The reset interrupt flag (IRR0) is always set after a power-on reset or recovery from software standby mode. As an HCAN interrupt is initiated immediately when interrupts are enabled, IRR0 should be cleared.

# 2. HCAN pin port settings

To prevent erroneous identification of CAN bus data, HCAN pin port settings should be made first. See HCAN Pin Port Settings in section 16.3.2, Initialization after a Hardware Reset, and section 20, Pin Function Controller, for details.

## 3. Bit rate settings

Set values relating to the CAN bus communication speed and re-synchronization. See Bit Rate Settings in section 16.3.2, Initialization after a Hardware Reset, for details.

### 4. Mailbox transmit/receive settings

Mailbox transmit/receive settings should be made in advance. A total of 30 mailbox can be set for transmission or reception (mailboxes 1 to 15 in HCAN0 and HCAN1). To set a mailbox for transmission, clear the corresponding bit to 0 in the mailbox configuration register (MBCR). See Mailbox Transmit/Receive Settings in section 16.3.2, Initialization after a Hardware Reset, for details.

#### 5. Mailbox initialization

As message control/data registers (MCx[x], MDx[x]) are configured in RAM, their initial values after powering on are undefined, and so bit initialization is necessary. Write 0s or 1s to the mailboxes. See Mailbox (Message Control/Data (MCx[x], MDx[x]) Initial Settings in section 16.3.2, Initialization after a Hardware Reset, for details.

# 6. Message transmission method setting

Set the transmission method for mailboxes designated for transmission. The following two transmission methods can be used. See Setting the Message Transmission Method in section 16.3.2. Initialization after a Hardware Reset, for details.

- a. Transmission order determined by message identifier priority
- b. Transmission order determined by mailbox number priority

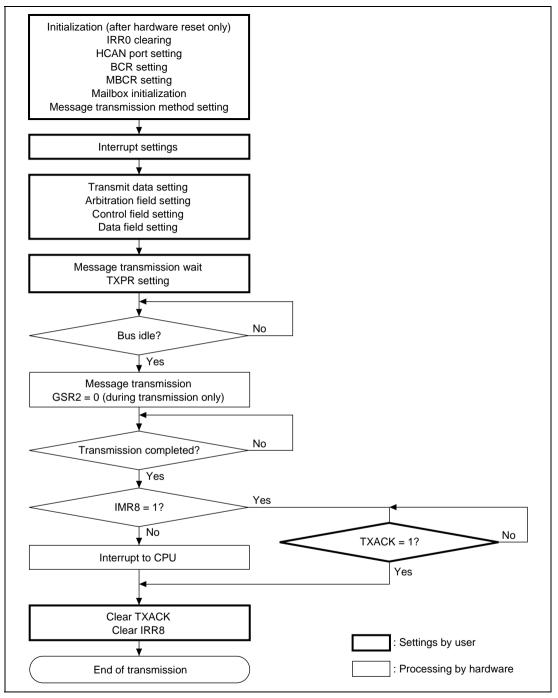



Figure 16.9 Transmission Flowchart

**Interrupt and Transmit Data Settings:** When mailbox initialization is finished, CPU interrupt source settings and data settings must be made. Interrupt source settings are made in the mailbox interrupt mask register (MBIMR) and interrupt mask register (IMR), while transmit data settings are made by writing the necessary data in 2, 3, and 4 below to the message control registers (MCx[1] to MCx[8]) and message data registers (MDx[1] to MDx[8]).

### 1. CPU interrupt source settings

Transmission acknowledge and transmission abort acknowledge interrupts can be masked for individual mailboxes in the mailbox interrupt mask register (MBIMR). Interrupt register (IRR) interrupts can be masked in the interrupt mask register (IMR).

#### 2. Arbitration field

In the arbitration field, the 11-bit identifier (STD\_ID0 to STD\_ID10) and RTR bit (standard format) or 29-bit identifier (STD\_ID0 to STD\_ID10, EXT\_ID0 to EXT\_ID17) and IDE.RTR bit (extended format) are set. The registers to be set are MCx[5] to MCx[8].

#### 3. Control field

In the control field, the byte length of the data to be transmitted is set in DLC0 to DLC3. The register to be set is MCx[1].

## 4. Data field

In the data field, the data to be transmitted is set in byte units in the range of 0 to 8 bytes. The registers to be set are MDx[1] to MDx[8].

The number of bytes in the data actually transmitted depends on the data length code (DLC) in the control field. If a value exceeding the value set in DLC is set in the data field, only the number of bytes set in DLC will actually be transmitted.

# **Message Transmission and Interrupts**

### 1. Message transmission wait

If message transmission is to be performed after completion of the message control (MCx[1] to MCx[8]) and message data (MDx[1] to MDx[8]).settings, transmission is started by setting the corresponding mailbox transmit wait bit (TXPR1 to TXPR15) to 1 in the transmit wait register (TXPR). The following two transmission methods can be used:

- a. Transmission order determined by message identifier priority
- b. Transmission order determined by mailbox number priority

When the message identifier priority method is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), the message with the highest priority set in the message identifier (MCx[5] to MCx[8]) is stored in the transmit buffer. CAN bus arbitration is then carried out for the message in the transmit buffer, and message transmission is performed when the transmission right is acquired. When the TXPR bit is set, internal arbitration is performed again, the highest-priority message is found and stored in the transmit buffer, CAN bus arbitration is carried out in the same way, and message transmission is performed when the transmission right is acquired.

When the mailbox number priority method is selected, if a number of messages are designated as waiting for transmission (TXPR = 1), messages are stored in the transmit buffer in low-to-high mailbox order (priority order: mailbox 1 > mailbox 1 > mailbox 1 > to an interest transmission is then carried out for the messages in the transmit buffer, and message transmission is performed when the bus is acquired.

## 2. Message transmission completion and interrupt

When a message is transmitted normally using the above procedure, the corresponding acknowledge bit (TXACK1 to TXACK15) in the transmit acknowledge register (TXACK) and transmit wait bit (TXPR1 to TXPR15) in the transmit wait register (TXPR) are automatically initialized. If the corresponding bit (MBIMR1 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the mailbox empty interrupt bit (IRR8) in the interrupt mask register (IMR) are set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

### 3. Message transmission cancellation

Transmission cancellation can be specified for a message stored in a mailbox as a transmit wait message. A transmit wait message is canceled by setting the bit for the corresponding mailbox (TXCR1 to TXCR15) to 1 in the transmit cancel register (TXCR). When cancellation is executed, the transmit wait register (TXPR) is automatically reset, and the corresponding bit is set to 1 in the abort acknowledge register (ABACK). An interrupt to the CPU can be requested. If the corresponding bit (MBIMR1 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the mailbox empty interrupt bit (IRR8) in the interrupt mask register (IMR) are set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

However, a transmit wait message cannot be canceled at the following times:

- a. During internal arbitration or CAN bus arbitration
- b. During data frame or remote frame transmission

Also, transmission cannot be canceled by clearing the transmit wait register (TXPR). Figure 16.10 shows a flowchart of transmit message cancellation.

#### 4. Message retransmission

If transmission of a transmit message is aborted in the following cases, the message is retransmitted automatically:

- a. CAN bus arbitration failure (failure to acquire the bus)
- b. Error during transmission (bit error, stuff error, CRC error, frame error, ACK error)

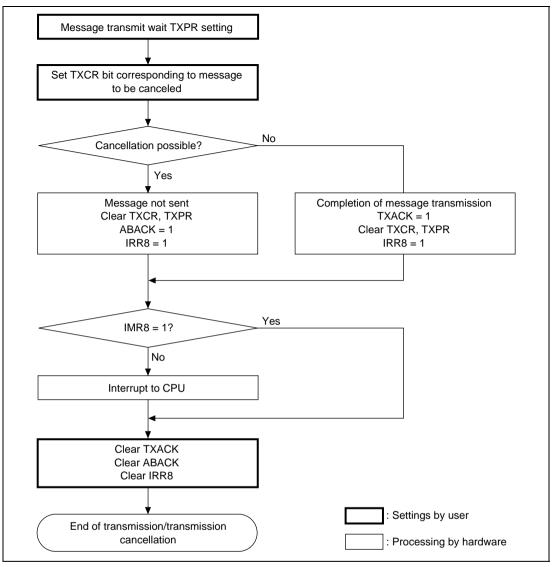



Figure 16.10 Transmit Message Cancellation Flowchart

#### 16.3.4 Receive Mode

Message reception is performed using mailboxes 0 and 1 to 15. The reception procedure is described below, and a reception flowchart is shown in figure 16.11.

- 1. Initialization (after hardware reset only)
  - a. Clearing of IRR0 bit in interrupt register (IRR)
  - b. HCAN pin port settings
  - c. Bit rate settings
  - d. Mailbox transmit/receive settings
  - e. Mailbox initialization
- 2. Interrupt and receive message settings
  - a. Interrupt setting
  - b. Arbitration field setting
  - c. Local acceptance filter mask (LAFM) settings
- 3. Message reception and interrupts
  - a. Message reception CRC check
  - b. Data frame reception
  - c. Remote frame reception
  - d. Unread message reception

**Initialization (after Hardware Reset Only):** These settings should be made while the HCAN is in bit configuration mode.

# 1. IRR0 clearing

The reset interrupt flag (IRR0) is always set after a power-on reset or recovery from software standby mode. As an HCAN interrupt is initiated immediately when interrupts are enabled, IRR0 should be cleared.

# 2. HCAN pin port settings

To prevent erroneous identification of CAN bus data, HCAN pin port settings should be made first. See HCAN Pin Port Settings in section 16.3.2, Initialization after a Hardware Reset, and section 20, Pin Function Controller (PFC), for details.

# 3. Bit rate settings

Set values relating to the CAN bus communication speed and re-synchronization. See Bit Rate Settings in section 16.3.2, Initialization after a Hardware Reset, for details.

# 4. Mailbox transmit/receive settings

Each channel has one receive-only mailbox (mailbox 0) and 15 mailboxes that can be set for reception. Thus a total of 32 mailboxes can be used for reception. To set a mailbox for reception, set the corresponding bit to 1 in the mailbox configuration register (MBCR). The

initial setting for mailboxes is 0, designating transmission use. See Mailbox Transmit/Receive Settings in section 16.3.2, Initialization after a Hardware Reset, for details.

# 5. Mailbox (RAM) initialization

As message control/data registers (MCx[x], MDx[x]) are configured in RAM, their initial values after powering on are undefined, and so bit initialization is necessary. Write 0s or 1s to the mailboxes. See Mailbox (Message Control/Data (MCx[x], MDx[x]) Initial Settings in section 16.3.2, Initialization after a Hardware Reset, for details.

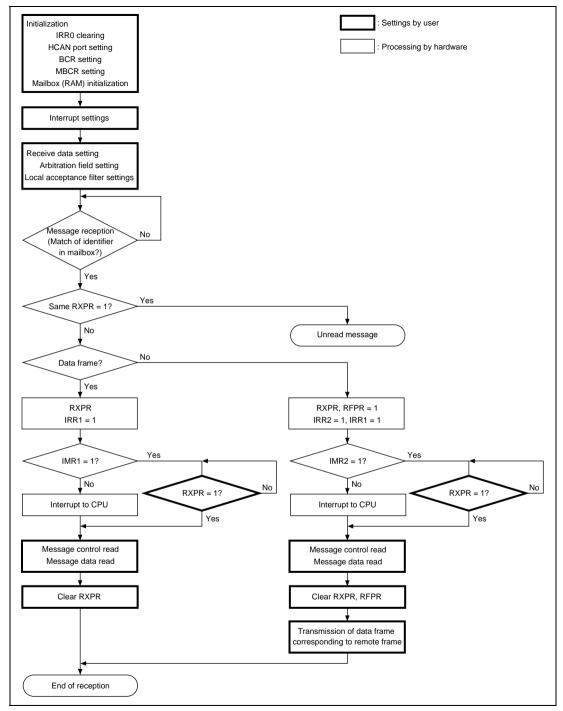



Figure 16.11 Reception Flowchart

Interrupt and Receive Message Settings: When mailbox initialization is finished, CPU interrupt source settings and receive message specifications must be made. Interrupt source are set in the mailbox interrupt mask register (MBIMR) and interrupt mask register (IMR). To receive a message, the identifier must be set in advance in the message control (MCx[1] to MCx[8]) for the receiving mailbox. When a message is received, all the bits in the receive message identifier are compared, and if a 100% match is found, the message is stored in the matching mailbox. Mailbox 0 (MC0[x], MD0[x]) has a local acceptance filter mask (LAFM) that allows Don't Care settings to be made.

## 1. CPU interrupt source settings

When transmitting, transmission acknowledge and transmission abort acknowledge interrupts can be masked for individual mailboxes in the mailbox interrupt mask register (MBIMR). When receiving, data frame and remote frame receive wait interrupts can be masked. Interrupt register (IRR) interrupts can be masked in the interrupt mask register (IMR).

## 2. Arbitration field setting

In the arbitration field, the identifier (STD\_ID0 to STD\_ID10, EXT\_ID0 to EXT\_ID17) of the message to be received is set. If all the bits in the set identifier do not match, the message is not stored in a mailbox.

Example: Mailbox 1 010\_1010\_1010 (standard identifier)

Only one kind of message identifier can be received by MB1

Identifier 1: 010\_1010\_1010

3. Local acceptance filter mask (LAFM) setting

The local acceptance filter mask is provided for mailbox 0 (MC0[x], MD0[x]) only, enabling a Don't Care specification to be made for all bits in the received identifier. This allows various kinds of messages to be received.

Example: Mailbox 0 010\_1010\_1010 (standard identifier)

LAFM 000 0000 0011 (0: Care, 1: Don't Care)

A total of four kinds of message identifiers can be received by MB0

 Identifier 1:
 010\_1010\_1000

 Identifier 2:
 010\_1010\_1001

 Identifier 3:
 010\_1010\_1010

 Identifier 4:
 010\_1010\_1011

### Message Reception and Interrupts

#### 1. Message reception CRC check

When a message is received, a CRC check is performed automatically (by hardware). If the result of the CRC check is normal, ACK is transmitted in the ACK field irrespective of whether or not the message can be received.

### 2. Data frame reception

If the received message is confirmed to be error-free by the CRC check, etc., the identifier in the mailbox (and also LAFM in the case of mailbox 0 only) and the identifier of the receive message are compared, and if a complete match is found, the message is stored in the mailbox. The message identifier comparison is carried out on each mailbox in turn, starting with mailbox 0 and ending with mailbox 15. If a complete match is found, the comparison ends at that point, the message is stored in the matching mailbox, and the corresponding receive complete bit (RXPR0 to RXPR15) is set in the receive complete register (RXPR). However, if the identifier matches when a comparison with the mailbox 0 LAFM is carried out, the mailbox comparison sequence does not end at that point, but continues with mailbox 1 and then the remaining mailboxes. It is therefore possible for a message matching mailbox 0 to be received by another mailbox (however, the same message cannot be stored in more than one of mailboxes 1 to 15). If the corresponding bit (MBIMR0 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the receive message interrupt mask (IMR1) in the interrupt mask register (IMR) are set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

# 3. Remote frame reception

Two kinds of messages—data frames and remote frames—can be stored in mailboxes. A remote frame differs from a data frame in that the remote reception request bit (RTR) in the message control register (MC[x]5) and the data field are 0 bytes. The data length to be returned in a data frame must be stored in the data length code (DLC) in the control field.

When a remote frame (RTR = recessive) is received, the corresponding bit is set in the remote request wait register (RFPR). If the corresponding bit (MBIMR0 to MBIMR15) in the mailbox interrupt mask register (MBIMR) and the remote frame request interrupt mask (IRR2) in the interrupt mask register (IMR) are set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

# 4. Unread message reception

When a received message matches the identifier in a mailbox, the message is stored in the mailbox. If a message overwrite occurs before the CPU reads the message, the corresponding bit (UMSR0 to UMSR15) is set in the unread message register (UMSR). In overwriting of an unread message, when a new message is received before the corresponding bit in the receive complete register (RXPR) has been cleared, the unread message register (UMSR) is set. If the unread interrupt flag (IRR9) in the interrupt mask register (IMR) is set to the interrupt enable value at this time, an interrupt can be sent to the CPU. Figure 16.12 shows a flowchart of unread message overwriting.

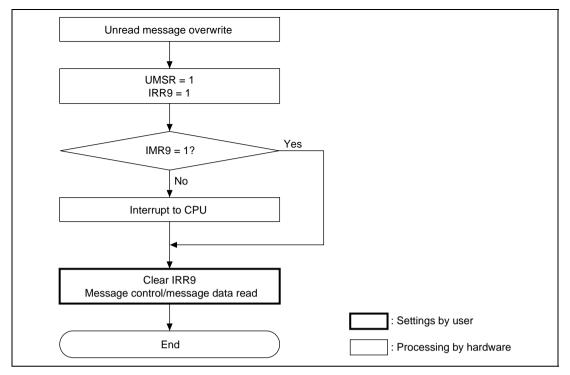



Figure 16.12 Unread Message Overwrite Flowchart

## 16.3.5 HCAN Sleep Mode

The HCAN is provided with an HCAN sleep mode that places the HCAN module in the sleep state to reduce current dissipation. Figure 16.13 shows a flowchart of the HCAN sleep mode.

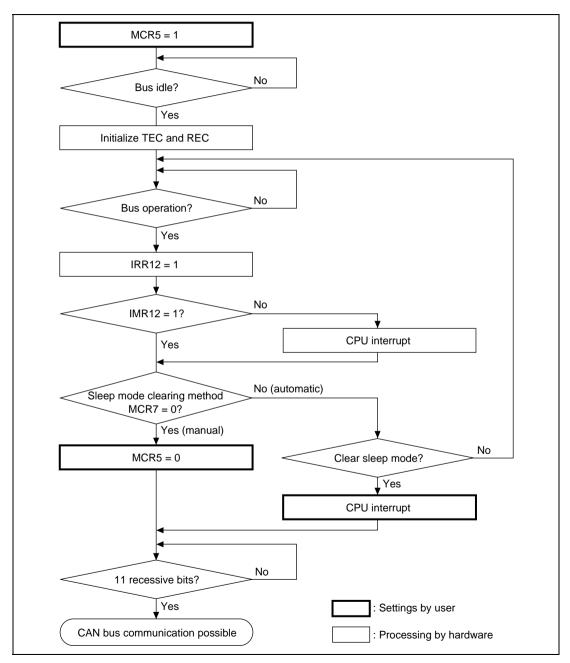



Figure 16.13 HCAN Sleep Mode Flowchart

HCAN sleep mode is entered by setting the HCAN sleep mode bit (MCR5) to 1 in the master control register (MCR). If the CAN bus is operating, the transition to HCAN sleep mode is delayed until the bus becomes idle.

Either of the following methods of clearing HCAN sleep mode can be selected by making a setting in the MCR7 bit.

- 1. Clearing by software
- 2. Clearing by CAN bus operation

Eleven recessive bits must be received after HCAN sleep mode is cleared before CAN bus communication is enabled again.

Clearing by Software: Clearing by software is performed by having the CPU write 0 to MCR5.

Clearing by CAN Bus Operation: Clearing by CAN bus operation occurs automatically when the CAN bus performs an operation and this change is detected. In this case, the first message is not received in the message box; normal reception starts with the second message. When a change is detected on the CAN bus in HCAN sleep mode, the bus operation interrupt flag (IRR12) is set in the interrupt register (IRR). If the bus interrupt mask (IMR12) in the interrupt mask register (IMR) is set to the interrupt enable value at this time, an interrupt can be sent to the CPU.

#### 16.3.6 HCAN Halt Mode

The HCAN halt mode is provided to enable mailbox settings to be changed without performing an HCAN hardware or software reset. Figure 16.14 shows a flowchart of the HCAN halt mode.

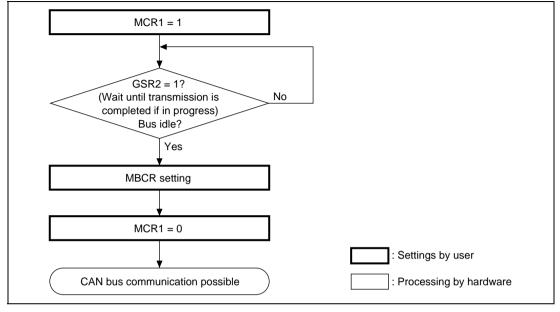



Figure 16.14 HCAN Halt Mode Flowchart

HCAN halt mode is entered by setting the halt request bit (MCR1) to 1 in the master control register (MCR). If the CAN bus is operating, the transition to HCAN halt mode is delayed until the bus becomes idle.

HCAN halt mode is cleared by clearing MCR1 to 0.

# **16.3.7** Interrupt Interface

There are 12 interrupt sources for each HCAN channel. Four independent interrupt vectors are assigned to each channel. Table 16.6 lists the HCAN interrupt sources.

With the exception of the power-on reset processing vector (IRR0), these sources can be masked. Masking is implemented using the mailbox interrupt mask register (MBIMR) and interrupt mask register (IMR).

**Table 16.6 HCAN Interrupt Sources** 

| Channel | IPR Bits       | Vector | Vector<br>Number | IRR Bit | Description                                      |
|---------|----------------|--------|------------------|---------|--------------------------------------------------|
| HCAN0   | IPRL<br>(11–8) | ERS0   | 220              | IRR5    | Error passive interrupt (TEC ≥ 128 or REC ≥ 128) |
|         | Interrupt      |        |                  | IRR6    | Bus off interrupt (TEC ≥ 256)                    |
|         | priority       | OVR0   | 221              | IRR0    | Power-on reset processing interrupt              |
|         | level 0 to     |        |                  | IRR2    | Remote frame reception interrupt                 |
|         | 15             |        |                  | IRR3    | Error warning interrupt (TEC ≥ 96)               |
|         | (Initial       |        |                  | IRR4    | Error warning interrupt (REC ≥ 96)               |
|         | value: 0)      |        |                  | IRR7    | Overload frame transmission interrupt            |
|         |                |        |                  | IRR9    | Unread message overwrite interrupt               |
|         |                |        |                  | IRR12   | HCAN sleep mode CAN bus operation interrupt      |
|         |                | RM0    | 222              | IRR1    | Mailbox 0 message reception interrupt            |
|         |                |        |                  | IRR1    | Mailbox 1 to 15 message reception interrupt      |
|         |                | SLE0   | 223              | IRR8    | Message transmission/cancellation interrupt      |
| HCAN1   | IPRL<br>(3–0)  | ERS1   | 228              | IRR5    | Error passive interrupt (TEC ≥ 128 or REC ≥ 128) |
|         | Interrupt      |        |                  | IRR6    | Bus off interrupt (TEC ≥ 256)                    |
|         | priority       | OVR1   | 229              | IRR0    | Power-on reset processing interrupt              |
|         | level 0 to     |        |                  | IRR2    | Remote frame reception interrupt                 |
|         | 15             |        |                  | IRR3    | Error warning interrupt (TEC ≥ 96)               |
|         | (Initial       |        |                  | IRR4    | Error warning interrupt (REC ≥ 96)               |
|         | value: 0)      |        |                  | IRR7    | Overload frame transmission interrupt            |
|         |                |        |                  | IRR9    | Unread message overwrite interrupt               |
|         |                |        |                  | IRR12   | HCAN sleep mode CAN bus operation interrupt      |
|         |                | RM1    | 230              | IRR1    | Mailbox 0 message reception interrupt            |
|         |                |        |                  | IRR1    | Mailbox 1 to 15 message reception interrupt      |
|         |                | SLE1   | 231              | IRR8    | Message transmission/cancellation interrupt      |

#### 16.3.8 DMAC Interface

The DMAC can be activated by reception of a message in HCAN0's mailbox 0. When DMAC transfer ends after DMAC activation has been set, the RXPR0 and RFPR0 flags are acknowledge signal automatically. An interrupt request due to a receive interrupt from the HCAN cannot be sent to the CPU in this case. Figure 16.15 shows a DMAC transfer flowchart.

Rev.2.0, 07/03, page 576 of 960

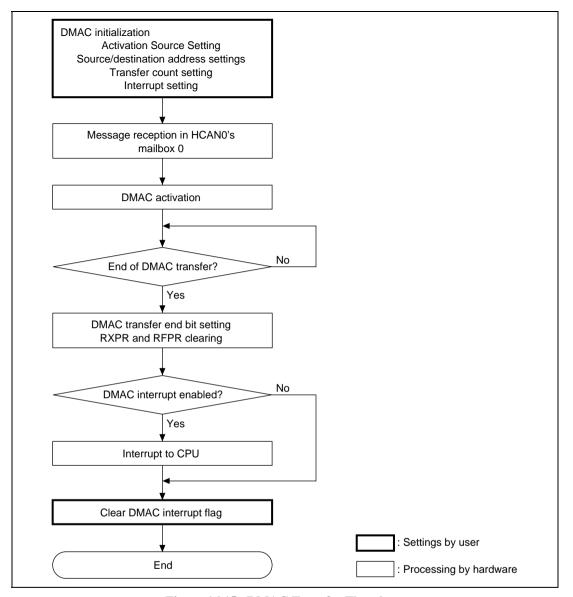



Figure 16.15 DMAC Transfer Flowchart

## 16.4 CAN Bus Interface

A bus transceiver IC is necessary to connect the SH7055SF chip to a CAN bus. A Philips PCA82C250 transceiver IC, or compatible device, is recommended. Figure 16.16 shows a sample connection diagram.

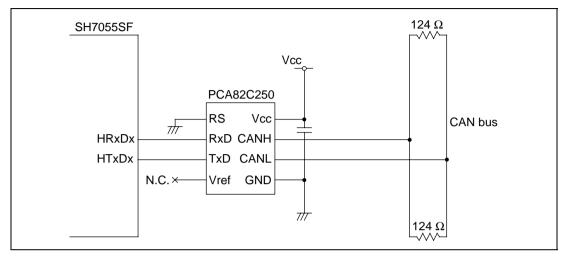



Figure 16.16 Example of High-Speed Interface Using PCA82C250

## 16.5 Usage Notes

**Reset:** The HCAN is reset by a power-on reset, and in hardware standby mode and software standby mode. All the registers are initialized in a reset, but mailboxes (message control (MCx[x])/message data (MDx[x]) are not. However, after powering on, mailboxes (message control (MCx[x])/message data (MDx[x]) are initialized, and their values are undefined. Therefore, mailbox initialization must always be carried out after a power-on reset or a transition to hardware standby mode or software standby mode. The reset interrupt flag (IRR0) is always set after a power-on reset or recovery from software standby mode. As this bit cannot be masked in the interrupt mask register (IMR), if HCAN interrupt enabling is set in the interrupt controller without clearing the flag, an HCAN interrupt will be initiated immediately. IRR0 should therefore be cleared during initialization.

**HCAN Sleep Mode:** The bus operation interrupt flag (IRR12) in the interrupt register (IRR) is set by bus operation in HCAN sleep mode. Therefore, this flag is not used by the HCAN to indicate sleep mode release. Also note that the reset status bit (GSR3) in the general status register (GSR) is set in sleep mode.

**Port Settings:** Port settings must be made with the PFC before the HCAN begins CAN bus communication.

When using the two HCAN pins in a 2-channel/32-buffer configuration (wired-AND), set the other two HCAN pin locations as non-HCAN.

**DMAC Activation:** When the DMAC is activated automatically by reception of a message in HCAN0's mailbox 0 (receive-only mailbox), an interrupt request signal is not sent to the INTC.

**Interrupts:** When the mailbox interrupt mask register (MBIMR) is set, the interrupt register (IRR8, 2, 1) is not set by reception completion, transmission completion, or transmission cancellation for the set mailboxes.

**Error Counters:** In the case of error active and error passive, REC and TEC normally count up and down. In the bus off state, 11-bit recessive sequences are counted (REC + 1) using REC. If REC reaches 96 during the count, IRR4 and GSR1 are set, and if REC reaches 128, IRR7 is set.

**Register Access:** Byte or word access can be used on all HCAN registers. Longword access cannot be used.

**Register Initialization in Standby Modes:** All HCAN registers are initialized in hardware standby mode and software standby mode.

Differences from the HD64F7005:

(a) The operation of the HCAN in the case of the CAN bus short

The conventional HD64F7055 does not comply with the CAN specifications if the receive pin (HRxD) is fixed to 1 as a result of faults such as the CAN bus short during message transmission or reception in the HCAN error active state. The HD64F7055S operation always meets the CAN specifications.

(1) When the CAN bus is shorted (the CAN bus is fixed to 1) during transmission If the CAN bus is shorted while the HCAN is transmitting messages in the error active state, the conventional HD64F7055 outputs 0s consecutively during the error passive state until the transition to bus off state. In the same case, however, the HD64F7055S outputs 1s consecutively. For details, see figure 16.17.

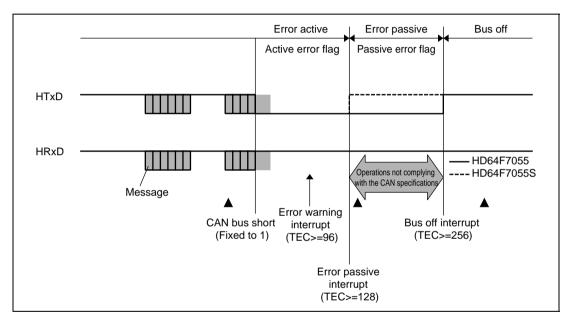



Figure 16.17 HCAN Operation while the CAN Bus is Fixed to 1 during Transmission

(2) When the CAN bus is shorted (the CAN bus is fixed to 1) during reception If the CAN bus is shorted while the HCAN is receiving messages in the error active state, the conventional HD64F7055 outputs 0s consecutively during the error passive state. In the same case, however, the HD64F7055S outputs 1s consecutively. For details, see figure 16.18.

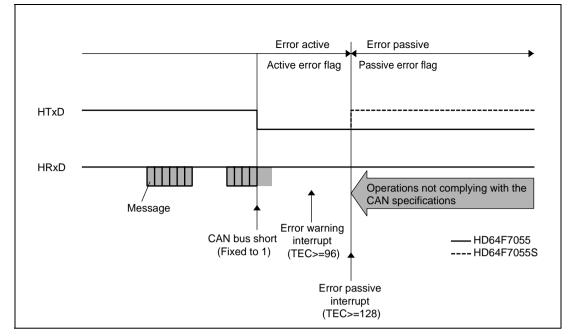



Figure 16.18 HCAN Operation while the CAN Bus is Fixed to 1 during Reception

(b) The contents of the interrupt register after recovery from the bus off state

The conventional HD64F7055 sets the interrupt register (IRR7) at the recovery of the HCAN from bus off state, while the HD64F7055S does not set the interrupt register (IRR7).

# Section 17 A/D Converter

#### 17.1 Overview

The SH7055SF includes a 10-bit successive-approximation A/D converter, with software selection of up to 32 analog input channels.

The A/D converter is composed of three independent modules, A/D, A/D1, and A/D2. A/D0 and A/D1 each comprise three groups, while A/D2 comprises two groups.

| Module | <b>Analog Groups</b> | Channels  |  |
|--------|----------------------|-----------|--|
| A/D0   | Analog group 0       | AN0-AN3   |  |
|        | Analog group 1       | AN4–AN7   |  |
|        | Analog group 2       | AN8-AN11  |  |
| A/D1   | Analog group 3       | AN12-AN15 |  |
|        | Analog group 4       | AN16–AN19 |  |
|        | Analog group 5       | AN20-AN23 |  |
| A/D2   | Analog group 6       | AN24-AN27 |  |
|        | Analog group 7       | AN28-AN31 |  |

#### 17.1.1 Features

The features of the A/D converter are summarized below.

- 10-bit resolution
  - 32 input channels (A/D0: 12 channels, A/D1: 12 channels, A/D2: 8 channels)
- High-speed conversion

Conversion time: minimum 13.4  $\mu$ s per channel (when  $\phi = 40 \text{ MHz}$ )

- Two conversion modes
  - Single mode: A/D conversion on one channel
  - Scan mode: cotinuous scan mode, single-cycle scan mode (AN0–AN3, AN4–AN7, AN8–AN11, AN12–AN15, AN16–AN19, AN20–AN23, AN24–AN27, AN28–AN31)

Continuous conversion on 1 to 12 channels (A/D0)

Continuous conversion on 1 to 12 channels (A/D1)

Continuous conversion on 1 to 8 channels (A/D2)

• Thirty-two 10-bit A/D data registers

A/D conversion results are transferred for storage into data registers corresponding to the channels.

- Three sample-and-hold circuits
  - A sample-and-hold circuit is built into each A/D converter module (AD/0, AD/1, and AD/2), simplifying the configuration of external analog input circuitry.
- A/D conversion interrupts and DMA function supported
   An A/D conversion interrupt request (ADI) can be sent to the CPU at the end of A/D conversion (ADI0: A/D0 interrupt request; ADI1: A/D1 interrupt request; ADI2: A/D2 interrupt request). Also, the DMAC can be activated by an ADI interrupt request.
- Two kinds of conversion activation
  - Software or external trigger (ADTERO, ATU-II (ITVRR2A)) can be selected (A/D0)
  - Software or external trigger (ADTGR0, ATU-II (ITVRR2B)) can be selected (A/D1)
  - Software or external trigger (ADTGR1, ATU-II (ITVRR1)) can be selected (A/D2)
- ADEND output

Conversion timing can be monitored with the ADEND output pin when using channel 31 in scan mode.

#### 17.1.2 Block Diagram

Figure 17.1 shows a block diagram of the A/D converter.

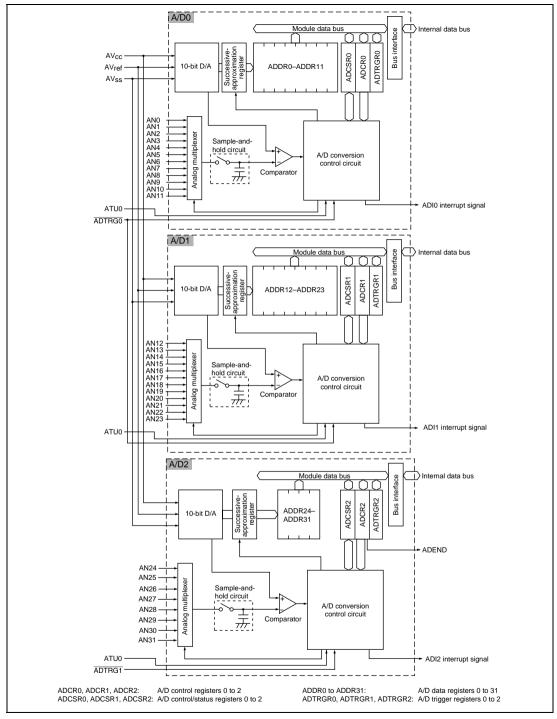



Figure 17.1 A/D Converter Block Diagram

## 17.1.3 Pin Configuration

Table 17.1 summarizes the A/D converter's input pins. There are 32 analog input pins, AN0 to AN31. The 12 pins AN0 to AN11 are A/D0 analog inputs, divided into three groups: AN0 to AN3 (group 0), AN4 to AN7 (group 1), and AN8 to AN11 (group 2). The 12 pins AN12 to AN23 are A/D1 analog inputs, divided into three groups: AN12 to AN15 (group 3), AN16 to AN19 (group 4), and AN20 to AN23 (group 5). The 8 pins AN24 to AN31 are A/D2 analog inputs, divided into two groups: AN24 to AN27 (group 6), and AN28 to AN31 (group 7).

The ADTRG0 and ADTRG1 pins are used to provide A/D conversion start timing from off-chip. When a low level is applied to one of these pins, A/D0, A/D1, or A/D2 starts conversion.

The ADEND pin is an output used to monitor conversion timing when channel 31 is used in scan mode.

The  $AV_{cc}$  and  $AV_{ss}$  pins are power supply voltage pins for the analog section in A/D converter modules A/D0 to A/D2. The  $AV_{ref}$  pin is the A/D converter module A/D0 to A/D2 reference voltage pin.

To maintain chip reliability, ensure that  $AV_{\rm CC} = 5 \ V \pm 0.5 \ V$  and  $AV_{ss} = V_{ss}$  during normal operation, and never leave the  $AV_{\rm CC}$  and  $AV_{ss}$  pins open, even when the A/D converter is not being used.

The voltage applied to the analog input pins should be in the range  $AV_{ss} = ANn = AV_{ref}$ 

**Table 17.1 A/D Converter Pins** 

| Pin Name                          | Abbreviation     | I/O   | Function                                              |
|-----------------------------------|------------------|-------|-------------------------------------------------------|
| Analog power supply pin           | AV <sub>cc</sub> | Input | A/D0-A/D2 analog section power supply                 |
| Analog ground pin                 | AV <sub>ss</sub> | Input | A/D0–A/D2 analog section ground and reference†voltage |
| Analog reference power supply pin | $AV_{ref}$       | Input | A/D0–A/D2 analog section reference voltage            |
| Analog input pin 0                | AN0              | Input | A/D0 analog inputs 0 to 3 (analog group 0)            |
| Analog input pin 1                | AN1              | Input | _                                                     |
| Analog input pin 2                | AN2              | Input | _                                                     |
| Analog input pin 3                | AN3              | Input | _                                                     |
| Analog input pin 4                | AN4              | Input | A/D0 analog inputs 4 to 7 (analog group 1)            |
| Analog input pin 5                | AN5              | Input | _                                                     |
| Analog input pin 6                | AN6              | Input | _                                                     |
| Analog input pin 7                | AN7              | Input | _                                                     |
| Analog input pin 8                | AN8              | Input | A/D0 analog inputs 8 to 11 (analog group 2)           |
| Analog input pin 9                | AN9              | Input | _                                                     |
| Analog input pin 10               | AN10             | Input | _                                                     |
| Analog input pin 11               | AN11             | Input | _                                                     |
| Analog input pin 12               | AN12             | Input | A/D1 analog inputs 12 to 15 (analog group 3)          |
| Analog input pin 13               | AN13             | Input | _                                                     |
| Analog input pin 14               | AN14             | Input | _                                                     |
| Analog input pin 15               | AN15             | Input | _                                                     |
| Analog input pin 16               | AN16             | Input | A/D1 analog inputs 16 to 19 (analog group 4)          |
| Analog input pin 17               | AN17             | Input | _                                                     |
| Analog input pin 18               | AN18             | Input | _                                                     |
| Analog input pin 19               | AN19             | Input | _                                                     |
| Analog input pin 20               | AN20             | Input | A/D1 analog inputs 20 to 23 (analog group 5)          |
| Analog input pin 21               | AN21             | Input | _                                                     |
| Analog input pin 22               | AN22             | Input | _                                                     |
| Analog input pin 23               | AN23             | Input | _                                                     |

**Table 17.1** A/D Converter Pins (cont)

| Pin Name                           | Abbreviation | I/O    | Function                                         |
|------------------------------------|--------------|--------|--------------------------------------------------|
| Analog input pin 24                | AN24         | Input  | A/D2 analog inputs 24 to 27 (analog group 6)     |
| Analog input pin 25                | AN25         | Input  | _                                                |
| Analog input pin 26                | AN26         | Input  | _                                                |
| Analog input pin 27                | AN27         | Input  | _                                                |
| Analog input pin 28                | AN28         | Input  | A/D2 analog inputs 28 to 31 (analog group 7)     |
| Analog input pin 29                | AN29         | Input  | _                                                |
| Analog input pin 30                | AN30         | Input  | _                                                |
| Analog input pin 31                | AN31         | Input  | _                                                |
| A/D conversion trigger input pin 0 | ADTRG0       | Input  | A/D0 and A/D1 A/D conversion trigger input       |
| A/D conversion trigger input pin 1 | ADTRG1       | Input  | A/D2 A/D conversion trigger input                |
| ADEND output pin                   | ADEND        | Output | A/D2 channel 31 conversion timing monitor output |

# 17.1.4 Register Configuration

Table 17.2 summarizes the A/D converter's registers.

**Table 17.2** A/D Converter Registers

| Name                       | Abbreviation | R/W | Initial<br>Value | Address    | Access<br>Size* <sup>1</sup> |
|----------------------------|--------------|-----|------------------|------------|------------------------------|
| A/D data register 0 (H/L)  | ADDR0 (H/L)  | R   | H'0000           | H'FFFFF800 | 8, 16                        |
| A/D data register 1 (H/L)  | ADDR1 (H/L)  | R   | H'0000           | H'FFFFF802 | 8, 16                        |
| A/D data register 2 (H/L)  | ADDR2 (H/L)  | R   | H'0000           | H'FFFFF804 | 8, 16                        |
| A/D data register 3 (H/L)  | ADDR3 (H/L)  | R   | H'0000           | H'FFFFF806 | 8, 16                        |
| A/D data register 4 (H/L)  | ADDR4 (H/L)  | R   | H'0000           | H'FFFFF808 | 8, 16                        |
| A/D data register 5 (H/L)  | ADDR5 (H/L)  | R   | H'0000           | H'FFFFF80A | 8, 16                        |
| A/D data register 6 (H/L)  | ADDR6 (H/L)  | R   | H'0000           | H'FFFFF80C | 8, 16                        |
| A/D data register 7 (H/L)  | ADDR7 (H/L)  | R   | H'0000           | H'FFFFF80E | 8, 16                        |
| A/D data register 8 (H/L)  | ADDR8 (H/L)  | R   | H'0000           | H'FFFFF810 | 8, 16                        |
| A/D data register 9 (H/L)  | ADDR9 (H/L)  | R   | H'0000           | H'FFFFF812 | 8, 16                        |
| A/D data register 10 (H/L) | ADDR10 (H/L) | R   | H'0000           | H'FFFFF814 | 8, 16                        |
| A/D data register 11 (H/L) | ADDR11 (H/L) | R   | H'0000           | H'FFFFF816 | 8, 16                        |
| A/D data register 12 (H/L) | ADDR12 (H/L) | R   | H'0000           | H'FFFFF820 | 8, 16                        |
| A/D data register 13 (H/L) | ADDR13 (H/L) | R   | H'0000           | H'FFFFF822 | 8, 16                        |
| A/D data register 14 (H/L) | ADDR14 (H/L) | R   | H'0000           | H'FFFFF824 | 8, 16                        |
| A/D data register 15 (H/L) | ADDR15 (H/L) | R   | H'0000           | H'FFFFF826 | 8, 16                        |
| A/D data register 16 (H/L) | ADDR16 (H/L) | R   | H'0000           | H'FFFFF828 | 8, 16                        |
| A/D data register 17 (H/L) | ADDR17 (H/L) | R   | H'0000           | H'FFFFF82A | 8, 16                        |
| A/D data register 18 (H/L) | ADDR18 (H/L) | R   | H'0000           | H'FFFFF82C | 8, 16                        |
| A/D data register 19 (H/L) | ADDR19 (H/L) | R   | H'0000           | H'FFFFF82E | 8, 16                        |
| A/D data register 20 (H/L) | ADDR20 (H/L) | R   | H'0000           | H'FFFFF830 | 8, 16                        |
| A/D data register 21 (H/L) | ADDR21 (H/L) | R   | H'0000           | H'FFFFF832 | 8, 16                        |
| A/D data register 22 (H/L) | ADDR22 (H/L) | R   | H'0000           | H'FFFFF834 | 8, 16                        |
| A/D data register 23 (H/L) | ADDR23 (H/L) | R   | H'0000           | H'FFFFF836 | 8, 16                        |
| A/D data register 24 (H/L) | ADDR24 (H/L) | R   | H'0000           | H'FFFFF840 | 8, 16                        |
| A/D data register 25 (H/L) | ADDR25 (H/L) | R   | H'0000           | H'FFFFF842 | 8, 16                        |
| A/D data register 26 (H/L) | ADDR26 (H/L) | R   | H'0000           | H'FFFFF844 | 8, 16                        |

Table 17.2 A/D Converter Registers (cont)

| Name                          | Abbreviation | R/W     | Initial<br>Value | Address    | Access<br>Size* <sup>1</sup> |
|-------------------------------|--------------|---------|------------------|------------|------------------------------|
| A/D data register 27 (H/L)    | ADDR27 (H/L) | R       | H'0000           | H'FFFFF846 | 8, 16                        |
| A/D data register 28 (H/L)    | ADDR28 (H/L) | R       | H'0000           | H'FFFFF848 | 8, 16                        |
| A/D data register 29 (H/L)    | ADDR29 (H/L) | R       | H'0000           | H'FFFFF84A | 8, 16                        |
| A/D data register 30 (H/L)    | ADDR30 (H/L) | R       | H'0000           | H'FFFFF84C | 8, 16                        |
| A/D data register 31 (H/L)    | ADDR31 (H/L) | R       | H'0000           | H'FFFFF84E | 8, 16                        |
| A/D control/status register 0 | ADCSR0       | R/(W)*2 | H'00             | H'FFFFF818 | 8, 16                        |
| A/D control register 0        | ADCR0        | R/W     | H'0F             | H'FFFFF819 | 8, 16                        |
| A/D trigger register 0        | ADTRGR0      | R/W     | H'FF             | H'FFFFF76E | 8                            |
| A/D control/status register 1 | ADCSR1       | R/(W)*2 | H'00             | H'FFFFF838 | 8, 16                        |
| A/D control register 1        | ADCR1        | R/W     | H'0F             | H'FFFFF839 | 8, 16                        |
| A/D trigger register 1        | ADTRGR1      | R/W     | H'FF             | H'FFFFF72E | 8                            |
| A/D control/status register 2 | ADCSR2       | R/(W)*2 | H'08             | H'FFFFF858 | 8, 16                        |
| A/D control register 2        | ADCR2        | R/W     | H'0F             | H'FFFFF859 | 8, 16                        |
| A/D trigger register 2        | ADTRGR2      | R/W     | H'FF             | H'FFFFF72F | 8                            |
|                               |              |         |                  |            |                              |

Notes: Register accesses consist of 6 or 7 cycles for byte access and 12 or 13 cycles for word access.

<sup>\*1</sup> A 16-bit access must be made on a word boundary.

<sup>\*2</sup> Only 0 can be written to bit 7 to clear the flag.

## 17.2 Register Descriptions

### 17.2.1 A/D Data Registers 0 to 31 (ADDR0 to ADDR31)

A/D data registers 0 to 31 (ADDR0 to ADDR31) are 16-bit read-only registers that store the results of A/D conversion. There are 31 registers, corresponding to analog inputs 0 to 31 (AN0 to AN31).

The ADDR registers are initialized to H'0000 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:                   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| ADDRnH<br>(upper byte) | AD9 | AD8 | AD7 | AD6 | AD5 | ADR | AD3 | AD2 |
| Initial value:         | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:                   | R   | R   | R   | R   | R   | R   | R   | R   |
|                        |     |     |     |     |     |     |     |     |
| Bit:                   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
| ADDRnL<br>(lower byte) | AD1 | AD0 | _   | _   | _   | _   | _   | _   |
| Initial value:         | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W:                   | R   | R   | R   | R   | R   | R   | R   | R   |
| (n = 0  to  31)        |     |     |     |     |     |     |     |     |

The A/D converter converts analog input to a 10-bit digital value. The upper 8 bits of this data are stored in the upper byte of the ADDR corresponding to the selected channel, and the lower 2 bits in the lower byte of that ADDR. Only the most significant 2 bits of the ADDR lower byte data are valid.

Table 17.3 shows correspondence between the analog input channels and A/D data registers.

Table 17.3 Analog Input Channels and A/D Data Registers

| Analog<br>Input<br>Channel | A/D Data<br>Register | Analog<br>Input<br>Channel | A/D Data<br>Register | Analog<br>Input<br>Channel | A/D Data<br>Register | Analog<br>Input<br>Channel | A/D Data<br>Register |
|----------------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------|----------------------------|----------------------|
| AN0                        | ADDR0                | AN8                        | ADDR8                | AN16                       | ADDR16               | AN24                       | ADDR24               |
| AN1                        | ADDR1                | AN9                        | ADDR9                | AN17                       | ADDR17               | AN25                       | ADDR25               |
| AN2                        | ADDR2                | AN10                       | ADDR10               | AN18                       | ADDR18               | AN26                       | ADDR26               |
| AN3                        | ADDR3                | AN11                       | ADDR11               | AN19                       | ADDR19               | AN27                       | ADDR27               |
| AN4                        | ADDR4                | AN12                       | ADDR12               | AN20                       | ADDR20               | AN28                       | ADDR28               |
| AN5                        | ADDR5                | AN13                       | ADDR13               | AN21                       | ADDR21               | AN29                       | ADDR29               |
| AN6                        | ADDR6                | AN14                       | ADDR14               | AN22                       | ADDR22               | AN30                       | ADDR30               |
| AN7                        | ADDR7                | AN15                       | ADDR15               | AN23                       | ADDR23               | AN31                       | ADDR31               |

## 17.2.2 A/D Control/Status Registers 0 and 1 (ADCSR0, ADCSR1)

A/D control/status registers 0 and 1 (ADCSR0, ADCSR1) are 8-bit readable/writable registers whose functions include selection of the A/D conversion mode for A/D0 and A/D1.

ADCSR0 and ADCSR1 are initialized to H'00 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 7      | 6    | 5    | 4    | 3   | 2   | 1   | 0   |
|----------------|--------|------|------|------|-----|-----|-----|-----|
|                | ADF    | ADIE | ADM1 | ADM0 | CH3 | CH2 | CH1 | CH0 |
| Initial value: | 0      | 0    | 0    | 0    | 0   | 0   | 0   | 0   |
| R/W:           | R/(W)* | R/W  | R/W  | R/W  | R/W | R/W | R/W | R/W |

Note: \* Only 0 can be written to clear the flag.

• Bit 7—A/D End Flag (ADF): Indicates the end of A/D conversion.

| Bit 7:<br>ADF | Description                                                                                                 |
|---------------|-------------------------------------------------------------------------------------------------------------|
| 0             | Indicates that A/D0 or A/D1 is performing A/D conversion, or is in the idle state (Initial value)           |
|               | [Clearing conditions]                                                                                       |
|               | <ul> <li>When ADF is read while set to 1, then 0 is written to ADF</li> </ul>                               |
|               | <ul> <li>When the DMAC is activated by ADI0 or ADI1</li> </ul>                                              |
| 1             | Indicates that A/D0 or A/D1 has finished A/D conversion, and the digital value has been transferred to ADDR |
|               | [Setting conditions]                                                                                        |
|               | Single mode: When A/D conversion ends                                                                       |
|               | Scan mode: When all set A/D conversions end                                                                 |

The operation of the A/D converter after ADF is set to 1 differs between single mode and scan mode.

In single mode, after the A/D converter transfers the digit value to ADDR, ADF is set to 1 and the A/D converter enters the idle state. In scan mode, ADF is set to 1 after all the set conversions end. For example, in the case of 12-channel scanning, ADF is set to 1 immediately after the end of conversion for AN8 to AN11 (group 2) or AN20 to AN23 (group 5). After ADF is set to 1, conversion continues in the case of continuous scanning, and ends in the case of single-cycle scanning.

Note that 1 cannot be written to ADF.

• Bit 6—A/D Interrupt Enable (ADIE): Enables or disables the A/D interrupt (ADI).

To prevent incorrect operation, ensure that the ADST bit in A/D control registers 0 and 1 (ADCR0, ADCR1) is cleared to 0 before switching the operating mode.

| Bit 6:<br>ADIE | Description                            |                 |
|----------------|----------------------------------------|-----------------|
| 0              | A/D interrupt (ADI0, ADI1) is disabled | (Initial value) |
| 1              | A/D interrupt (ADI0, ADI1) is enabled  |                 |

When A/D conversion ends and the ADF bit is set to 1, an A/D0 or A/D1 A/D interrupt (ADI0, ADI1) will be generated If the ADIE bit is 1. ADI0 and ADI1 are cleared by clearing ADF or ADIE to 0.

• Bits 5 and 4: A/D Mode 1 and 0 (ADM1, ADM0): These bits select the A/D conversion mode from single mode, 4-channel scan mode, 8-channel scan mode, and 12-channel scan mode. To prevent incorrect operation, ensure that the ADST bit in A/D control registers 1 and 0 (ADCR1, ADCR0) is cleared to 0 before switching the operating mode.

| Bit 5: | Bit 4: |                                                       |                 |
|--------|--------|-------------------------------------------------------|-----------------|
| ADM1   | ADM0   | Description                                           |                 |
| 0      | 0      | Single mode                                           | (Initial value) |
|        | 1      | 4-channel scan mode (analog groups 0, 1, 2, 3, 4, 5)  |                 |
| 1      | 0      | 8-channel scan mode (analog groups 0, 1, 3, 4)        |                 |
|        | 1      | 12-channel scan mode (analog groups 0, 1, 2, 3, 4, 5) |                 |

When ADM1 and ADM0 are set to 00, single mode is set. In single mode, operation ends after A/D conversion has been performed once on the analog channels selected with bits CH3 to CH0 in ADCSR.

When ADM1 and ADM0 are set to 01, 4-channel scan mode is set. In scan mode, A/D conversion is performed continuously on a number of channels. The channels on which A/D conversion is to be performed in scan mode are set with bits CH3 to CH0 in ADCSR1 and ADCSR0. In 4-channel scan mode, conversion is performed continuously on the channels in one of analog groups 0 (AN0 to AN3), 1 (AN4 to AN7), 2 (AN8 to AN11), 3 (AN12 to AN15, 4 (AN16 to AN19), or 5 (AN20 to AN23).

When the ADCS bit is cleared to 0, selecting scanning of all channels within the group (AN0 to AN3, AN4 to AN7, AN8 to AN11, or AN12 to AN15, AN16 to AN19, AN20 to AN23), conversion is performed continuously, once only for each channel within the group, and operation stops on completion of conversion for the last (highest-numbered) channel.

When ADM1 and ADM0 are set to 10, 8-channel scan mode is set. In 8-channel scan mode, conversion is performed continuously on the 8 channels in analog groups 0 (AN0 to AN3) and 1 (AN4 to AN7) or analog groups 3 (AN12 to AN15) and 4 (AN16 to AN19). When the ADCS bit is cleared to 0, selecting scanning of all channels within the groups (AN0 to AN7 or AN12 to AN19), conversion is performed continuously, once only for each channel within the groups, and operation stops on completion of conversion for the last (highest-numbered) channel.

When ADM1 and ADM0 are set to 11, 12-channel scan mode is set. In 12-channel scan mode, conversion is performed continuously on the 12 channels in analog groups 0 (AN0 to AN3), 1 (AN4 to AN7), and 2 (AN8 to AN11) or analog groups 3 (AN12 to AN15), 4 (AN16 to AN19), and 5 (AN20 to AN23). When the ADCS bit is cleared to 0, selecting scanning of all channels within the groups (AN0 to AN11 or AN12 to AN19), conversion is performed continuously, once only for each channel within the groups, and operation stops on completion of conversion for the last (highest-numbered) channel.

For details of the operation in single mode and scan mode, see section 17.4, Operation.

• Bits 3 to 0—Channel Select 3 to 0 (CH3 to CH0): These bits, together with the ADM1 and ADM0 bits, select the analog input channels.

To prevent incorrect operation, ensure that the ADST bit in A/D control registers 1 and 0 (ADCR1, ADCR0) is cleared to 0 before changing the analog input channel selection.

## **Analog Input Channels**

| Bit 3: | Bit 2: | Bit 1: | Bit 0: | Single Mode            |                         | 4-Channe | el Scan Mode |
|--------|--------|--------|--------|------------------------|-------------------------|----------|--------------|
| CH3    | CH2    | CH1    | CH0    | A/D0                   | A/D1                    | A/D0     | A/D1         |
| 0      | 0      | 0      | 0      | AN0<br>(Initial value) | AN12<br>(Initial value) | AN0      | AN12         |
|        |        |        | 1      | AN1                    | AN13                    | AN0, AN1 | AN12, AN13   |
|        |        | 1      | 0      | AN2                    | AN14                    | AN0-AN2  | AN12-AN14    |
|        |        |        | 1      | AN3                    | AN15                    | AN0-AN3  | AN12-AN15    |
|        | 1      | 0      | 0      | AN4                    | AN16                    | AN4      | AN16         |
|        |        |        | 1      | AN5                    | AN17                    | AN4, AN5 | AN16, AN17   |
|        |        | 1      | 0      | AN6                    | AN18                    | AN4-AN6  | AN16-AN18    |
|        |        |        | 1      | AN7                    | AN19                    | AN4-AN7  | AN16-AN19    |
| 1      | 0*     | 0      | 0      | AN8                    | AN20                    | AN8      | AN20         |
|        |        |        | 1      | AN9                    | AN21                    | AN8, AN9 | AN20, AN21   |
|        |        | 1      | 0      | AN10                   | AN22                    | AN8-AN10 | AN20-AN22    |
|        |        |        | 1      | AN11                   | AN23                    | AN8-AN11 | AN20-AN23    |

Note: \* Must be cleared to 0.

# **Analog Input Channels**

| Bit 3: | Bit 2: | Bit 1: | Bit 0: | 8-Channel Scan Mode   |                           | 12-Chann                         | el Scan Mode                          |
|--------|--------|--------|--------|-----------------------|---------------------------|----------------------------------|---------------------------------------|
| СНЗ    | CH2    | CH1    | CH0    | A/D0                  | A/D1                      | A/D0                             | A/D1                                  |
| 0      | 0      | 0      | 0      | AN0, AN4              | AN12, AN16                | ANO, AN4, AN8                    | ANAN12, AN16,<br>AN20                 |
|        |        |        | 1      | AN0, AN1,<br>AN4, AN5 | AN12, AN13,<br>AN16, AN17 | AN0, AN1, AN4,<br>AN5, AN8, AN9  | AN12, AN13, AN16,<br>AN17, AN20, AN21 |
|        |        | 1      | 0      | AN0-AN2,<br>AN4-AN6   | AN12–AN14,<br>AN16–AN18   | AN0-AN2,<br>AN4-AN6,<br>AN8-AN10 | AN12–AN14,<br>AN16–AN18,<br>AN20–AN22 |
|        | 1      | 0      | 0      | AN0-AN7<br>AN0, AN4   | AN12–AN19<br>AN12, AN16   | AN0–AN11<br>AN0, AN4, AN8        | AN12-AN23<br>AN12, AN16, AN20         |
|        |        |        | 1      | AN0, AN1,<br>AN4, AN5 | AN12, AN13,<br>AN16, AN17 | AN0, AN1, AN4,<br>AN5, AN8, AN9  | AN12, AN13, AN16,<br>AN17, AN20, AN21 |
|        |        | 1      | 0      | AN0-AN2,<br>AN4-AN6   | AN12-AN14,<br>AN16-AN18   | AN0-AN2,<br>AN4-AN6,<br>AN8-AN10 | AN12-AN14,<br>AN16-AN18,<br>AN20-AN22 |
|        |        |        | 1      | AN0-AN7               | AN12-AN19                 | AN0-AN11                         | AN12-AN23                             |
| 1      | 0*1    | 0      | 0      | Reserved*2            | Reserved*2                | ANO, AN4, AN8                    | AN12, AN16, AN20                      |
|        |        |        | 1      | <del>-</del>          |                           | AN0, AN1, AN4,<br>AN5, AN8, AN9  | AN12, AN13, AN16,<br>AN17, AN20, AN21 |
|        |        | 1      | 0      | -                     |                           | AN0-AN2,<br>AN4-AN6,<br>AN8-AN10 | AN12-AN14,<br>AN16-AN18,<br>AN20-AN22 |
|        |        |        | 1      | ='                    |                           | AN0-AN11                         | AN12-AN23                             |

Notes: \*1 Must be cleared to 0.

<sup>\*2</sup> These modes are provided for future expansion, and cannot be used at present.

#### 17.2.3 A/D Control Registers 0 to 2 (ADCR0 to ADCR2)

A/D control registers 0 to 2 (ADCR0 to ADCR2) are 8-bit readable/writable registers that control the start of A/D conversion and selects the operating clock for A/D0 to A/D2.

ADCR0 to ADCR2 are initialized to H'0F by a power-on reset, and in hardware standby mode and software standby mode.

Bits 3 to 0 of ADCR0 to ADCR2 are reserved. These bits cannot be modified. These bits are always read as 1.

| Bit:           | 7    | 6   | 5    | 4    | 3 | 2 | 1 | 0 |
|----------------|------|-----|------|------|---|---|---|---|
|                | TRGE | CKS | ADST | ADCS | _ | _ |   | _ |
| Initial value: | 0    | 0   | 0    | 0    | 1 | 1 | 1 | 1 |
| R/W:           | R/W  | R/W | R/W  | R/W  | R | R | R | R |

• Bit 7—Trigger Enable (TRGE): Enables or disables triggering of A/D conversion by external input or the ATU-II.

| Bit 7: |             |
|--------|-------------|
| TRGE   | Description |

| INGE | Description                                                       |                 |
|------|-------------------------------------------------------------------|-----------------|
| 0    | A/D conversion triggering by external input or ATU-II is disabled | (Initial value) |
| 1    | A/D conversion triggering by external input or ATU-II is enabled  |                 |

For details of external or ATU-II trigger selection, see section 17.2.5, A/D Trigger Registers 0 to 2 (ADTRGR0 to ADTRGR2).

When ATU triggering is selected, clear bit 7 of registers ADTRGR0 to ADTRGR2 to 0.

When external triggering is selected, upon input of a low level to the  $\overline{ADTRG0}$  or  $\overline{ADTRG1}$  pin after TRGE has been set to 1, the A/D converter detects the low level and sets the ADST bit to 1 in ADCR. The same operation is subsequently performed when 1 is written in the ADST bit by software. External triggering of A/D conversion is only enabled when the ADST bit is cleared to 0.

When external triggering is used, the low level input to the  $\overline{ADTRG0}$  or  $\overline{ADTRG1}$  pin must be at least 1.5 P $\phi$  clock cycles in width. For details, see section 17.4.4, External Triggering of A/D Conversion.

Bit 6—Clock Select (CKS): Selects the A/D conversion time. A/D conversion is executed in a
maximum of 532 states when CKS is 0, and a maximum of 268 states when 1. To prevent
incorrect operation, ensure that the ADST bit A/D control registers 0 to 2 (ADCR0 to ADCR2)
is cleared to 0 before changing the A/D conversion time. For details, see section 17.4.3,
Analog Input Sampling and A/D Conversion Time.

| Bit 6:<br>CKS | Description                            |                 |
|---------------|----------------------------------------|-----------------|
| 0             | Conversion time = 532 states (maximum) | (Initial value) |
| 1             | Conversion time = 268 states (maximum) |                 |

• Bit 5—A/D Start (ADST): Starts or stops A/D conversion. A/D conversion is started when ADST is set to 1, and stopped when ADST is cleared to 0.

| Bit 5:<br>ADST | Description                                                                                                                                    |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0              | A/D conversion is stopped (Initial value)                                                                                                      |
| 1              | A/D conversion is being executed                                                                                                               |
|                | [Clearing conditions]                                                                                                                          |
|                | <ul> <li>Single mode: Automatically cleared to 0 when A/D conversion ends</li> </ul>                                                           |
|                | <ul> <li>Scan mode: Automatically cleared to 0 on completion of one round of conversion<br/>on all set channels (single-cycle scan)</li> </ul> |

Note that the operation of the ADST bit differs between single mode and scan mode.

In single mode, ADST is automatically cleared to 0 when A/D conversion ends on one channel. In scan mode (continuous scan), when all conversions have ended for the selected analog inputs, ADST remains set to 1 in order to start A/D conversion again for all the channels. Therefore, in scan mode (continuous scan), the ADST bit must be cleared to 0, stopping A/D conversion, before changing the conversion time or the analog input channel selection. However, in scan mode (single-cycle scan), the ADST bit is automatically cleared to 0, stopping A/D conversion, when one round of conversion ends on all the set channels.

Ensure that the ADST bit in ADCR0 to ADCR2 is cleared to 0 before switching the operating mode.

Also, make sure that A/D conversion is stopped (ADST is cleared to 0) before changing A/D interrupt enabling (bit ADIE in ADCSR0 to ADCSR2), the A/D conversion time (bit CKS in ADCR0 to ADCR2), the operating mode (bits ADM1 and ADM0 in ADSCR0 to ADCSR2), or the analog input channel selection (bits CH3 to CH0 in ADCSR0 to ADCSR2). The A/D data register contents will not be guaranteed if these changes are made while the A/D converter is operating (ADST is set to 1).

• Bit 4—A/D Continuous Scan (ADCS): Selects either single-cycle scan or continuous scan in scan mode. This bit is valid only when scan mode is selected. See section 17.4.2, Scan Mode, for details.

Bit 4:

| ADCS | Description       |                 |
|------|-------------------|-----------------|
| 0    | Single-cycle scan | (Initial value) |
| 1    | Continuous scan   |                 |

• Bits 3 to 0—Reserved: These bits are always read as 1. The write value should always be 1.

### 17.2.4 A/D Control/Status Register 2 (ADCSR2)

A/D control/status register 2 (ADCSR2) is an 8-bit readable/writable register whose functions include selection of the A/D conversion mode for A/D2.

ADCSR2 is initialized to H'08 by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 7      | 6    | 5    | 4    | 3 | 2   | 1   | 0   |
|----------------|--------|------|------|------|---|-----|-----|-----|
|                | ADF    | ADIE | ADM1 | ADM0 |   | CH2 | CH1 | CH0 |
| Initial value: | 0      | 0    | 0    | 0    | 1 | 0   | 0   | 0   |
| R/W:           | R/(W)* | R/W  | R/W  | R/W  | R | R/W | R/W | R/W |

Note: \* Only 0 can be written to clear the flag.

• Bit 7—A/D End Flag (ADF): Indicates the end of A/D conversion.

| Bit 7:<br>ADF | Description                                                                                         |  |  |  |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 0             | Indicates that A/D2 is performing A/D conversion, or is in the idle state (Initial value)           |  |  |  |  |  |  |
|               | [Clearing conditions]                                                                               |  |  |  |  |  |  |
|               | <ul> <li>When ADF is read while set to 1, then 0 is written to ADF</li> </ul>                       |  |  |  |  |  |  |
|               | When the DMAC is activated by ADI2                                                                  |  |  |  |  |  |  |
| 1             | Indicates that A/D2 has finished A/D conversion, and the digital value has been transferred to ADDR |  |  |  |  |  |  |
|               | [Setting conditions]                                                                                |  |  |  |  |  |  |
|               | Single mode: When A/D conversion ends                                                               |  |  |  |  |  |  |
|               | Scan mode: When all set A/D conversions end                                                         |  |  |  |  |  |  |

The operation of the A/D converter after ADF is set to 1 differs between single mode and scan mode.

In single mode, after the A/D converter transfers the digit value to ADDR, ADF is set to 1 and the A/D converter enters the idle state. In scan mode, ADF is set to 1 after all the set conversions end. For example, in the case of 8-channel scanning, ADF is set to 1 immediately after the end of conversion for AN28 to AN31 (group 7). After ADF is set to 1, conversion continues in the case of continuous scanning, and ends in the case of single-cycle scanning. Note that 1 cannot be written to ADF

Bit 6—A/D Interrupt Enable (ADIE): Enables or disables the A/D interrupt (ADI).
 To prevent incorrect operation, ensure that the ADST bit in A/D control register 2 (ADCR2) is cleared to 0 before switching the operating mode.

| Bit 6:<br>ADIE | Description                      |                 |
|----------------|----------------------------------|-----------------|
| 0              | A/D interrupt (ADI2) is disabled | (Initial value) |
| 1              | A/D interrupt (ADI2) is enabled  |                 |

When A/D conversion ends and the ADF bit in ADCSR2 is set to 1, an A/D2 A/D interrupt (ADI2) will be generated If the ADIE bit is 1. ADI2 is cleared by clearing ADF or ADIE to 0.

• Bits 5 and 4: A/D Mode 1 and 0 (ADM1, ADM0): These bits select the A/D conversion mode from single mode, 4-channel scan mode, and 8-channel scan mode.

To prevent incorrect operation, ensure that the ADST bit in A/D control register 2 (ADCR2) is cleared to 0 before switching the operating mode.

| Bit 5:<br>ADM1 | Bit 4:<br>ADM0 | Description                                 |                 |
|----------------|----------------|---------------------------------------------|-----------------|
| 0              | 0              | Single mode                                 | (Initial value) |
|                | 1              | 4-channel scan mode (analog groups 6 and 7) |                 |
| 1              | 0              | 8-channel scan mode (analog groups 6 and 7) |                 |
|                | 1              | Reserved                                    |                 |

When ADM1 and ADM0 are set to 00, single mode is set. In single mode, operation ends after A/D conversion has been performed once on the analog channels selected with bits CH2 to CH0 in ADCSR.

When ADM1 and ADM0 are set to 01, 4-channel scan mode is set. In scan mode, A/D conversion is performed continuously on a number of channels. The channels on which A/D conversion is to be performed in scan mode are set with bits CH2 to CH0 in ADCSR2. In 4-channel scan mode, conversion is performed continuously on the channels in one of analog groups 6 (AN24 to AN27) or 7 (AN28 to AN31).

When the ADCS bit is cleared to 0, selecting scanning of all channels within the group (AN24 to AN27, AN28 to AN31), conversion is performed continuously, once only for each channel within the group, and operation stops on completion of conversion for the last (highest-numbered) channel.

Rev.2.0, 07/03, page 600 of 960

When ADM1 and ADM0 are set to 10, 8-channel scan mode is set. In 8-channel scan mode, conversion is performed continuously on the 8 channels in analog groups 6 (AN24 to AN27) and 7 (AN28 to AN31). When the ADCS bit is cleared to 0, selecting scanning of all channels within the groups (AN24 to AN31), conversion is performed continuously, once only for each channel within the groups, and operation stops on completion of conversion for the last (highest-numbered) channel.

For details of the operation in single mode and scan mode, see section 17.4, Operation.

- Bit 3—Reserved: This bit is always read as 1. The write value should always be 0.
- Bits 2 to 0—Channel Select 2 to 0 (CH2 to CH0): These bits, together with the ADM1 and ADM0 bits, select the analog input channels.

To prevent incorrect operation, ensure that the ADST bit in A/D control register 2 (ADCR2) is cleared to 0 before changing the analog input channel selection.

|             |             |             | Analog Input Channels |                        |                        |  |  |
|-------------|-------------|-------------|-----------------------|------------------------|------------------------|--|--|
| Bit:<br>CH2 | Bit:<br>CH1 | Bit:<br>CH0 | Single Mode           | 4-Channel<br>Scan Mode | 8-Channel<br>Scan Mode |  |  |
| 0           | 0           | 0           | AN24 (Initial value)  | AN24                   | AN24, AN28             |  |  |
|             |             | 1           | AN25                  | AN24, AN25             | AN24, AN25, AN28, AN29 |  |  |
|             | 1           | 0           | AN26                  | AN24-AN26              | AN24-AN26, AN28-AN30   |  |  |
|             |             | 1           | AN27                  | AN24-AN27              | AN24-AN31              |  |  |
| 1           | 0           | 0           | AN28                  | AN28                   | AN24, AN28             |  |  |
|             |             | 1           | AN29                  | AN28, AN29             | AN24, AN25, AN28, AN29 |  |  |
|             | 1           | 0           | AN30                  | AN28-AN30              | AN24-AN26, AN28-AN30   |  |  |
|             |             | 1           | AN31                  | AN28-AN31              | AN24-AN31              |  |  |

## 17.2.5 A/D Trigger Registers 0 to 2 (ADTRGR0 to ADTRGR2)

The A/D trigger registers (ADTRGR0 to ADTRGR2) are 8-bit readable/writable registers that select the A/D0, A/D1, and A/D2 triggers. Either external pin (ADTRG0, ADTRG1) or ATU-II (ATU-II interval timer A/D conversion request) triggering can be selected.

ADTRGR0 to ADTRGR2 are initialized to H'FF by a power-on reset, and in hardware standby mode and software standby mode.

| Bit:           | 7     | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|-------|---|---|---|---|---|---|---|
|                | EXTRG | _ | _ | _ | _ | _ | _ | _ |
| Initial value: | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| R/W:           | R/W   | R | R | R | R | R | R | R |

• Bit 7—Trigger Enable (EXTRG): Selects external pin input (ADTRG0, ADTRG1) or the ATU-II interval timer A/D conversion request.

| Bit 7:<br>EXTRG | Description                                                                               |                 |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| 0               | A/D conversion is triggered by the ATU-II channel 0 interval timer A/D conversion request |                 |  |  |  |  |
| 1               | A/D conversion is triggered by external pin input (ADTRG)                                 | (Initial value) |  |  |  |  |

In order to select external triggering or ATU-II triggering, the TGRE bit in ADCR0 to ADCR2 must be set to 1. For details, see section 17.2.3, A/D Control Registers 0 to 2 (ADCR0 to ADCR2).

• Bits 6 to 0—Reserved: These bits are always read as 1. The write value should always be 1.

#### 17.3 CPU Interface

A/D data registers 0 to 31 (ADDR0 to ADDR31) are 16-bit registers, but they are connected to the CPU by an 8-bit data bus. Therefore, the upper and lower bytes must be read separately.

To prevent the data being changed between the reads of the upper and lower bytes of an A/D data register, the lower byte is read via a temporary register (TEMP). The upper byte can be read directly.

Data is read from an A/D data register as follows. When the upper byte is read, the upper-byte value is transferred directly to the CPU and the lower-byte value is transferred into TEMP. Next, when the lower byte is read, the TEMP contents are transferred to the CPU.

When performing byte-size reads on an A/D data register, always read the upper byte before the lower byte. It is possible to read only the upper byte, but if only the lower byte is read, incorrect data may be obtained. If a word-size read is performed on an A/D data register, reading is performed in upper byte, lower byte order automatically.

Figure 17.2 shows the data flow for access to an A/D data register.

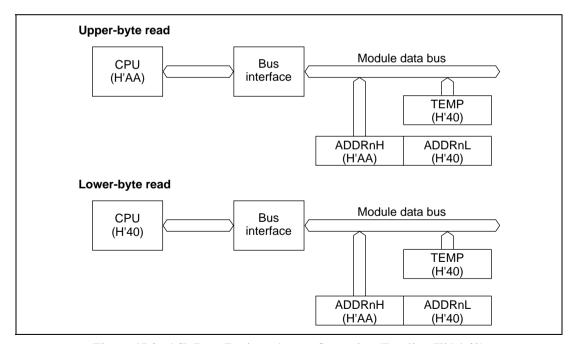



Figure 17.2 A/D Data Register Access Operation (Reading H'AA40)

## 17.4 Operation

The A/D converter operates by successive approximations with 10-bit resolution. It has two operating modes: single mode and scan mode. There are two kinds of scan mode: continuous and single-cycle. In single mode, conversion is performed once on one specified channel, then ends. In continuous scan mode, A/D conversion continues on one or more specified channels until the ADST bit is cleared to 0. In single-cycle scan mode, A/D conversion ends after being performed once on one or more channels.

### 17.4.1 Single Mode

Single mode, should be selected when only one A/D conversion on one channel is required. Single mode is selected by setting the ADM1 and ADM0 bits in the A/D control/status register (ADSCR) to 00. When the ADST bit in the A/D control register (ADCR) is set to 1, A/D conversion is started in single mode.

The ADST bit remains set to 1 during A/D conversion, and is automatically cleared to 0 when conversion ends

When conversion ends, the ADF flag in ADCSR is set to 1. If the ADIE bit in ADCSR is also 1, an ADI interrupt is requested. To clear the ADF flag, first read ADF when set to 1, then write 0 to ADF. If the DMAC is activated by the ADI interrupt, ADF is cleared automatically.

An example of the operation when analog input channel 1 (AN1) is selected and A/D conversion is performed in single mode is described next. Figure 17.3 shows a timing diagram for this example.

- 1. Single mode is selected (ADM1 = ADM0 = 0), input channel AN1 is selected (CH3 = CH2 = CH1 = 0, CH0 = 1), the A/D interrupt is enabled (ADIE = 1), and A/D conversion is started (ADST = 1).
- 2. When A/D conversion is completed, the result is transferred to ADDR1. At the same time the ADF flag is set to 1, the ADST bit is cleared to 0, and the A/D converter becomes idle.
- 3. Since ADF = 1 and ADIE = 1, an ADI interrupt is requested.
- 4. The A/D interrupt handling routine is started.
- 5. The routine reads ADF set to 1, then writes 0 to ADF.
- 6. The routine reads and processes the conversion result (ADDR1).
- 7. Execution of the A/D interrupt handling routine ends. After this, if the ADST bit is set to 1, A/D conversion starts again and steps 2 to 7 are repeated.

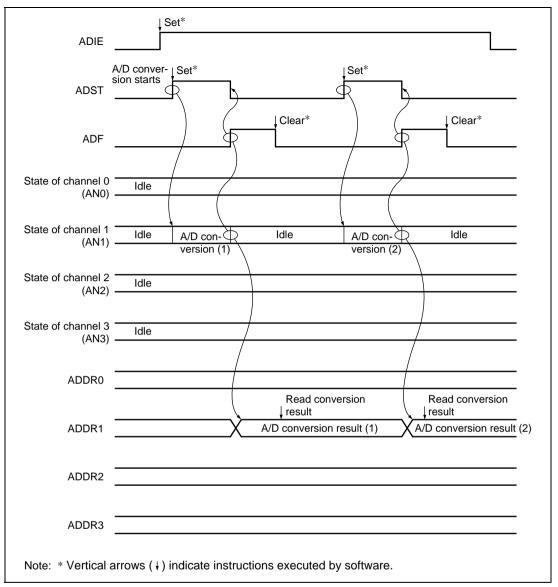



Figure 17.3 Example of A/D Converter Operation (Single Mode, Channel 1 Selected)

#### 17.4.2 Scan Mode

Scan mode is useful for monitoring analog inputs in a group of one or more channels. Scan mode is selected for A/D0 or A/D1 by setting the ADM1 and ADM0 bits in A/D control/status register 0 or 1 (ADSCR0 or ADSCR1) to 01 (4-channel scan mode), 10 (8-channel scan mode), or 11 (12-channel scan mode).

For A/D2, scan mode is selected by setting the ADM1 and ADM0 bits in A/D control/status register 2 (ADCSR2) to 01 (4-channel scan mode) or 10 (8-channel scan mode). When the ADCS bit is cleared to 0 and the ADST bit is set to 1 in the A/D control register (ADCR), single-cycle scanning is performed. When the ADCS bit is set to 1 and the ADST bit is set to 1, continuous scanning is performed.

In scan mode, A/D conversion is performed in low-to-high analog input channel number order (AN0, AN1 ... AN11, AN12, AN13 ... AN23, AN24, AN25 ... AN31).

In single-cycle scanning, the ADF bit in ADCSR is set to 1 when conversion has been performed once on all the set channels, and the ADST bit is automatically cleared to 0.

In continuous scanning, the ADF bit in ADCSR is set to 1 when conversion ends on all the set channels. To stop A/D conversion, write 0 to the ADST bit.

If the ADIE bit in ADCSR is set to 1 when ADF is set to 1, an ADI interrupt (ADI0, ADI1, or ADI2) is requested. To clear the ADF flag, first read ADF when set to 1, then write 0 to ADF. If the DMAC is activated by the ADI interrupt, ADF is cleared to 0 automatically.

An example of the operation when analog inputs 0 to 11 (AN0 to AN11) are selected and A/D conversion is performed in single-cycle scan mode is described below. Figure 17.4 shows the operation timing for this example.

- 1. 12-channel scan mode is selected (ADM1 = 1, ADM0 = 1), single-cycle scan mode is selected (ADCS = 0), analog input channels AN0 to AN11 are selected (CH3 = 0, CH2 = 0, CH1 = 1, CH0 = 1), and A/D conversion is started.
- 2. When conversion of the first channel (AN0) is completed, the result is transferred to ADDR0. Next, conversion of the second channel (AN1) starts automatically.
- 3. Conversion proceeds in the same way through the 12th channel (AN11).
- 4. When conversion is completed for all the selected channels (AN0 to AN11), the ADF flag is set to 1, the ADST bit is cleared to 0 automatically, and A/D conversion stops. If the ADIE bit is 1, an ADI interrupt is requested after A/D conversion ends.

An example of the operation when analog inputs 0 to 2 and 4 to 6 (AN0 to AN2 and AN4 to AN6) are selected and A/D conversion is performed in 8-channel scan mode is described below. Figure 17.5 shows the operation timing.

- 1. 8-channel scan mode is selected (ADM1 = 1, ADM0 = 0) continuous scan mode is selected (ADCS = 1), analog input channels AN0 to AN2 and AN4 to AN6 are selected (CH3 = 0, CH2 = 0, CH1 = 1, CH0 = 0), and A/D conversion is started.
- 2. When conversion of the first channel (AN0) is completed, the result is transferred to ADDR0. Next, conversion of the second channel (AN1) starts automatically.
- 3. Conversion proceeds in the same way through the third channel (AN2).
- 4. Conversion of the fourth channel (AN4) starts automatically.
- 5. Conversion proceeds in the same way through the sixth channel (AN6)
- 6. When conversion is completed for all the selected channels (AN0 to AN2 and AN4 to AN6), the ADF flag is set to 1. If the ADIE bit is also 1, an ADI interrupt is requested.
- 7. Steps 2 to 6 are repeated as long as the ADST bit remains set to 1. When the ADST bit is cleared to 0, A/D conversion stops. After this, if the ADST bit is set to 1, A/D conversion starts again from the first channel (AN0).

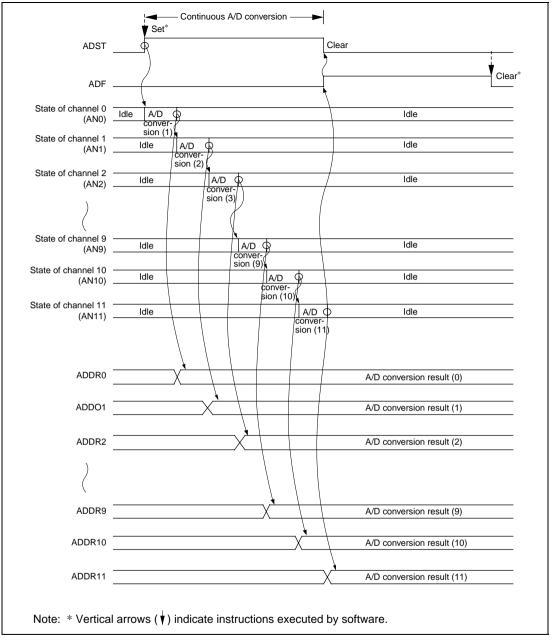



Figure 17.4 Example of A/D Converter Operation (Scan Mode (Single-Cycle Scan), Channels AN0 to AN11 Selected)

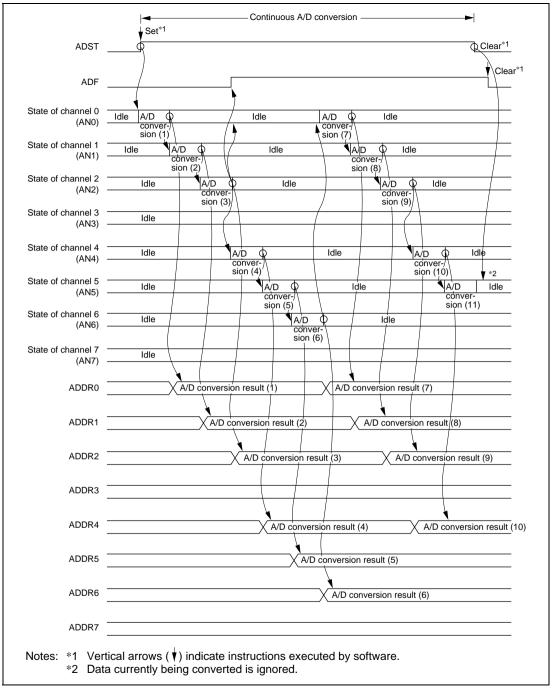



Figure 17.5 Example of A/D Converter Operation (Scan Mode (Continuous Scan), Channels AN0 to AN2 and AN4 to AN6 Selected)

#### 17.4.3 Analog Input Sampling and A/D Conversion Time

The A/D converter has a built-in sample-and-hold circuit in A/D0, A/D1, and A/D2. The A/D converter samples the analog input at time  $t_D$  (A/D conversion start delay time) after the ADST bit is set to 1, then starts conversion. Figure 17.6 shows the A/D conversion timing.

The A/D conversion time  $(t_{CONV})$  includes  $t_D$  and the analog input sampling time  $(t_{SPL})$ . The length of  $t_D$  is not fixed, since it includes the time required for synchronization of the A/D conversion operation. The total conversion time therefore varies within the ranges shown in table 17.4.

In scan mode, the  $t_{CONV}$  values given in table 17.4 apply to the first conversion. In the second and subsequent conversions,  $t_{CONV}$  is fixed at 512 states when CKS = 0 or 256 states when CKS = 1.

**Table 17.4** A/D Conversion Time (Single Mode)

|                                 |                   | CKS = 0:<br>φ = 20 to 40 MHz |     | CKS = 1:<br>φ = 20 MHz |     |     |     |             |
|---------------------------------|-------------------|------------------------------|-----|------------------------|-----|-----|-----|-------------|
| Item                            | Symbol            | Min                          | Тур | Max                    | Min | Тур | Max | Unit        |
| A/D conversion start delay time | t <sub>D</sub>    | 20                           | _   | 34                     | 12  | _   | 18  | States<br>( |
| Input sampling time             | t <sub>SPL</sub>  | _                            | 128 | _                      | _   | 64  | _   | _           |
| A/D conversion time             | t <sub>conv</sub> | 518                          | _   | 532                    | 262 | _   | 268 | _           |

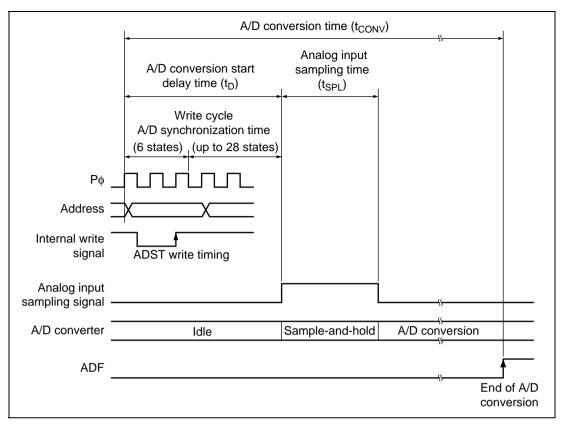



Figure 17.6 A/D Conversion Timing

#### 17.4.4 External Triggering of A/D Conversion

A/D conversion can be externally triggered. To activate the A/D converter with an external trigger, first set the pin functions with the PFC (pin function controller) and input a high level to the  $\overline{ADTRG}$  pin, then set the TRGE bit to 1 and clear the ADST bit to 0 in the A/D control register (ADCR), and set the EXTRG bit to 1 in the A/D trigger register (ADTRGR). When a low level is input to the  $\overline{ADTRG}$  pin after these settings have been made, the A/D converter detects the low level and sets the ADST bit to 1. If a low level is being input to the  $\overline{ADTRG}$  pin when A/D conversion ends, the ADST bit is set to 1 again, and A/D conversion is started. Figure 17.7 shows the timing for external trigger input.

The ADST bit is set to 1 two states after the A/D converter samples the low level on the  $\overline{ADTRG}$  pin. The timing from setting of the ADST bit until the start of A/D conversion is the same as when 1 is written into the ADST bit by software.

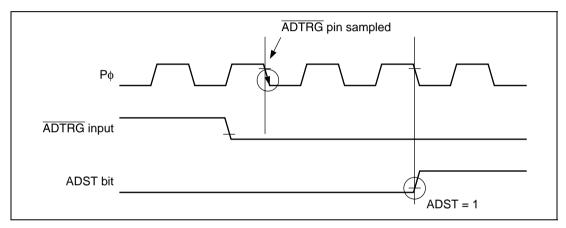



Figure 17.7 External Trigger Input Timing

#### 17.4.5 A/D Converter Activation by ATU-II

The A/D0, A/D1, and A/D2 converter modules can be activated by an A/D conversion request from the ATU-II's channel 0 interval timer.

To activate the A/D converter by means of the ATU-II, set the TRGE bit to 1 in the A/D control register (ADCR) and clear the EXTRG bit to 0 in the A/D trigger register (ADTRGR). When an ATU-II channel 0 interval timer A/D conversion request is generated after these settings have been made, the ADST bit set to 1. The timing from setting of the ADST bit until the start of A/D conversion is the same as when 1 is written into the ADST bit by software.

#### 17.4.6 ADEND Output Pin

When channel 31 is used in scan mode, the conversion timing can be monitored with the ADEND output pin.

After the channel 31 analog voltage has been latched in scan mode, and conversion has started, the ADEND pin goes high. The ADEND pin subsequently goes low when channel 31 conversion ends.

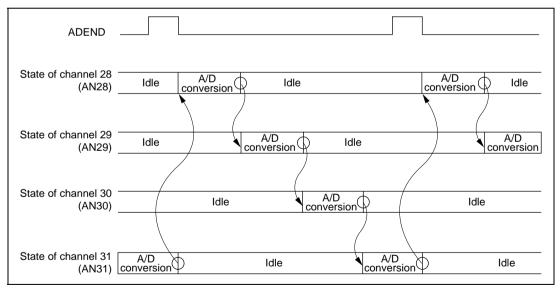



Figure 17.8 ADEND Output Timing

# 17.5 Interrupt Sources and DMA Transfer Requests

The A/D converter can generate an A/D conversion end interrupt request (ADI0, ADI1, or ADI2) upon completion of A/D conversions. The ADI interrupt can be enabled by setting the ADIE bit in the A/D control/status register (ADCSR) to 1, or disabled by clearing the ADIE bit to 0.

The DMAC can be activated by an ADI interrupt. In this case an interrupt request is not sent to the CPU.

When the DMAC is activated by an ADI interrupt, the ADF bit in ADCSR is automatically cleared when data is transferred by the DMAC.

See section 10.4.2, Example of DMA Transfer between A/D Converter and On-Chip Memory (Address Reload On), for an example of this operation.

# 17.6 Usage Notes

The following points should be noted when using the A/D converter.

- 1. Analog input voltage range
  - The voltage applied to analog input pins during A/D conversion should be in the range  $AV_{ss} \le AV_{ss} \le AV_{ss}$ .
- 2. Relation between,  $AV_{ss}$ ,  $AV_{cc}$ , and  $V_{ss}$ ,  $V_{cc}$

When using the A/D converter, set  $AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}$ , and  $AV_{ss} = V_{ss}$ . When the A/D converter is not used, set  $AV_{ss} = V_{ss}$ , and do not leave the  $AV_{cc}$  pin open.

- 3. AV<sub>ref</sub> input range
  - Set  $AV_{ref} = 4.5 \text{ V}$  to  $AV_{cc}$  when the A/D converter is used, and  $AV_{ref} \le AV_{cc}$  when not used. If conditions above are not met, the reliability of the device may be adversely affected.
- 4. Notes on board design

In board design, digital circuitry and analog circuitry should be as mutually isolated as possible, and layout in which digital circuit signal lines and analog circuit signal lines cross or are in close proximity should be avoided as far as possible. Failure to do so may result in incorrect operation of the analog circuitry due to inductance, adversely affecting A/D conversion values.

Also, digital circuitry must be isolated from the analog input signals (ANn), analog reference voltage ( $AV_{ref}$ ), and analog power supply ( $AV_{cc}$ ) by the analog ground ( $AV_{ss}$ ).  $AV_{ss}$  should be connected at one point to a stable digital ground ( $V_{ss}$ ) on the board.

5. Notes on noise countermeasures

A protection circuit connected to prevent damage due to an abnormal voltage such as an excessive surge at the analog input pins (ANn) and analog reference voltage ( $AV_{ref}$ ) should be connected between  $AV_{cc}$  and  $AV_{ss}$  as shown in figure 17.9.

Also, the bypass capacitors connected to  $AV_{cc}$  and  $AV_{ref}$  and the filter capacitor connected to ANn must be connected to  $AV_{ss}$ . If a filter capacitor is connected as shown in figure 17.9, the input currents at the analog input pins (ANn) are averaged, and so an error may arise. Careful consideration is therefore required when deciding the circuit constants.

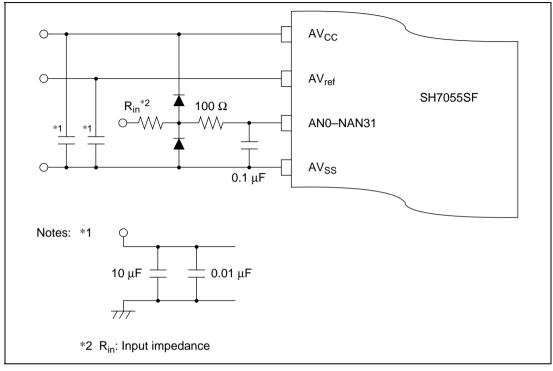



Figure 17.9 Example of Analog Input Pin Protection Circuit

**Table 17.5 Analog Pin Specifications** 

| Item                                | Min | Max | Unit |
|-------------------------------------|-----|-----|------|
| Analog input capacitance            | _   | 20  | pF   |
| Permissible signal source impedance | _   | 3   | kΩ   |

#### 17.6.1 A/D conversion accuracy definitions

A/D conversion accuracy definitions are given below.

#### 1. Resolution

The number of A/D converter digital conversion output codes

#### 2. Offset error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from the minimum voltage value 0000000000 to 0000000001 (does not include quantization error) (see figure 17.10).

#### Full-scale error

The deviation of the analog input voltage value from the ideal A/D conversion characteristic when the digital output changes from 11111111110 to 1111111111 (does not include quantization error) (see figure 17.10).

#### 4. Quantization error

The deviation inherent in the A/D converter, given by 1/2 LSB (see figure 17.10).

#### 5. Nonlinearity error

The error with respect to the ideal A/D conversion characteristic between the zero voltage and the full-scale voltage. Does not include the offset error, full-scale error, or quantization error.

#### 6. Absolute accuracy

The deviation between the digital value and the analog input value. Includes the offset error, full-scale error, quantization error, and nonlinearity error.

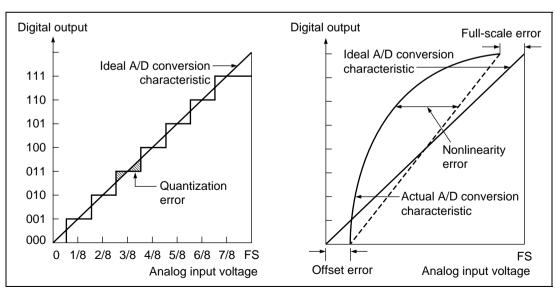



Figure 17.10 A/D Conversion Accuracy Definitions

# Section 18 High-Performance User Debug Interface (H-UDI)

#### 18.1 Overview

The high-performance user debug interface (H-UDI) provides data transfer and interrupt request functions. The H-UDI performs serial transfer by means of external signal control.

#### 18.1.1 Features

The H-UDI has the following features conforming to the IEEE 1149.1 standard:

- Five test signals (TCK, TDI, TDO, TMS, and TRST)
- TAP controller
- Instruction register
- Data register
- Bypass register

The H-UDI has two instructions:

- Bypass mode
   Test mode conforming to IEEE 1149.1
- H-UDI interrupt
   H-UDI interrupt request to INTC

The SH7055SF does not support test modes other than the bypass mode.

#### 18.1.2 Block Diagram

Figure 18.1 shows a block diagram of the H-UDI.

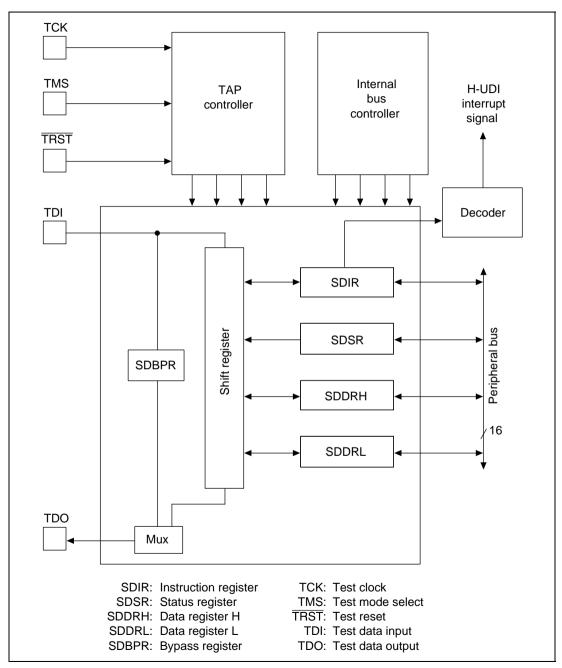



Figure 18.1 H-UDI Block Diagram

#### **18.1.3** Pin Configuration

Table 18.1 shows the H-UDI pin configuration.

Table 18.1 H-UDI Pins

| Name             | Abbreviation | I/O    | Function                      |
|------------------|--------------|--------|-------------------------------|
| Test clock       | TCK          | Input  | Test clock input              |
| Test mode select | TMS          | Input  | Test mode select input signal |
| Test data input  | TDI          | Input  | Serial data input             |
| Test data output | TDO          | Output | Serial data output            |
| Test reset       | TRST         | Input  | Test reset input signal       |

#### **18.1.4** Register Configuration

Table 18.2 shows the H-UDI registers.

Table 18.2 H-UDI Registers

| Register             | Abbreviation | R/W* <sup>1</sup> | Initial<br>Value*² | Address    | Access Size<br>(Bits) |
|----------------------|--------------|-------------------|--------------------|------------|-----------------------|
| Instruction register | SDIR         | R                 | H'F000             | H'FFFFF7C0 | 8/16/32               |
| Status register      | SDSR         | R/W               | H'0201             | H'FFFFF7C2 | 8/16/32               |
| Data register H      | SDDRH        | R/W               | Undefined          | H'FFFFF7C4 | 8/16/32               |
| Data register L      | SDDRL        | R/W               | Undefined          | H'FFFFF7C6 | 8/16/32               |
| Bypass register      | SDBPR        | _                 | _                  | _          | _                     |

Notes: \*1 Indicates whether the register can be read and written to by the CPU.

Instructions and data can be input to the instruction register (SDIR) and data register (SDDR) by serial transfer from the test data input pin (TDI). Data from SDIR, the status register (SDSR), and SDDR can be output via the test data output pin (TDO). The bypass register (SDBPR) is a one-bit register that is connected to TDI and TDO in bypass mode. Except for SDBPR, all the registers can be accessed by the CPU.

Table 18.3 shows the kinds of serial transfer that can be used with each of the H-UDI's registers.

<sup>\*2</sup> Initial value when the TRST signal is input. Not initialized by a reset (power-on or manual) or in software standby mode.

Table 18.3 Serial Transfer Characteristics of H-UDI Registers

| Register | Serial Input | Serial Output |  |
|----------|--------------|---------------|--|
| SDIR     | Possible     | Possible      |  |
| SDSR     | Not possible | Possible      |  |
| SDDRH    | Possible     | Possible      |  |
| SDDRL    | Possible     | Possible      |  |
| SDBPR    | Possible     | Possible      |  |

# 18.2 External Signals

#### 18.2.1 Test Clock (TCK)

The test clock pin (TCK) supplies an independent clock to the H-UDI. As the clock input to TCK is supplied directly to the H-UDI, a clock waveform with a duty ratio close to 50% should be input (see section 25, Electrical Characteristics, for details). If no signal is input, TCK is fixed at 1 by internal pull-up.

#### **18.2.2** Test Mode Select (TMS)

The test mode select pin (TMS) is sampled at the rise of TCK. TMS controls the internal status of the TAP controller. If no signal is input, TMS is fixed at 1 by internal pull-up.

#### **18.2.3** Test Data Input (TDI)

The test data input pin (TDI) performs serial input of instructions and data to H-UDI registers. TDI is sampled at the rise of TCK. If no signal is input, TDI is fixed at 1 by internal pull-up.

# 18.2.4 Test Data Output (TDO)

The test data input pin (TDO) performs serial output of instructions and data from H-UDI registers. Transfer is synchronized with TCK. When no signal is being output, TDO goes to the high-impedance state.

# 18.2.5 Test Reset ( $\overline{TRST}$ )

The test reset pin (TRST) is used to initialize the H-UDI asynchronously. If no signal is input, TRST is fixed at 1 by internal pull-up.

# **18.3** Register Descriptions

#### 18.3.1 Instruction Register (SDIR)

| Bit:           | 15  | 14  | 13  | 12  | 11 | 10 | 9 | 8 |
|----------------|-----|-----|-----|-----|----|----|---|---|
|                | TS3 | TS2 | TS1 | TS0 | 1  | 1  | 1 | _ |
| Initial value: | 1   | 1   | 1   | 1   | 0  | 0  | 0 | 0 |
| R/W:           | R   | R   | R   | R   | R  | R  | R | R |
|                |     |     |     |     |    |    |   |   |
| Bit:           | 7   | 6   | 5   | 4   | 3  | 2  | 1 | 0 |
|                | _   | _   | _   | _   | _  | _  | _ | _ |
| Initial value: | 0   | 0   | 0   | 0   | 0  | 0  | 0 | 0 |
| R/W:           | R   | R   | R   | R   | R  | R  | R | R |

The instruction register (SDIR) is a 16-bit register that can be read, but not written to, by the CPU. H-UDI instructions can be transferred to SDIR from TDI by serial input. SDIR can be initialized by the TRST signal, but is not initialized by a reset or in software standby mode.

Instructions transferred to SDIR must be 4 bits in length. If an instruction exceeding 4 bits is input, the last 4 bits of the serial data will be stored in SDIR.

• Bits 15 to 12—Test Instruction Bits (TS3 to TS0): The instruction configuration is shown in table 18.4.

**Table 18.4 Instruction Configuration** 

| TS3 | TS2 | TS1 | TS0 | Instruction     |                 |
|-----|-----|-----|-----|-----------------|-----------------|
| 0   | 0   | 0   | 0   | Reserved        |                 |
|     |     |     | 1   | Reserved        |                 |
|     |     | 1   | 0   | Reserved        |                 |
|     |     |     | 1   | Reserved        |                 |
|     | 1   | 0   | 0   | Reserved        |                 |
|     |     |     | 1   | Reserved        |                 |
|     |     | 1   | 0   | Reserved        |                 |
|     |     |     | 1   | Reserved        |                 |
| 1   | 0   | 0   | 0   | Reserved        |                 |
|     |     |     | 1   | Reserved        |                 |
|     |     | 1   | 0   | H-UDI interrupt |                 |
|     |     |     | 1   | Reserved        |                 |
|     | 1   | 0   | 0   | Reserved        |                 |
|     |     |     | 1   | Reserved        |                 |
|     |     | 1   | 0   | Reserved        |                 |
|     |     |     | 1   | Bypass mode     | (Initial value) |

<sup>•</sup> Bits 11 to 0—Reserved: These bits always read 0. The write value should always be 0.

#### 18.3.2 Status Register (SDSR)

| Bit:           | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8     |
|----------------|----|----|----|----|----|----|---|-------|
|                | 1  | 1  | _  | _  | _  | 1  | _ | _     |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 1 | 0     |
| R/W:           | R  | R  | R  | R  | R  | R  | R | R     |
|                |    |    |    |    |    |    |   |       |
| Bit:           | 7  | 6  | 5  | 4  | 3  | 2  | 1 | 0     |
|                |    |    | _  | _  | _  |    | _ | SDTRF |
| Initial value: | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 1     |
| R/W:           | R  | R  | R  | R  | R  | R  | R | R/W   |

The status register (SDSR) is a 16-bit register that can be read and written to by the CPU. The SDSR value can be output from TDO, but serial data cannot be written to SDSR via TDI. The SDTRF bit is output by means of a one-bit shift. In a two-bit shift, the SDTRF bit is output first, followed by a reserved bit.

SDSR is initialized by TRST signal input, but is not initialized by a reset or in software standby mode.

- Bits 15 to 1—Reserved: Bits 15 to 10 and 8 to 1 always read 0, and the write value should always be 0. Bit 9 always reads 1, and the write value should always be 1.
- Bit 0—Serial Data Transfer Control Flag (SDTRF): Indicates whether H-UDI registers can be accessed by the CPU. The SDTRF bit is initialized by the TRST signal, but is not initialized by a reset or in software standby mode.

| Bit 0: SDTRF | Description                                                 |  |  |  |  |  |
|--------------|-------------------------------------------------------------|--|--|--|--|--|
| 0            | Serial transfer to SDDR has ended, and SDDR can be accessed |  |  |  |  |  |
|              | (Initial value)                                             |  |  |  |  |  |
| 1            | Serial transfer to SDDR is in progress                      |  |  |  |  |  |

#### 18.3.3 Data Register (SDDR)

The data register (SDDR) comprises data register H (SDDRH) and data register L (SDDRL), each of which has the following configuration.

| Bit:           | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | _   | _   | _   | _   | _   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |
|                |     |     |     |     |     |     |     |     |
| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|                |     |     |     |     |     |     |     |     |
| Initial value: | _   | _   | _   | _   | _   | _   | _   | _   |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

SDDRH and SDDRL are 16-bit registers that can be read and written to by the CPU. SDDR is connected to TDO and TDI for serial data transfer to and from an external device.

32-bit data is input and output in serial data transfer. If data exceeding 32 bits is input, only the last 32 bits will be stored in SDDR. Serial data is input starting with the MSB of SDDR (bit 15 of SDDRH), and output starting with the LSB (bit 0 of SDDRL).

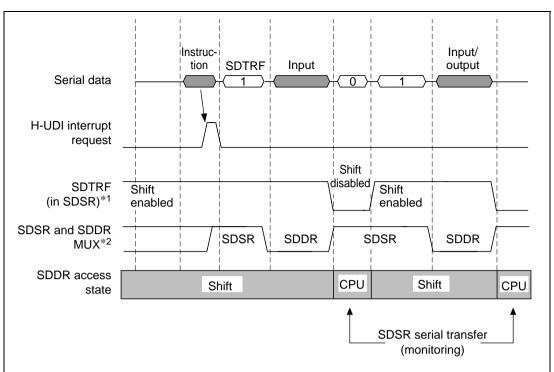
SDDR is not initialized by a reset, in hardware or software standby mode, or by the TRST signal.

# 18.3.4 Bypass Register (SDBPR)

The bypass register (SDBPR) is a one-bit shift register. In bypass mode, SDBPR is connected to TDI and TDO, and the SH7055SF chip is bypassed in a board test. SDBPR cannot be read or written to by the CPU.

# 18.4 Operation

#### 18.4.1 H-UDI Interrupt


When an H-UDI interrupt instruction is transferred to SDIR via TDI, an interrupt is generated. Data transfer can be controlled by means of the H-UDI interrupt service routine. Transfer can be performed by means of SDDR.

Control of data input/output between an external device and the H-UDI is performed by monitoring the SDTRF bit in SDSR externally and internally. Internal SDTRF bit monitoring is carried out by having SDSR read by the CPU.

The H-UDI interrupt and serial transfer procedure is as follows.

- 1. An instruction is input to SDIR by serial transfer, and an H-UDI interrupt request is generated.
- 2. After the H-UDI interrupt request is issued, the SDTRF bit in SDSR is monitored externally. After output of SDTRF = 1 from TDO is observed, serial data is transferred to SDDR.
- On completion of the serial transfer to SDDR, the SDTRF bit is cleared to 0, and SDDR can be accessed by the CPU. After SDDR has been accessed, SDDR serial transfer is enabled by setting the SDTRF bit to 1 in SDSR.
- 4. Serial data transfer between an external device and the H-UDI can be carried out by constantly monitoring the SDTRF bit in SDSR externally and internally.

Figures 18.2, 18.3, and 18.4 show the timing of data transfer between an external device and the H-UDI.



Notes: \*1 SDTRF flag (in SDSR): Indicates whether SDDR access by the CPU or serial transfer data input/output to SDDR is possible.

| 1 | SDDR is shift-enabled. Do not access SDDR until SDTRF = 0. |
|---|------------------------------------------------------------|
| 0 | SDDR is shift-disabled. SDDR access by the CPU is enabled. |

Conditions: •o SDTRF = 1

— When  $\overline{TRST} = 0$ 

- When the CPU writes 1

In bypass mode

• SDTRF = 0

End of SDDR shift access in serial transfer

\*2 SDSR/SDDR (Update-DR state) internal MUX switchover timing

- Switchover from SDSR to SDDR: On completion of serial transfer in which SDTRF = 1 is output from TDO
- Switchover from SDDR to SDSR: On completion of serial transfer to SDDR

Figure 18.2 Data Input/Output Timing Chart (1)




Figure 18.3 Data Input/Output Timing Chart (2)

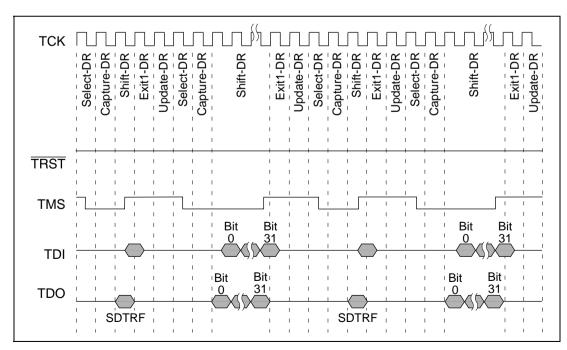



Figure 18.4 Data Input/Output Timing Chart (3)

#### 18.4.2 Bypass Mode

Bypass mode can be used to bypass the SH7055SF chip in a boundary-scan test. Bypass mode is entered by transferring B'1111 to SDIR. In bypass mode, SDBPR is connected to TDI and TDO.

#### 18.4.3 H-UDI Reset

The H-UDI can be reset as follows.

- By holding the TRST signal at 0
- When  $\overline{TRST} = 1$ , by inputting at least five TCK clock cycles while TMS = 1
- By setting the MSTOP2 bit to 1 in the MSTCR register (see section 24.2.3)
- By entering hardware standby mode

# 18.5 Usage Notes

- A reset must always be executed by driving the TRST signal to 0, regardless of whether or not the H-UDI is to be activated. TRST must be held low for 20 TCK clock cycles. For details, see section 26, Electrical Characteristics.
- The registers are not initialized in software standby mode. If TRST is set to 0 in software standby mode, the correct operation is not guaranteed. Note that the operation is different from that of SH7055F.
- The frequency of TCK must be lower than that of the peripheral module clock (Pø). For details, see section 26, Electrical Characteristics.
- In data transfer, data input/output starts with the LSB. Figure 18.5 shows serial data input/output.
- If the H-UDI serial transfer sequence is disrupted, a TRST reset must be executed. Transfer should then be retried, regardless of the transfer operation.
- The TDO output timing is from the rise of TCK.
- In the Shift-IR state, the lower 2 bits of the output data from TDO (the IR status word) may not always be 01.
- If more than 32 bits are serially transferred, serial data exceeding 32 bits output from TDO should be ignored.

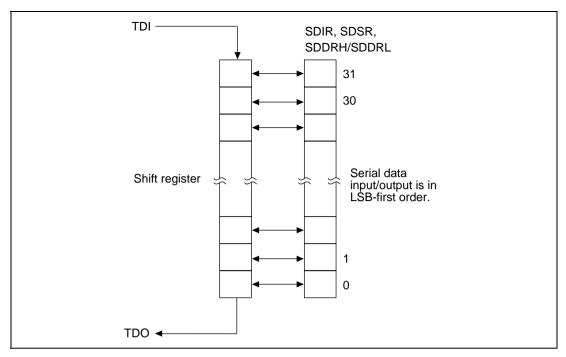



Figure 18.5 Serial Data Input/Output

# Section 19 Advanced User Debugger (AUD)

#### 19.1 Overview

The SH7055SF has an on-chip advanced user debugger (AUD). Use of the AUD simplifies the construction of a simple emulator, with functions such as acquisition of branch trace data and monitoring/tuning of on-chip RAM data.

#### 19.1.1 Features

The AUD has the following features:

- Eight input/output pins
  - Data bus (AUDATA3-AUDATA0)
  - AUD reset (AUDRST)
  - AUD sync signal (AUDSYNC)
  - AUD clock (AUDCK)
  - AUD mode (AUDMD)
- Two modes

Branch trace mode or RAM monitor mode can be selected by switching AUDMD.

- Branch trace mode
  - When the PC branches on execution of a branch instruction or generation of an interrupt in the user program, the branch is detected by the AUD and the branch destination address is output from AUDATA. The address is compared with the previously output address, and 4-, 8-, 16-, or 32-bit output is selected automatically according to the upper address matching status.
- RAM monitor mode
  - When an address is written to AUDATA from off-chip, the data corresponding to that address is output. If an address and data are written to AUDATA, the data is transferred to that address.

#### 19.1.2 Block Diagram

Figure 19.1 shows a block diagram of the AUD.

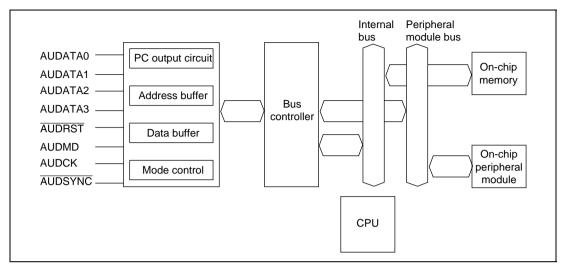



Figure 19.1 AUD Block Diagram

# 19.2 Pin Configuration

Table 19.1 shows the AUD's input/output pins.

Table 19.1 AUD Pins

|                 |                     | Function                                         |                                                 |  |  |  |  |
|-----------------|---------------------|--------------------------------------------------|-------------------------------------------------|--|--|--|--|
| Name            | Abbreviation        | Branch Trace Mode                                | RAM Monitor Mode                                |  |  |  |  |
| AUD data        | AUDATA3–<br>AUDATA0 | Branch destination address output                | Monitor address/data input/output               |  |  |  |  |
| AUD reset       | AUDRST              | AUD reset input                                  | AUD reset input                                 |  |  |  |  |
| AUD mode        | AUDMD               | Mode select input (L)                            | Mode select input (H)                           |  |  |  |  |
| AUD clock       | AUDCK               | Serial clock ( $\phi$ /2) output                 | Serial clock input                              |  |  |  |  |
| AUD sync signal | AUDSYNC             | Data start position identification signal output | Data start position identification signal input |  |  |  |  |

F..... -4! - ...

# 19.2.1 Pin Descriptions

# **Pins Used in Both Modes**

| Pin    | Description                                                                                                                                                                                                                                                                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUDMD  | The mode is selected by changing the input level at this pin.                                                                                                                                                                                                                                                                                                                      |
|        | Low: Branch trace mode                                                                                                                                                                                                                                                                                                                                                             |
|        | High: RAM monitor mode                                                                                                                                                                                                                                                                                                                                                             |
|        | The input at this pin should be changed when AUDRST is low. When no connection is made, this pin is pulled up internally.                                                                                                                                                                                                                                                          |
| AUDRST | The AUDís internal buffers and logic are initialized by inputting a low level to this pin. When this signal goes low, the AUD enters the reset state and the AUDís internal buffers and logic are reset. When AUDRST goes high again after the AUDMD level settles, the AUD starts operating in the selected mode. When no connection is made, this pin is pulled down internally. |

# **Pin Functions in Branch Trace Mode**

| Pin        | Description                                                                                                                                                                                                                                 |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| AUDCK      | This pin outputs 1/2 the operating frequency (φ/2).                                                                                                                                                                                         |  |  |  |  |
|            | This is the clock for AUDATA synchronization.                                                                                                                                                                                               |  |  |  |  |
| AUDSYNC    | This pin indicates whether output from AUDATA is valid.                                                                                                                                                                                     |  |  |  |  |
|            | High: Valid data is not being output                                                                                                                                                                                                        |  |  |  |  |
|            | Low: An address is being output                                                                                                                                                                                                             |  |  |  |  |
| AUDATA3 to | 1. When AUDSYNC is low                                                                                                                                                                                                                      |  |  |  |  |
| AUDATA0    | When a program branch or interrupt branch occurs, the AUD asserts AUDSYNC and outputs the branch destination address. The output order is A3–A0, A7–A4, A11–A8, A15–A12, A19–A16, A23–A20, A27–A24, A31–A28                                 |  |  |  |  |
|            | 2. When AUDSYNC is high                                                                                                                                                                                                                     |  |  |  |  |
|            | When waiting for branch destination address output, these pins constantly output 0011.                                                                                                                                                      |  |  |  |  |
|            | When an branch occurs, AUDATA3–AUDATA2 output 10, and AUDATA1–AUDATA0 indicate whether a 4-, 8-, 16-, or 32-bit address is to be output by comparing the previous fully output address with the address output this time (see table below). |  |  |  |  |
|            | AUDATA1, AUDATA0                                                                                                                                                                                                                            |  |  |  |  |
|            | OO Address bits A31–A4 match; 4 address bits A3–A0 are to be output (i.e. output is performed once).                                                                                                                                        |  |  |  |  |
|            | O1 Address bits A31–A8 match; 8 address bits A3–A0 and A7–A4 are to be output (i.e. output is performed twice).                                                                                                                             |  |  |  |  |
|            | Address bits A31–A16 match; 16 address bits A3–A0, A7–A4, A11–A8, and A15–A12 are to be output (i.e. output is performed four times).                                                                                                       |  |  |  |  |
|            | None of the above cases applies; 31 address bits A3–A0, A7–A4, A11–A8, and A15–A12, A19–A16, A23–A20, A27–A24, and A31–A28 are to be output (i.e. output is performed eight times).                                                         |  |  |  |  |

#### Pin Functions in RAM Monitor Mode

| Pin                   | Description                                                                                                                                                                                                                       |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUDCK                 | The external clock input pin. Input the clock to be used for debugging to this pin. The input frequency must not exceed 1/4 the operating frequency. When no connection is made, this pin is pulled up internally.                |
| AUDSYNC               | Do not assert this pin until a command is input to AUDATA from off-chip and the necessary data can be prepared. See the protocol description for details. When no connection is made, this pin is pulled up internally.           |
| AUDATA3 to<br>AUDATA0 | When a command is input from off-chip, data is output after Ready reception.  Output starts when AUDSYNC is negated. See the protocol description for details. When no connections are made, these pins are pulled up internally. |

#### 19.3 Branch Trace Mode

#### 19.3.1 Overview

In this mode, the branch destination address is output when a branch occurs in the user program. Branches may be caused by branch instruction execution or interrupt/exception processing, but no distinction is made between the two in this mode.

#### 19.3.2 Operation

Operation starts in branch trace mode when  $\overline{AUDRST}$  is asserted, AUDMD is driven low, then  $\overline{AUDRST}$  is negated.

Figure 19.2 shows an example of data output.

While the user program is being executed without branches, the AUDATA pins constantly output 0011 in synchronization with AUDCK.

When a branch occurs, after execution starts at the branch destination address in the PC, the previous fully output address (i.e. for which output was not interrupted by the occurrence of another branch) is compared with the current branch address, and depending on the result,  $\overline{\text{AUDSYNC}}$  is asserted and the branch destination address output after 1-clock output of 1000 (in the case of 4-bit output), 1001 (8-bit output), 1010 (16-bit output), or 1011 (32-bit output). The initial value of the compared address is H'000000000.

On completion of the cycle in which the address is output,  $\overline{AUDSYNC}$  is negated and 0011 is output from the AUDATA pins.

If another branch occurs during branch destination address output, the later branch has priority for output. In this case,  $\overline{AUDSYNC}$  is negated and the AUDATA pins output the address after outputting 10xx again (figure 19.3 shows an example of the output when consecutive branches occur). Note that the compared address is the previous fully output address, and not an interrupted address (since the upper address of an interrupted address will be unknown).

The interval from the start of execution at the branch destination address in the PC until the AUDATA pins output 10xx is 1.5 or 2 AUDCK cycles.



Figure 19.2 Example of Data Output (32-Bit Output)

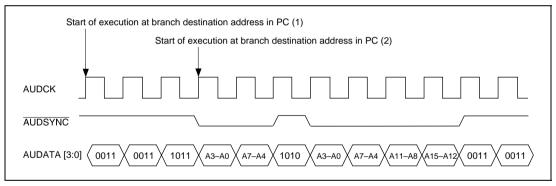



Figure 19.3 Example of Output in Case of Successive Branches

#### 19.4 RAM Monitor Mode

#### 19.4.1 Overview

In this mode, all the modules connected to the SH7055SF's internal or external bus can be read and written to, allowing RAM monitoring and tuning to be carried out.

#### 19.4.2 Communication Protocol

The AUD latches the AUDATA input when  $\overline{AUDSYNC}$  is asserted. The following AUDATA input format should be used.

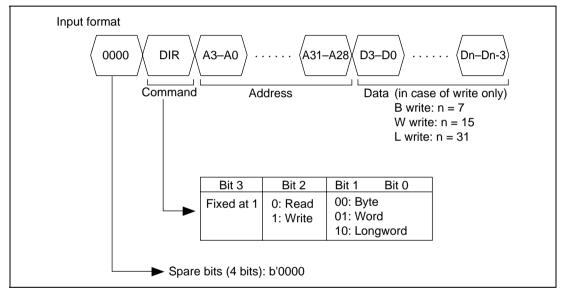



Figure 19.4 AUDATA Input Format

#### 19.4.3 Operation

Operation starts in RAM monitor mode AUDMD is driven high after  $\overline{AUDRST}$  has been asserted, then  $\overline{AUDRST}$  is negated.

Figure 19.5 shows an example of a read operation, and figure 19.6 an example of a write operation.

When AUDSYNC is asserted, input from the AUDATA pins begins. When a command, address, or data (writing only) is input in the format shown in figure 19.2, execution of read/write access to the specified address is started. During internal execution, the AUD returns Not Ready (0000). When execution is completed, the Ready flag (0001) is returned (figures 19.5 and 19.6). Table 19.2 shows the Ready flag format.

In a read, data of the specified size is output when  $\overline{AUDSYNC}$  is negated following detection of this flag (figure 19.7).

If a command other than the above is input in DIR, the AUD treats this as a command error, disables processing, and sets bit 1 in the Ready flag to 1. If a read/write operation initiated by the command specified in DIR causes a bus error, the AUD disables processing and sets bit 2 in the Ready flag to 1 (figure 19.7).

**Table 19.2 Ready Flag Format** 

| Bit 3      | Bit 2            | Bit 1            | Bit 0        |
|------------|------------------|------------------|--------------|
| Fixed at 0 | 0: Normal status | 0: Normal status | 0: Not ready |
|            | 1: Bus error     | 1: Bus error     | 1: Ready     |

Bus error conditions are shown below.

- 1. Word access to address 4n+1 or 4n+3
- 2. Longword access to address 4n+1, 4n+2, or 4n+3
- 3. Longword access to on-chip I/O 8-bit space
- 4. Access to external space in single-chip mode

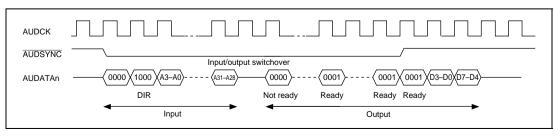



Figure 19.5 Example of Read Operation (Byte Read)

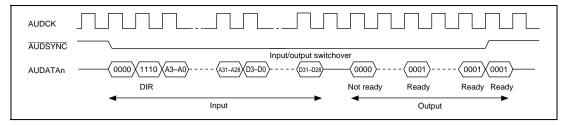



Figure 19.6 Example of Write Operation (Longword Write)

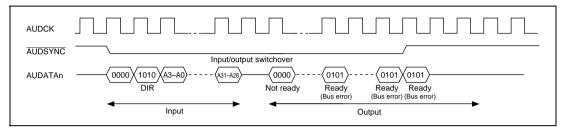



Figure 19.7 Example of Error Occurrence (Longword Read)

# 19.5 Usage Notes

#### 19.5.1 Initialization

The debugger's internal buffers and processing states are initialized in the following cases:

- 1. In a power-on reset
- 2. In hardware standby mode
- 3. When  $\overline{AUDRST}$  is driven low
- 4. When the AUDSRST bit is set to 1 in the SYSCR register (see section 24.2.2)
- 5. When the MSTOP3 bit is set to 1 in the MSTCR register (see section 24.2.3)

# 19.5.2 Operation in Software Standby Mode

The debugger is not initialized in software standby mode. However, since the SH7055SF's internal operation halts in software standby mode:

- When AUDMD is high (RAM monitor mode): Ready is not returned. Since the operation after the software standby mode cancellation is not guaranteed, input AUDRST, and re-execute. However, when operating on an external clock, the protocol continues.
- 2. When AUDMD is low (PC trace): Operation stops. However, operation continues when software standby is released.

#### 19.5.3 Boot Mode Operation and User Boot Mode Initial State

The AUD operation cannot be provided in the boot mode operation and user boot mode initial states. For details on the boot mode and user boot mode, see section 22, ROM.

#### 19.5.4 AUD Input Signal in Software Standby/Hardware Standby Mode

If the AUD interface input is changed during software standby/hardware standby mode operation, the reliability may be lowered significantly. Be careful not to change the AUD input signal during software standby/hardware standby mode operation.

# Section 20 Pin Function Controller (PFC)

# 20.1 Overview

The pin function controller (PFC) consists of registers for selecting multiplex pin functions and their input/output direction. Table 20.1 shows the SH7055SF's multiplex pins.

Table 20.1 SH7055SF Multiplex Pins

| PA0 input/output (port) PA1 input/output (port) | TIOA input (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DA1 input/output (port)                         | rioA iriput (A 1 O-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FAT input/output (port)                         | TI0B input (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA2 input/output (port)                         | TIOC input (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA3 input/output (port)                         | TIOD input (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA4 input/output (port)                         | TIO3A input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA5 input/output (port)                         | TIO3B input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA6 input/output (port)                         | TIO3C input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA7 input/output (port)                         | TIO3D input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA8 input/output (port)                         | TIO4A input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA9 input/output (port)                         | TIO4B input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA10 input/output (port)                        | TIO4C input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA11 input/output (port)                        | TIO4D input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA12 input/output (port)                        | TIO5A input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA13 input/output (port)                        | TIO5B input/output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA14 input/output (port)                        | TxD0 output (SCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PA15 input/output (port)                        | RxD0 input (SCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB0 input/output (port)                         | TO6A output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB1 input/output (port)                         | TO6B output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB2 input/output (port)                         | TO6C output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB3 input/output (port)                         | TO6D output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB4 input/output (port)                         | TO7A output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TO8A output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB5 input/output (port)                         | TO7B output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TO8B output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB6 input/output (port)                         | TO7C output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TO8C output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB7 input/output (port)                         | TO7D output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TO8D output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB8 input/output (port)                         | TxD3 output (SCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TO8E output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PB9 input/output (port)                         | RxD3 input (SCI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TO8F output (ATU-II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                 | PA3 input/output (port) PA4 input/output (port) PA5 input/output (port) PA6 input/output (port) PA7 input/output (port) PA8 input/output (port) PA9 input/output (port) PA10 input/output (port) PA11 input/output (port) PA12 input/output (port) PA13 input/output (port) PA14 input/output (port) PA15 input/output (port) PB0 input/output (port) PB1 input/output (port) PB1 input/output (port) PB2 input/output (port) PB3 input/output (port) PB4 input/output (port) PB5 input/output (port) PB6 input/output (port) PB7 input/output (port) | PA3 input/output (port) PA4 input/output (port) PA5 input/output (port) PA6 input/output (port) PA7 input/output (port) PA8 input/output (port) PA7 input/output (port) PA8 input/output (port) PA7 input/output (port) PA8 input/output (port) PA9 input/output (port) PA10 input/output (port) PA11 input/output (port) PA12 input/output (port) PA13 input/output (port) PA14 input/output (port) PA15 input/output (port) PB1 input/output (port) PB1 input/output (port) PB2 input/output (port) PB3 input/output (port) PB4 input/output (port) PB5 input/output (port) PB6 input/output (port) PB7 input/output (port) PB7 input/output (port) PB7 input/output (port) PB8 input/output (port) PB7 input/output (port) PB7 input/output (port) PB7 input/output (port) PB7 input/output (port) PB7 input/output (port) PB7 input/output (port) PB8 input/output (port) PB7 input/output (port) PB8 input/output (port) PB7 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) PB8 input/output (port) | PA3 input/output (port) TIOD input (ATU-II) PA4 input/output (port) TIO3A input/output (ATU-II) PA5 input/output (port) TIO3B input/output (ATU-II) PA6 input/output (port) TIO3C input/output (ATU-II) PA7 input/output (port) TIO3D input/output (ATU-II) PA8 input/output (port) TIO4A input/output (ATU-II) PA9 input/output (port) TIO4B input/output (ATU-II) PA10 input/output (port) TIO4C input/output (ATU-II) PA11 input/output (port) TIO5A input/output (ATU-II) PA12 input/output (port) TIO5A input/output (ATU-II) PA13 input/output (port) TXD0 output (SCI) PA15 input/output (port) TXD0 output (SCI) PA15 input/output (port) TO6A output (ATU-II) PB0 input/output (port) TO6A output (ATU-II) PB1 input/output (port) TO6C output (ATU-II) PB2 input/output (port) TO6C output (ATU-II) PB3 input/output (port) TO7A output (ATU-II) PB4 input/output (port) TO7A output (ATU-II) PB5 input/output (port) TO7B output (ATU-II) TO8B output (ATU-II) PB6 input/output (port) TO7C output (ATU-II) TO8C output (ATU-II) PB7 input/output (port) TO7D output (ATU-II) TO8D output (ATU-II) PB7 input/output (port) TO7D output (ATU-II) TO8D output (ATU-II) |

Table 20.1 SH7055SF Multiplex Pins (cont)

| Port | Function 1<br>(Related Module) | Function 2<br>(Related Module) | Function 3<br>(Related Module) | Function 4<br>(Related Module) |
|------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| В    | PB10 input/output (port)       | TxD4 output (SCI)              | HTxD0 output (HCAN)            | TO8G output (ATU-II)           |
| В    | PB11 input/output (port)       | RxD4 input (SCI)               | HRxD0 input (HCAN)             | TO8H output (ATU-II)           |
| В    | PB12 input/output (port)       | TCLKA input (ATU-II)           | UBCTRG output (UBC)            |                                |
| В    | PB13 input/output (port)       | SCK0 input/output (SCI)        |                                |                                |
| В    | PB14 input/output (port)       | SCK1 input/output (SCI)        | TCLKB input (ATU-II)           | TI10 input (ATU-II)            |
| В    | PB15 input/output (port)       | PULS5 output (APC)             | SCK2 input/output (SCI)        |                                |
| С    | PC0 input/output (port)        | TxD1 output (SCI)              |                                |                                |
| С    | PC1 input/output (port)        | RxD1 input (SCI)               |                                |                                |
| С    | PC2 input/output (port)        | TxD2 output (SCI)              |                                |                                |
| С    | PC3 input/output (port)        | RxD2 input (SCI)               |                                |                                |
| С    | PC4 input/output (port)        | IRQ0 input (INTC)              |                                |                                |
| D    | PD0 input/output (port)        | TIO1A input/output (ATU-II)    |                                |                                |
| D    | PD1 input/output (port)        | TIO1B input/output (ATU-II)    |                                |                                |
| D    | PD2 input/output (port)        | TIO1C input/output (ATU-II)    |                                |                                |
| D    | PD3 input/output (port)        | TIO1D input/output (ATU-II)    |                                |                                |
| D    | PD4 input/output (port)        | TIO1E input/output (ATU-II)    |                                |                                |
| D    | PD5 input/output (port)        | TIO1F input/output (ATU-II)    |                                |                                |
| D    | PD6 input/output (port)        | TIO1G input/output (ATU-II)    |                                |                                |
| D    | PD7 input/output (port)        | TIO1H input/output (ATU-II)    |                                |                                |
| D    | PD8 input/output (port)        | PULS0 output (APC)             |                                |                                |
| D    | PD9 input/output (port)        | PULS1 output (APC)             |                                |                                |
| D    | PD10 input/output (port)       | PULS2 output (APC)             |                                |                                |
| D    | PD11 input/output (port)       | PULS3 output (APC)             |                                |                                |
| D    | PD12 input/output (port)       | PULS4 output (APC)             |                                |                                |
| D    | PD13 input/output (port)       | PULS6 output (APC)             | HTxD0 output (HCAN)            | HTxD1 output (HCAN)            |
| E    | PE0 input/output (port)        | A0 output (BSC)                |                                |                                |
| E    | PE1 input/output (port)        | A1 output (BSC)                |                                |                                |
| E    | PE2 input/output (port)        | A2 output (BSC)                |                                |                                |
| E    | PE3 input/output (port)        | A3 output (BSC)                |                                |                                |
| E    | PE4 input/output (port)        | A4 output (BSC)                |                                |                                |
| E    | PE5 input/output (port)        | A5 output (BSC)                |                                |                                |
| E    | PE6 input/output (port)        | A6 output (BSC)                |                                |                                |
| E    | PE7 input/output (port)        | A7 output (BSC)                |                                |                                |

Table 20.1 SH7055SF Multiplex Pins (cont)

| Port | Function 1<br>(Related Module) | Function 2<br>(Related Module) | Function 3<br>(Related Module) | Function 4<br>(Related Module) |
|------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| E    | PE8 input/output (port)        | A8 output (BSC)                |                                |                                |
| E    | PE9 input/output (port)        | A9 output (BSC)                |                                |                                |
| E    | PE10 input/output (port)       | A10 output (BSC)               |                                |                                |
| E    | PE11 input/output (port)       | A11 output (BSC)               |                                |                                |
| E    | PE12 input/output (port)       | A12 output (BSC)               |                                |                                |
| E    | PE13 input/output (port)       | A13 output (BSC)               |                                |                                |
| E    | PE14 input/output (port)       | A14 output (BSC)               |                                |                                |
| E    | PE15 input/output (port)       | A15 output (BSC)               |                                |                                |
| F    | PF0 input/output (port)        | A16 output (BSC)               |                                |                                |
| F    | PF1 input/output (port)        | A17 output (BSC)               |                                |                                |
| F    | PF2 input/output (port)        | A18 output (BSC)               |                                |                                |
| F    | PF3 input/output (port)        | A19 output (BSC)               |                                |                                |
| F    | PF4 input/output (port)        | A20 output (BSC)               |                                |                                |
| F    | PF5 input/output (port)        | A21 output (BSC)               | POD input (port)               |                                |
| F    | PF6 input/output (port)        | WRL output (BSC)               |                                |                                |
| F    | PF7 input/output (port)        | WRH output (BSC)               |                                |                                |
| F    | PF8 input/output (port)        | WAIT input (BSC)               |                                |                                |
| F    | PF9 input/output (port)        | RD output (BSC)                |                                |                                |
| F    | PF10 input/output (port)       | CS0 output (BSC)               |                                |                                |
| F    | PF11 input/output (port)       | CS1 output (BSC)               |                                |                                |
| F    | PF12 input/output (port)       | CS2 output (BSC)               |                                |                                |
| F    | PF13 input/output (port)       | CS3 output (BSC)               |                                |                                |
| F    | PF14 input/output (port)       | BACK output (BSC)              |                                |                                |
| F    | PF15 input/output (port)       | BREQ input (BSC)               |                                |                                |
| G    | PG0 input/output (port)        | PULS7 output (APC)             | HRxD0 input (HCAN)             | HRxD1 input (HCAN)             |
| G    | PG1 input/output (port)        | IRQ1 input (INTC)              |                                |                                |
| G    | PG2 input/output (port)        | IRQ2 input (INTC)              | ADEND output (A/D)             |                                |
| G    | PG3 input/output (port)        | IRQ3 input (INTC)              | ADTRG0 input (A/D)             |                                |
| Н    | PH0 input/output (port)        | D0 input/output (BSC)          |                                |                                |
| Н    | PH1 input/output (port)        | D1 input/output (BSC)          |                                |                                |
| Н    | PH2 input/output (port)        | D2 input/output (BSC)          |                                |                                |
| Н    | PH3 input/output (port)        | D3 input/output (BSC)          |                                |                                |
| Н    | PH4 input/output (port)        | D4 input/output (BSC)          |                                |                                |

Table 20.1 SH7055SF Multiplex Pins (cont)

| Port | Function 1<br>(Related Module) | Function 2<br>(Related Module) | Function 3<br>(Related Module) | Function 4<br>(Related Module) |
|------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Н    | PH5 input/output (port)        | D5 input/output (BSC)          |                                |                                |
| Н    | PH6 input/output (port)        | D6 input/output (BSC)          |                                |                                |
| Н    | PH7 input/output (port)        | D7 input/output (BSC)          |                                |                                |
| Н    | PH8 input/output (port)        | D8 input/output (BSC)          |                                |                                |
| Н    | PH9 input/output (port)        | D9 input/output (BSC)          |                                |                                |
| Н    | PH10 input/output (port)       | D10 input/output (BSC)         |                                |                                |
| Н    | PH11 input/output (port)       | D11 input/output (BSC)         |                                |                                |
| Н    | PH12 input/output (port)       | D12 input/output (BSC)         |                                |                                |
| Н    | PH13 input/output (port)       | D13 input/output (BSC)         |                                |                                |
| Н    | PH14 input/output (port)       | D14 input/output (BSC)         |                                |                                |
| Н    | PH15 input/output (port)       | D15 input/output (BSC)         |                                |                                |
| J    | PJ0 input/output (port)        | TIO2A input/output (ATU-II)    |                                |                                |
| J    | PJ1 input/output (port)        | TIO2B input/output (ATU-II)    |                                |                                |
| J    | PJ2 input/output (port)        | TIO2C input/output (ATU-II)    |                                |                                |
| J    | PJ3 input/output (port)        | TIO2D input/output (ATU-II)    |                                |                                |
| J    | PJ4 input/output (port)        | TIO2E input/output (ATU-II)    |                                |                                |
| J    | PJ5 input/output (port)        | TIO2F input/output (ATU-II)    |                                |                                |
| J    | PJ6 input/output (port)        | TIO2G input/output (ATU-II)    |                                |                                |
| J    | PJ7 input/output (port)        | TIO2H input/output (ATU-II)    |                                |                                |
| J    | PJ8 input/output (port)        | TIO5C input/output (ATU-II)    |                                |                                |
| J    | PJ9 input/output (port)        | TIO5D input/output (ATU-II)    |                                |                                |
| J    | PJ10 input/output (port)       | TI9A input (ATU-II)            |                                |                                |
| J    | PJ11 input/output (port)       | TI9B input (ATU-II)            |                                |                                |
| J    | PJ12 input/output (port)       | TI9C input (ATU-II)            |                                |                                |
| J    | PJ13 input/output (port)       | TI9D input (ATU-II)            |                                |                                |
| J    | PJ14 input/output (port)       | TI9E input (ATU-II)            |                                |                                |
| J    | PJ15 input/output (port)       | TI9F input (ATU-II)            |                                |                                |
| K    | PK0 input/output (port)        | TO8A output (ATU-II)           |                                |                                |
| K    | PK1 input/output (port)        | TO8B output (ATU-II)           |                                |                                |
| K    | PK2 input/output (port)        | TO8C output (ATU-II)           |                                |                                |
| K    | PK3 input/output (port)        | TO8D output (ATU-II)           |                                |                                |
| K    | PK4 input/output (port)        | TO8E output (ATU-II)           |                                |                                |
| K    | PK5 input/output (port)        | TO8F output (ATU-II)           |                                |                                |

Table 20.1 SH7055SF Multiplex Pins (cont)

| Port | Function 1<br>(Related Module) | Function 2<br>(Related Module)  | Function 3 (Related Module) | Function 4<br>(Related Module) |
|------|--------------------------------|---------------------------------|-----------------------------|--------------------------------|
| K    | PK6 input/output (port)        | TO8G output (ATU-II)            |                             |                                |
| K    | PK7 input/output (port)        | TO8H output (ATU-II)            |                             |                                |
| K    | PK8 input/output (port)        | TO8I output (ATU-II)            |                             |                                |
| K    | PK9 input/output (port)        | TO8J output (ATU-II)            |                             |                                |
| K    | PK10 input/output (port)       | TO8K output (ATU-II)            |                             |                                |
| K    | PK11 input/output (port)       | TO8L output (ATU-II)            |                             |                                |
| K    | PK12 input/output (port)       | TO8M output (ATU-II)            |                             |                                |
| K    | PK13 input/output (port)       | TO8N output (ATU-II)            |                             |                                |
| K    | PK14 input/output (port)       | TO8O output (ATU-II)            |                             |                                |
| K    | PK15 input/output (port)       | TO8P output (ATU-II)            |                             |                                |
| L    | PL0 input/output (port)        | TI10 input (ATU-II)             |                             |                                |
| L    | PL1 input/output (port)        | TIO11A input/output<br>(ATU-II) | IRQ6 input (INTC)           |                                |
| L    | PL2 input/output (port)        | TIO11B input/output<br>(ATU-II) | IRQ7 input (INTC)           |                                |
| L    | PL3 input/output (port)        | TCLKB input (ATU-II)            |                             |                                |
| L    | PL4 input/output (port)        | ADTRG0 input (A/D)              |                             |                                |
| L    | PL5 input/output (port)        | ADTRG1 input (A/D)              |                             |                                |
| L    | PL6 input/output (port)        | ADEND output (A/D)              |                             |                                |
| L    | PL7 input/output (port)        | SCK2 input/output (SCI)         |                             |                                |
| L    | PL8 input/output (port)        | SCK3 input/output (SCI)         |                             |                                |
| L    | PL9 input/output (port)        | SCK4 input/output (SCI)         | IRQ5 input (INTC)           |                                |
| L    | PL10 input/output (port)       | HTxD0 output (HCAN)             | HTxD1 output (HCAN)         | HTxD0 & HTxD1<br>(HCAN)        |
| L    | PL11 input/output (port)       | HRxD0 input (HCAN)              | HRxD1 input (HCAN)          | HRxD0 & HRxD1<br>(HCAN)        |
| L    | PL12 input/output (port)       | IRQ4 input (INTC)               |                             |                                |
| L    | PL13 input/output (port)       | IRQOUT output (INTC)            | IRQOUT output (INTC)        |                                |

# 20.2 Register Configuration

PFC registers are listed in table 20.2.

Table 20.2 PFC Registers

| Name                      | Abbreviation | R/W | Initial<br>Value | Address    | Access<br>Size |
|---------------------------|--------------|-----|------------------|------------|----------------|
| Port A IO register        | PAIOR        | R/W | H'0000           | H'FFFFF720 | 8, 16          |
| Port A control register H | PACRH        | R/W | H'0000           | H'FFFFF722 | 8, 16          |
| Port A control register L | PACRL        | R/W | H'0000           | H'FFFFF724 | 8, 16          |
| Port B IO register        | PBIOR        | R/W | H'0000           | H'FFFFF730 | 8, 16          |
| Port B control register H | PBCRH        | R/W | H'0000           | H'FFFFF732 | 8, 16          |
| Port B control register L | PBCRL        | R/W | H'0000           | H'FFFFF734 | 8, 16          |
| Port B invert register    | PBIR         | R/W | H'0000           | H'FFFFF736 | 8, 16          |
| Port C IO register        | PCIOR        | R/W | H'0000           | H'FFFFF73A | 8, 16          |
| Port C control register   | PCCR         | R/W | H'0000           | H'FFFFF73C | 8, 16          |
| Port D IO register        | PDIOR        | R/W | H'0000           | H'FFFFF740 | 8, 16          |
| Port D control register H | PDCRH        | R/W | H'0000           | H'FFFFF742 | 8, 16          |
| Port D control register L | PDCRL        | R/W | H'0000           | H'FFFFF744 | 8, 16          |
| Port E IO register        | PEIOR        | R/W | H'0000           | H'FFFFF750 | 8, 16          |
| Port E control register   | PECR         | R/W | H'0000           | H'FFFFF752 | 8, 16          |
| Port F IO register        | PFIOR        | R/W | H'0000           | H'FFFFF748 | 8, 16          |
| Port F control register H | PFCRH        | R/W | H'0015           | H'FFFFF74A | 8, 16          |
| Port F control register L | PFCRL        | R/W | H'5000           | H'FFFFF74C | 8, 16          |
| Port G IO register        | PGIOR        | R/W | H'0000           | H'FFFFF760 | 8, 16          |
| Port G control register   | PGCR         | R/W | H'0000           | H'FFFFF762 | 8, 16          |
| Port H IO register        | PHIOR        | R/W | H'0000           | H'FFFFF728 | 8, 16          |
| Port H control register   | PHCR         | R/W | H'0000           | H'FFFFF72A | 8, 16          |
| Port J IO register        | PJIOR        | R/W | H'0000           | H'FFFFF766 | 8, 16          |
| Port J control register H | PJCRH        | R/W | H'0000           | H'FFFFF768 | 8, 16          |
| Port J control register L | PJCRL        | R/W | H'0000           | H'FFFFF76A | 8, 16          |
| Port K IO register        | PKIOR        | R/W | H'0000           | H'FFFFF770 | 8, 16          |
| Port K control register H | PKCRH        | R/W | H'0000           | H'FFFFF772 | 8, 16          |
| Port K control register L | PKCRL        | R/W | H'0000           | H'FFFFF774 | 8, 16          |
| Port K invert register    | PKIR         | R/W | H'0000           | H'FFFFF776 | 8, 16          |

Table 20.2 PFC Registers (cont)

| Name                      | Abbreviation | R/W | Initial<br>Value | Address    | Access<br>Size |
|---------------------------|--------------|-----|------------------|------------|----------------|
| Port L IO register        | PLIOR        | R/W | H'0000           | H'FFFFF756 | 8, 16          |
| Port L control register H | PLCRH        | R/W | H'0000           | H'FFFFF758 | 8, 16          |
| Port L control register L | PLCRL        | R/W | H'0000           | H'FFFFF75A | 8, 16          |
| Port L invert register    | PLIR         | R/W | H'0000           | H'FFFFF75C | 8, 16          |

## 20.3 Register Descriptions

### 20.3.1 Port A IO Register (PAIOR)

| Bit:           | 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8          |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
|                | PA15<br>IOR | PA14<br>IOR | PA13<br>IOR | PA12<br>IOR | PA11<br>IOR | PA10<br>IOR | PA9<br>IOR | PA8<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |
|                |             |             |             |             |             |             |            |            |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2           | 1          | 0          |
|                | PA7<br>IOR  | PA6<br>IOR  | PA5<br>IOR  | PA4<br>IOR  | PA3<br>IOR  | PA2<br>IOR  | PA1<br>IOR | PA0<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |

The port A IO register (PAIOR) is a 16-bit readable/writable register that selects the input/output direction of the 16 pins in port A. Bits PA15IOR to PA0IOR correspond to pins PA15/RxD0 to PA0/TI0A. PAIOR is enabled when port A pins function as general input/output pins (PA15 to PA0) or ATU-II input/output pins, and disabled otherwise. For bits 3 to 0, when ATU-II input capture input is selected, the PAIOR bits should be cleared to 0.

When port A pins function as PA15 to PA0 or ATU-II input/output pins, a pin becomes an output when the corresponding bit in PAIOR is set to 1, and an input when the bit is cleared to 0.

PAIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

### 20.3.2 Port A Control Registers H and L (PACRH, PACRL)

Port A control registers H and L (PACRH, PACRL) are 16-bit readable/writable registers that select the functions of the 16 multiplex pins in port A. PACRH selects the functions of the pins for the upper 8 bits of port A, and PACRL selects the functions of the pins for the lower 8 bits.

PACRH and PACRL are initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. They are not initialized in software standby mode or sleep mode.

Port A Control Register H (PACRH)

| Bit:           | 15 | 14     | 13 | 12     | 11 | 10     | 9 | 8      |
|----------------|----|--------|----|--------|----|--------|---|--------|
|                | _  | PA15MD |    | PA14MD | _  | PA13MD | _ | PA12MD |
| Initial value: | 0  | 0      | 0  | 0      | 0  | 0      | 0 | 0      |
| R/W:           | R  | R/W    | R  | R/W    | R  | R/W    | R | R/W    |
|                |    |        |    |        |    |        |   |        |
| Bit:           | 7  | 6      | 5  | 4      | 3  | 2      | 1 | 0      |
|                |    | PA11MD | _  | PA10MD | _  | PA9MD  | _ | PA8MD  |
| Initial value: | 0  | 0      | 0  | 0      | 0  | 0      | 0 | 0      |
| R/W:           | R  | R/W    | R  | R/W    | R  | R/W    | R | R/W    |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PA15 Mode Bit (PA15MD): Selects the function of pin PA15/RxD0.

| Bit 14: PA15MD | Description                 |                 |
|----------------|-----------------------------|-----------------|
| 0              | General input/output (PA15) | (Initial value) |
| 1              | Receive data input (RxD0)   |                 |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PA14 Mode Bit (PA14MD): Selects the function of pin PA14/TxD0.

| Bit 12: PA14MD | Description                 |                 |
|----------------|-----------------------------|-----------------|
| 0              | General input/output (PA14) | (Initial value) |
| 1              | Transmit data output (TxD0) |                 |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PA13 Mode Bit (PA13MD): Selects the function of pin PA13/TIO5B.

| Bit 10: PA13MD | Description                                              |                 |
|----------------|----------------------------------------------------------|-----------------|
| 0              | General input/output (PA13)                              | (Initial value) |
| 1              | ATU-II input capture input/output compare output (TIO5B) | _               |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PA12 Mode Bit (PA12MD): Selects the function of pin PA12/TIO5A.

| Bit 8: PA12MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PA12)                              | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO5A) | _               |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PA11 Mode Bit (PA11MD): Selects the function of pin PA11/TIO4D.

| Bit 6: PA11MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PA11)                              | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO4D) |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PA10 Mode Bit (PA10MD): Selects the function of pin PA10/TIO4C.

| Bit 4: PA10MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PA10)                              | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO4C) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PA9 Mode Bit (PA9MD): Selects the function of pin PA9/TIO4B.

| Bit 2: PA9MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PA9)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO4B) |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PA8 Mode Bit (PA8MD): Selects the function of pin PA8/TIO4A.

| Bit 0: PA8MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PA8)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO4A) |                 |

## Port A Control Register L (PACRL)

| Bit:           | 15 | 14    | 13 | 12    | 11 | 10    | 9 | 8     |
|----------------|----|-------|----|-------|----|-------|---|-------|
|                | _  | PA7MD | _  | PA6MD | _  | PA5MD | _ | PA4MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |
|                |    |       |    |       |    |       |   |       |
| Bit:           | 7  | 6     | 5  | 4     | 3  | 2     | 1 | 0     |
|                |    | PA3MD |    | PA2MD | _  | PA1MD | _ | PA0MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PA7 Mode Bit (PA7MD): Selects the function of pin PA7/TIO3D.

| Bit 14: PA7MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PA7)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO3D) | _               |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PA6 Mode Bit (PA6MD): Selects the function of pin PA6/TIO3C.

| Bit 12: PA6MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PA6)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO3C) |                 |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PA5 Mode Bit (PA5MD): Selects the function of pin PA5/TIO3B.

| Bit 10: PA5MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PA5)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO3B) | _               |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PA4 Mode Bit (PA4MD): Selects the function of pin PA4/TIO3A.

| Bit 8: PA4MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PA4)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO3A) |                 |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0. If 1 is written to this bit, correct operation cannot be guaranteed.
- Bit 6—PA3 Mode Bit (PA3MD): Selects the function of pin PA3/TI0D.

| Bit 6: PA3MD | Description                       |                 |
|--------------|-----------------------------------|-----------------|
| 0            | General input/output (PA3)        | (Initial value) |
| 1            | ATU-II input capture input (TI0D) | _               |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0. If 1 is written to this bit, correct operation cannot be guaranteed.
- Bit 4—PA2 Mode Bit (PA2MD): Selects the function of pin PA2/TI0C.

| Bit 4: PA2MD | Description                       |                 |
|--------------|-----------------------------------|-----------------|
| 0            | General input/output (PA2)        | (Initial value) |
| 1            | ATU-II input capture input (TI0C) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0. If 1 is written to this bit, correct operation cannot be guaranteed.
- Bit 2—PA1 Mode Bit (PA1MD): Selects the function of pin PA1/TI0B.

| Bit 2: PA1MD | Description                       |                 |
|--------------|-----------------------------------|-----------------|
| 0            | General input/output (PA1)        | (Initial value) |
| 1            | ATU-II input capture input (TI0B) |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0. If 1 is written to this bit, correct operation cannot be guaranteed.
- Bit 0—PA0 Mode Bit (PA0MD): Selects the function of pin PA0/TI0A.

| Bit 0: PA0MD | Description                       |                 |
|--------------|-----------------------------------|-----------------|
| 0            | General input/output (PA0)        | (Initial value) |
| 1            | ATU-II input capture input (TI0A) |                 |

#### 20.3.3 Port B IO Register (PBIOR)

| Bit:           | 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8          |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
|                | PB15<br>IOR | PB14<br>IOR | PB13<br>IOR | PB12<br>IOR | PB11<br>IOR | PB10<br>IOR | PB9<br>IOR | PB8<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2           | 1          | 0          |
|                | PB7<br>IOR  | PB6<br>IOR  | PB5<br>IOR  | PB4<br>IOR  | PB3<br>IOR  | PB2<br>IOR  | PB1<br>IOR | PB0<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |

The port B IO register (PBIOR) is a 16-bit readable/writable register that selects the input/output direction of the 16 pins in port B. Bits PB15IOR to PB0IOR correspond to pins PB15/PULS5/SCK2 to PB0/TO6A. PBIOR is enabled when port B pins function as general input/output pins (PB15 to PB0) or serial clock pins (SCK0, SCK1, SCK2), and disabled otherwise.

When port B pins function as PB15 to PB0 or SCK0, SCK1, and SCK2, a pin becomes an output when the corresponding bit in PBIOR is set to 1, and an input when the bit is cleared to 0.

PBIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.4 Port B Control Registers H and L (PBCRH, PBCRL)

Port B control registers H and L (PBCRH, PBCRL) are 16-bit readable/writable registers that select the functions of the 16 multiplex pins in port B. PBCRH selects the functions of the pins for the upper 8 bits of port B, and PBCRL selects the functions of the pins for the lower 8 bits.

PBCRH and PBCRL are initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. They are not initialized in software standby mode or sleep mode.

Port B Control Register H (PBCRH)

| Bit:           | 15          | 14          | 13          | 12          | 11         | 10         | 9           | 8           |
|----------------|-------------|-------------|-------------|-------------|------------|------------|-------------|-------------|
|                | PB15<br>MD1 | PB15<br>MD0 | PB14<br>MD1 | PB14<br>MD0 | _          | PB13<br>MD | PB12<br>MD1 | PB12<br>MD0 |
| Initial value: | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 0           |
| R/W:           | R/W         | R/W         | R/W         | R/W         | R          | R/W        | R/W         | R/W         |
|                |             |             |             |             |            |            |             |             |
| Bit:           | 7           | 6           | 5           | 4           | 3          | 2          | 1           | 0           |
|                | PB11<br>MD1 | PB11<br>MD0 | PB10<br>MD1 | PB10<br>MD0 | PB9<br>MD1 | PB9<br>MD0 | PB8<br>MD1  | PB8<br>MD0  |
| Initial value: | 0           | 0           | 0           | 0           | 0          | 0          | 0           | 0           |
| R/W:           | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        | R/W         | R/W         |

• Bits 15 and 14—PB15 Mode Bits 1 and 0 (PB15MD1, PB15MD0): These bits select the function of pin PB15/PULS5/SCK2.

| Bit 15: PB15MD1 | Bit 14: PB15MD0 | Description                      |                 |
|-----------------|-----------------|----------------------------------|-----------------|
| 0               | 0               | General input/output (PB15)      | (Initial value) |
|                 | 1               | APC pulse output (PULS5)         |                 |
| 1               | 0               | Serial clock input/output (SCK2) |                 |
|                 | 1               | Reserved (Do not set)            |                 |

 Bits 13 and 12—PB14 Mode Bits 1 and 0 (PB14MD1, PB14MD0): These bits select the function of pin PB14/SCK1/TCLKB/T110.

| Bit 13: PB14MD1 | Bit 12: PB14MD0 | Description                      |                 |
|-----------------|-----------------|----------------------------------|-----------------|
| 0               | 0               | General input/output (PB14)      | (Initial value) |
|                 | 1               | Serial clock input/output (SCK1) |                 |
| 1               | 0               | ATU-II clock input (TCLKB)       |                 |
|                 | 1               | ATU-II edge input (TI10)         |                 |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PB13 Mode Bit (PB13MD): Selects the function of pin PB13/SCK0.

| Bit 10: PB13MD | Description                      |                 |
|----------------|----------------------------------|-----------------|
| 0              | General input/output (PB13)      | (Initial value) |
| 1              | Serial clock input/output (SCK0) |                 |

• Bits 9 and 8—PB12 Mode Bits 1 and 0 (PB12MD1, PB12MD0): These bits select the function of pin PB12/TCLKA/UBCTRG.

| Bit 9: PB12MD1 | Bit 8: PB12MD0 | Description                   |                 |
|----------------|----------------|-------------------------------|-----------------|
| 0              | 0              | General input/output (PB12)   | (Initial value) |
|                | 1              | ATU-II clock input (TCLKA)    |                 |
| 1              | 0              | Trigger pulse output (UBCTRG) |                 |
|                | 1              | Reserved (Do not set)         |                 |

• Bits 7 and 6—PB11 Mode Bits 1 and 0 (PB11MD1, PB11MD0): These bits select the function of pin PB11/RxD4/HRxD0/TO8H.

| Bit 7: PB11MD1 | Bit 6: PB11MD0 | Description                         |                 |
|----------------|----------------|-------------------------------------|-----------------|
| 0              | 0              | General input/output (PB11)         | (Initial value) |
|                | 1              | Receive data input (RxD4)           |                 |
| 1              | 0              | HCAN receive data input (HRxD0)     |                 |
|                | 1              | ATU-II one-shot pulse output (TO8H) |                 |

• Bits 5 and 4—PB10 Mode Bits 1 and 0 (PB10MD1, PB10MD0): These bits select the function of pin PB10/TxD4/HTxD0/TO8G.

| Bit 5: PB10MD1 | Bit 4: PB10MD0 | Description                         |                 |
|----------------|----------------|-------------------------------------|-----------------|
| 0              | 0              | General input/output (PB10)         | (Initial value) |
|                | 1              | Transmit data output (TxD4)         |                 |
| 1              | 0              | HCAN transmit data output (HTxD0)   |                 |
|                | 1              | ATU-II one-shot pulse output (TO8G) |                 |

• Bits 3 and 2—PB9 Mode Bits 1 and 0 (PB9MD1, PB9MD0): These bits select the function of pin PB9/RxD3/TO8F.

| Bit 3: PB9MD1 | Bit 2: PB9MD0 | Description                         |                 |
|---------------|---------------|-------------------------------------|-----------------|
| 0             | 0             | General input/output (PB9)          | (Initial value) |
|               | 1             | Receive data input (RxD3)           | _               |
| 1             | 0             | ATU-II one-shot pulse output (TO8F) |                 |
|               | 1             | Reserved (Do not set)               |                 |

• Bits 1 and 0—PB8 Mode Bits 1 and 0 (PB8MD1, PB8MD0): These bits select the function of pin PB8/TxD3/TO8E.

| Bit 1: PB8MD1 | Bit 0: PB8MD0 | Description                         |                 |
|---------------|---------------|-------------------------------------|-----------------|
| 0             | 0             | General input/output (PB8)          | (Initial value) |
|               | 1             | Transmit data output (TxD3)         |                 |
| 1             | 0             | ATU-II one-shot pulse output (TO8E) |                 |
|               | 1             | Reserved (Do not set)               |                 |

## Port B Control Register L (PBCRL)

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9      | 8      |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                | PB7MD1 | PB7MD0 | PB6MD1 | PB6MD0 | PB5MD1 | PB5MD0 | PB4MD1 | PB4MD0 |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R/W    |
|                |        |        |        |        |        |        |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      |
|                | _      | PB3MD  | _      | PB2MD  | _      | PB1MD  | _      | PB0MD  |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R      | R/W    | R      | R/W    | R      | R/W    | R      | R/W    |

• Bits 15 and 14—PB7 Mode Bits 1 and 0 (PB7MD1, PB7MD0): These bits select the function of pin PB7/TO7D/TO8D.

| Bit 15: PB7MD1 | Bit 14: PB7MD0 | Description                         |                 |
|----------------|----------------|-------------------------------------|-----------------|
| 0              | 0              | General input/output (PB7)          | (Initial value) |
|                | 1              | ATU-II PWM output (TO7D)            |                 |
| 1              | 0              | ATU-II one-shot pulse output (TO8D) |                 |
|                | 1              | Reserved (Do not set)               |                 |

• Bits 13 and 12—PB6 Mode Bits 1 and 0 (PB6MD1, PB6MD0): These bits select the function of pin PB6/TO7C/TO8C.

| Bit 13: PB6MD1 | Bit 12: PB6MD0 | Description                         |                 |
|----------------|----------------|-------------------------------------|-----------------|
| 0              | 0              | General input/output (PB6)          | (Initial value) |
|                | 1              | ATU-II PWM output (TO7C)            |                 |
| 1              | 0              | ATU-II one-shot pulse output (TO8C) |                 |
|                | 1              | Reserved (Do not set)               |                 |

• Bits 11 and 10—PB5 Mode Bits 1 and 0 (PB5MD1, PB5MD0): These bits select the function of pin PB5/TO7B/TO8B.

| Bit 11: PB5MD1 | Bit 10: PB5MD0 | Description                         |  |
|----------------|----------------|-------------------------------------|--|
| 0              | 0              | General input/output (PB5)          |  |
|                | 1              | ATU-II PWM output (TO7B)            |  |
| 1              | 0              | ATU-II one-shot pulse output (TO8B) |  |
|                | 1              | Reserved (Do not set)               |  |

• Bits 9 and 8—PB4 Mode Bits 1 and 0 (PB4MD1, PB4MD0): These bits select the function of pin PB4/TO7A/TO8A.

| Bit 9: PB4MD1 | Bit 8: PB4MD0 | Description                         |                 |
|---------------|---------------|-------------------------------------|-----------------|
| 0             | 0             | General input/output (PB4)          | (Initial value) |
|               | 1             | ATU-II PWM output (TO7A)            |                 |
| 1             | 0             | ATU-II one-shot pulse output (TO8A) |                 |
|               | 1             | Reserved (Do not set)               |                 |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PB3 Mode Bit (PB3MD): Selects the function of pin PB3/TO6D.

| Bit 6: PB3MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PB3) | (Initial value) |
| 1            | ATU-II PWM output (TO6D)   |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PB2 Mode Bit (PB2MD): Selects the function of pin PB2/TO6C.

| Bit 4: PB2MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PB2) | (Initial value) |
| 1            | ATU-II PWM output (TO6C)   | _               |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PB1 Mode Bit (PB1MD): Selects the function of pin PB1/TO6B.

| Bit 2: PB1MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PB1) | (Initial value) |
| 1            | ATU-II PWM output (TO6B)   |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PB0 Mode Bit (PB0MD): Selects the function of pin PB0/TO6A.

| Bit 0: PB0MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PB0) | (Initial value) |
| 1            | ATU-II PWM output (TO6A)   |                 |

#### 20.3.5 Port B Invert Register (PBIR)

| Bit:           | 15     | 14     | 13     | 12    | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|-------|--------|--------|-------|-------|
|                | PB15IR | PB14IR | PB13IR | _     | PB11IR | PB10IR | PB9IR | PB8IR |
| Initial value: | 0      | 0      | 0      | 0     | 0      | 0      | 0     | 0     |
| R/W:           | R/W    | R/W    | R/W    | R     | R/W    | R/W    | R/W   | R/W   |
|                |        |        |        |       |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4     | 3      | 2      | 1     | 0     |
|                | PB7IR  | PB6IR  | PB5IR  | PB4IR | PB3IR  | PB2IR  | PB1IR | PB0IR |
| Initial value: | 0      | 0      | 0      | 0     | 0      | 0      | 0     | 0     |
| R/W:           | R/W    | R/W    | R/W    | R/W   | R/W    | R/W    | R/W   | R/W   |

The port B invert register (PBIR) is a 16-bit readable/writable register that sets the port B inversion function. Bits PB15IR to PB13IR and PB11IR to PB0IR correspond to pins PB15/PULS5/SCK2 to PB13/SCK0 and PB11/RxD4/HRxD0/T08H to PB0/T06A. PBIR is enabled when port B pins function as ATU-II outputs or serial clock pins, and disabled otherwise.

When port B pins function as ATU-II outputs or serial clock pins, the value of a pin is inverted when the corresponding bit in PBIR is set to 1.

PBIR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

| PBnIR | Description           |                 |
|-------|-----------------------|-----------------|
| 0     | Value is not inverted | (Initial value) |
| 1     | Value is inverted     | _               |

n = 15 to 13.11 to 0

#### 20.3.6 Port C IO Register (PCIOR)

| Bit:           | 15 | 14 | 13 | 12     | 11     | 10     | 9      | 8      |
|----------------|----|----|----|--------|--------|--------|--------|--------|
|                |    |    |    | _      |        |        |        | _      |
| Initial value: | 0  | 0  | 0  | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R      | R      | R      | R      | R      |
|                |    |    |    |        |        |        |        |        |
| Bit:           | 7  | 6  | 5  | 4      | 3      | 2      | 1      | 0      |
|                | _  | _  | _  | PC4IOR | PC3IOR | PC2IOR | PC1IOR | PC0IOR |
| Initial value: | 0  | 0  | 0  | 0      | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R/W    | R/W    | R/W    | R/W    | R/W    |

The port C IO register (PCIOR) is a 16-bit readable/writable register that selects the input/output direction of the 5 pins in port C. Bits PC4IOR to PC0IOR correspond to pins PC4/IRQ0 to PC0/TxD1. PCIOR is enabled when port C pins function as general input/output pins (PC4 to PC0), and disabled otherwise.

When port C pins function as PC4 to PC0, a pin becomes an output when the corresponding bit in PCIOR is set to 1, and an input when the bit is cleared to 0.

PCIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.7 Port C Control Register (PCCR)

The port C control register (PCCR) is a 16-bit readable/writable register that selects the functions of the 5 multiplex pins in port C.

PCCR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

| Bit:           | 15          | 14        | 13          | 12        | 11          | 10              | 9           | 8               |
|----------------|-------------|-----------|-------------|-----------|-------------|-----------------|-------------|-----------------|
|                | _           |           | 1           | _         |             | _               | _           | PC4MD           |
| Initial value: | 0           | 0         | 0           | 0         | 0           | 0               | 0           | 0               |
| R/W:           | R           | R         | R           | R         | R           | R               | R           | R/W             |
|                |             |           |             |           |             |                 |             |                 |
| Bit:           | 7           | 6         | 5           | 4         | 3           | 2               | 1           | 0               |
|                | _           | PC3MD     |             | PC2MD     |             | PC1MD           | _           | PC0MD           |
| Initial value: | 0           | 0         | 0           | 0         | 0           | 0               | 0           | 0               |
| R/W:           | R           | R/W       | R           | R/W       | R           | R/W             | R           | R/W             |
| Bit:           | 7<br>—<br>0 | 6 PC3MD 0 | 5<br>—<br>0 | 4 PC2MD 0 | 3<br>—<br>0 | 2<br>PC1MD<br>0 | 1<br>—<br>0 | 0<br>PC0MI<br>0 |

- Bits 15 to 9—Reserved: These bits are always read as 0. The write value should always be 0.
- Bit 8—PC4 Mode Bit (PC4MD): Selects the function of pin PC4/IRQ0.

| Bit 8: PC4MD | Description                    |                 |
|--------------|--------------------------------|-----------------|
| 0            | General input/output (PC4)     | (Initial value) |
| 1            | Interrupt request input (IRQ0) |                 |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PC3 Mode Bit (PC3MD): Selects the function of pin PC3/RxD2.

| Bit 6: PC3MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PC3) | (Initial value) |
| 1            | Receive data input (RxD2)  | _               |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PC2 Mode Bit (PC2MD): Selects the function of pin PC2/TxD2.

| Bit 4: PC2MD | Description                 |                 |
|--------------|-----------------------------|-----------------|
| 0            | General input/output (PC2)  | (Initial value) |
| 1            | Transmit data output (TxD2) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PC1 Mode Bit (PC1MD): Selects the function of pin PC1/RxD1.

| Bit 2: PC1MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PC1) | (Initial value) |
| 1            | Receive data input (RxD1)  |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PC0 Mode Bit (PC0MD): Selects the function of pin PC0/TxD1.

| Bit 0: PC0MD | Description                 |                 |
|--------------|-----------------------------|-----------------|
| 0            | General input/output (PC0)  | (Initial value) |
| 1            | Transmit data output (TxD1) |                 |

#### 20.3.8 Port D IO Register (PDIOR)

| Bit:           | 15         | 14         | 13          | 12          | 11          | 10          | 9          | 8          |
|----------------|------------|------------|-------------|-------------|-------------|-------------|------------|------------|
|                |            | _          | PD13<br>IOR | PD12<br>IOR | PD11<br>IOR | PD10<br>IOR | PD9<br>IOR | PC8<br>IOR |
| Initial value: | 0          | 0          | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R          | R          | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        |
| Bit:           | 7          | 6          | 5           | 4           | 3           | 2           | 1          | 0          |
|                | PD7<br>IOR | PD6<br>IOR | PD5<br>IOR  | PD4<br>IOR  | PD3<br>IOR  | PD2<br>IOR  | PD1<br>IOR | PD0<br>IOR |
| Initial value: | 0          | 0          | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W        | R/W        | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        |

The port D IO register (PDIOR) is a 16-bit readable/writable register that selects the input/output direction of the 14 pins in port D. Bits PD13IOR to PD0IOR correspond to pins PD13/PULS6/HTxD0/HTxD1 to PD0/TIO1A. PDIOR is enabled when port D pins function as general input/output pins (PD13 to PD0) or timer input/output pins, and disabled otherwise.

When port D pins function as PD13 to PD0 or timer input/output pins, a pin becomes an output when the corresponding bit in PDIOR is set to 1, and an input when the bit is cleared to 0.

PDIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

## 20.3.9 Port D Control Registers H and L (PDCRH, PDCRL)

Port D control registers H and L (PDCRH, PDCRL) are 16-bit readable/writable registers that select the functions of the 14 multiplex pins in port D. PDCRH selects the functions of the pins for the upper 6 bits of port D, and PDCRL selects the functions of the pins for the lower 8 bits.

PDCRH and PDCRL are initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. They are not initialized in software standby mode or sleep mode.

#### Port D Control Register H (PDCRH)

| Bit:           | 15 | 14         | 13 | 12         | 11          | 10          | 9 | 8          |
|----------------|----|------------|----|------------|-------------|-------------|---|------------|
|                | _  | _          | _  | _          | PD13<br>MD1 | PD13<br>MD0 | _ | PD12<br>MD |
| Initial value: | 0  | 0          | 0  | 0          | 0           | 0           | 0 | 0          |
| R/W:           | R  | R          | R  | R          | R/W         | R/W         | R | R/W        |
| Bit:           | 7  | 6          | 5  | 4          | 3           | 2           | 1 | 0          |
|                |    | PD11<br>MD |    | PD10<br>MD | _           | PD9<br>MD   | _ | PD8<br>MD  |
| Initial value: | 0  | 0          | 0  | 0          | 0           | 0           | 0 | 0          |
| R/W:           | R  | R/W        | R  | R/W        | R           | R/W         | R | R/W        |

- Bits 15 to 12—Reserved: These bits are always read as 0. The write value should always be 0.
- Bits 11 and 10—PD13 Mode Bits 1 and 0 (PD13MD1, PD13MD0): These bits select the function of pin PD13/PULS6/HTxD0/HTxD1.

| Bit 11: PD13MD1 | Bit 10: PD13MD0 | Description                       |                 |
|-----------------|-----------------|-----------------------------------|-----------------|
| 0               | 0               | General input/output (PD13)       | (Initial value) |
|                 | 1               | APC pulse output (PULS6)          |                 |
| 1               | 0               | HCAN transmit data output (HTxD0) |                 |
|                 | 1               | HCAN transmit data output (HTxD1) |                 |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PD12 Mode Bit (PD12MD): Selects the function of pin PD12/PULS4.

| Bit 8: PD12MD | Description                 |                 |
|---------------|-----------------------------|-----------------|
| 0             | General input/output (PD12) | (Initial value) |
| 1             | APC pulse output (PULS4)    | _               |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PD11 Mode Bit (PD11MD): Selects the function of pin PD11/PULS3.

| Bit 6: PD12MD | Description                 |                 |
|---------------|-----------------------------|-----------------|
| 0             | General input/output (PD11) | (Initial value) |
| 1             | APC pulse output (PULS3)    |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PD10 Mode Bit (PD10MD): Selects the function of pin PD10/PULS2.

| Bit 4: PD10MD | Description                 |                 |
|---------------|-----------------------------|-----------------|
| 0             | General input/output (PD10) | (Initial value) |
| 1             | APC pulse output (PULS2)    |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PD9 Mode Bit (PD9MD): Selects the function of pin PD9/PULS1.

| Bit 2: PD9MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PD9) | (Initial value) |
| 1            | APC pulse output (PULS1)   |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PD8 Mode Bit (PD8MD): Selects the function of pin PD8/PULS0.

| Bit 0: PD8MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PD8) | (Initial value) |
| 1            | APC pulse output (PULS0)   |                 |

### Port D Control Register L (PDCRL)

| Bit:           | 15 | 14    | 13 | 12    | 11 | 10    | 9 | 8     |
|----------------|----|-------|----|-------|----|-------|---|-------|
|                | _  | PD7MD |    | PD6MD |    | PD5MD | _ | PD4MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |
|                |    |       |    |       |    |       |   |       |
| Bit:           | 7  | 6     | 5  | 4     | 3  | 2     | 1 | 0     |
|                | _  | PD3MD | _  | PD2MD | _  | PD1MD | _ | PD0MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PD7 Mode Bit (PD7MD): Selects the function of pin PD7/TIO1H.

| Bit 14: PD7MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PD7)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO1H) |                 |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PD6 Mode Bit (PD6MD): Selects the function of pin PD6/TIO1G.

| Bit 12: PD6MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PD6)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO1G) | _               |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PD5 Mode Bit (PD5MD): Selects the function of pin PD5/TIO1F.

| Bit 10: PD5MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PD5)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO1F) |                 |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PD4 Mode Bit (PD4MD): Selects the function of pin PD4/TIO1E.

| Bit 8: PD4MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PD4)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO1E) |                 |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PD3 Mode Bit (PD3MD): Selects the function of pin PD3/TIO1D.

| Bit 6: PD3MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PD3)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO1D) |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PD2 Mode Bit (PD2MD): Selects the function of pin PD2/TIO1C.

| Bit 4: PD2MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PD2)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO1C) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PD1 Mode Bit (PD1MD): Selects the function of pin PD1/TIO1B.

| Bit 2: PD1MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PD1)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO1B) |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PD0 Mode Bit (PD0MD): Selects the function of pin PD0/TIO1A.

| Bit 0: PD0MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PD0)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO1A) | _               |

### 20.3.10 Port E IO Register (PEIOR)

| Bit:           | 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8   |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|-----|
|                | PE15<br>IOR | PE14<br>IOR | PE13<br>IOR | PE12<br>IOR | PE11<br>IOR | PE10<br>IOR | PE9<br>IOR | PE8 |
|                | IUK          IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0   |
| R/W:           | R/W          R/W |
|                |             |             |             |             |             |             |            |     |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2           | 1          | 0   |
|                | PE7         | PE6         | PE5         | PE4         | PE3         | PE2         | PE1        | PE0 |
|                | IOR          IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0   |
| R/W:           | R/W          R/W |

The port E IO register (PEIOR) is a 16-bit readable/writable register that selects the input/output direction of the 16 pins in port E. Bits PE15IOR to PE0IOR correspond to pins PE15/A15 to PE0/A0. PEIOR is enabled when port E pins function as general input/output pins (PE15 to PE0), and disabled otherwise.

When port E pins function as PE15 to PE0, a pin becomes an output when the corresponding bit in PEIOR is set to 1, and an input when the bit is cleared to 0.

PEIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.11 Port E Control Register (PECR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PE15<br>MD | PE14<br>MD | PE13<br>MD | PE12<br>MD | PE11<br>MD | PE10<br>MD | PE9<br>MD | PE8<br>MD |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
|                |            |            |            |            |            |            |           |           |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PE7<br>MD  | PE6<br>MD  | PE5<br>MD  | PE4<br>MD  | PE3<br>MD  | PE2<br>MD  | PE1<br>MD | PE0<br>MD |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port E control register (PECR) is a 16-bit readable/writable register that selects the functions of the 16 multiplex pins in port E. PECR settings are not valid in all operating modes.

- Expanded mode with on-chip ROM disabled
   Port E pins function as address output pins, and PECR settings are invalid.
- Expanded mode with on-chip ROM enabled
   Port E pins are multiplexed as address output pins and general input/output pins. PECR settings are valid.
- Single-chip mode
   Port E pins function as general input/output pins, and PECR settings are invalid.

PECR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

• Bit 15—PE15 Mode Bit (PE15MD): Selects the function of pin PE15/A15.

| Bit 15:<br>PE15MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled              | Single-Chip Mode                            |
|-------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------|
| 0                 | Address output (A15)<br>(Initial value) | General input/output (PE15) (Initial value) | General input/output (PE15) (Initial value) |
| 1                 | Address output (A15)                    | Address output (A15)                        | General input/output (PE15)                 |

• Bit 14—PE14 Mode Bit (PE14MD): Selects the function of pin PE14/A14.

### Description

| Bit 14:<br>PE14MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled                 | Single-Chip Mode                            |
|-------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
| 0                 | Address output (A14)<br>(Initial value) | General input/output (PE14)<br>(Initial value) | General input/output (PE14) (Initial value) |
| 1                 | Address output (A14)                    | Address output (A14)                           | General input/output (PE14)                 |

• Bit 13—PE13 Mode Bit (PE13MD): Selects the function of pin PE13/A13.

## Description

| Bit 13:<br>PE13MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled              | Single-Chip Mode                            |
|-------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------|
| 0                 | Address output (A13)<br>(Initial value) | General input/output (PE13) (Initial value) | General input/output (PE13) (Initial value) |
| 1                 | Address output (A13)                    | Address output (A13)                        | General input/output (PE13)                 |

• Bit 12—PE12 Mode Bit (PE12MD): Selects the function of pin PE12/A12.

## **Description**

| Bit 12:<br>PE12MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled                 | Single-Chip Mode                            |
|-------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
| 0                 | Address output (A12)<br>(Initial value) | General input/output (PE12)<br>(Initial value) | General input/output (PE12) (Initial value) |
| 1                 | Address output (A12)                    | Address output (A12)                           | General input/output (PE12)                 |

• Bit 11—PE11 Mode Bit (PE11MD): Selects the function of pin PE11/A11.

| Bit 11:<br>PE11MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled                 | Single-Chip Mode                            |
|-------------------|-----------------------------------------|------------------------------------------------|---------------------------------------------|
| 0                 | Address output (A11)<br>(Initial value) | General input/output (PE11)<br>(Initial value) | General input/output (PE11) (Initial value) |
| 1                 | Address output (A11)                    | Address output (A11)                           | General input/output (PE11)                 |

• Bit 10—PE10 Mode Bit (PE10MD): Selects the function of pin PE10/A10.

### Description

| Bit 10:<br>PE10MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled              | Single-Chip Mode                            |
|-------------------|-----------------------------------------|---------------------------------------------|---------------------------------------------|
| 0                 | Address output (A10)<br>(Initial value) | General input/output (PE10) (Initial value) | General input/output (PE10) (Initial value) |
| 1                 | Address output (A10)                    | Address output (A10)                        | General input/output (PE10)                 |

• Bit 9—PE9 Mode Bit (PE9MD): Selects the function of pin PE9/A9.

## Description

| Bit 9:<br>PE9MD | Expanded Mode with ROM Disabled        | Expanded Mode with ROM Enabled             | Single-Chip Mode                              |
|-----------------|----------------------------------------|--------------------------------------------|-----------------------------------------------|
| 0               | Address output (A9)<br>(Initial value) | General input/output (PE9) (Initial value) | General input/output (PE9)<br>(Initial value) |
| 1               | Address output (A9)                    | Address output (A9)                        | General input/output (PE9)                    |

• Bit 8—PE8 Mode Bit (PE8MD): Selects the function of pin PE8/A8.

## Description

| Bit 8:<br>PE8MD | Expanded Mode with ROM Disabled        | Expanded Mode with ROM Enabled             | Single-Chip Mode                              |
|-----------------|----------------------------------------|--------------------------------------------|-----------------------------------------------|
| 0               | Address output (A8)<br>(Initial value) | General input/output (PE8) (Initial value) | General input/output (PE8)<br>(Initial value) |
| 1               | Address output (A8)                    | Address output (A8)                        | General input/output (PE8)                    |

• Bit 7—PE7 Mode Bit (PE7MD): Selects the function of pin PE7/A7.

| Bit 7:<br>PE7MD | Expanded Mode with ROM Disabled        | Expanded Mode with ROM Enabled             | Single-Chip Mode                           |
|-----------------|----------------------------------------|--------------------------------------------|--------------------------------------------|
| 0               | Address output (A7)<br>(Initial value) | General input/output (PE7) (Initial value) | General input/output (PE7) (Initial value) |
| 1               | Address output (A7)                    | Address output (A7)                        | General input/output (PE7)                 |

• Bit 6—PE6 Mode Bit (PE6MD): Selects the function of pin PE6/A6.

### Description

| Bit 6:<br>PE6MD | Expanded Mode with ROM Disabled     | Expanded Mode with ROM Enabled                | Single-Chip Mode                              |
|-----------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 0               | Address output (A6) (Initial value) | General input/output (PE6)<br>(Initial value) | General input/output (PE6)<br>(Initial value) |
| 1               | Address output (A6)                 | Address output (A6)                           | General input/output (PE6)                    |

• Bit 5—PE5 Mode Bit (PE5MD): Selects the function of pin PE5/A5.

## Description

| Bit 5:<br>PE5MD | Expanded Mode with ROM Disabled        | Expanded Mode with ROM Enabled             | Single-Chip Mode                              |
|-----------------|----------------------------------------|--------------------------------------------|-----------------------------------------------|
| 0               | Address output (A5)<br>(Initial value) | General input/output (PE5) (Initial value) | General input/output (PE5)<br>(Initial value) |
| 1               | Address output (A5)                    | Address output (A5)                        | General input/output (PE5)                    |

• Bit 4—PE4 Mode Bit (PE4MD): Selects the function of pin PE4/A4.

## **Description**

| Bit 4:<br>PE4MD | Expanded Mode with ROM Disabled     | Expanded Mode with ROM Enabled                | Single-Chip Mode                              |
|-----------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 0               | Address output (A4) (Initial value) | General input/output (PE4)<br>(Initial value) | General input/output (PE4)<br>(Initial value) |
| 1               | Address output (A4)                 | Address output (A4)                           | General input/output (PE4)                    |

• Bit 3—PE3 Mode Bit (PE3MD): Selects the function of pin PE3/A3.

| Bit 3:<br>PE3MD | Expanded Mode with ROM Disabled     | Expanded Mode with ROM Enabled                | Single-Chip Mode                              |
|-----------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 0               | Address output (A3) (Initial value) | General input/output (PE3)<br>(Initial value) | General input/output (PE3)<br>(Initial value) |
| 1               | Address output (A3)                 | Address output (A3)                           | General input/output (PE3)                    |

• Bit 2—PE2 Mode Bit (PE2MD): Selects the function of pin PE2/A2.

### Description

| Bit 2:<br>PE2MD | Expanded Mode with ROM Disabled        | Expanded Mode with ROM Enabled             | Single-Chip Mode                           |
|-----------------|----------------------------------------|--------------------------------------------|--------------------------------------------|
| 0               | Address output (A2)<br>(Initial value) | General input/output (PE2) (Initial value) | General input/output (PE2) (Initial value) |
| 1               | Address output (A2)                    | Address output (A2)                        | General input/output (PE2)                 |

• Bit 1—PE1 Mode Bit (PE1MD): Selects the function of pin PE1/A1.

### Description

| Bit 1:<br>PE1MD | Expanded Mode with ROM Disabled     | Expanded Mode with ROM Enabled             | Single-Chip Mode                              |
|-----------------|-------------------------------------|--------------------------------------------|-----------------------------------------------|
| 0               | Address output (A1) (Initial value) | General input/output (PE1) (Initial value) | General input/output (PE1)<br>(Initial value) |
| 1               | Address output (A1)                 | Address output (A1)                        | General input/output (PE1)                    |

• Bit 0—PE0 Mode Bit (PE0MD): Selects the function of pin PE0/A0.

| Bit 0:<br>PE0MD | Expanded Mode with ROM Disabled     | Expanded Mode<br>with ROM Enabled             | Single-Chip Mode                              |
|-----------------|-------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 0               | Address output (A0) (Initial value) | General input/output (PE0)<br>(Initial value) | General input/output (PE0)<br>(Initial value) |
| 1               | Address output (A0)                 | Address output (A0)                           | General input/output (PE0)                    |

#### 20.3.12 Port F IO Register (PFIOR)

| Bit:           | 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8          |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
|                | PF15<br>IOR | PF14<br>IOR | PF13<br>IOR | PF12<br>IOR | PF11<br>IOR | PF10<br>IOR | PF9<br>IOR | PF8<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2           | 1          | 0          |
|                | PF7<br>IOR  | PF6<br>IOR  | PF5<br>IOR  | PF4<br>IOR  | PF3<br>IOR  | PF2<br>IOR  | PF1<br>IOR | PF0<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |

The port F IO register (PFIOR) is a 16-bit readable/writable register that selects the input/output direction of the 16 pins in port F. Bits PF15IOR to PF0IOR correspond to pins PF15/BREQ to PF0/A16. PFIOR is enabled when port F pins function as general input/output pins (PF15 to PF0), and disabled otherwise.

When port F pins function as PF15 to PF0, a pin becomes an output when the corresponding bit in PFIOR is set to 1, and an input when the bit is cleared to 0.

PFIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.13 Port F Control Registers H and L (PFCRH, PFCRL)

Port F control registers H and L (PFCRH, PFCRL) are 16-bit readable/writable registers that select the functions of the 16 multiplex pins in port F and the function of the CK pin. PFCRH selects the functions of the pins for the upper 8 bits of port F, and PFCRL selects the functions of the pins for the lower 8 bits.

PFCRH and PFCRL are initialized to H'0015 and H'5000, respectively, by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. They are not initialized in software standby mode or sleep mode.

#### Port F Control Register H (PFCRH)

| Bit:           | 15    | 14     | 13 | 12     | 11 | 10     | 9 | 8      |
|----------------|-------|--------|----|--------|----|--------|---|--------|
|                | CKHIZ | PF15MD | _  | PF14MD | _  | PF13MD | _ | PF12MD |
| Initial value: | 0     | 0      | 0  | 0      | 0  | 0      | 0 | 0      |
| R/W:           | R/W   | R/W    | R  | R/W    | R  | R/W    | R | R/W    |
|                |       |        |    |        |    |        |   |        |
| Bit:           | 7     | 6      | 5  | 4      | 3  | 2      | 1 | 0      |
|                | _     | PF11MD | _  | PF10MD | _  | PF9MD  | _ | PF8MD  |
| Initial value: | 0     | 0      | 0  | 1      | 0  | 1      | 0 | 1      |
| R/W:           | R     | R/W    | R  | R/W    | R  | R/W    | R | R/W    |

• Bit 15—CKHIZ Bit: Selects the function of pin CK.

| Bit: CKHIZ | Description   |                 |
|------------|---------------|-----------------|
| 0          | CK pin output | (Initial value) |
| 1          | CK pin Hi-Z   |                 |

• Bit 14—PF15 Mode Bit (PF15MD): Selects the function of pin PF15/BREQ.

| Bit 14: PF15MD | Expanded Mode                               | Single-Chip Mode                               |
|----------------|---------------------------------------------|------------------------------------------------|
| 0              | General input/output (PF15) (Initial value) | General input/output (PF15)<br>(Initial value) |
| 1              | Bus request input (BREQ)                    | General input/output (PF15)                    |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PF14 Mode Bit (PF14MD): Selects the function of pin PF14/BACK.

| Bit 12: PF14MD | Expanded Mode                                  | Single-Chip Mode                               |
|----------------|------------------------------------------------|------------------------------------------------|
| 0              | General input/output (PF14)<br>(Initial value) | General input/output (PF14)<br>(Initial value) |
| 1              | Bus acknowledge output (BACK)                  | General input/output (PF14)                    |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PF13 Mode Bit (PF13MD): Selects the function of pin PF13/CS3.

## Description

| Bit 10: PF13MD | Expanded Mode                               | Single-Chip Mode                               |
|----------------|---------------------------------------------|------------------------------------------------|
| 0              | General input/output (PF13) (Initial value) | General input/output (PF13)<br>(Initial value) |
| 1              | Chip select output (CS3)                    | General input/output (PF13)                    |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PF12 Mode Bit (PF12MD): Selects the function of pin PF12/\overline{CS2}.

#### Description

| Bit 8: PF12MD | Expanded Mode                                  | Single-Chip Mode                               |
|---------------|------------------------------------------------|------------------------------------------------|
| 0             | General input/output (PF12)<br>(Initial value) | General input/output (PF12)<br>(Initial value) |
| 1             | Chip select output (CS2)                       | General input/output (PF12)                    |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PF11 Mode Bit (PF11MD): Selects the function of pin PF11/CS1.

| Bit 6: PF11MD | Expanded Mode                               | Single-Chip Mode                               |
|---------------|---------------------------------------------|------------------------------------------------|
| 0             | General input/output (PF11) (Initial value) | General input/output (PF11)<br>(Initial value) |
| 1             | Chip select output (CS1)                    | General input/output (PF11)                    |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PF10 Mode Bit (PF10MD): Selects the function of pin PF10/\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\overline{\colored}\over

| _     |     |              |     |
|-------|-----|--------------|-----|
| 11000 | rır | <b>\</b> †I^ | n   |
| Desc  | IIL | u            | ,,, |
|       |     |              |     |

| Bit 4: PF10MD | Expanded Mode                            | Single-Chip Mode                               |
|---------------|------------------------------------------|------------------------------------------------|
| 0             | General input/output (PF10)              | General input/output (PF10)                    |
| 1             | Chip select output (CSO) (Initial value) | General input/output (PF10)<br>(Initial value) |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PF9 Mode Bit (PF9MD): Selects the function of pin PF9/RD.

| Bit 2: PF9MD | Expanded Mode                       | Single-Chip Mode                              |
|--------------|-------------------------------------|-----------------------------------------------|
| 0            | General input/output (PF9)          | General input/output (PF9)                    |
| 1            | Read output (RD)<br>(Initial value) | General input/output (PF9)<br>(Initial value) |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PF8 Mode Bit (PF8MD): Selects the function of pin PF8/WAIT.

### Description

| Bit 0: PF8MD | Expanded Mode                           | Single-Chip Mode                              |
|--------------|-----------------------------------------|-----------------------------------------------|
| 0            | General input/output (PF8)              | General input/output (PF8)                    |
| 1            | Wait state input (WAIT) (Initial value) | General input/output (PF8)<br>(Initial value) |

## Port F Control Register L (PFCRL)

| Bit:           | 15 | 14    | 13 | 12    | 11     | 10     | 9 | 8     |
|----------------|----|-------|----|-------|--------|--------|---|-------|
|                | _  | PF7MD | _  | PF6MD | PF5MD1 | PF5MD0 | _ | PF4MD |
| Initial value: | 0  | 1     | 0  | 1     | 0      | 0      | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R/W    | R/W    | R | R/W   |
|                |    |       |    |       |        |        |   |       |
| Bit:           | 7  | 6     | 5  | 4     | 3      | 2      | 1 | 0     |
|                | _  | PF3MD |    | PF2MD | _      | PF1MD  | _ | PF0MD |
| Initial value: | 0  | 0     | 0  | 0     | 0      | 0      | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R      | R/W    | R | R/W   |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PF7 Mode Bit (PF7MD): Selects the function of pin PF7/WRH.

| Desc | ш     | LIUII |
|------|-------|-------|
|      | · - F |       |

| Bit 14: PF7MD | Expanded Mode                        | Single-Chip Mode                              |
|---------------|--------------------------------------|-----------------------------------------------|
| 0             | General input/output (PF7)           | General input/output (PF7)                    |
| 1             | Upper write (WRH)<br>(Initial value) | General input/output (PF7)<br>(Initial value) |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PF6 Mode Bit (PF6MD): Selects the function of pin PF6/WRL.

| Bit 12: PF6MD | Expanded Mode                        | Single-Chip Mode                              |
|---------------|--------------------------------------|-----------------------------------------------|
| 0             | General input/output (PF6)           | General input/output (PF6)                    |
| 1             | Lower write (WRL)<br>(Initial value) | General input/output (PF6)<br>(Initial value) |

• Bits 11 and 10—PF5 Mode Bits 1 and 0 (PF5MD1, PF5MD0): These bits select the function of pin PF5/A21/POD.

| Bit 11:<br>PF5MD1 | Bit 10:<br>PF5MD0 | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled                | Single-Chip Mode                           |
|-------------------|-------------------|-----------------------------------------|-----------------------------------------------|--------------------------------------------|
| 0                 | 0                 | Address output (A21)<br>(Initial value) | General input/output<br>(PF5) (Initial value) | General input/output (PF5) (Initial value) |
|                   | 1                 | Address output (A21)                    | Address output (A21)                          | General input/output (PF5)                 |
| 1                 | 0                 | Address output (A21)                    | Port output disable input (POD)               | Port output disable input (POD)            |
|                   | 1                 | Reserved (Do not set)                   | Reserved (Do not set)                         | Reserved (Do not set)                      |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PF4 Mode Bit (PF4MD): Selects the function of pin PF4/A20.

| Bit 8:<br>PF4MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled                | Single-Chip Mode                              |
|-----------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 0               | Address output (A20)<br>(Initial value) | General input/output (PF4)<br>(Initial value) | General input/output (PF4)<br>(Initial value) |
| 1               | Address output (A20)                    | Address output (A20)                          | General input/output (PF4)                    |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PF3 Mode Bit (PF3MD): Selects the function of pin PF3/A19.

### **Description**

| Bit 6:<br>PF3MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled             | Single-Chip Mode                              |
|-----------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|
| 0               | Address output (A19)<br>(Initial value) | General input/output (PF3) (Initial value) | General input/output (PF3)<br>(Initial value) |
| 1               | Address output (A19)                    | Address output (A19)                       | General input/output (PF3)                    |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PF2 Mode Bit (PF2MD): Selects the function of pin PF2/A18.

## Description

| Bit 4:<br>PF2MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled             | Single-Chip Mode                           |
|-----------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|
| 0               | Address output (A18)<br>(Initial value) | General input/output (PF2) (Initial value) | General input/output (PF2) (Initial value) |
| 1               | Address output (A18)                    | Address output (A18)                       | General input/output (PF2)                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PF1 Mode Bit (PF1MD): Selects the function of pin PF1/A17.

| Bit 2:<br>PF1MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled             | Single-Chip Mode                              |
|-----------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|
| 0               | Address output (A17)<br>(Initial value) | General input/output (PF1) (Initial value) | General input/output (PF1)<br>(Initial value) |
| 1               | Address output (A17)                    | Address output (A17)                       | General input/output (PF1)                    |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PF0 Mode Bit (PF0MD): Selects the function of pin PF0/A16.

| _    |     |     |   |
|------|-----|-----|---|
| Desc | rın | ti0 | n |
| 2000 |     |     |   |

| Bit 0:<br>PF0MD | Expanded Mode with ROM Disabled         | Expanded Mode with ROM Enabled             | Single-Chip Mode                              |
|-----------------|-----------------------------------------|--------------------------------------------|-----------------------------------------------|
| 0               | Address output (A16)<br>(Initial value) | General input/output (PF0) (Initial value) | General input/output (PF0)<br>(Initial value) |
| 1               | Address output (A16)                    | Address output (A16)                       | General input/output (PF0)                    |

### 20.3.14 Port G IO Register (PGIOR)

| Bit:           | 15 | 14 | 13 | 12 | 11     | 10     | 9      | 8      |
|----------------|----|----|----|----|--------|--------|--------|--------|
|                |    |    |    | -  | _      | _      | _      | _      |
| Initial value: | 0  | 0  | 0  | 0  | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R      | R      | R      | R      |
|                |    |    |    |    |        |        |        |        |
| Bit:           | 7  | 6  | 5  | 4  | 3      | 2      | 1      | 0      |
|                | _  | _  | _  | _  | PG3IOR | PG2IOR | PG1IOR | PG0IOR |
| Initial value: | 0  | 0  | 0  | 0  | 0      | 0      | 0      | 0      |
| R/W:           | R  | R  | R  | R  | R/W    | R/W    | R/W    | R/W    |

The port G IO register (PGIOR) is a 16-bit readable/writable register that selects the input/output direction of the 4 pins in port G. Bits PG3IOR to PG0IOR correspond to pins PG3/IRQ3/ADTRG0 to PG0/PULS7/HRxD0/HRxD1.

When port G pins function as PG3 to PG0, a pin becomes an output when the corresponding bit in PGIOR is set to 1, and an input when the bit is cleared to 0.

PGIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

### 20.3.15 Port G Control Register (PGCR)

The port G control register (PGCR) is a 16-bit readable/writable register that selects the functions of the 4 multiplex pins in port G.

PGCR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

| Bit:           | 15     | 14     | 13     | 12     | 11 | 10    | 9      | 8      |
|----------------|--------|--------|--------|--------|----|-------|--------|--------|
|                | _      | _      | _      |        |    | _     | _      | _      |
| Initial value: | 0      | 0      | 0      | 0      | 0  | 0     | 0      | 0      |
| R/W:           | R      | R      | R      | R      | R  | R     | R      | R      |
|                |        |        |        |        |    |       |        |        |
| Bit:           | 7      | 6      | 5      | 4      | 3  | 2     | 1      | 0      |
|                | PG3MD1 | PG3MD0 | PG2MD1 | PG2MD0 |    | PG1MD | PG0MD1 | PG0MD0 |
| Initial value: | 0      | 0      | 0      | 0      | 0  | 0     | 0      | 0      |
| R/W:           | R/W    | R/W    | R/W    | R/W    | R  | R/W   | R/W    | R/W    |

- Bits 15 to 8—Reserved: These bits are always read as 0. The write value should always be 0.
- Bits 7 and 6—PG3 Mode Bits 1 and 0 (PG3MD1, PG3MD0): These bits select the function of pin PG3/IRQ3/ADTRG0.

| Bit 7: PG3MD1 | Bit 6: PG3MD0 | Description                           |                 |
|---------------|---------------|---------------------------------------|-----------------|
| 0             | 0             | General input/output (PG3)            | (Initial value) |
|               | 1             | Interrupt request input (IRQ3)        |                 |
| 1             | 0             | A/D conversion trigger input (ADTRG0) |                 |
|               | 1             | Reserved (Do not set)                 |                 |

• Bits 5 and 4—PG2 Mode Bits 1 and 0 (PG2MD1, PG2MD0): These bits select the function of pin PG2/IRQ2/ADEND.

| Bit 5: PG2MD1 | Bit 4: PG2MD0 | Description                       |                 |
|---------------|---------------|-----------------------------------|-----------------|
| 0             | 0             | General input/output (PG2)        | (Initial value) |
|               | 1             | Interrupt request input (IRQ2)    |                 |
| 1             | 0             | A/D conversion end output (ADEND) |                 |
|               | 1             | Reserved (Do not set)             |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PG1 Mode Bit (PG1MD): Selects the function of pin PG1/IRQ1.

| Bit 2: PG1MD | Description                    |                 |
|--------------|--------------------------------|-----------------|
| 0            | General input/output (PG1)     | (Initial value) |
| 1            | Interrupt request input (IRQ1) |                 |

• Bits 1 and 0—PG0 Mode Bits 1 and 0 (PG0MD1, PG2MD0): These bits select the function of pin PG0/PULS7/HRxD0/HRxD1.

| Bit 1: PG0MD1 | Bit 0: PG0MD0 | Description                     |                 |
|---------------|---------------|---------------------------------|-----------------|
| 0             | 0             | General input/output (PG0)      | (Initial value) |
|               | 1             | APC pulse output (PULS7)        |                 |
| 1             | 0             | HCAN receive data input (HRxD0) |                 |
|               | 1             | HCAN receive data input (HRxD1) |                 |

#### 20.3.16 Port H IO Register (PHIOR)

| Bit:           | 15   | 14   | 13   | 12   | 11   | 10   | 9   | 8   |
|----------------|------|------|------|------|------|------|-----|-----|
|                | PH15 | PH14 | PH13 | PH12 | PH11 | PH10 | PH9 | PH8 |
|                | IOR  | IOR  | IOR  | IOR  | IOR  | IOR  | IOR | IOR |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W | R/W |
|                |      |      |      |      |      |      |     |     |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1   | 0   |
|                | PH7  | PH6  | PH5  | PH4  | PH3  | PH2  | PH1 | PH0 |
|                | IOR  | IOR  | IOR  | IOR  | IOR  | IOR  | IOR | IOR |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W | R/W |

The port H IO register (PHIOR) is a 16-bit readable/writable register that selects the input/output direction of the 16 pins in port H. Bits PH15IOR to PH0IOR correspond to pins PH15/D15 to PH0/D0. PHIOR is enabled when port H pins function as general input/output pins (PH15 to PH0), and disabled otherwise.

When port H pins function as PH15 to PH0, a pin becomes an output when the corresponding bit in PHIOR is set to 1, and an input when the bit is cleared to 0.

PHIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.17 Port H Control Register (PHCR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PH15<br>MD | PH14<br>MD | PH13<br>MD | PH12<br>MD | PH11<br>MD | PH10<br>MD | PH9<br>MD | PH8<br>MD |
|                | טועו       | טועו       | טועו       | IVID       | טועו       | טועו       | טועו      | טועו      |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
|                |            |            |            |            |            |            |           |           |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PH7        | PH6        | PH5        | PH4        | PH3        | PH2        | PH1       | PH0       |
|                | MD          MD        |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port H control register (PHCR) is a 16-bit readable/writable register that selects the functions of the 16 multiplex pins in port H. PHCR settings are not valid in all operating modes.

- Expanded mode with on-chip ROM disabled (area 0: 8-bit bus)
   Port H pins D0 to D7 function as data input/output pins, and PHCR settings are invalid.
- 2. Expanded mode with on-chip ROM disabled (area 0: 16-bit bus)

  Port H pins function as data input/output pins, and PHCR settings are invalid.
- Expanded mode with on-chip ROM enabled
   Port H pins are multiplexed as data input/output pins and general input/output pins. PHCR settings are valid.
- 4. Single-chip mode

  Port H pins function as general input/output pins, and PHCR settings are invalid.

PHCR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

• Bit 15—PH15 Mode Bit (PH15MD): Selects the function of pin PH15/D15.

# Description

| Bit 15:<br>PH15MD | Expanded Mode with ROM Disabled Area 0: 8 Bits | Expanded Mode<br>with ROM Disabled<br>Area 0: 16 Bits | Expanded Mode with ROM Enabled | Single-Chip Mode     |
|-------------------|------------------------------------------------|-------------------------------------------------------|--------------------------------|----------------------|
| 0                 | General input/output                           | Data input/output                                     | General input/output           | General input/output |
|                   | (PH15)                                         | (D15)                                                 | (PH15)                         | (PH15)               |
|                   | (Initial value)                                | (Initial value)                                       | (Initial value)                | (Initial value)      |
| 1                 | Data input/output                              | Data input/output                                     | Data input/output              | General input/output |
|                   | (D15)                                          | (D15)                                                 | (D15)                          | (PH15)               |

• Bit 14—PH14 Mode Bit (PH14MD): Selects the function of pin PH14/D14.

# Description

| Bit 14:<br>PH14MD | Expanded Mode with ROM Disabled Area 0: 8 Bits    | Expanded Mode with ROM Disabled Area 0: 16 Bits | Expanded Mode with ROM Enabled                    | Single-Chip Mode                                  |
|-------------------|---------------------------------------------------|-------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0                 | General input/output<br>(PH14)<br>(Initial value) | Data input/output<br>(D14)<br>(Initial value)   | General input/output<br>(PH14)<br>(Initial value) | General input/output<br>(PH14)<br>(Initial value) |
| 1                 | Data input/output<br>(D14)                        | Data input/output<br>(D14)                      | Data input/output<br>(D14)                        | General input/output (PH14)                       |

• Bit 13—PH13 Mode Bit (PH13MD): Selects the function of pin PH13/D13.

| Bit 13:<br>PH13MD | Expanded Mode<br>with ROM Disabled<br>Area 0: 8 Bits | Expanded Mode<br>with ROM Disabled<br>Area 0: 16 Bits | Expanded Mode with ROM Enabled                    | Single-Chip Mode                                  |
|-------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0                 | General input/output<br>(PH13)<br>(Initial value)    | Data input/output<br>(D13)<br>(Initial value)         | General input/output<br>(PH13)<br>(Initial value) | General input/output<br>(PH13)<br>(Initial value) |
| 1                 | Data input/output<br>(D13)                           | Data input/output (D13)                               | Data input/output (D13)                           | General input/output (PH13)                       |

• Bit 12—PH12 Mode Bit (PH12MD): Selects the function of pin PH12/D12.

### Description

| Bit 12:<br>PH12MD | Expanded Mode with ROM Disabled Area 0: 8 Bits    | Expanded Mode<br>with ROM Disabled<br>Area 0: 16 Bits | Expanded Mode with ROM Enabled                    | Single-Chip Mode                                  |
|-------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0                 | General input/output<br>(PH12)<br>(Initial value) | Data input/output<br>(D12)<br>(Initial value)         | General input/output<br>(PH12)<br>(Initial value) | General input/output<br>(PH12)<br>(Initial value) |
| 1                 | Data input/output<br>(D12)                        | Data input/output<br>(D12)                            | Data input/output<br>(D12)                        | General input/output (PH12)                       |

• Bit 11—PH11 Mode Bit (PH11MD): Selects the function of pin PH11/D11.

### Description

| Bit 11:<br>PH11MD | Expanded Mode with ROM Disabled Area 0: 8 Bits    | Expanded Mode with ROM Disabled Area 0: 16 Bits | Expanded Mode with ROM Enabled | Single-Chip Mode                            |
|-------------------|---------------------------------------------------|-------------------------------------------------|--------------------------------|---------------------------------------------|
| 0                 | General input/output<br>(PH11)<br>(Initial value) | Data input/output<br>(D11)<br>(Initial value)   |                                | General input/output (PH11) (Initial value) |
| 1                 | Data input/output<br>(D11)                        | Data input/output (D11)                         | Data input/output (D11)        | General input/output (PH11)                 |

• Bit 10—PH10 Mode Bit (PH10MD): Selects the function of pin PH10/D10.

| Bit 10:<br>PH10MD | Expanded Mode<br>with ROM Disabled<br>Area 0: 8 Bits | Expanded Mode<br>with ROM Disabled<br>Area 0: 16 Bits | Expanded Mode with ROM Enabled                    | Single-Chip Mode                                  |
|-------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|
| 0                 | General input/output<br>(PH10)<br>(Initial value)    | Data input/output<br>(D10)<br>(Initial value)         | General input/output<br>(PH10)<br>(Initial value) | General input/output<br>(PH10)<br>(Initial value) |
| 1                 | Data input/output<br>(D10)                           | Data input/output<br>(D10)                            | Data input/output (D10)                           | General input/output (PH10)                       |

• Bit 9—PH9 Mode Bit (PH9MD): Selects the function of pin PH9/D9.

# Description

| Bit 9:<br>PH9MD | Expanded Mode with ROM Disabled Area 0: 8 Bits   | Expanded Mode<br>with ROM Disabled<br>Area 0: 16 Bits | Expanded Mode with ROM Enabled                   | Single-Chip Mode                                 |
|-----------------|--------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 0               | General input/output<br>(PH9)<br>(Initial value) | Data input/output<br>(D9)<br>(Initial value)          | General input/output<br>(PH9)<br>(Initial value) | General input/output<br>(PH9)<br>(Initial value) |
| 1               | Data input/output<br>(D9)                        | Data input/output (D9)                                | Data input/output (D9)                           | General input/output (PH9)                       |

• Bit 8—PH8 Mode Bit (PH8MD): Selects the function of pin PH8/D8.

# Description

| Bit 8:<br>PH8MD | Expanded Mode<br>with ROM Disabled<br>Area 0: 8 Bits | Expanded Mode<br>with ROM Disabled<br>Area 0: 16 Bits | Expanded Mode with ROM Enabled                   | Single-Chip Mode                                 |
|-----------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
| 0               | General input/output<br>(PH8)<br>(Initial value)     | Data input/output<br>(D8)<br>(Initial value)          | General input/output<br>(PH8)<br>(Initial value) | General input/output<br>(PH8)<br>(Initial value) |
| 1               | Data input/output<br>(D8)                            | Data input/output (D8)                                | Data input/output (D8)                           | General input/output (PH8)                       |

• Bit 7—PH7 Mode Bit (PH7MD): Selects the function of pin PH7/D7.

| Bit 7:<br>PH7MD | Expanded Mode with ROM Disabled           | Expanded Mode with ROM Enabled             | Single-Chip Mode                           |
|-----------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D7)<br>(Initial value) | General input/output (PH7) (Initial value) | General input/output (PH7) (Initial value) |
| 1               | Data input/output (D7)                    | Data input/output (D7)                     | General input/output (PH7)                 |

• Bit 6—PH6 Mode Bit (PH6MD): Selects the function of pin PH6/D6.

### Description

| Bit 6:<br>PH6MD | Expanded Mode with ROM Disabled        | Expanded Mode with ROM Enabled                | Single-Chip Mode                           |
|-----------------|----------------------------------------|-----------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D6) (Initial value) | General input/output (PH6)<br>(Initial value) | General input/output (PH6) (Initial value) |
| 1               | Data input/output (D6)                 | Data input/output (D6)                        | General input/output (PH6)                 |

• Bit 5—PH5 Mode Bit (PH5MD): Selects the function of pin PH5/D5.

# Description

| Bit 5:<br>PH5MD | Expanded Mode with ROM Disabled           | Expanded Mode with ROM Enabled             | Single-Chip Mode                           |
|-----------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D5)<br>(Initial value) | General input/output (PH5) (Initial value) | General input/output (PH5) (Initial value) |
| 1               | Data input/output (D5)                    | Data input/output (D5)                     | General input/output (PH5)                 |

• Bit 4—PH4 Mode Bit (PH4MD): Selects the function of pin PH4/D4.

# Description

| Bit 4:<br>PH4MD | Expanded Mode with ROM Disabled           | Expanded Mode with ROM Enabled                | Single-Chip Mode                           |
|-----------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D4)<br>(Initial value) | General input/output (PH4)<br>(Initial value) | General input/output (PH4) (Initial value) |
| 1               | Data input/output (D4)                    | Data input/output (D4)                        | General input/output (PH4)                 |

• Bit 3—PH3 Mode Bit (PH3MD): Selects the function of pin PH3/D3.

| Bit 3:<br>PH3MD | Expanded Mode with ROM Disabled           | Expanded Mode with ROM Enabled                | Single-Chip Mode                           |
|-----------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D3)<br>(Initial value) | General input/output (PH3)<br>(Initial value) | General input/output (PH3) (Initial value) |
| 1               | Data input/output (D3)                    | Data input/output (D3)                        | General input/output (PH3)                 |

• Bit 2—PH2 Mode Bit (PH2MD): Selects the function of pin PH2/D2.

# **Description**

| Bit 2:<br>PH2MD | Expanded Mode with ROM Disabled           | Expanded Mode with ROM Enabled                | Single-Chip Mode                           |
|-----------------|-------------------------------------------|-----------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D2)<br>(Initial value) | General input/output (PH2)<br>(Initial value) | General input/output (PH2) (Initial value) |
| 1               | Data input/output (D2)                    | Data input/output (D2)                        | General input/output (PH2)                 |

• Bit 1—PH1 Mode Bit (PH1MD): Selects the function of pin PH1/D1.

# **Description**

| Bit 1:<br>PH1MD | Expanded Mode with ROM Disabled           | Expanded Mode with ROM Enabled             | Single-Chip Mode                           |
|-----------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D1)<br>(Initial value) | General input/output (PH1) (Initial value) | General input/output (PH1) (Initial value) |
| 1               | Data input/output (D1)                    | Data input/output (D1)                     | General input/output (PH1)                 |

• Bit 0—PH0 Mode Bit (PH0MD): Selects the function of pin PH0/D0.

| Bit 0:<br>PH0MD | Expanded Mode with ROM Disabled           | Expanded Mode with ROM Enabled             | Single-Chip Mode                           |
|-----------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|
| 0               | Data input/output (D0)<br>(Initial value) | General input/output (PH0) (Initial value) | General input/output (PH0) (Initial value) |
| 1               | Data input/output (D0)                    | Data input/output (D0)                     | General input/output (PH0)                 |

#### 20.3.18 Port J IO Register (PJIOR)

| Bit:           | 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8          |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
|                | PJ15<br>IOR | PJ14<br>IOR | PJ13<br>IOR | PJ12<br>IOR | PJ11<br>IOR | PJ10<br>IOR | PJ9<br>IOR | PJ8<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |
|                |             |             |             |             |             |             |            |            |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2           | 1          | 0          |
|                | PJ7<br>IOR  | PJ6<br>IOR  | PJ5<br>IOR  | PJ4<br>IOR  | PJ3<br>IOR  | PJ2<br>IOR  | PJ1<br>IOR | PJ0<br>IOR |
|                | IUK         | IOK         | IOK         | IOK         | IOK         | IOK         | IOK        | IOR        |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |

The port J IO register (PJIOR) is a 16-bit readable/writable register that selects the input/output direction of the 16 pins in port J. Bits PJ15IOR to PJ0IOR correspond to pins PJ15/TI9F to PJ0/TIO2A. PJIOR is enabled when port J pins function as general input/output pins (PJ15 to PJ0) or ATU-II input/output pins, and disabled otherwise. When ATU-II event counter input is selected, however, the bits 10 to 15 of the PJIOR should be cleared to 0.

When port J pins function as PJ15 to PJ0 or ATU-II input/output pins, a pin becomes an output when the corresponding bit in PJIOR is set to 1, and an input when the bit is cleared to 0.

PJIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.19 Port J Control Registers H and L (PJCRH, PJCRL)

Port J control registers H and L (PJCRH, PJCRL) are 16-bit readable/writable registers that select the functions of the 16 multiplex pins in port J. PJCRH selects the functions of the pins for the upper 8 bits of port J, and PJCRL selects the functions of the pins for the lower 8 bits.

PJCRH and PJCRL are initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. They are not initialized in software standby mode or sleep mode.

#### Port J Control Register H (PJCRH)

| Bit:           | 15 | 14     | 13 | 12     | 11 | 10     | 9 | 8      |
|----------------|----|--------|----|--------|----|--------|---|--------|
|                | _  | PJ15MD |    | PJ14MD |    | PJ13MD |   | PJ12MD |
| Initial value: | 0  | 0      | 0  | 0      | 0  | 0      | 0 | 0      |
| R/W:           | R  | R/W    | R  | R/W    | R  | R/W    | R | R/W    |
|                |    |        |    |        |    |        |   |        |
| Bit:           | 7  | 6      | 5  | 4      | 3  | 2      | 1 | 0      |
|                |    | PJ11MD |    | PJ10MD |    | PJ9MD  |   | PJ8MD  |
| Initial value: | 0  | 0      | 0  | 0      | 0  | 0      | 0 | 0      |
| R/W:           | R  | R/W    | R  | R/W    | R  | R/W    | R | R/W    |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PJ15 Mode Bit (PJ15MD): Selects the function of pin PJ15/TI9F.

| Bit 14: PJ15MD | Description                       |                 |
|----------------|-----------------------------------|-----------------|
| 0              | General input/output (PJ15)       | (Initial value) |
| 1              | ATU-II event counter input (TI9F) |                 |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PJ14 Mode Bit (PJ14MD): Selects the function of pin PJ14/TI9E.

| Bit 12: PJ14MD | Description                       |                 |
|----------------|-----------------------------------|-----------------|
| 0              | General input/output (PJ14)       | (Initial value) |
| 1              | ATU-II event counter input (TI9E) |                 |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PJ13 Mode Bit (PJ13MD): Selects the function of pin PJ13/TI9D.

| Bit 10: PJ13MD | Description                       |                 |
|----------------|-----------------------------------|-----------------|
| 0              | General input/output (PJ13)       | (Initial value) |
| 1              | ATU-II event counter input (TI9D) | _               |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PJ12 Mode Bit (PJ12MD): Selects the function of pin PJ12/TI9C.

| Bit 8: PJ12MD | Description                       |                 |
|---------------|-----------------------------------|-----------------|
| 0             | General input/output (PJ12)       | (Initial value) |
| 1             | ATU-II event counter input (TI9C) | _               |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PJ11 Mode Bit (PJ11MD): Selects the function of pin PJ11/TI9B.

| Bit 6: PJ11MD | Description                       |                 |
|---------------|-----------------------------------|-----------------|
| 0             | General input/output (PJ11)       | (Initial value) |
| 1             | ATU-II event counter input (TI9B) |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PJ10 Mode Bit (PJ10MD): Selects the function of pin PJ10/TI9A.

| Bit 4: PJ10MD | Description                       |                 |
|---------------|-----------------------------------|-----------------|
| 0             | General input/output (PJ10)       | (Initial value) |
| 1             | ATU-II event counter input (TI9A) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PJ9 Mode Bit (PJ9MD): Selects the function of pin PJ9/TIO5D.

| Bit 2: PJ9MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PJ9)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO5D) |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PJ8 Mode Bit (PJ8MD): Selects the function of pin PJ8/TIO5C.

| Bit 0: PJ8MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PJ8)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO5C) |                 |

# Port J Control Register L (PJCRL)

| Bit:           | 15 | 14    | 13 | 12    | 11 | 10    | 9 | 8     |
|----------------|----|-------|----|-------|----|-------|---|-------|
|                | _  | PJ7MD |    | PJ6MD |    | PJ5MD | _ | PJ4MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |
|                |    |       |    |       |    |       |   |       |
| Bit:           | 7  | 6     | 5  | 4     | 3  | 2     | 1 | 0     |
|                |    | PJ3MD |    | PJ2MD |    | PJ1MD | _ | PJ0MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PJ7 Mode Bit (PJ7MD): Selects the function of pin PJ7/TIO2H.

| Bit 14: PJ7MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PJ7)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO2H) | _               |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PJ6 Mode Bit (PJ6MD): Selects the function of pin PJ6/TIO2G.

| Bit 12: PJ6MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PJ6)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO2G) | _               |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PJ5 Mode Bit (PJ5MD): Selects the function of pin PJ5/TIO2F.

| Bit 10: PJ5MD | Description                                              |                 |
|---------------|----------------------------------------------------------|-----------------|
| 0             | General input/output (PJ5)                               | (Initial value) |
| 1             | ATU-II input capture input/output compare output (TIO2F) | _               |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PJ4 Mode Bit (PJ4MD): Selects the function of pin PJ4/TIO2E.

| Bit 8: PJ4MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PJ4)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO2E) | _               |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PJ3 Mode Bit (PJ3MD): Selects the function of pin PJ3/TIO2D.

| Bit 6: PJ3MD | Description                                              | _               |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PJ3)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO2D) |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PJ2 Mode Bit (PJ2MD): Selects the function of pin PJ2/TIO2C.

| Bit 4: PJ2MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PJ2)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO2C) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PJ1 Mode Bit (PJ1MD): Selects the function of pin PJ1/TIO2B.

| Bit 2: PJ1MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PJ1)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO2B) |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PJ0 Mode Bit (PJ0MD): Selects the function of pin PJ0/TIO2A.

| Bit 0: PJ0MD | Description                                              |                 |
|--------------|----------------------------------------------------------|-----------------|
| 0            | General input/output (PJ0)                               | (Initial value) |
| 1            | ATU-II input capture input/output compare output (TIO2A) | _               |

#### 20.3.20 Port K IO Register (PKIOR)

| Bit:           | 15          | 14          | 13          | 12          | 11          | 10          | 9          | 8          |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|------------|------------|
|                | PK15<br>IOR | PK14<br>IOR | PK13<br>IOR | PK12<br>IOR | PK11<br>IOR | PK10<br>IOR | PK9<br>IOR | PK8<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2           | 1          | 0          |
|                | PK7<br>IOR  | PK6<br>IOR  | PK5<br>IOR  | PK4<br>IOR  | PK3<br>IOR  | PK2<br>IOR  | PK1<br>IOR | PK0<br>IOR |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W          R/W        |

The port K IO register (PKIOR) is a 16-bit readable/writable register that selects the input/output direction of the 16 pins in port K. Bits PK15IOR to PK0IOR correspond to pins PK15/TO8P to PK0/TO8A. PKIOR is enabled when port K pins function as general input/output pins (PK15 to PK0), and disabled otherwise.

When port K pins function as PK15 to PK0, a pin becomes an output when the corresponding bit in PKIOR is set to 1, and an input when the bit is cleared to 0.

PKIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.21 Port K Control Registers H and L (PKCRH, PKCRL)

Port K control registers H and L (PKCRH, PKCRL) are 16-bit readable/writable registers that select the functions of the 16 multiplex pins in port K. PKCRH selects the functions of the pins for the upper 8 bits of port K, and PKCRL selects the functions of the pins for the lower 8 bits.

PKCRH and PKCRL are initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. They are not initialized in software standby mode or sleep mode.

### Port K Control Register H (PKCRH)

| Bit:           | 15 | 14         | 13 | 12         | 11 | 10         | 9 | 8          |
|----------------|----|------------|----|------------|----|------------|---|------------|
|                |    | PK15<br>MD |    | PK14<br>MD |    | PK13<br>MD | 1 | PK12<br>MD |
| Initial value: | 0  | 0          | 0  | 0          | 0  | 0          | 0 | 0          |
| R/W:           | R  | R/W        | R  | R/W        | R  | R/W        | R | R/W        |
| Bit:           | 7  | 6          | 5  | 4          | 3  | 2          | 1 | 0          |
|                | _  | PK11<br>MD | _  | PK10<br>MD | _  | PK9<br>MD  | _ | PK8<br>MD  |
| Initial value: | 0  | 0          | 0  | 0          | 0  | 0          | 0 | 0          |
| R/W:           | R  | R/W        | R  | R/W        | R  | R/W        | R | R/W        |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PK15 Mode Bit (PK15MD): Selects the function of pin PK15/TO8P.

| Bit 14: PK15MD | Description                         |                 |
|----------------|-------------------------------------|-----------------|
| 0              | General input/output (PK15)         | (Initial value) |
| 1              | ATU-II one-shot pulse output (TO8P) |                 |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PK14 Mode Bit (PK14MD): Selects the function of pin PK14/TO8O.

| Bit 12: PK14MD | Description                         |                 |
|----------------|-------------------------------------|-----------------|
| 0              | General input/output (PK14)         | (Initial value) |
| 1              | ATU-II one-shot pulse output (TO8O) |                 |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PK13 Mode Bit (PK13MD): Selects the function of pin PK13/TO8N.

| Bit 10: PK13MD | Description                         |                 |
|----------------|-------------------------------------|-----------------|
| 0              | General input/output (PK13)         | (Initial value) |
| 1              | ATU-II one-shot pulse output (TO8N) |                 |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PK12 Mode Bit (PK12MD): Selects the function of pin PK12/TO8M.

| Bit 8: PK12MD | Description                         |                 |
|---------------|-------------------------------------|-----------------|
| 0             | General input/output (PK12)         | (Initial value) |
| 1             | ATU-II one-shot pulse output (TO8M) |                 |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PK11 Mode Bit (PK11MD): Selects the function of pin PK11/TO8L.

| Bit 6: PK11MD | Description                         |                 |
|---------------|-------------------------------------|-----------------|
| 0             | General input/output (PK11)         | (Initial value) |
| 1             | ATU-II one-shot pulse output (TO8L) |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PK10 Mode Bit (PK10MD): Selects the function of pin PK10/TO8K.

| Bit 4: PK10MD | Description                         |                 |
|---------------|-------------------------------------|-----------------|
| 0             | General input/output (PK10)         | (Initial value) |
| 1             | ATU-II one-shot pulse output (TO8K) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PK9 Mode Bit (PK9MD): Selects the function of pin PK9/TO8J.

| Bit 2: PK9MD | Description                         |                 |
|--------------|-------------------------------------|-----------------|
| 0            | General input/output (PK9)          | (Initial value) |
| 1            | ATU-II one-shot pulse output (TO8J) |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PK8 Mode Bit (PK8MD): Selects the function of pin PK8/TO8I.

| Bit 0: PK8MD | Description                         |                 |
|--------------|-------------------------------------|-----------------|
| 0            | General input/output (PK8)          | (Initial value) |
| 1            | ATU-II one-shot pulse output (TO8I) |                 |

### Port K Control Register L (PKCRL)

| Bit:           | 15 | 14    | 13 | 12    | 11 | 10    | 9 | 8     |
|----------------|----|-------|----|-------|----|-------|---|-------|
|                | _  | PK7MD | _  | PK6MD | _  | PK5MD | _ | PK4MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |
|                |    |       |    |       |    |       |   |       |
| Bit:           | 7  | 6     | 5  | 4     | 3  | 2     | 1 | 0     |
|                | _  | PK3MD | _  | PK2MD | _  | PK1MD | _ | PK0MD |
| Initial value: | 0  | 0     | 0  | 0     | 0  | 0     | 0 | 0     |
| R/W:           | R  | R/W   | R  | R/W   | R  | R/W   | R | R/W   |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PK7 Mode Bit (PK7MD): Selects the function of pin PK7/TO8H.

| Bit 14: PK7MD | Description                         |                 |
|---------------|-------------------------------------|-----------------|
| 0             | General input/output (PK7)          | (Initial value) |
| 1             | ATU-II one-shot pulse output (TO8H) |                 |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PK6 Mode Bit (PK6MD): Selects the function of pin PK6/TO8G.

| Bit 12: PK6MD | Description                         |                 |
|---------------|-------------------------------------|-----------------|
| 0             | General input/output (PK6)          | (Initial value) |
| 1             | ATU-II one-shot pulse output (TO8G) | _               |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PK5 Mode Bit (PK5MD): Selects the function of pin PK5/TO8F.

| Bit 10: PK5MD | Description                         |                 |
|---------------|-------------------------------------|-----------------|
| 0             | General input/output (PK5)          | (Initial value) |
| 1             | ATU-II one-shot pulse output (TO8F) |                 |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PK4 Mode Bit (PK4MD): Selects the function of pin PK4/TO8E.

| Bit 8: PK4MD | Description                         |                 |
|--------------|-------------------------------------|-----------------|
| 0            | General input/output (PK4)          | (Initial value) |
| 1            | ATU-II one-shot pulse output (TO8E) | _               |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PK3 Mode Bit (PK3MD): Selects the function of pin PK3/TO8D.

| Bit 6: PK3MD | Description                         |                 |
|--------------|-------------------------------------|-----------------|
| 0            | General input/output (PK3)          | (Initial value) |
| 1            | ATU-II one-shot pulse output (TO8D) |                 |

- Bit 5—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 4—PK2 Mode Bit (PK2MD): Selects the function of pin PK2/TO8C.

| Bit 4: PK2MD | Description                         |                 |
|--------------|-------------------------------------|-----------------|
| 0            | General input/output (PK2)          | (Initial value) |
| 1            | ATU-II one-shot pulse output (TO8C) |                 |

- Bit 3—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 2—PK1 Mode Bit (PK1MD): Selects the function of pin PK1/TO8B.

| Bit 2: PK1MD | Description                         |                 |
|--------------|-------------------------------------|-----------------|
| 0            | General input/output (PK1)          | (Initial value) |
| 1            | ATU-II one-shot pulse output (TO8B) |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PK0 Mode Bit (PK0MD): Selects the function of pin PK0/TO8A.

| Bit 0: PK0MD | Description                         |                 |
|--------------|-------------------------------------|-----------------|
| 0            | General input/output (PK0)          | (Initial value) |
| 1            | ATU-II one-shot pulse output (TO8A) |                 |

#### 20.3.22 Port K Invert Register (PKIR)

| Bit:           | 15     | 14     | 13     | 12     | 11     | 10     | 9     | 8     |
|----------------|--------|--------|--------|--------|--------|--------|-------|-------|
|                | PK15IR | PK14IR | PK13IR | PK12IR | PK11IR | PK10IR | PK9IR | PK8IR |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |
|                |        |        |        |        |        |        |       |       |
| Bit:           | 7      | 6      | 5      | 4      | 3      | 2      | 1     | 0     |
|                | PK7IR  | PK6IR  | PK5IR  | PK4IR  | PK3IR  | PK2IR  | PK1IR | PK0IR |
| Initial value: | 0      | 0      | 0      | 0      | 0      | 0      | 0     | 0     |
| R/W:           | R/W     R/W   |

The port K invert register (PKIR) is a 16-bit readable/writable register that sets the port K inversion function. Bits PK15IR to PK0IR correspond to pins PK15/TO8P to PK0/TO8A. PKIR is enabled when port K pins function as ATU-II outputs, and disabled otherwise.

When port K pins function as ATU-II outputs, the value of a pin is inverted when the corresponding bit in PKIR is set to 1.

PKIR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

| PKnIR | Description           |                 |
|-------|-----------------------|-----------------|
| 0     | Value is not inverted | (Initial value) |
| 1     | Value is inverted     |                 |

n = 15 to 0

#### 20.3.23 Port L IO Register (PLIOR)

| Bit:           | 15         | 14         | 13          | 12          | 11          | 10          | 9          | 8          |
|----------------|------------|------------|-------------|-------------|-------------|-------------|------------|------------|
|                | _          | _          | PL13<br>IOR | PL12<br>IOR | PL11<br>IOR | PL10<br>IOR | PL9<br>IOR | PL8<br>IOR |
| Initial value: | 0          | 0          | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R          | R          | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        |
| Bit:           | 7          | 6          | 5           | 4           | 3           | 2           | 1          | 0          |
|                | PL7<br>IOR | PL6<br>IOR | PL5<br>IOR  | PL4<br>IOR  | PL3<br>IOR  | PL2<br>IOR  | PL1<br>IOR | PL0<br>IOR |
| Initial value: | 0          | 0          | 0           | 0           | 0           | 0           | 0          | 0          |
| R/W:           | R/W        | R/W        | R/W         | R/W         | R/W         | R/W         | R/W        | R/W        |

The port L IO register (PLIOR) is a 16-bit readable/writable register that selects the input/output direction of the 14 pins in port L. Bits PL13IOR to PL0IOR correspond to pins PL13/IRQOUT to PL0/TI10. PLIOR is enabled when port L pins function as general input/output pins (PL13 to PL0), timer input/output pins (TIO11A, TIO11B), or serial clock pins (SCK2, SCK3, SCK4), and disabled otherwise.

When port L pins function as PL13 to PL0, TIO11A and TIO11B, or SCK2, SCK3, and SCK4, a pin becomes an output when the corresponding bit in PLIOR is set to 1, and an input when the bit is cleared to 0.

PLIOR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

#### 20.3.24 Port L Control Registers H and L (PLCRH, PLCRL)

Port L control registers H and L (PLCRH, PLCRL) are 16-bit readable/writable registers that select the functions of the 14 multiplex pins in port L. PLCRH selects the functions of the pins for the upper 6 bits of port L, and PLCRL selects the functions of the pins for the lower 8 bits.

PLCRH and PLCRL are initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. They are not initialized in software standby mode or sleep mode.

Port L Control Register H (PLCRH)

| Bit:           | 15          | 14          | 13          | 12          | 11          | 10          | 9 | 8          |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|---|------------|
|                | _           | _           | _           | _           | PL13<br>MD1 | PL13<br>MD0 | _ | PL12<br>MD |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0 | 0          |
| R/W:           | R           | R           | R           | R           | R/W         | R/W         | R | R/W        |
| Bit:           | 7           | 6           | 5           | 4           | 3           | 2           | 1 | 0          |
|                | PL11<br>MD1 | PL11<br>MD0 | PL10<br>MD1 | PL10<br>MD0 | PL9<br>MD1  | PL9<br>MD0  | _ | PL8<br>MD  |
| Initial value: | 0           | 0           | 0           | 0           | 0           | 0           | 0 | 0          |
| R/W:           | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R | R/W        |

- Bits 15 to 12—Reserved: These bits are always read as 0. The write value should always be 0.
- Bits 11 and 10—PL13 Mode Bits 1 and 0 (PL13MD1, PL13MD0): These bits select the function of pin PL13/IRQOUT.

| Bit 11: PL13MD1 | Bit 10: PL13MD0 | Description                                         |
|-----------------|-----------------|-----------------------------------------------------|
| 0               | 0               | General input/output (PL13) (Initial value)         |
|                 | 1               | IRQOUT is fixed high (IRQOUT)                       |
| 1               | 0               | IRQOUT is output by INTC interrupt request (IRQOUT) |
|                 | 1               | Reserved (Do not set)                               |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PL12 Mode Bit (PL12MD): Selects the function of pin PL12/IRQ4.

| Bit 8: PL12MD | Description                    |                 |
|---------------|--------------------------------|-----------------|
| 0             | General input/output (PL12)    | (Initial value) |
| 1             | Interrupt request input (IRQ4) |                 |

• Bits 7 and 6—PL11 Mode Bits 1 and 0 (PL11MD1, PL11MD0): These bits select the function of pin PL11/HRxD0/HRxD1.

| Bit 7: PL11MD1 | Bit 6: PL11MD0 | Description                               |                 |
|----------------|----------------|-------------------------------------------|-----------------|
| 0              | 0              | General input/output (PL11)               | (Initial value) |
|                | 1              | HCAN receive data input (HRxD0)           |                 |
| 1              | 0              | HCAN receive data input (HRxD1)           |                 |
|                | 1              | HCAN receive data input (both HRxI input) | 00 and HRxD1    |

• Bits 5 and 4—PL10 Mode Bits 1 and 0 (PL10MD1, PL10MD0): These bits select the function of pin PL10/HTxD0/HTxD1.

| Bit 5: PL10MD1 | Bit 4: PL10MD0 | Description                                 |                 |
|----------------|----------------|---------------------------------------------|-----------------|
| 0              | 0              | General input/output (PL10)                 | (Initial value) |
|                | 1              | HCAN transmit data output (HTxD0)           |                 |
| 1              | 0              | HCAN transmit data output (HTxD1)           |                 |
|                | 1              | HCAN transmit data output (AND of HT HTxD1) | xD0 and         |

 Bits 3 and 2—PL9 Mode Bits 1 and 0 (PL9MD1, PL9MD0): These bits select the function of pin PL9/SCK4/IRQ5.

| Bit 3: PL9MD1 | Bit 2: PL9MD0 | Description                      |                 |
|---------------|---------------|----------------------------------|-----------------|
| 0             | 0             | General input/output (PL9)       | (Initial value) |
|               | 1             | Serial clock input/output (SCK4) |                 |
| 1             | 0             | Interrupt request input (IRQ5)   |                 |
|               | 1             | Reserved (Do not set)            |                 |
|               |               | <del>-</del>                     |                 |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PL8 Mode Bit (PL8MD): Selects the function of pin PL8/SCK3.

| Bit 0: PL8MD | Description                      |                 |
|--------------|----------------------------------|-----------------|
| 0            | General input/output (PL8)       | (Initial value) |
| 1            | Serial clock input/output (SCK3) |                 |

# Port L Control Register L (PLCRL)

| Bit:           | 15 | 14    | 13     | 12     | 11     | 10     | 9 | 8     |
|----------------|----|-------|--------|--------|--------|--------|---|-------|
|                | _  | PL7MD | _      | PL6MD  |        | PL5MD  | _ | PL4MD |
| Initial value: | 0  | 0     | 0      | 0      | 0      | 0      | 0 | 0     |
| R/W:           | R  | R/W   | R      | R/W    | R      | R/W    | R | R/W   |
| Bit:           | 7  | 6     | 5      | 4      | 3      | 2      | 1 | 0     |
|                | _  | PL3MD | PL2MD1 | PL2MD0 | PL1MD1 | PL1MD0 | _ | PL0MD |
| Initial value: | 0  | 0     | 0      | 0      | 0      | 0      | 0 | 0     |
| R/W:           | R  | R/W   | R/W    | R/W    | R/W    | R/W    | R | R/W   |

- Bit 15—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 14—PL7 Mode Bit (PL7MD): Selects the function of pin PL7/SCK2.

| Bit 14: PL7MD | Description                      |                 |
|---------------|----------------------------------|-----------------|
| 0             | General input/output (PL7)       | (Initial value) |
| 1             | Serial clock input/output (SCK2) | _               |

- Bit 13—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 12—PL6 Mode Bit (PL6MD): Selects the function of pin PL6/ADEND.

| Bit 12: PL6MD | Description                       |                 |
|---------------|-----------------------------------|-----------------|
| 0             | General input/output (PL6)        | (Initial value) |
| 1             | A/D conversion end output (ADEND) |                 |

- Bit 11—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 10—PL5 Mode Bit (PL5MD): Selects the function of pin PL5/ADTRG1.

| Bit 10: PL5MD | Description                           |                 |
|---------------|---------------------------------------|-----------------|
| 0             | General input/output (PL5)            | (Initial value) |
| 1             | A/D conversion trigger input (ADTRG1) | _               |

- Bit 9—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 8—PL4 Mode Bit (PL4MD): Selects the function of pin PL4/ADTRGO.

| Bit 8: PL4MD | Description                           |                 |
|--------------|---------------------------------------|-----------------|
| 0            | General input/output (PL4)            | (Initial value) |
| 1            | A/D conversion trigger input (ADTRG0) |                 |

- Bit 7—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 6—PL3 Mode Bit (PL3MD): Selects the function of pin PL3/TCLKB.

| Bit 6: PL3MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PL3) | (Initial value) |
| 1            | ATU-II clock input (TCLKB) |                 |

• Bits 5 and 4—PL2 Mode Bits 1 and 0 (PL2MD1, PL2MD0): These bits select the function of pin PL2/TIO11B/IRQ7.

| Bit 4: PL2MD0 | Description                                      |                                                                                                                          |
|---------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 0             | General input/output (PL2)                       | (Initial value)                                                                                                          |
| 1             | ATU-II input capture input/output compa (TIO11B) | are output                                                                                                               |
| 0             | Interrupt request input (IRQ7)                   |                                                                                                                          |
| 1             | Reserved (Do not set)                            |                                                                                                                          |
|               | Bit 4: PL2MD0  0 1  0 1                          | 0 General input/output (PL2)  1 ATU-II input capture input/output composition (TIO11B)  0 Interrupt request input (IRQ7) |

 Bits 3 and 2—PL1 Mode Bits 1 and 0 (PL1MD1, PL1MD0): These bits select the function of pin PL1/TIO11A/IRQ6.

| Bit 3: PL1MD1 | Bit 2: PL1MD0 | Description                                               |
|---------------|---------------|-----------------------------------------------------------|
| 0             | 0             | General input/output (PL1) (Initial value)                |
|               | 1             | ATU-II input capture input/output compare output (TIO11A) |
| 1             | 0             | Interrupt request input (IRQ6)                            |
|               | 1             | Reserved (Do not set)                                     |

- Bit 1—Reserved: This bit is always read as 0. The write value should always be 0.
- Bit 0—PL0 Mode Bit (PL0MD): Selects the function of pin PL0/TI10.

| Bit 0: PL0MD | Description                |                 |
|--------------|----------------------------|-----------------|
| 0            | General input/output (PL0) | (Initial value) |
| 1            | ATU-II edge input (TI10)   |                 |

### 20.3.25 Port L Invert Register (PLIR)

| Bit:           | 15    | 14 | 13 | 12 | 11 | 10 | 9     | 8     |
|----------------|-------|----|----|----|----|----|-------|-------|
|                | _     | _  | _  | _  | _  | _  | PL9IR | PL8IR |
| Initial value: | 0     | 0  | 0  | 0  | 0  | 0  | 0     | 0     |
| R/W:           | R     | R  | R  | R  | R  | R  | R/W   | R/W   |
|                |       |    |    |    |    |    |       |       |
| Bit:           | 7     | 6  | 5  | 4  | 3  | 2  | 1     | 0     |
|                | PL7IR | _  | _  | _  | _  | _  | _     | _     |
| Initial value: | 0     | 0  | 0  | 0  | 0  | 0  | 0     | 0     |
| R/W:           | R/W   | R  | R  | R  | R  | R  | R     | R     |

The port L invert register (PLIR) is a 16-bit readable/writable register that sets the port L inversion function. Bits PL9IR to PL7IR correspond to pins PL9/SCK4/ $\overline{IRQ5}$  to PL7/SCK2. PLIR is enabled when port L pins function as serial clock pins, and disabled otherwise.

When port L pins function as serial clock pins, the value of a pin is inverted when the corresponding bit in PLIR is set to 1.

PLIR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

| PLnIR | Description           | _               |
|-------|-----------------------|-----------------|
| 0     | Value is not inverted | (Initial value) |
| 1     | Value is inverted     |                 |

n = 9 to 7

# Section 21 I/O Ports (I/O)

#### 21.1 Overview

The SH7055SF has 11 ports: A, B, C, D, E, F, G, H, I, J, K and L, all supporting both input and output.

Ports A B, E, F, H, J and K are 16-bit ports, port C is a 5-bit port, ports D and L are 14-bit ports, and port G is a 4-bit port.

All the port pins are multiplexed as general input/output pins and special function pins. The functions of the multiplex pins are selected by means of the pin function controller (PFC). Each port is provided with a data register for storing the pin data.

Each of the ports A, B, D, J and L is provided with a port register to read the pin values.

### 21.2 Port A

Port A is an input/output port with the 16 pins shown in figure 21.1.

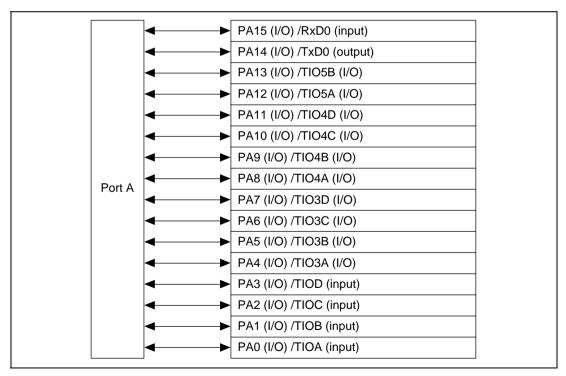



Figure 21.1 Port A

#### 21.2.1 Register Configuration

The port A register configuration is shown in table 21.1.

**Table 21.1 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value        | Address    | Access Size |
|----------------------|--------------|-----|----------------------|------------|-------------|
| Port A data register | PADR         | R/W | H'0000               | H'FFFFF726 | 8, 16       |
| Port A port register | PAPR         | R   | port A pin<br>values | H'FFFFF780 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.2.2 Port A Data Register (PADR)

| Bit:           | 15   | 14   | 13   | 12   | 11   | 10   | 9   | 8   |
|----------------|------|------|------|------|------|------|-----|-----|
|                | PA15 | PA14 | PA13 | PA12 | PA11 | PA10 | PA9 | PA8 |
|                | DR    DR  |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W | R/W |
|                |      |      |      |      |      |      |     |     |
| Bit:           | 7    | 6    | 5    | 4    | 3    | 2    | 1   | 0   |
|                | PA7  | PA6  | PA5  | PA4  | PA3  | PA2  | PA1 | PA0 |
|                | DR    DR  |
| Initial value: | 0    | 0    | 0    | 0    | 0    | 0    | 0   | 0   |
| R/W:           | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W | R/W |

The port A data register (PADR) is a 16-bit readable/writable register that stores port A data. Bits PA15DR to PA0DR correspond to pins PA15/RxD0 to PA0/TI0A.

When a pin functions as a general output, if a value is written to PADR, that value is output directly from the pin, and if PADR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PADR is read the pin state, not the register value, is returned directly. If a value is written to PADR, although that value is written into PADR it does not affect the pin state. Table 21.2 summarizes port A data register read/write operations.

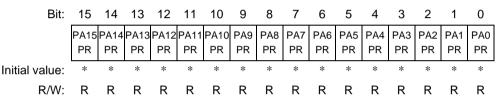

PADR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

Table 21.2 Port A Data Register (PADR) Read/Write Operations

#### Bits 15 to 0:

| PAIOR | Pin Function              | Read       | Write                                                   |
|-------|---------------------------|------------|---------------------------------------------------------|
| 0     | General input             | Pin state  | Value is written to PADR, but does not affect pin state |
|       | Other than general input  | Pin state  | Value is written to PADR, but does not affect pin state |
| 1     | General output            | PADR value | Write value is output from pin                          |
|       | Other than general output | PADR value | Value is written to PADR, but does not affect pin state |

#### 21.2.3 Port A Port Register (PAPR)



Note: \*The initial value is 1 when the PA15 to PA0 pins are high, and it is 0 when the pins are low.

The port A port register (PAPR) is a 16-bit read-only register that always stores the value of the port A pins. The CPU cannot write data to this register. Bits PA15PR to PA0PR correspond to pins PA15/RxD0 to PA0/TI0A. If PAPR is read, the corresponding pin values are returned.

• Bits 15 to 0: Port A15 to A0 Port Register (PA15PR to PA0PR)

### PA15PR to PA0PR Description

|   | •                                                                    |
|---|----------------------------------------------------------------------|
| 0 | Low-level signals are output from or input to the PA15 to PA0 pins.  |
| 1 | High-level signals are output from or input to the PA15 to PA0 pins. |

### 21.3 Port B

Port B is an input/output port with the 16 pins shown in figure 21.2.

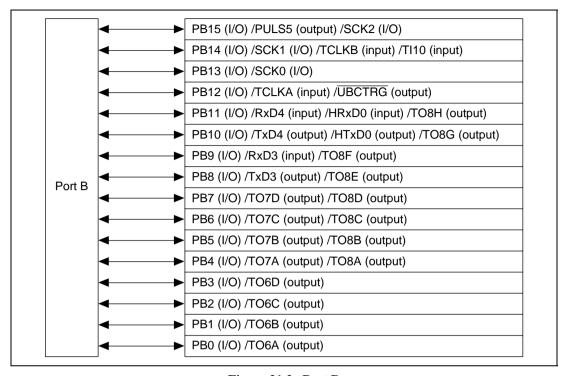



Figure 21.2 Port B

# 21.3.1 Register Configuration

The port B register configuration is shown in table 21.3.

**Table 21.3 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value    | Address     | Access Size |
|----------------------|--------------|-----|------------------|-------------|-------------|
| Port B data register | PBDR         | R/W | H'0000           | H'FFFFF738  | 8, 16       |
| Port B port register | PBPR         | R   | port B pin value | sH'FFFFF782 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.3.2 Port B Data Register (PBDR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PB15<br>DR | PB14<br>DR | PB13<br>DR | PB12<br>DR | PB11<br>DR | PB10<br>DR | PB9<br>DR | PB8<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
|                |            |            |            |            |            |            |           |           |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PB7<br>DR  | PB6<br>DR  | PB5<br>DR  | PB4<br>DR  | PB3<br>DR  | PB2<br>DR  | PB1<br>DR | PB0<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port B data register (PBDR) is a 16-bit readable/writable register that stores port B data. Bits PB15DR to PB0DR correspond to pins PB15/PULS5/SCK2 to PB0/TO6A.

When a pin functions as a general output, if a value is written to PBDR, that value is output directly from the pin, and if PBDR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PBDR is read the pin state, not the register value, is returned directly. If a value is written to PBDR, although that value is written into PBDR it does not affect the pin state. Table 21.4 summarizes port B data register read/write operations.

PBDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

Table 21.4 Port B Data Register (PBDR) Read/Write Operations

Bits 15 to 0:

| PBIOR | Pin Function              | Read       | Write                                                   |
|-------|---------------------------|------------|---------------------------------------------------------|
| 0     | General input             | Pin state  | Value is written to PBDR, but does not affect pin state |
|       | Other than general input  | Pin state  | Value is written to PBDR, but does not affect pin state |
| 1     | General output            | PBDR value | Write value is output from pin                          |
|       | Other than general output | PBDR value | Value is written to PBDR, but does not affect pin state |

#### 21.3.3 Port B Port Register (PBPR)

| Bit:           | 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|----------------|------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
|                | PB15 |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |
|                | PR   | PR | PR | PR | PR | PR | PR | PR | PR | PR | PR | PR | PR | PR | PR | PR |
| Initial value: | *    | *  | *  | *  | *  | *  | *  | *  | *  | *  | *  | *  | *  | *  | *  | *  |
| R/W:           | R    | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  | R  |

Note: \*The initial value is 1 when the PB15 to PB0 pins are high, and it is 0 when the pins are low.

The port B port register (PBPR) is a 16-bit read-only register that always stores the value of the port B pins. The CPU cannot write data to this register. Bits PB15PR to PB0PR correspond to pins PB15/PULS5/SCK2 to PB0/TO6A. If PBPR is read, the corresponding pin values are returned.

• Bits 15 to 0: Port B15 to B0 Port Register (PB15PR to PB0PR)

| PB 13PR to PBUPR | Description                                                          |
|------------------|----------------------------------------------------------------------|
| 0                | Low-level signals are output from or input to the PB15 to PB0 pins.  |
| 1                | High-level signals are output from or input to the PB15 to PB0 pins. |

#### 21.4 Port C

Port C is an input/output port with the 5 pins shown in figure 21.3.

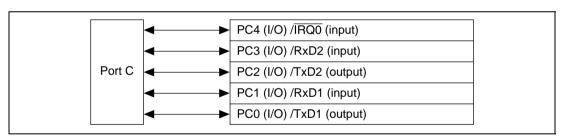



Figure 21.3 Port C

# 21.4.1 Register Configuration

The port C register configuration is shown in table 21.5.

**Table 21.5 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value | Address    | Access Size |
|----------------------|--------------|-----|---------------|------------|-------------|
| Port C data register | PCDR         | R/W | H'0000        | H'FFFFF73E | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.4.2 Port C Data Register (PCDR)

| Bit:           | 15 | 14 | 13 | 12  | 11  | 10  | 9   | 8   |
|----------------|----|----|----|-----|-----|-----|-----|-----|
|                | _  |    |    |     |     |     |     | _   |
| Initial value: | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R  | R  | R  | R   | R   | R   | R   | R   |
|                |    |    |    |     |     |     |     |     |
| Bit:           | 7  | 6  | 5  | 4   | 3   | 2   | 1   | 0   |
|                | _  | _  | _  | PC4 | PC3 | PC2 | PC1 | PC0 |
|                |    |    |    | DR  | DR  | DR  | DR  | DR  |
| Initial value: | 0  | 0  | 0  | 0   | 0   | 0   | 0   | 0   |
| R/W:           | R  | R  | R  | R/W | R/W | R/W | R/W | R/W |

The port C data register (PCDR) is a 16-bit readable/writable register that stores port C data. Bits PC4DR to PC0DR correspond to pins PC4/IRQ0 to PC0/TxD1.

When a pin functions as a general output, if a value is written to PCDR, that value is output directly from the pin, and if PCDR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PCDR is read the pin state, not the register value, is returned directly. If a value is written to PCDR, although that value is written into PCDR it does not affect the pin state. Table 21.6 summarizes port C data register read/write operations.

PCDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

• Bits 15 to 5—Reserved: These bits always read 0. The write value should always be 0.

Table 21.6 Port C Data Register (PCDR) Read/Write Operations

Bits 4 to 0:

| PCIOR | Pin Function                         | Read       | Write                                                   |  |  |  |  |
|-------|--------------------------------------|------------|---------------------------------------------------------|--|--|--|--|
| 0     | General input                        | Pin state  | Value is written to PCDR, but does not affect pin state |  |  |  |  |
|       | Other than general input             | Pin state  | Value is written to PCDR, but does not affect pin state |  |  |  |  |
| 1     | General output                       | PCDR value | Write value is output from pin                          |  |  |  |  |
|       | Other than PCDR value general output |            | Value is written to PCDR, but does not affect pin state |  |  |  |  |

### 21.5 Port D

Port D is an input/output port with the 14 pins shown in figure 21.4.

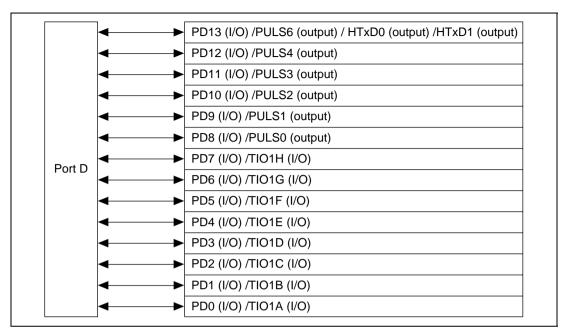



Figure 21.4 Port D

# 21.5.1 Register Configuration

The port D register configuration is shown in table 21.7.

**Table 21.7 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value        | Address    | Access Size |
|----------------------|--------------|-----|----------------------|------------|-------------|
| Port D data register | PDDR         | R/W | H'0000               | H'FFFFF746 | 8, 16       |
| Port D port register | PDPR         | R   | port D pin<br>values | H'FFFFF784 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.5.2 Port D Data Register (PDDR)

| Bit:           | 15        | 14        | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|-----------|-----------|------------|------------|------------|------------|-----------|-----------|
|                | _         | _         | PD13<br>DR | PD12<br>DR | PD11<br>DR | PD10<br>DR | PD9<br>DR | PD8<br>DR |
| Initial value: | 0         | 0         | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R         | R         | R/W        | R/W        | R/W        | R/W        | R/W       | R/W       |
|                |           |           |            |            |            |            |           |           |
| Bit:           | 7         | 6         | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PD7<br>DR | PD6<br>DR | PD5<br>DR  | PD4<br>DR  | PD3<br>DR  | PD2<br>DR  | PD1<br>DR | PD0<br>DR |
| Initial value: | 0         | 0         | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W       | R/W       | R/W        | R/W        | R/W        | R/W        | R/W       | R/W       |

The port D data register (PDDR) is a 16-bit readable/writable register that stores port D data. Bits PD13DR to PD0DR correspond to pins PD13/PULS6/HTxD0/HTxD1 to PD0/TIO1A.

When a pin functions as a general output, if a value is written to PDDR, that value is output directly from the pin, and if PDDR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PDDR is read the pin state, not the register value, is returned directly. If a value is written to PDDR, although that value is written into PDDR it does not affect the pin state. Table 21.8 summarizes port D data register read/write operations.

PDDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

• Bits 15 and 14— Reserved: These bits always read 0. The write value should always be 0.

 Table 21.8
 Port D Data Register (PDDR) Read/Write Operations

Bits 13 to 0:

| PDIOR | Pin Function                         | Read       | Write                                                   |  |  |  |
|-------|--------------------------------------|------------|---------------------------------------------------------|--|--|--|
| 0     | General input Pin state              |            | Value is written to PDDR, but does not affect pin state |  |  |  |
|       | Other than general input             | Pin state  | Value is written to PDDR, but does not affect pin state |  |  |  |
| 1     | General output                       | PDDR value | Write value is output from pin                          |  |  |  |
|       | Other than PDDR value general output |            | Value is written to PDDR, but does not affect pin state |  |  |  |

### 21.5.3 Port D Port Register (PDPR)

| Bit:           | 15 | 14 | 13   | 12   | 11   | 10   | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0         |
|----------------|----|----|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----------|
|                | -  | _  | PD13 | PD12 | PD11 | PD10 | PD9 | PD8 | PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PD0<br>PR |
|                |    |    | PR   | PR   | PR   | PR   | PR  | PR  | PR  | PR  | PR  | PR  | PR  | PR  | PR  | PR        |
| Initial value: | 0  | 0  | *    | *    | *    | *    | *   | *   | *   | *   | *   | *   | *   | *   | *   | *         |
| R/W:           | R  | R  | R    | R    | R    | R    | R   | R   | R   | R   | R   | R   | R   | R   | R   | R         |

Note: \* The initial value is 1 when the PD13 to PD0 pins are high, and it is 0 when the pins are low.

The port D port register (PDPR) is a 16-bit read-only register that always stores the value of the port D pins. The CPU cannot write data to this register. Bits PD13PR to PD0PR correspond to pins PD13/PULS6/HTxD0/HTxD1 to PD0/TIO1A. If PDPR is read, the corresponding pin values are returned.

- Bits 15 and 14: Reserved: These bits are always read as 0.
- Bits 13 to 0: Port D13 to D0 Port Register (PD13PR to PD0PR)

### PD13PR to PD0PR Description

| 0 | Low-level signals are output from or input to the PD13 to PD0 pins.  |
|---|----------------------------------------------------------------------|
| 1 | High-level signals are output from or input to the PD13 to PD0 pins. |

#### 21.6 Port E

Port E is an input/output port with the 16 pins shown in figure 21.5.

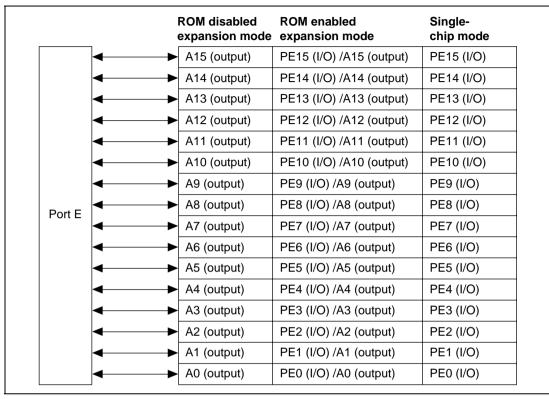



Figure 21.5 Port E

# 21.6.1 Register Configuration

The port E register configuration is shown in table 21.9.

**Table 21.9 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value | Address    | Access Size |
|----------------------|--------------|-----|---------------|------------|-------------|
| Port E data register | PEDR         | R/W | H'0000        | H'FFFFF754 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.6.2 Port E Data Register (PEDR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PE15<br>DR | PE14<br>DR | PE13<br>DR | PE12<br>DR | PE11<br>DR | PE10<br>DR | PE9<br>DR | PE8<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PE7<br>DR  | PE6<br>DR  | PE5<br>DR  | PE4<br>DR  | PE3<br>DR  | PE2<br>DR  | PE1<br>DR | PE0<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port E data register (PEDR) is a 16-bit readable/writable register that stores port E data. Bits PE15DR to PE0DR correspond to pins PE15/A15 to PE0/A0.

When a pin functions as a general output, if a value is written to PEDR, that value is output directly from the pin, and if PEDR is read, the register value is returned directly regardless of the pin state. When the  $\overline{POD}$  pin is driven low, general outputs go to the high-impedance state regardless of the PEDR value. When the  $\overline{POD}$  pin is driven high, the written value is output from the pin.

When a pin functions as a general input, if PEDR is read the pin state, not the register value, is returned directly. If a value is written to PEDR, although that value is written into PEDR it does not affect the pin state. Table 21.10 summarizes port E data register read/write operations.

PEDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

Table 21.10 Port E Data Register (PEDR) Read/Write Operations

## Bits 15 to 0:

| PEIOR | Pin Function              | Read       | Write                                                   |
|-------|---------------------------|------------|---------------------------------------------------------|
| 0     | General input             | Pin state  | Value is written to PEDR, but does not affect pin state |
|       | Other than general input  | Pin state  | Value is written to PEDR, but does not affect pin state |
| 1     | General output            | PEDR value | Write value is output from pin (POD pin = high)         |
|       |                           |            | High impedance regardless of PEDR value (POD pin = low) |
|       | Other than general output | PEDR value | Value is written to PEDR, but does not affect pin state |

### 21.7 Port F

Port F is an input/output port with the 16 pins shown in figure 21.6.

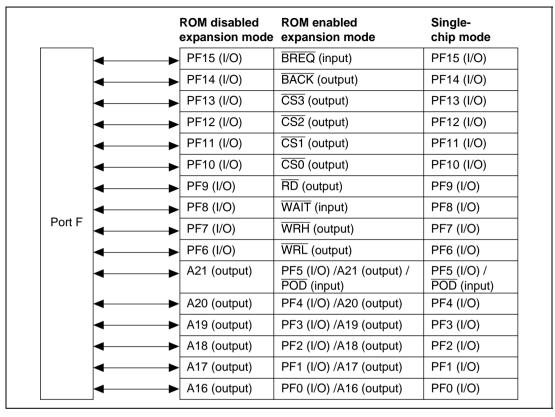



Figure 21.6 Port F

## 21.7.1 Register Configuration

The port F register configuration is shown in table 21.11.

**Table 21.11 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value | Address    | Access Size |
|----------------------|--------------|-----|---------------|------------|-------------|
| Port F data register | PFDR         | R/W | H'0000        | H'FFFFF74E | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

### 21.7.2 Port F Data Register (PFDR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PF15<br>DR | PF14<br>DR | PF13<br>DR | PF12<br>DR | PF11<br>DR | PF10<br>DR | PF9<br>DR | PF8<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
|                |            |            |            |            |            |            |           |           |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PF7<br>DR  | PF6<br>DR  | PF5<br>DR  | PF4<br>DR  | PF3<br>DR  | PF2<br>DR  | PF1<br>DR | PF0<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port F data register (PFDR) is a 16-bit readable/writable register that stores port F data. Bits PF15DR to PF0DR correspond to pins PF15/BREQ to PF0/A16.

When a pin functions as a general output, if a value is written to PFDR, that value is output directly from the pin, and if PFDR is read, the register value is returned directly regardless of the pin state. For pins PF0 to PF4, when the  $\overline{POD}$  pin is driven low, general outputs go to the high-impedance state regardless of the PFDR value. When the  $\overline{POD}$  pin is driven high, the written value is output from the pin.

When a pin functions as a general input, if PFDR is read the pin state, not the register value, is returned directly. If a value is written to PFDR, although that value is written into PFDR it does not affect the pin state. Table 21.12 summarizes port F data register read/write operations.

PFDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

Table 21.12 Port F Data Register (PFDR) Read/Write Operations

#### Bits 15 to 5:

| PFIOR | Pin Function              | Read       | Write                                                   |  |
|-------|---------------------------|------------|---------------------------------------------------------|--|
| 0     | General input             | Pin state  | Value is written to PFDR, but does not affect pir state |  |
|       | Other than general input  | Pin state  | Value is written to PFDR, but does not affect pin state |  |
| 1     | General output            | PFDR value | Write value is output from pin                          |  |
|       | Other than general output | PFDR value | Value is written to PFDR, but does not affect pin state |  |

### Bits 4-0:

| PFIOR | Pin Function                       | Read       | Write                                                                       |  |
|-------|------------------------------------|------------|-----------------------------------------------------------------------------|--|
| 0     | General input                      | Pin state  | Value is written to PFDR, but does not affect pin state                     |  |
|       | Other than Pin state general input |            | Value is written to PFDR, but does not affect pir state                     |  |
| 1     | General output                     | PFDR value | Write value is output from pin $(\overline{POD} \text{ pin} = \text{high})$ |  |
|       |                                    |            | High impedance regardless of PFDR value (POD pin = low)                     |  |
|       | Other than general output          | PFDR value | Value is written to PFDR, but does not affect pin state                     |  |

## 21.8 Port G

Port G is an input/output port with the 4 pins shown in figure 21.7.

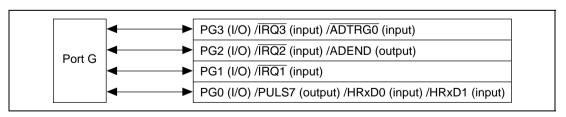



Figure 21.7 Port G

### 21.8.1 Register Configuration

The port G register configuration is shown in table 21.13.

**Table 21.13 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value | Address    | Access Size |
|----------------------|--------------|-----|---------------|------------|-------------|
| Port G data register | PGDR         | R/W | H'0000        | H'FFFFF764 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.8.2 Port G Data Register (PGDR)

| Bit:           | 15 | 14 | 13 | 12 | 11  | 10  | 9   | 8   |
|----------------|----|----|----|----|-----|-----|-----|-----|
|                |    | 1  | 1  | 1  | 1   | 1   | 1   | _   |
| Initial value: | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| R/W:           | R  | R  | R  | R  | R   | R   | R   | R   |
|                |    |    |    |    |     |     |     |     |
| Bit:           | 7  | 6  | 5  | 4  | 3   | 2   | 1   | 0   |
|                | _  | _  | _  | _  | PG3 | PG2 | PG1 | PG0 |
|                |    |    |    |    | DR  | DR  | DR  | DR  |
| Initial value: | 0  | 0  | 0  | 0  | 0   | 0   | 0   | 0   |
| R/W:           | R  | R  | R  | R  | R/W | R/W | R/W | R/W |

The port G data register (PGDR) is a 16-bit readable/writable register that stores port G data. Bits PG3DR to PG0DR correspond to pins PG3/IRQ3/ADTRG0 to PG0/PULS7/HRxD0/HRxD1.

When a pin functions as a general output, if a value is written to PGDR, that value is output directly from the pin, and if PGDR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PGDR is read the pin state, not the register value, is returned directly. If a value is written to PGDR, although that value is written into PGDR it does not affect the pin state. Table 21.14 summarizes port G data register read/write operations.

PGDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

• Bits 15 to 4—Reserved: These bits always read 0. The write value should always be 0.

# Table 21.14 Port G Data Register (PGDR) Read/Write Operations

## Bits 3 to 0:

| PGIOR | Pin Function              | Read       | Write                                                   |  |
|-------|---------------------------|------------|---------------------------------------------------------|--|
| 0     | General input             | Pin state  | Value is written to PGDR, but does not affect pir state |  |
|       | Other than general input  | Pin state  | Value is written to PGDR, but does not affect pin state |  |
| 1     | General output            | PGDR value | Write value is output from pin                          |  |
|       | Other than general output | PGDR value | Value is written to PGDR, but does not affect pi state  |  |

#### 21.9 Port H

Port H is an input/output port with the 16 pins shown in figure 21.8.

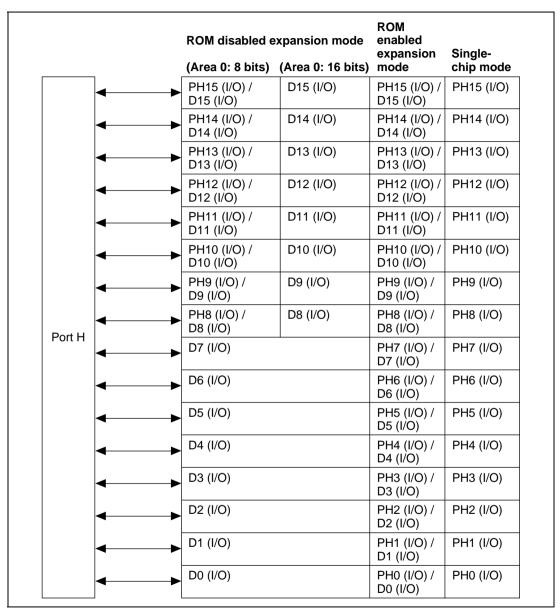



Figure 21.8 Port H

### 21.9.1 Register Configuration

The port H register configuration is shown in table 21.15.

**Table 21.15 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value | Address    | Access Size |
|----------------------|--------------|-----|---------------|------------|-------------|
| Port H data register | PHDR         | R/W | H'0000        | H'FFFFF72C | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

### 21.9.2 Port H Data Register (PHDR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PH15<br>DR | PH14<br>DR | PH13<br>DR | PH12<br>DR | PH11<br>DR | PH10<br>DR | PH9<br>DR | PH8<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PH7<br>DR  | PH6<br>DR  | PH5<br>DR  | PH4<br>DR  | PH3<br>DR  | PH2<br>DR  | PH1<br>DR | PH0<br>DR |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port H data register (PHDR) is a 16-bit readable/writable register that stores port H data. Bits PH15DR to PH0DR correspond to pins PH15/D15 to PH0/D0.

When a pin functions as a general output, if a value is written to PHDR, that value is output directly from the pin, and if PHDR is read, the register value is returned directly regardless of the pin state. When the  $\overline{POD}$  pin is driven low, general outputs go to the high-impedance state regardless of the PHDR value. When the  $\overline{POD}$  pin is driven high, the written value is output from the pin.

When a pin functions as a general input, if PHDR is read the pin state, not the register value, is returned directly. If a value is written to PHDR, although that value is written into PHDR it does not affect the pin state. Table 21.16 summarizes port H data register read/write operations.

PHDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

Table 21.16 Port H Data Register (PHDR) Read/Write Operations

Bits 15 to 0:

| Pin Function              | Read                                                 | Write                                                                                               |
|---------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| General input             | Pin state                                            | Value is written to PHDR, but does not affect pin state                                             |
| Other than general input  | Pin state                                            | Value is written to PHDR, but does not affect pin state                                             |
| General output            | PHDR value                                           | Write value is output from pin (POD pin = high)                                                     |
|                           |                                                      | High impedance regardless of PHDR value ( $\overline{POD}$ pin = low)                               |
| Other than general output | PHDR value                                           | Value is written to PHDR, but does not affect pin state                                             |
|                           | Other than general input  General output  Other than | General input Pin state  Other than general input  General output PHDR value  Other than PHDR value |

## 21.10 Port J

Port J is an input/output port with the 16 pins shown in figure 21.9.

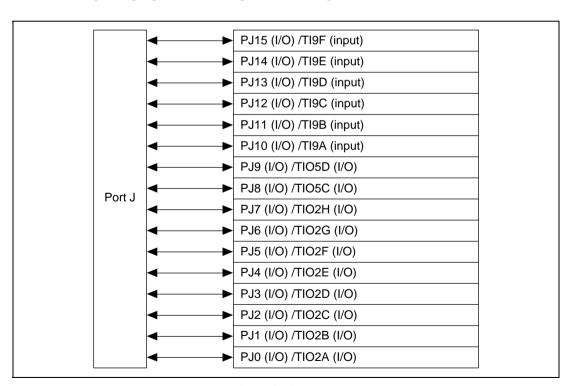



Figure 21.9 Port J

### 21.10.1 Register Configuration

The port J register configuration is shown in table 21.17.

**Table 21.17 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value        | Address    | Access Size |
|----------------------|--------------|-----|----------------------|------------|-------------|
| Port J data register | PJDR         | R/W | H'0000               | H'FFFFF76C | 8, 16       |
| Port J port register | PJPR         | R   | port J pin<br>values | H'FFFFF786 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

## 21.10.2 Port J Data Register (PJDR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PJ15<br>DR | PJ14<br>DR | PJ13<br>DR | PJ12<br>DR | PJ11<br>DR | PJ10<br>DR | PJ9<br>DR | PJ8<br>DR |
|                | DIX         DIX       |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
|                |            |            |            |            |            |            |           |           |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PJ7        | PJ6        | PJ5        | PJ4        | PJ3        | PJ2        | PJ1       | PJ0       |
|                | DR          DR        |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port J data register (PJDR) is a 16-bit readable/writable register that stores port J data. Bits PJ15DR to PJ0DR correspond to pins PJ15/TI9F to PJ0/TIO2A.

When a pin functions as a general output, if a value is written to PJDR, that value is output directly from the pin, and if PJDR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PJDR is read the pin state, not the register value, is returned directly. If a value is written to PJDR, although that value is written into PJDR it does not affect the pin state. Table 21.18 summarizes port J data register read/write operations.

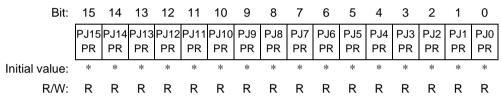

PJDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

Table 21.18 Port J Data Register (PJDR) Read/Write Operations

#### Bits 15 to 0:

| PJIOR | Pin Function              | Read       | Write                                                   |
|-------|---------------------------|------------|---------------------------------------------------------|
| 0     | General input             | Pin state  | Value is written to PJDR, but does not affect pin state |
|       | Other than general input  | Pin state  | Value is written to PJDR, but does not affect pin state |
| 1     | General output            | PJDR value | Write value is output from pin                          |
|       | Other than general output | PJDR value | Value is written to PJDR, but does not affect pin state |

## 21.10.3 Port J Port Register (PJPR)



Note: \*The initial value is 1 when the PJ15 to PJ0 pins are high, and it is 0 when the pins are low.

The port J port register (PJPR) is a 16-bit read-only register that always stores the value of the port J pins. The CPU cannot write data to this register. Bits PJ15PR to PJ0PR correspond to pins PJ15/TI9F to PJ0/TIO2A. If PJPR is read, the corresponding pin values are returned.

• Bits 15 to 0: Port J15 to J0 Port Register (PJ15PR to PJ0PR)

| PJ15PR to PJ0PR | Description                                                          |
|-----------------|----------------------------------------------------------------------|
| 0               | Low-level signals are output from or input to the PJ15 to PJ0 pins.  |
| 1               | High-level signals are output from or input to the PJ15 to PJ0 pins. |

## 21.11 Port K

Port K is an input/output port with the 16 pins shown in figure 21.10.

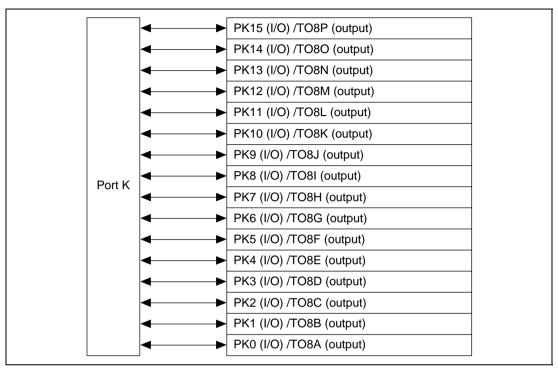



Figure 21.10 Port K

## 21.11.1 Register Configuration

The port K register configuration is shown in table 21.19.

**Table 21.19 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value | Address    | Access Size |
|----------------------|--------------|-----|---------------|------------|-------------|
| Port K data register | PKDR         | R/W | H'0000        | H'FFFFF778 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.11.2 Port K Data Register (PKDR)

| Bit:           | 15         | 14         | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|------------|------------|------------|------------|------------|------------|-----------|-----------|
|                | PK15<br>DR | PK14<br>DR | PK13<br>DR | PK12<br>DR | PK11<br>DR | PK10<br>DR | PK9<br>DR | PK8<br>DR |
|                | DIX         DIX       |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |
|                |            |            |            |            |            |            |           |           |
| Bit:           | 7          | 6          | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PK7        | PK6        | PK5        | PK4        | PK3        | PK2        | PK1       | PK0       |
|                | DR          DR        |
| Initial value: | 0          | 0          | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W         R/W       |

The port K data register (PKDR) is a 16-bit readable/writable register that stores port K data. Bits PK15DR to PK0DR correspond to pins PK15/TO8P to PK0/TO8A.

When a pin functions as a general output, if a value is written to PKDR, that value is output directly from the pin, and if PKDR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PKDR is read the pin state, not the register value, is returned directly. If a value is written to PKDR, although that value is written into PKDR it does not affect the pin state. Table 21.20 summarizes port K data register read/write operations.

PKDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

Table 21.20 Port K Data Register (PKDR) Read/Write Operations

Bits 15 to 0:

| PKIOR | Pin Function              | Read       | Write                                                   |
|-------|---------------------------|------------|---------------------------------------------------------|
| 0     | General input             | Pin state  | Value is written to PKDR, but does not affect pin state |
|       | Other than general input  | Pin state  | Value is written to PKDR, but does not affect pin state |
| 1     | General output            | PKDR value | Write value is output from pin                          |
|       | Other than general output | PKDR value | Value is written to PKDR, but does not affect pin state |

## 21.12 Port L

Port L is an input/output port with the 14 pins shown in figure 21.11.

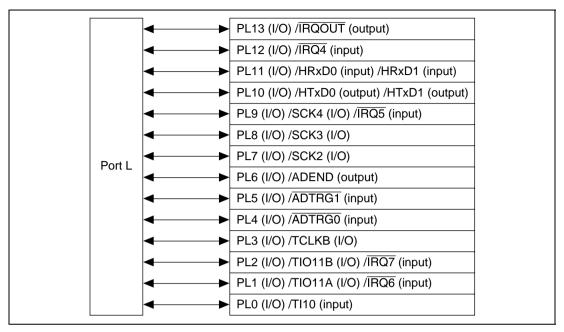



Figure 21.11 Port L

### 21.12.1 Register Configuration

The port L register configuration is shown in table 21.21.

**Table 21.21 Register Configuration** 

| Name                 | Abbreviation | R/W | Initial Value        | Address    | Access Size |
|----------------------|--------------|-----|----------------------|------------|-------------|
| Port L data register | PLDR         | R/W | H'0000               | H'FFFFF75E | 8, 16       |
| Port L port register | PLPR         | R   | port L pin<br>values | H'FFFFF788 | 8, 16       |

Note: A register access is performed in four or five cycles regardless of the access size.

#### 21.12.2 Port L Data Register (PLDR)

| Bit:           | 15        | 14        | 13         | 12         | 11         | 10         | 9         | 8         |
|----------------|-----------|-----------|------------|------------|------------|------------|-----------|-----------|
|                | _         |           | PL13<br>DR | PL12<br>DR | PL11<br>DR | PL10<br>DR | PL9<br>DR | PL8<br>DR |
| Initial value: | 0         | 0         | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R         | R         | R/W        | R/W        | R/W        | R/W        | R/W       | R/W       |
| Bit:           | 7         | 6         | 5          | 4          | 3          | 2          | 1         | 0         |
|                | PL7<br>DR | PL6<br>DR | PL5<br>DR  | PL4<br>DR  | PL3<br>DR  | PL2<br>DR  | PL1<br>DR | PL0<br>DR |
| Initial value: | 0         | 0         | 0          | 0          | 0          | 0          | 0         | 0         |
| R/W:           | R/W       | R/W       | R/W        | R/W        | R/W        | R/W        | R/W       | R/W       |

The port L data register (PLDR) is a 16-bit readable/writable register that stores port L data. Bits PL13DR to PL0DR correspond to pins PL13/IRQOUT to PL0/TI10.

When a pin functions as a general output, if a value is written to PLDR, that value is output directly from the pin, and if PLDR is read, the register value is returned directly regardless of the pin state.

When a pin functions as a general input, if PLDR is read the pin state, not the register value, is returned directly. If a value is written to PLDR, although that value is written into PLDR it does not affect the pin state. Table 21.22 summarizes port L data register read/write operations.

PLDR is initialized to H'0000 by a power-on reset (excluding a WDT power-on reset), and in hardware standby mode. It is not initialized in software standby mode or sleep mode.

• Bits 15 and 14—Reserved: These bits always read 0. The write value should always be 0.

Table 21.22 Port L Data Register (PLDR) Read/Write Operations

Bits 13 to 0:

| PLIOR | Pin Function              | Read       | Write                                                   |
|-------|---------------------------|------------|---------------------------------------------------------|
| 0     | General input             | Pin state  | Value is written to PLDR, but does not affect pin state |
|       | Other than general input  | Pin state  | Value is written to PLDR, but does not affect pin state |
| 1     | General output            | PLDR value | Write value is output from pin                          |
|       | Other than general output | PLDR value | Value is written to PLDR, but does not affect pin state |

#### 21.12.3 Port L Port Register (PLPR)

| Bit:           | 15 | 14 | 13         | 12   | 11   | 10   | 9   | 8   | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|----------------|----|----|------------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                | _  | _  | PL13<br>PR | PL12 | PL11 | PL10 | PL9 | PL8 | PL7 | PL6 | PL5 | PL4 | PL3 | PL2 | PL1 | PL0 |
|                |    |    | PR         | PR   | PR   | PR   | PR  | PR  | PR  | PR  | PR  | PR  | PR  | PR  | PR  | PR  |
| Initial value: | 0  | 0  | *          | *    | *    | *    | *   | *   | *   | *   | *   | *   | *   | *   | *   | *   |
| R/W:           | R  | R  | R          | R    | R    | R    | R   | R   | R   | R   | R   | R   | R   | R   | R   | R   |

Note: \*The initial value is 1 when the PL13 to PL0 pins are high, and it is 0 when the pins are low.

The port L port register (PLPR) is a 16-bit read-only register that always stores the value of the port L pins. The CPU cannot write data to this register. Bits PL13PR to PL0PR correspond to pins PL13/IRQOUT to PL0/T110. If PLPR is read, the corresponding pin values are returned.

- Bits 15 and 14: Reserved: These bits are always read as 0.
- Bits 13 to 0: Port L13 to L0 Port Register (PL13PR to PL0PR)

| PL13PR to PL0PR | Description                                                          |
|-----------------|----------------------------------------------------------------------|
| 0               | Low-level signals are output from or input to the PL13 to PL0 pins.  |
| 1               | High-level signals are output from or input to the PL13 to PL0 pins. |

## 21.13 POD (Port Output Disable) Control

The output port drive buffers for the address bus pins (A20 to A0) and data bus pins (D15 to D0) can be controlled by the  $\overline{POD}$  (port output disable) pin input level. However, this function is enabled only when the address bus pins (A20 to A0) and data bus pins (D15 to D0) are designated as general output ports.

Output buffer control by means of  $\overline{POD}$  is performed asynchronously from bus cycles.

| POD | Address Bus Pins (A20 to A0) and Data Bus Pins (D15 to D0) (when designated as output ports) |
|-----|----------------------------------------------------------------------------------------------|
| 0   | Enabled (high-impedance)                                                                     |
| 1   | Disabled (general output)                                                                    |

# 21.14 Usage Notes

(1) Table 21.23 lists the differences between the SH7055F and the SH7055SF.

Table 21.23 Differences between the SH7055F and the SH7055SF

|                 | Item                                     | SH7055F                     | SH7055SF                                                                                       | Notes                                   |  |
|-----------------|------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| PFC             | Bits 7, 5, 3 and 1 of<br>PACRL: Reserved |                             | These bits are read as 1 after 1 is written. See 20.3.2(2).                                    | Only 0 should be written to these bits. |  |
| I/O ports       | PAPR                                     | _                           |                                                                                                | The pin values can                      |  |
|                 | PBPR                                     |                             | read, the pin values are always                                                                | be read from the port registers when    |  |
|                 | PDPR                                     |                             | returned                                                                                       | the I/O pins of the                     |  |
|                 | PJPR                                     |                             | regardless of the                                                                              | ATU-II and SCI are                      |  |
|                 | PLPR                                     |                             | setting of other<br>registers. See<br>sections 21.2.3,<br>21.3.3, 21.5.3,<br>21.10.3, 21.12.3. | designated as outputs.*                 |  |
| Electrical      | DC Characteristics                       | V <sub>IH</sub> : 2.2V(min) | V <sub>IH</sub> :                                                                              | HCAN port                               |  |
| Characteristics | PG0,PL11                                 | V <sub>"</sub> : 0.8V(max)  | PVcc2×0.7V(min)                                                                                | characteristics                         |  |
|                 |                                          |                             | V <sub>IL</sub> :<br>PVcc2×0.3V(max)                                                           |                                         |  |
|                 |                                          |                             | See section 25.4.                                                                              |                                         |  |

Note: \* The pin values cannot be read from the data registers.

(2) When port pins do not function as I/O pins, the input/output direction of the pins is selected by the port control registers. (For the PJ15 to 10 pins and PA4 to PA0 pins, the IO register must also be specified.)

# Section 22 ROM

#### 22.1 Features

This LSI has 512-kbyte on-chip flash memory. The flash memory has the following features.

- Two flash-memory MATs according to LSI initiation mode
  - The on-chip flash memory has two memory spaces in the same address space (hereafter referred to as memory MATs). The mode setting in the initiation determines which memory MAT is initiated first. The MAT can be switched by using the bank-switching method after initiation.
  - The user MAT is initiated at a power-on reset in user mode: 512 kbytes
  - The user boot MAT is initiated at a power-on reset in user boot mode: 8 kbytes
- Three on-board programming modes and one off-board programming mode
  - On-board programming modes

**Boot Mode:** This mode is a program mode that uses an on-chip SCI interface. The user MAT and user boot MAT can be programmed. This mode can automatically adjust the bit rate between the host and this LSI.

**User Program Mode:** The user MAT can be programmed by using the optional interface.

**User Boot Mode:** The user boot program of the optional interface can be made and the user MAT can be programmed.

— Off-board programming mode

**Programmer Mode:** This mode uses the PROM programmer. The user MAT and user boot MAT can be programmed.

- Programming/erasing interface by the download of on-chip program
  - This LSI has a dedicated programming/erasing program. After downloading this program to the on-chip RAM, programming/erasing can be performed by setting the argument parameter. The user branch is also supported.
  - User branch
    - The program processing is performed in 128-byte units. It consists the program pulse application, verify read, and several other steps. Erasing is performed in one divided-block units and consists of several steps. The user processing routine can be executed between the steps, this setting for which is called the user branch addition.
- Emulation function of flash memory by using the on-chip RAM As flash memory is overlapped with part of the on-chip RAM, the flash memory programming can be emulated in real time.
- Protection modes

There are two protection modes. Software protection by the register setting and hardware protection by the FWE pin. The protection state for flash memory programming/erasing can be set.

When abnormalities, such as runaway of programming/erasing are detected, these modes enter the error protection state and the programming/erasing processing is suspended.

- Programming/erasing time
   The flash memory programming time is t<sub>P</sub> ms (typ) in 128-byte simultaneous programming and t<sub>P</sub>/128 ms per byte. The erasing time is t<sub>E</sub> s (typ) per block.
- $\hbox{\color{red}\bullet} \quad \text{Number of programming} \\ \quad \text{The number of flash memory programming can be up to } N_{_{WFC}} \text{ times}.$

### 22.2 Overview

### 22.2.1 Block Diagram

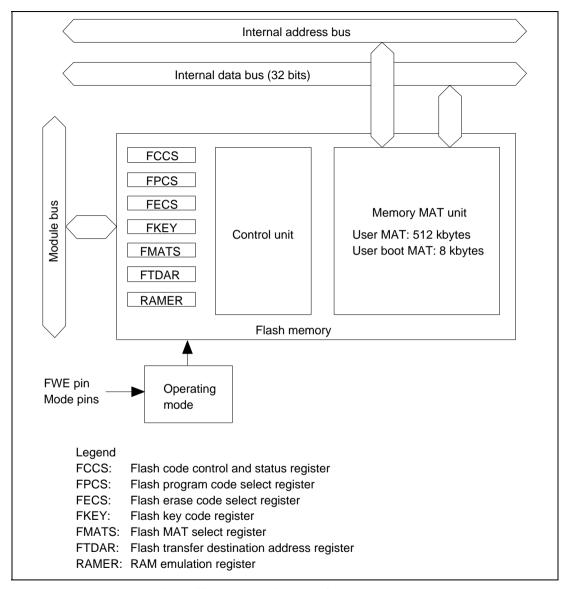



Figure 22.1 Block Diagram of Flash Memory

### 22.2.2 Operating Mode

When each mode pin and the FWE pin are set in the reset state and the reset signal is released, the microcomputer enters each operating mode as shown in figure 22.2. For the setting of each mode pin and the FWE pin, see table 22.1.

- Flash memory cannot be read, programmed, or erased in ROM invalid mode. The
  programming/erasing interface registers cannot be written to. When these registers are read,
  H'00 is always read.
- Flash memory can be read in user mode, but cannot be programmed or erased.
- Flash memory can be read, programmed, or erased on the board only in user program mode, user boot mode, and boot mode.
- Flash memory can be read, programmed, or erased by means of the PROM programmer in programmer mode.

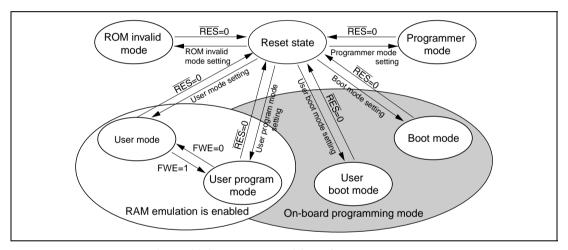



Figure 22.2 Mode Transition of Flash Memory

Table 22.1 Relationship between FWE and MD Pins and Operating Modes

|     |                |                        |                      | Wode                    |                      |              |                    |
|-----|----------------|------------------------|----------------------|-------------------------|----------------------|--------------|--------------------|
| Pin | Reset<br>State | ROM<br>Invalid<br>Mode | ROM<br>Valid<br>Mode | User<br>Program<br>Mode | User<br>Boot<br>Mode | Boot<br>Mode | Programmer<br>Mode |
| RES | 0              | 1                      | 1                    | 1                       | 1                    | 1            | 1                  |
| FWE | 0/1            | 0                      | 0                    | 1                       | 1                    | 1            | 0/1                |
| MD0 | 0/1            | 0/1*1                  | 0/1*2                | 0/1*2                   | 0/1*2                | 0/1*2        | 1                  |
| MD1 | 0/1            | 0                      | 1                    | 1                       | 0                    | 0            | 1                  |
| MD2 | 0/1            | 1                      | 1                    | 1                       | 0                    | 1            | 0                  |

Notes: \*1 MD0 = 0: 8-bit external bus. MD0 = 1: 16-bit external bus

## 22.2.3 Mode Comparison

The comparison table of programming and erasing related items about boot mode, user program mode, user boot mode, and programmer mode is shown in table 22.2.

<sup>\*2</sup> MD0 = 0: External bus can be used, MD0 = 1: Single-chip mode (external bus cannot be used)

**Table 22.2 Comparison of Programming Modes** 

|                                             | Boot Mode                          | User Program<br>Mode              | User Boot Mode                    | Programmer<br>Mode                 |
|---------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|
| Programming/<br>erasing<br>environment      | On-board programming               | On-board programming              | On-board programming              | Off-board programming              |
| Programming/<br>erasing enable<br>MAT       | User MAT<br>User boot MAT          | User MAT                          | User MAT                          | User MAT<br>User boot MAT          |
| Programming/ Command erasing control method |                                    | Programming/<br>erasing interface | Programming/<br>erasing interface | Command method                     |
| All erasure                                 | l erasure O (Automatic)            |                                   | 0                                 | O (Automatic)                      |
| Block division erasure                      | O*1                                | 0                                 | 0                                 | X                                  |
| Program data transfer                       | From host via<br>SCI               | From optional device via RAM      | From optional device via RAM      | Via programmer                     |
| User branch function                        | X                                  | 0                                 | 0                                 | X                                  |
| RAM emulation                               | Х                                  | 0                                 | Х                                 | X                                  |
| Reset initiation<br>MAT                     | Embedded<br>program storage<br>MAT | User MAT                          | User boot MAT* <sup>2</sup>       | Embedded<br>program storage<br>MAT |
| Transition to user mode                     | Mode setting change and reset      | FWE setting change                | Mode setting change and reset     | _                                  |

Notes: \*1 All-erasure is performed. After that, the specified block can be erased.

- The user boot MAT can be programmed or erased only in boot mode and programmer mode.
- The user MAT and user boot MAT are all erased in boot mode. Then, the user MAT and user boot MAT can be programmed by means of the command method. However, the contents of the MAT cannot be read until this state.
  - Only user boot MAT is programmed and the user MAT is programmed in user boot mode or only user MAT is programmed because user boot mode is not used.
- In user boot mode, the boot operation of the optional interface can be performed by a mode pin setting different from user program mode.

<sup>\*2</sup> Initiation starts from the embedded program storage MAT. After checking the flash-memory related registers, initiation starts from the reset vector of the user MAT.

### 22.2.4 Flash Memory Configuration

This LSI's flash memory is configured by the 512-kbyte user MAT and 8-kbyte user boot MAT.

The start address is allocated to the same address in the user MAT and user boot MAT. Therefore, when the program execution or data access is performed between the two MATs, the MAT must be switched by using FMATS. The user MAT is divided into two 512-kbyte banks (bank 0 and bank 1).

The user MAT or user boot MAT can be read in all modes if it is in ROM valid mode. However, the user boot MAT can be programmed only in boot mode and programmer mode.

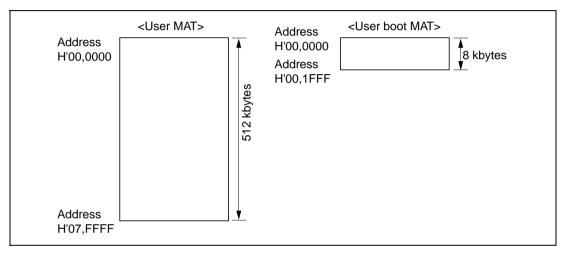



Figure 22.3 Flash Memory Configuration

The user MAT and user boot MAT have different memory sizes. Do not access a user boot MAT that is 8 kbytes or more. When a user boot MAT exceeding 8 kbytes is read from, an undefined value is read.

#### 22.2.5 Block Division

The user MAT is divided into 64 kbytes (seven blocks), 32 kbytes (one block), and 4 kbytes (eight blocks) as shown in figure 22.4. The user MAT can be erased in this divided-block units and the erase-block number of EB0 to EB15 is specified when erasing.

The RAM emulation can be performed in the eight blocks of 4 kbytes.

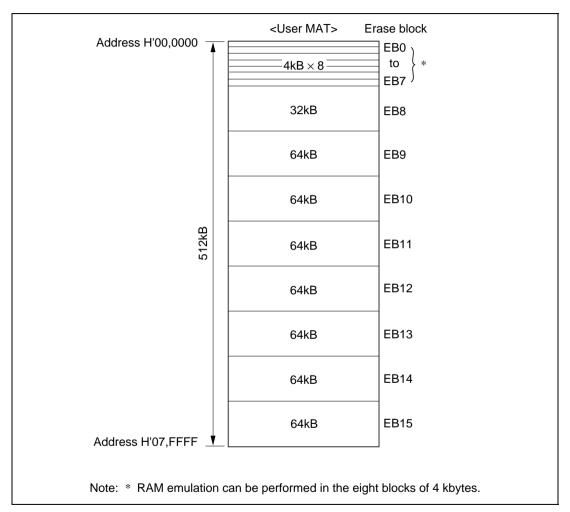



Figure 22.4 Block Division of User MAT

### 22.2.6 Programming/Erasing Interface

Programming/erasing is executed by downloading the on-chip program to the on-chip RAM and specifying the program address/data and erase block by using the interface registers/parameters.

The procedure program is made by the user in user program mode and user boot mode. The overview of the procedure is as follows. For details, see section 22.5.2, User Program Mode.

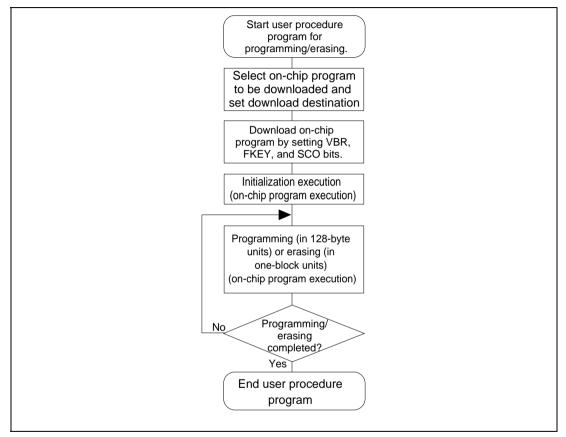



Figure 22.5 Overview of User Procedure Program

(1) Selection of On-Chip Program to be Downloaded and Setting of Download Destination
This LSI has programming/erasing programs and they can be downloaded to the on-chip
RAM. The on-chip program to be downloaded is selected by setting the corresponding bits in
the programming/erasing interface registers. The download destination can be specified by
FTDAR.

### (2) Download of On-Chip Program

The on-chip program is automatically downloaded by clearing VBR of the CPU to H'00000000 and then setting the SCO bit in the flash key code register (FKEY) and the flash code control and status register (FCCS), which are programming/erasing interface registers.

The user MAT is replaced to the embedded program storage area when downloading. Since the flash memory cannot be read when programming/erasing, the procedure program, which is working from download to completion of programming/erasing, must be executed in a space other than the flash memory to be programmed/erased (for example, on-chip RAM).

Since the result of download is returned to the programming/erasing interface parameters, whether the normal download is executed or not can be confirmed.

Note that VBR can be changed after download is completed.

### (3) Initialization of Programming/Erasing

The operating frequency and user branch are set before execution of programming/erasing. The user branch destination must be in an area other than the on-chip flash memory area and the area where the on-chip program is downloaded. These settings are performed by using the programming/erasing interface parameters.

### (4) Programming/Erasing Execution

To program or erase, the FWE pin must be brought high and user program mode must be entered.

The program data/programming destination address is specified in 128-byte units when programming.

The block to be erased is specified in a erase-block unit when erasing.

These specifications are set by using the programming/erasing interface parameters and the on-chip program is initiated. The on-chip program is executed by using the JSR or BSR instruction to perform the subroutine call of the specified address in the on-chip RAM. The execution result is returned to the programming/erasing interface parameters.

The area to be programmed must be erased in advance when programming flash memory. There are limitations and notes on the interrupt processing during programming/erasing. For details, see section 22.8.2, Interrupts during Programming/Erasing.

# (5) When Programming/Erasing is Executed Consecutively

When the processing is not ended by the 128-byte programming or one-block erasure, the program address/data and erase-block number must be updated and consecutive programming/erasing is required.

Since the downloaded on-chip program is left in the on-chip RAM after the processing, download and initialization are not required when the same processing is executed consecutively.

# 22.3 Pin Configuration

Flash memory is controlled by the pins as shown in table 22.3.

**Table 22.3 Pin Configuration** 

| Pin Name                 | Abbreviation | Input/Output | Function                                          |
|--------------------------|--------------|--------------|---------------------------------------------------|
| Power-on reset           | RES          | Input        | Reset                                             |
| Flash programming enable | FWE          | Input        | Hardware protection when programming flash memory |
| Mode 2                   | MD2          | Input        | Sets operating mode of this LSI                   |
| Mode 1                   | MD1          | Input        | Sets operating mode of this LSI                   |
| Mode 0                   | MD0          | Input        | Sets operating mode of this LSI                   |
| Transmit data            | TxD1         | Output       | Serial transmit data output (used in boot mode)   |
| Receive data             | RxD1         | Input        | Serial receive data input (used in boot mode)     |

Note: For the pin configuration in programmer mode, see section 22.9, Programmer Mode.

# 22.4 Register Configuration

### 22.4.1 Registers

The registers/parameters which control flash memory when the on-chip flash memory is valid are shown in table 22.4.

There are several operating modes for accessing flash memory, for example, read mode/program mode.

There are two memory MATs: user MAT and user boot MAT. The dedicated registers/parameters are allocated for each operating mode and MAT selection. The correspondence of operating modes and registers/parameters for use is shown in table 22.5.

**Table 22.4 (1)** Register Configuration

| Name                                        | Abbreviation | R/W                | Initial<br>Value                         | Address    | Access<br>Size |
|---------------------------------------------|--------------|--------------------|------------------------------------------|------------|----------------|
| Flash code control status register          | FCCS         | R, W* <sup>1</sup> | H'00* <sup>2</sup><br>H'80* <sup>2</sup> | H'FFFFE800 | 8              |
| Flash program code select register          | FPCS         | R/W                | H'00                                     | H'FFFFE801 | 8              |
| Flash erase code select register            | FECS         | R/W                | H'00                                     | H'FFFFE802 | 8              |
| Flash key code register                     | FKEY         | R/W                | H'00                                     | H'FFFFE804 | 8              |
| Flash MAT select register                   | FMATS        | R/W                | H'00* <sup>3</sup><br>H'AA* <sup>3</sup> | H'FFFFE805 | 8              |
| Flash transfer destination address register | FTDAR        | R/W                | H'00                                     | H'FFFFE806 | 8              |
| RAM emulation register                      | RAMER        | R/W                | H'0000                                   | H'FFFFEC26 | 8, 16          |

Notes: All registers except for RAMER can be accessed only in bytes, and the access requires three cycles.

RAMER can be accessed in bytes or words, and the access requires three cycles.

- \*1 The bits except the SCO bit are read-only bits. The SCO bit is a programming-only bit. (The value which can be read is always 0.)
- \*2 The initial value is H'00 when the FWE pin goes low. The initial value is H'80 when the FWE pin goes high.
- \*3 The initial value at initiation in user mode or user program mode is H'00. The initial value at initiation in user boot mode is H'AA.

**Table 22.4 (2)** Parameter Configuration

| Name                                      | Abbreviation | R/W | Initial<br>Value | Address      | Access<br>Size |
|-------------------------------------------|--------------|-----|------------------|--------------|----------------|
| Download pass/fail result                 | DPFR         | R/W | Undefin-<br>ed   | On-chip RAM* | 8, 16, 32      |
| Flash pass/fail result                    | FPFR         | R/W | Undefin-<br>ed   | R0 of CPU    | 8, 16, 32      |
| Flash multipurpose address area           | FMPAR        | R/W | Undefin-<br>ed   | R5 of CPU    | 8, 16, 32      |
| Flash multipurpose data destination area  | FMPDR        | R/W | Undefin-<br>ed   | R4 of CPU    | 8, 16, 32      |
| Flash erase block select                  | FEBS         | R/W | Undefin-<br>ed   | R4 of CPU    | 8, 16, 32      |
| Flash program and erase frequency control | FPEFEQ       | R/W | Undefin-<br>ed   | R4 of CPU    | 8, 16, 32      |
| Flash user branch address set parameter   | FUBRA        | R/W | Undefin-<br>ed   | R5 of CPU    | 8, 16, 32      |

Note: \*One byte of the start address in the on-chip RAM area specified by FTDAR is valid.

Table 22.5 Register/Parameter and Target Mode

|                  |        | Download | Initiali-<br>zation | Program-<br>ming | Erasure | Read | RAM<br>Emulation |
|------------------|--------|----------|---------------------|------------------|---------|------|------------------|
| Programming/     | FCCS   | 0        | _                   | _                | _       | _    | _                |
| erasing          | FPCS   | 0        | _                   | _                | _       | _    | _                |
| interface        | PECS   | 0        | _                   | _                | _       | _    | _                |
| registers        | FKEY   | 0        | _                   | 0                | 0       | _    | _                |
|                  | FMATS  |          | _                   | O*1              | O*1     | O*2  | _                |
|                  | FTDAR  | 0        | _                   | _                | _       | _    | _                |
| Programming/     | DPFR   | 0        | _                   | _                | _       | _    | _                |
| erasing          | FPFR   | 0        | 0                   | 0                | 0       | _    | _                |
| interface        | FPEFEQ |          | 0                   | _                | _       | _    | _                |
| parameters       | FUBRA  |          | 0                   | _                | _       | _    | _                |
|                  | FMPAR  | _        | _                   | 0                | _       | _    | _                |
|                  | FMPDR  |          | _                   | 0                | _       | _    | _                |
|                  | FEBS   | _        | _                   | _                | 0       | _    | _                |
| RAM<br>emulation | RAMER  | _        | _                   | _                | _       | _    | 0                |

Notes: \*1 The setting is required when programming or erasing user MAT in user boot mode.

# 22.4.2 Programming/Erasing Interface Registers

The programming/erasing interface registers are as described below. They are all 8-bit registers that can be accessed in bytes. Except for the FLER bit in FCCS and FMATS, these registers are initialized at a power-on reset, in hardware standby mode, or in software standby mode. The FLER bit or FMATS is not initialized in software standby mode.

# (1) Flash Code Control and Status Register (FCCS)

FCCS is configured by bits which request the monitor of the FWE pin state and error occurrence during programming or erasing flash memory and the download of the on-chip program.

| Bit          | :   | 7   | 6 | 5 | 4    | 3 | 2 | 1 | 0     |
|--------------|-----|-----|---|---|------|---|---|---|-------|
|              |     | FWE |   | _ | FLER | _ | _ | _ | sco   |
| Initial valu | ue: | 1/0 | 0 | 0 | 0    | 0 | 0 | 0 | 0     |
| R/W          | :   | R   | R | R | R    | R | R | R | (R)/W |

<sup>\*2</sup> The setting may be required according to the combination of initiation mode and read target MAT.

**Bit 7—Flash Programming Enable (FWE):** Monitors the level which is input to the FWE pin that performs hardware protection of the flash memory programming or erasing. The initial value is 0 or 1 according to the FWE pin state.

#### Bit 7

| FWE | Description                                              |
|-----|----------------------------------------------------------|
| 0   | When the FWE pin goes low (in hardware protection state) |
| 1   | When the FWE pin goes high                               |

Bits 6 and 5—Reserved: These bits are always read as 0. The write value should always be 0.

**Bit 4—Flash Memory Error (FLER):** Indicates an error occurs during programming and erasing flash memory.

When FLER is set to 1, flash memory enters the error protection state.

This bit is initialized at a power-on reset or in hardware standby mode.

When FLER is set to 1, high voltage is applied to the internal flash memory. To reduce the damage to flash memory, the reset signal must be released after the reset period of  $100~\mu s$  which is longer than normal.

#### Bit 4

| FLER | Description                                                                                                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Flash memory operates normally (Initial value) Programming/erasing protection for flash memory (error protection) is invalid. [Clearing condition] At a power-on reset or in hardware standby mode          |
| 1    | Indicates an error occurs during programming/erasing flash memory.  Programming/erasing protection for flash memory (error protection) is valid.  [Setting condition] See section 22.6.3, Error Protection. |

**Bits 3 to 1—Reserved:** These bits should always be cleared to 0.

**Bit 0—Source Program Copy Operation (SCO):** Requests the on-chip programming/erasing program to be downloaded to the on-chip RAM.

When this bit is set to 1, the on-chip program which is selected by FPCS/FECS is automatically downloaded in the on-chip RAM area specified by FTDAR.

In order to set this bit to 1, RAM emulation state must be canceled, H'A5 must be written to FKEY, and this operation must be in the on-chip RAM.

Four NOP instructions must be executed immediately after setting this bit to 1.

For interrupts during download, see section 22.8.2, Interrupts during Programming/Erasing. For the download time, see section 22.8.3, Other Notes.

Since this bit is cleared to 0 when download is completed, this bit cannot be read as 1.

Download by setting the SCO bit to 1 requires a special interrupt processing that performs bank switching to the on-chip program storage area. Therefore, before issuing a download request (SCO = 1), set VBR to H'00000000. Otherwise, the CPU gets out of control. Once download end is confirmed, VBR can be changed to any other value.

| Bit 0 |                                                                                                                                                                                                               |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| sco   | Description                                                                                                                                                                                                   |  |  |  |  |  |  |
| 0     | Download of the on-chip programming/erasing program to the on-chip RAM is not executed (Initial value) [Clear condition] When download is completed                                                           |  |  |  |  |  |  |
| 1     | Request that the on-chip programming/erasing program is downloaded to the on-<br>chip RAM is generated<br>[Set conditions] When all of the following conditions are satisfied and 1 is written to<br>this bit |  |  |  |  |  |  |
|       | H'A5 is written to FKEY                                                                                                                                                                                       |  |  |  |  |  |  |
|       | During execution in the on-chip RAM                                                                                                                                                                           |  |  |  |  |  |  |
|       | <ul> <li>Not in RAM emulation mode (RAMS in RAMCR = 0)</li> </ul>                                                                                                                                             |  |  |  |  |  |  |

## (2) Flash Program Code Select Register (FPCS)

FPCS selects the on-chip programming program to be downloaded.

| Bit            | : . | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0    |
|----------------|-----|---|---|---|---|---|---|---|------|
|                |     | _ | _ | _ | _ | _ | _ | _ | PPVS |
| Initial value: |     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| R/W            | :   | R | R | R | R | R | R | R | R/W  |

Bits 7 to 1—Reserved: These bits are always read as 0. The write value should always be 0.

**Bit 0—Program Pulse Single (PPVS):** Selects the programming program.

### Bit 0

| PPVS | Description                                  |                 |
|------|----------------------------------------------|-----------------|
| 0    | On-chip programming program is not selected  | (Initial value) |
|      | [Clear condition] When transfer is completed |                 |
| 1    | On-chip programming program is selected      |                 |

### (3) Flash Erase Code Select Register (FECS)

FECS selects download of the on-chip erasing program.

| Bit           | : | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0    |
|---------------|---|---|---|---|---|---|---|---|------|
|               |   | _ | _ | _ | _ | _ | _ | _ | EPVB |
| Initial value | : | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0    |
| R/W           | : | R | R | R | R | R | R | R | R/W  |

**Bits 7 to 1—Reserved:** These bits are always read as 0. The write value should always be 0.

Bit 0—Erase Pulse Verify Block (EPVB): Selects the erasing program.

#### Bit 0

| EPVB | Description                                  |                 |
|------|----------------------------------------------|-----------------|
| 0    | On-chip erasing program is not selected      | (Initial value) |
|      | [Clear condition] When transfer is completed |                 |
| 1    | On-chip erasing program is selected          |                 |

### (4) Flash Key Code Register (FKEY)

FKEY is a register for software protection that enables download of the on-chip program and programming/erasing of flash memory. Before setting the SCO bit to 1 in order to download the on-chip program or executing the downloaded programming/erasing program, these processings cannot be executed if the key code is not written.

| Bit         | :     | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|-------------|-------|-----|-----|-----|-----|-----|-----|-----|-----|
|             |       | K7  | K6  | K5  | K4  | К3  | K2  | K1  | K0  |
| Initial val | lue : | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
| R/W         | :     | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W |

**Bits 7 to 0—Key Code (K7 to K0):** Only when H'A5 is written, writing to the SCO bit is valid. When a value other than H'A5 is written to FKEY, 1 cannot be written to the SCO bit. Therefore downloading to the on-chip RAM cannot be executed.

Only when H'5A is written, programming/erasing of flash memory can be executed. Even if the on-chip programming/erasing program is executed, flash memory cannot be programmed or erased when a value other than H'5A is written to FKEY.

| Bits 7 to 0 |                                                                                             |
|-------------|---------------------------------------------------------------------------------------------|
| K7 to K0    | Description                                                                                 |
| H'A5        | Writing to the SCO bit is enabled (The SCO bit cannot be set by a value other than H'A5.)   |
| H'5A        | Programming/erasing is enabled (A value other than H'A5 enables software protection state.) |
| H'00        | Initial value                                                                               |

### (5) Flash MAT Select Register (FMATS)

FMATS specifies whether user MAT or user boot MAT is selected.

| Bit:           | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   | _                            |
|----------------|-----|-----|-----|-----|-----|-----|-----|-----|------------------------------|
|                | MS7 | MS6 | MS5 | MS4 | MS3 | MS2 | MS1 | MS0 |                              |
| Initial value: | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   | (When not in user boot mode) |
| Initial value: | 1   | 0   | 1   | 0   | 1   | 0   | 1   | 0   | (When in                     |
| R/W:           | R/W | R/W | R/W | R/W | R/W | R/W | R/W | R/W | user boot mode)              |

**Bits 7 to 0—MAT Select (MS7 to MS0):** These bits are in user-MAT selection state when a value other than H'AA is written and in user-boot-MAT selection state when H'AA is written.

The MAT is switched by writing a value in FMATS.

When the MAT is switched, follow section 22.8.1, Switching between User MAT and User Boot MAT. (The user boot MAT cannot be programmed in user program mode if user boot MAT is selected by FMATS. The user boot MAT must be programmed in boot mode or in programmer mode.)

#### Bits 7 to 0

| MS7 to MS0 | Description                                                                                                   |
|------------|---------------------------------------------------------------------------------------------------------------|
| H'AA       | The user boot MAT is selected (in user-MAT selection state when the value of these bits are other than H'AA)  |
|            | Initial value when these bits are initiated in user boot mode.                                                |
| H'00       | Initial value when these bits are initiated in a mode except for user boot mode (in user-MAT selection state) |

[Programmable condition] These bits are in the execution state in the on-chip RAM.

## (6) Flash Transfer Destination Address Register (FTDAR)

FTDAR specifies the on-chip RAM address to which the on-chip program is downloaded. Make settings for FTDAR before writing 1 to the SCO bit in FCCS. The initial value is H'00 which points to the start address (H'FFFF6000) in on-chip RAM.

| Bit          | :   | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|--------------|-----|------|------|------|------|------|------|------|------|
|              |     | TDER | TDA6 | TDA5 | TDA4 | TDA3 | TDA2 | TDA1 | TDA0 |
| Initial valu | e : | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| R/W          | :   | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |

**Bit 7—Transfer Destination Address Setting Error:** This bit is set to 1 when there is an error in the download start address set by bits 6 to 0 (TDA6 to TDA0). Whether the address setting is erroneous or not is judged by checking whether the setting of TDA6 to TDA0 is between the range of H'00 and H'05 after setting the SCO bit in FCCS to 1 and performing download. Before setting the SCO bit to 1 be sure to set the FTDAR value between H'00 to H'05 as well as clearing this bit to 0.

### Bit 7

| TDER | Description (Return Value after Download)                        |                 |
|------|------------------------------------------------------------------|-----------------|
| 0    | Setting of TDA6 to TDA0 is normal                                | (Initial value) |
| 1    | Setting of TDER and TDA6 to TDA0 is H'06 to H'FF and dow aborted | rnload has been |

Bits 6 to 0—Transfer Destination Address (TDA6 to TDA0): These bits specify the download start address. A value from H'00 to H'05 can be set to specify the download start address in on-chip RAM in 2-kbyte units.

A value from H'06 to H'7F cannot be set. If such a value is set, the TDER bit (bit 7) in this register is set to 1 to prevent download from being executed.

| Bits 6 to 0     |                                                                                                              |
|-----------------|--------------------------------------------------------------------------------------------------------------|
| TDA6 to<br>TDA0 | Description                                                                                                  |
| H'00            | Download start address is set to H'FFFF6000                                                                  |
| H'01            | Download start address is set to H'FFFF6800                                                                  |
| H'02            | Download start address is set to H'FFFF7000                                                                  |
| H'03            | Download start address is set to H'FFFF7800                                                                  |
| H'04            | Download start address is set to H'FFFF8000                                                                  |
| H'05            | Download start address is set to H'FFFF8800                                                                  |
| H'06 to H'7F    | Setting prohibited. If this value is set, the TDER bit (bit 7) is set to 1 to abort the download processing. |

# 22.4.3 Programming/Erasing Interface Parameters

The programming/erasing interface parameters specify the operating frequency, user branch destination address, storage place for program data, programming destination address, and erase block and exchanges the processing result for the downloaded on-chip program. This parameter uses the general registers of the CPU (R4, R5, and R0) or the on-chip RAM area. The initial value is undefined at a power-on reset or in hardware standby mode.

At download all CPU registers are stored, and at initialization or when the on-chip program is executed, CPU registers except for R0 are stored. The return value of the processing result is written in R0. Since the stack area is used for storing the registers or as a work area, the stack area must be saved at the processing start. (The maximum size of a stack area to be used is 128 bytes.)

The programming/erasing interface parameters are used in the following four items.

- (1) Download control
- (2) Initialization before programming or erasing
- (3) Programming
- (4) Erasing

These items use different parameters. The correspondence table is shown in table 22.6.

The processing results of initialization, programming, and erasing are returned, but the bit contents have different meanings according to the processing program. See the description of FPFR for each processing.

Table 22.6 Usable Parameters and Target Modes

| Name of Parameter                                  | Abbrevi-<br>ation | Down<br>load | Initiali-<br>zation | Program-<br>ming | Erasure | R/W | Initial<br>Value | Allocation      |
|----------------------------------------------------|-------------------|--------------|---------------------|------------------|---------|-----|------------------|-----------------|
| Download pass/fail result                          | DPFR              | 0            | _                   | _                | _       | R/W | Undefined        | On-chip<br>RAM* |
| Flash pass/fail result                             | FPFR              | _            | 0                   | 0                | 0       | R/W | Undefined        | R0 of CPU       |
| Flash programming/<br>erasing frequency<br>control | FPEFEQ            | _            | 0                   | _                | _       | R/W | Undefined        | R4 of CPU       |
| Flash user branch address set parameter            | FUBRA             | _            | 0                   | _                | _       | R/W | Undefined        | R5 of CPU       |
| Flash multipurpose address area                    | FMPAR             | _            | _                   | 0                | _       | R/W | Undefined        | R5 of CPU       |
| Flash multipurpose data destination area           | FMPDR             | _            | _                   | 0                | _       | R/W | Undefined        | R4 of CPU       |
| Flash erase block select                           | FEBS              | _            | _                   | _                | 0       | R/W | Undefined        | R4 of CPU       |

Note: \*One byte of start address of download destination specified by FTDAR

## (1) Download Control

The on-chip program is automatically downloaded by setting the SCO bit to 1. The on-chip RAM area to be downloaded is the area as much as 2 kbytes starting from the start address specified by FTDAR. For the address map of the on-chip RAM, see figure 22.10.

The download control is set by using the programming/erasing interface registers. The return value is given by the DPFR parameter.

(a) Download pass/fail result parameter (DPFR: one byte of start address of on-chip RAM specified by FTDAR)

This parameter indicates the return value of the download result. The value of this parameter can be used to determine if downloading is executed or not. Since the confirmation whether the SCO bit is set to 1 is difficult, the certain determination must be performed by setting one byte of the start address of the on-chip RAM area specified by FTDAR to a value other than the return value of download (for example, H'FF) before the download start (before setting the SCO bit to 1). For the checking method of download results, see section 22.5.2, User Program Mode.

| Bit | : | 7 | 6 | 5 | 4 | 3 | 2  | 1  | 0  |
|-----|---|---|---|---|---|---|----|----|----|
|     |   | 0 | 0 | 0 | 0 | 0 | SS | FK | SF |

Bits 7 to 3—Unused: Return 0.

Bit 2—Source Select Error Detect (SS): The on-chip program which can be downloaded can be specified as only one type at a time. When more than two types of the program are selected, the program is not selected, or the program is selected without mapping, an error occurs.

| Bit 2 |                                                                                    |
|-------|------------------------------------------------------------------------------------|
| SS    | Description                                                                        |
| 0     | Download program can be selected normally                                          |
| 1     | Download error occurs (Multi-selection or program which is not mapped is selected) |

**Bit 1—Flash Key Register Error Detect (FK):** Returns the check result whether the value of FKEY is set to H'A5.

| Bit 1 |                                                         |
|-------|---------------------------------------------------------|
| FK    | Description                                             |
| 0     | FKEY setting is normal (FKEY = H'A5)                    |
| 1     | FKEY setting is abnormal (FKEY = value other than H'A5) |

Bit 0—Success/Fail (SF): Returns the result whether download has ended normally or not.

| Bit 0 |                                                                 |
|-------|-----------------------------------------------------------------|
| SF    | Description                                                     |
| 0     | Downloading on-chip program has ended normally (no error)       |
| 1     | Downloading on-chip program has ended abnormally (error occurs) |

# (2) Programming/Erasing Initialization

The on-chip programming/erasing program to be downloaded includes the initialization program.

The specified period pulse must be applied when programming or erasing. The specified pulse width is made by the method in which wait loop is configured by the CPU instruction. The operating frequency of the CPU must be set. Since the user branch function is supported, the user branch destination address must be set.

The initial program is set as a parameter of the programming/erasing program which has downloaded these settings.

(2.1) Flash programming/erasing frequency parameter (FPEFEQ: general register R4 of CPU) This parameter sets the operating frequency of the CPU.

For the range of the operating frequency of this LSI, see section 25.3.2, Clock Timing.

| Bit:  | 31  | 30  | 29  | 28  | 27  | 26  | 25 | 24 |
|-------|-----|-----|-----|-----|-----|-----|----|----|
|       | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
| Bit : | 23  | 22  | 21  | 20  | 19  | 18  | 17 | 16 |
|       | 0   | 0   | 0   | 0   | 0   | 0   | 0  | 0  |
|       |     |     |     |     |     |     |    |    |
| Bit:  | 15  | 14  | 13  | 12  | 11  | 10  | 9  | 8  |
|       | F15 | F14 | F13 | F12 | F11 | F10 | F9 | F8 |
|       |     |     |     |     |     |     |    |    |
| Bit:  | 7   | 6   | 5   | 4   | 3   | 2   | 1  | 0  |
|       | F7  | F6  | F5  | F4  | F3  | F2  | F1 | F0 |
|       |     |     |     |     |     |     |    |    |

Bits 31 to 16—Unused: Return 0.

**Bits 15 to 0—Frequency Set (F15 to F0):** Set the operating frequency of the CPU. The setting value must be calculated as the following methods.

- 1. The operating frequency which is shown in MHz units must be rounded in a number to three decimal places and be shown in a number of two decimal places.
- 2. The centuplicated value is converted to the binary digit and is written to the FPEFEQ parameter (general register R4). For example, when the operating frequency of the CPU is 28.882 MHz, the value is as follows.
- 1. The number to three decimal places of 28.882 is rounded and the value is thus 28.88.
- 2. The formula that  $28.88 \times 100 = 2888$  is converted to the binary digit and b'0000,1011,0100,1000 (H'0B48) is set to R4.

(2.2) Flash user branch address setting parameter (FUBRA: general register R5 of CPU)

This parameter sets the user branch destination address. The user program which has been set can be executed in specified processing units when programming and erasing.

| Bit:  | 31   | 30   | 29   | 28   | 27   | 26   | 25   | 24   |
|-------|------|------|------|------|------|------|------|------|
|       | UA31 | UA30 | UA29 | UA28 | UA27 | UA26 | UA25 | UA24 |
| Bit : | 23   | 22   | 21   | 20   | 19   | 18   | 17   | 16   |
|       | UA23 | UA22 | UA21 | UA20 | UA19 | UA18 | UA17 | UA16 |
|       |      |      |      |      |      |      |      |      |
| Bit:  | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |
|       | UA15 | UA14 | UA13 | UA12 | UA11 | UA10 | UA9  | UA8  |
|       |      |      |      |      |      |      |      |      |
| Bit:  | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|       | UA7  | UA6  | UA5  | UA4  | UA3  | UA2  | UA1  | UA0  |

**Bits 31 to 0—User Branch Destination Address (UA31 to UA0):** When the user branch is not required, address 0 (H'00000000) must be set.

The user branch destination must be an area other than the flash memory, an area other than the RAM area in which on-chip program has been transferred, or the external bus space.

Note that the CPU must not branch to an area without the execution code and get out of control. The on-chip program download area and stack area must not be overwritten. If CPU runaway occurs or the download area or stack area is overwritten, the value of flash memory cannot be guaranteed.

The download of the on-chip program, initialization, initiation of the programming/erasing program must not be executed in the processing of the user branch destination. Programming or erasing cannot be guaranteed when returning from the user branch destination. The program data which has already been prepared must not be programmed.

The general registers R8 to R15 are stored. The general registers R0 to R7 can be used without being stored.

Moreover, the programming/erasing interface registers must not be written to or RAM emulation mode must not be entered in the processing of the user branch destination.

After the processing of the user branch has ended, the programming/erasing program must be returned to by using the RTS instruction.

For the execution intervals of the user branch processing, see note 2 (User branch processing intervals) in section 22.8.3, Other Notes.

## (2.3) Flash pass/fail result parameter (FPFR: general register R0 of CPU)

This parameter indicates the return value of the initialization result.

| Bit:  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 |
|-------|----|----|----|----|----|----|----|----|
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Bit : | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    | •  |    |    |    |
| Bit:  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  |
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |
| Bit:  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|       | 0  | 0  | 0  | 0  | 0  | BR | FQ | SF |

## Bits 31 to 3—Unused: Return 0.

Bit 2—User Branch Error Detect (BR): Returns the check result whether the specified user branch destination address is in the area other than the storage area of the programming/erasing program which has been downloaded.

### Bit 2

| BR | Description                             |
|----|-----------------------------------------|
| 0  | User branch address setting is normal   |
| 1  | User branch address setting is abnormal |

**Bit 1—Frequency Error Detect (FQ):** Returns the check result whether the specified operating frequency of the CPU is in the range of the supported operating frequency.

## Bit 1

| FQ | <br>Description                            |
|----|--------------------------------------------|
| 0  | Setting of operating frequency is normal   |
| 1  | Setting of operating frequency is abnormal |

Bit 0—Success/Fail (SF): Indicates whether initialization is completed normally.

# Bit 0

| SF | Description                                        |
|----|----------------------------------------------------|
| 0  | Initialization has ended normally (no error)       |
| 1  | Initialization has ended abnormally (error occurs) |

### (3) Programming Execution

When flash memory is programmed, the programming destination address on the user MAT must be passed to the programming program in which the program data is downloaded.

- 1. The start address of the programming destination on the user MAT is set in general register R5 of the CPU. This parameter is called FMPAR (flash multipurpose address area parameter).
  - Since the program data is always in 128-byte units, the lower eight bits (MOA7 to MOA0) must be H'00 or H'80 as the boundary of the programming start address on the user MAT.
- 2. The program data for the user MAT must be prepared in the consecutive area. The program data must be in the consecutive space which can be accessed by using the MOV.B instruction of the CPU and is not the flash memory space.

When data to be programmed does not satisfy 128 bytes, the 128-byte program data must be prepared by embedding the dummy code (H'FF).

The start address of the area in which the prepared program data is stored must be set in general register R4. This parameter is called FMPDR (flash multipurpose data destination area parameter).

For details on the programming procedure, see section 22.5.2, User Program Mode.

# (3.1) Flash multipurpose address area parameter (FMPAR: general register R5 of CPU)

This parameter indicates the start address of the programming destination on the user MAT.

When an address in an area other than the flash memory space is set, an error occurs.

The start address of the programming destination must be at the 128-byte boundary. If this boundary condition is not satisfied, an error occurs. The error occurrence is indicated by the WA bit (bit 1) in FPFR.

| Bit:  | 31    | 30    | 29    | 28    | 27    | 26    | 25    | 24    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       | MOA31 | MOA30 | MOA29 | MOA28 | MOA27 | MOA26 | MOA25 | MOA24 |
| Bit : | 23    | 22    | 21    | 20    | 19    | 18    | 17    | 16    |
|       | MOA23 | MOA22 | MOA21 | MOA20 | MOA19 | MOA18 | MOA17 | MOA16 |
| ,     |       |       |       |       |       |       |       |       |
| Bit:  | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|       | MOA15 | MOA14 | MOA13 | MOA12 | MOA11 | MOA10 | MOA9  | MOA8  |
|       |       |       |       |       |       |       |       |       |
| Bit:  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|       | MOA7  | MOA6  | MOA5  | MOA4  | MOA3  | MOA2  | MOA1  | MOA0  |

**Bits 31 to 0—MOA31 to MOA0:** Store the start address of the programming destination on the user MAT. The consecutive 128-byte programming is executed starting from the specified start address of the user MAT. The MOA6 to MOA0 bits are always 0 because the start address of the programming destination is at the 128-byte boundary.

(3.2) Flash multipurpose data destination parameter (FMPDR: general register R4 of CPU)

This parameter indicates the start address in the area which stores the data to be programmed in the user MAT. When the storage destination of the program data is in flash memory, an error occurs. The error occurrence is indicated by the WD bit (bit 2) in FPFR.

| Bit : | 31    | 30    | 29    | 28    | 27    | 26    | 25    | 24    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       | MOD31 | MOD30 | MOD29 | MOD28 | MOD27 | MOD26 | MOD25 | MOD24 |
| Bit : | 23    | 22    | 21    | 20    | 19    | 18    | 17    | 16    |
|       | MOD23 | MOD22 | MOD21 | MOD20 | MOD19 | MOD18 | MOD17 | MOD16 |
|       |       |       |       |       |       |       |       |       |
| Bit : | 15    | 14    | 13    | 12    | 11    | 10    | 9     | 8     |
|       | MOD15 | MOD14 | MOD13 | MOD12 | MOD11 | MOD10 | MOD9  | MOD8  |
|       |       |       |       |       |       |       |       |       |
| Bit:  | 7     | 6     | 5     | 4     | 3     | 2     | 1     | 0     |
|       | MOD7  | MOD6  | MOD5  | MOD4  | MOD3  | MOD2  | MOD1  | MOD0  |

**Bits 31 to 0—MOD31 to MOD0:** Store the start address of the area which stores the program data for the user MAT. The consecutive 128-byte data is programmed to the user MAT starting from the specified start address.

(3.3) Flash pass/fail parameter (FPFR: general register R0 of CPU)

This parameter indicates the return value of the program processing result.

| Bit:  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 |
|-------|----|----|----|----|----|----|----|----|
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Bit : | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |
| Bit:  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  |
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |
| Bit : | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|       | 0  | MD | EE | FK | 0  | WD | WA | SF |

Bits 31 to 7—Unused: Return 0.

Bit 6—Programming Mode Related Setting Error Detect (MD): Returns the check result of whether the signal input to the FWE pin is high and whether the error protection state is entered.

When a low-level signal is input to the FWE pin or the error protection state is entered, 1 is written to this bit. The input level to the FWE pin and the error protection state can be confirmed

with the FWE bit (bit 7) and the FLER bit (bit 4) in FCCS, respectively. For conditions to enter the error protection state, see section 22.6.3, Error Protection.

#### Bit 6

| MD | Description                                              |
|----|----------------------------------------------------------|
| 0  | FWE and FLER settings are normal (FWE = 1, FLER = 0)     |
| 1  | FWE = 0 or FLER = 1, and programming cannot be performed |

**Bit 5—Programming Execution Error Detect (EE):** 1 is returned to this bit when the specified data could not be written because the user MAT was not erased or when flash-memory related register settings are partially changed on returning from the user branch processing.

If this bit is set to 1, there is a high possibility that the user MAT is partially rewritten. In this case, after removing the error factor, erase the user MAT.

If FMATS is set to H'AA and the user boot MAT is selected, an error occurs when programming is performed. In this case, both the user MAT and user boot MAT are not rewritten.

Programming of the user boot MAT must be executed in boot mode or programmer mode.

### Bit 5

| EE | Description                                                             |
|----|-------------------------------------------------------------------------|
| 0  | Programming has ended normally                                          |
| 1  | Programming has ended abnormally (programming result is not guaranteed) |

**Bit 4—Flash Key Register Error Detect (FK):** Returns the check result of the value of FKEY before the start of the programming processing.

## Bit 4

| FK | Description                                          |
|----|------------------------------------------------------|
| 0  | FKEY setting is normal (FKEY = H'A5)                 |
| 1  | FKEY setting is error (FKEY = value other than H'A5) |

Bit 3—Unused: Returns 0.

Bit 2—Write Data Address Detect (WD): When an address in the flash memory area is specified as the start address of the storage destination of the program data, an error occurs.

#### Bit 2

| WD | Description                               |
|----|-------------------------------------------|
| 0  | Setting of write data address is normal   |
| 1  | Setting of write data address is abnormal |

Bit 1—Write Address Error Detect (WA): When the following items are specified as the start address of the programming destination, an error occurs.

- 1. The programming destination address is an area other than flash memory
- 2. The specified address is not at the 128-byte boundary (A6 to A0 are not 0)

#### Bit 1

| WA | Description                                            |
|----|--------------------------------------------------------|
| 0  | Setting of programming destination address is normal   |
| 1  | Setting of programming destination address is abnormal |

Bit 0—Success/Fail (SF): Indicates whether the program processing has ended normally or not.

## Bit 0

| SF | Description                                     |
|----|-------------------------------------------------|
| 0  | Programming has ended normally (no error)       |
| 1  | Programming has ended abnormally (error occurs) |

# (4) Erasure Execution

When flash memory is erased, the erase-block number on the user MAT must be passed to the erasing program which is downloaded. This is set to the FEBS parameter (general register R4).

One block is specified from the block number 0 to 15.

For details on the erasing procedure, see section 22.5.2, User Program Mode.

(4.1) Flash erase block select parameter (FEBS: general register R4 of CPU)

This parameter specifies the erase-block number. Several block numbers cannot be specified.

| Bit:  | 31   | 30   | 29   | 28   | 27   | 26   | 25   | 24   |
|-------|------|------|------|------|------|------|------|------|
|       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Bit : | 23   | 22   | 21   | 20   | 19   | 18   | 17   | 16   |
|       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|       |      |      |      |      |      |      |      |      |
| Bit:  | 15   | 14   | 13   | 12   | 11   | 10   | 9    | 8    |
|       | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
|       |      |      |      |      |      |      |      |      |
| Bit:  | 7    | 6    | 5    | 4    | 3    | 2    | 1    | 0    |
|       | EBS7 | EBS6 | EBS5 | EBS4 | EBS3 | EBS2 | EBS1 | EBS0 |

Bits 31 to 8—Unused: Return 0.

**Bits 7 to 0—Erase Block (EB7 to EB0):** Set the erase-block number in the range from 0 to 15. 0 corresponds to the EB0 block and 15 corresponds to the EB15 block. An error occurs when a number other than 0 to 15 (H'00 to H'0F) is set.

(4.2) Flash pass/fail result parameter (FPFR: general register R0 of CPU)

This parameter returns the value of the erasing processing result.

| Bit:  | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 |
|-------|----|----|----|----|----|----|----|----|
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| Bit : | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| '     |    |    |    |    |    |    |    |    |
| Bit:  | 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  |
|       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
|       |    |    |    |    |    |    |    |    |
| Bit:  | 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |
|       | 0  | MD | EE | FK | EB | 0  | 0  | SF |

Bits 31 to 7—Unused: Return 0.

Bit 6—Erasure Mode Related Setting Error Detect (MD): Returns the check result of whether the signal input to the FWE pin is high and whether the error protection state is entered.

When a low-level signal is input to the FWE pin or the error protection state is entered, 1 is written to this bit. The input level to the FWE pin and the error protection state can be confirmed

with the FWE bit (bit 7) and the FLER bit (bit 4) in FCCS, respectively. For conditions to enter the error protection state, see section 22.6.3, Error Protection.

#### Bit 6

| MD | Description                                          |
|----|------------------------------------------------------|
| 0  | FWE and FLER settings are normal (FWE = 1, FLER = 0) |
| 1  | FWE = 0 or FLER = 1, and erasure cannot be performed |

**Bit 5—Erasure Execution Error Detect (EE):** 1 is returned to this bit when the user MAT could not be erased or when flash-memory related register settings are partially changed on returning from the user branch processing.

If this bit is set to 1, there is a high possibility that the user MAT is partially erased. In this case, after removing the error factor, erase the user MAT.

If FMATS is set to H'AA and the user boot MAT is selected, an error occurs when erasure is performed. In this case, both the user MAT and user boot MAT are not erased.

Erasure of the user boot MAT must be executed in boot mode or programmer mode.

#### Bit 5

| EE | Description                                                     |
|----|-----------------------------------------------------------------|
| 0  | Erasure has ended normally                                      |
| 1  | Erasure has ended abnormally (erasure result is not guaranteed) |

Bit 4—Flash Key Register Error Detect (FK): Returns the check result of FKEY value before start of the erasing processing.

### Bit 4

| FK | Description                                          |
|----|------------------------------------------------------|
| 0  | FKEY setting is normal (FKEY = H'5A)                 |
| 1  | FKEY setting is error (FKEY = value other than H'5A) |

**Bit 3—Erase Block Select Error Detect (EB):** Returns the check result whether the specified erase-block number is in the block range of the user MAT.

## Bit 3

| ЕВ | Description                               |
|----|-------------------------------------------|
| 0  | Setting of erase-block number is normal   |
| 1  | Setting of erase-block number is abnormal |

Bits 2 and 1—Unused: Return 0.

Bit 0—Success/Fail (SF): Indicates whether the erasing processing has ended normally or not.

| _ | -  | _ |
|---|----|---|
| ₽ | i# | n |
| D | ıι | v |

| SF | Description                                 |
|----|---------------------------------------------|
| 0  | Erasure has ended normally (no error)       |
| 1  | Erasure has ended abnormally (error occurs) |

## 22.4.4 RAM Emulation Register (RAMER)

When the realtime programming of the user MAT is emulated, RAMER sets the area of the user MAT which is overlapped with a part of the on-chip RAM. RAMER is initialized to H'0000 at a power-on reset or in hardware standby mode and is not initialized in software standby mode. The RAMER setting must be executed in user mode or in user program mode.

For the division method of the user-MAT area, see table 22.7. In order to operate the emulation function certainly, the target MAT of the RAM emulation must not be accessed immediately after RAMER is programmed. If it is accessed, the normal access is not guaranteed.

| Bit :          | 15 | 14 | 13 | 12 | 11   | 10   | 9    | 8    |
|----------------|----|----|----|----|------|------|------|------|
|                | _  | _  | _  | _  | _    | _    | _    | _    |
| Initial value: | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0    |
| R/W :          | R  | R  | R  | R  | R    | R    | R    | R    |
| Bit :          | 7  | 6  | 5  | 4  | 3    | 2    | 1    | 0    |
|                | _  | _  | _  | _  | RAMS | RAM2 | RAM1 | RAM0 |
| Initial value: | 0  | 0  | 0  | 0  | 0    | 0    | 0    | 0    |
| R/W :          | R  | R  | R  | R  | R/W  | R/W  | R/W  | R/W  |

Bits 15 to 4—Reserved: These bits are always read as 0. The write value should always be 0.

**Bit 3—RAM Select (RAMS):** Sets whether the user MAT is emulated or not. When RAMS = 1, all blocks of the user MAT are in the programming/erasing protection state.

Bit 3

| RAMS | Description                                                                                   |                 |
|------|-----------------------------------------------------------------------------------------------|-----------------|
| 0    | Emulation is not selected<br>Programming/erasing protection of all user-MAT blocks is invalid | (Initial value) |
| 1    | Emulation is selected<br>Programming/erasing protection of all user-MAT blocks is valid       |                 |

**Bits 2 to 0—User MAT Area Select:** These bits are used with bit 3 to select the user-MAT area to be overlapped with the on-chip RAM. (See table 22.7.)

Table 22.7 Overlapping of RAM Area and User MAT Area

| RAM Area                 | <b>Block Name</b>   | RAMS | RAM2 | RAM1 | RAM0 |
|--------------------------|---------------------|------|------|------|------|
| H'FFFF6000 to H'FFFF6FFF | RAM area (4 kbytes) | 0    | *    | *    | *    |
| H'00000000 to H'00000FFF | EB0 (4 kbytes)      | 1    | 0    | 0    | 0    |
| H'00001000 to H'00001FFF | EB1 (4 kbytes)      | 1    | 0    | 0    | 1    |
| H'00002000 to H'00002FFF | EB2 (4 kbytes)      | 1    | 0    | 1    | 0    |
| H'00003000 to H'00003FFF | EB3 (4 kbytes)      | 1    | 0    | 1    | 1    |
| H'00004000 to H'00004FFF | EB4 (4 kbytes)      | 1    | 1    | 0    | 0    |
| H'00005000 to H'00005FFF | EB5 (4 kbytes)      | 1    | 1    | 0    | 1    |
| H'00006000 to H'00006FFF | EB6 (4 kbytes)      | 1    | 1    | 1    | 0    |
| H'00007000 to H'00007FFF | EB7 (4 kbytes)      | 1    | 1    | 1    | 1    |

Note: \* Don't care.

# 22.5 On-Board Programming Mode

When the pin is set in on-board programming mode and the reset start is executed, the on-board programming state that can program/erase the on-chip flash memory is entered. On-board programming mode has three operating modes: user programming mode, user boot mode, and boot mode.

For details on the pin setting for entering each mode, see table 22.1. For details on the state transition of each mode for flash memory, see figure 22.2.

### **22.5.1** Boot Mode

Boot mode executes programming/erasing user MAT and user boot MAT by means of the control command and program data transmitted from the host using the on-chip SCI. The tool for transmitting the control command and program data must be prepared in the host. The SCI communication mode is set to asynchronous mode. When reset start is executed after this LSI's pin is set in boot mode, the boot program in the microcomputer is initiated. After the SCI bit rate is automatically adjusted, the communication with the host is executed by means of the control command method.

The system configuration diagram in boot mode is shown in figure 22.6. For details on the pin setting in boot mode, see table 22.1. Interrupts are ignored in boot mode, so do not generate them. Note that the AUD cannot be used during boot mode operation.

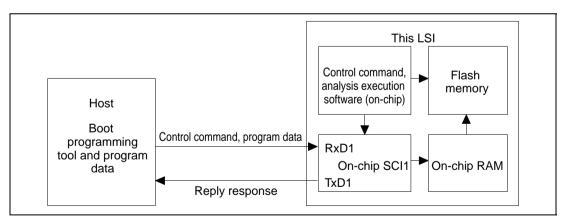



Figure 22.6 System Configuration in Boot Mode

## (1) SCI Interface Setting by Host

When boot mode is initiated, this LSI measures the low period of asynchronous SCI-communication data (H'00), which is transmitted consecutively by the host. The SCI transmit/receive format is set to 8-bit data, 1 stop bit, and no parity. This LSI calculates the bit rate of transmission by the host by means of the measured low period and transmits the bit adjustment end sign (1 byte of H'00) to the host. The host must confirm that this bit adjustment end sign (H'00) has been received normally and transmits 1 byte of H'55 to this LSI. When reception is not executed normally, boot mode is initiated again (reset) and the operation described above must be executed. The bit rate between the host and this LSI is not matched because of the bit rate of transmission by the host and system clock frequency of this LSI. To operate the SCI normally, the transfer bit rate of the host must be set to 9,600 bps or 19,200 bps.

The system clock frequency which can automatically adjust the transfer bit rate of the host and the bit rate of this LSI is shown in table 22.8. Boot mode must be initiated in the range of this system clock.

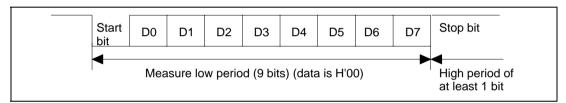



Figure 22.7 Automatic Adjustment Operation of SCI Bit Rate

Table 22.8 System Clock Frequency that Can Automatically Adjust Bit Rate of This LSI

| Host Bit Rate | System Clock Frequency Which Can Automatically Adjust LSI's Bit Rate |
|---------------|----------------------------------------------------------------------|
| 9,600 bps     | 20 to 40 MHz (input frequency of 5 to 10 MHz)                        |
| 19,200 bps    | 20 to 40 MHz (input frequency of 5 to 10 MHz)                        |

# (2) State Transition

The overview of the state transition after boot mode is initiated is shown in figure 22.8. For details on boot mode, see section 22.10.1, Serial Communications Interface Specification for Boot Mode.

# 1. Bit rate adjustment

After boot mode is initiated, the bit rate of the SCI interface is adjusted with that of the host.

# 2. Waiting for inquiry set command

For inquiries about the user-MAT size and configuration, MAT start address, and support state, the required information is transmitted to the host.

#### 3. Automatic erasure of all user MAT and user boot MAT

After inquiries have finished and a programming/erasing status transition command has been sent, all of the user MAT and user boot MAT are automatically erased.

- 4. Waiting for programming/erasing command
  - When the program selection command is received, the state for waiting program data is
    entered. The programming start address and program data must be transmitted
    following the programming command. When programming is finished, the
    programming start address must be set to H'FFFFFFFF and transmitted. Then the state
    for waiting program data is returned to the state of programming/erasing command
    wait.
  - When the erasure selection command is received, the state for waiting erase-block data is entered. The erase-block number must be transmitted following the erasing command.
    - When the erasure is finished, the erase-block number must be set to H'FF and transmitted.
    - Then the state for waiting erase-block data is returned to the state for waiting programming/erasing command. The erasure must be executed when reset start is not executed and the specified block is programmed after programming is executed in boot mode. When programming can be executed by only one operation, all blocks are erased before the state for waiting programming/erasing/other command is entered. The erasing operation is not required.
  - There are many commands other than programming/erasing. Examples are sum check, blank check (erasure check), and memory read of the user MAT/user boot MAT and acquisition of current status information.

Note that memory read of the user MAT/user boot MAT can only read the program data after all user MAT/user boot MAT has automatically been erased.

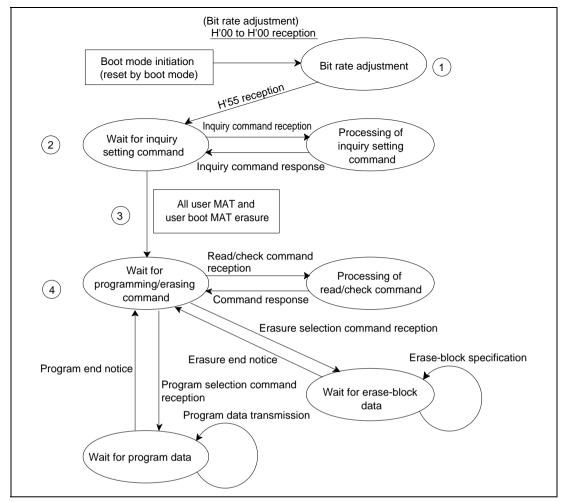
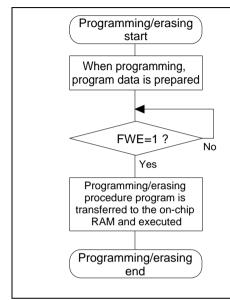



Figure 22.8 Overview of Boot Mode State Transition

# 22.5.2 User Program Mode

The user MAT can be programmed/erased in user program mode. (The user boot MAT cannot be programmed/erased.)


Programming/erasing is executed by downloading the program in the microcomputer.

The overview flow is shown in figure 22.9.

High voltage is applied to internal flash memory during the programming/erasing processing. Therefore, transition to reset or hardware standby mode must not be executed. Doing so may cause damage or destroy flash memory. If reset is executed accidentally, the reset signal must be released after the reset input period, which is longer than the normal  $100~\mu s$ .

For details on the programming procedure, see the description in 22.5.2 (2) Programming Procedure in User Program Mode. For details on the erasing procedure, see the description in 22.5.2 (3) Erasing Procedure in User Program Mode.

For the overview of a processing that repeats erasing and programming by downloading the programming program and the erasing program in separate on-chip ROM areas using FTDAR, see the description in 22.5.2 (4), Erasing and Programming Procedure in User Program Mode.



- RAM emulation mode must be canceled in advance. Download cannot be executed in emulation mode.
- When the program data is made by means of emulation, the download destination must be changed by FTDAR. With the initial setting of FTDAR (H'00), the download area is overlapped with the emulation area.
- 3. Inputting high level to the FWE pin sets the FWE bit to 1.
- 4. Programming/erasing is executed only in the on-chip RAM. However, if the program data is in a consecutive area and can be accessed by the MOV.B instruction of the CPU like SRAM/ROM, the program data can be in an external space.
- 5. After programming/erasing is finished, low level must be input to the FWE pin for protection.

Figure 22.9 Programming/Erasing Overview Flow

(1) On-Chip RAM Address Map when Programming/Erasing is Executed

Parts of the procedure program that are made by the user, like download request,
programming/erasing procedure, and judgement of the result, must be executed in the on-chip
RAM. All of the on-chip program that is to be downloaded is in on-chip RAM. Note that on-

Figure 22.10 shows the program area to be downloaded.

chip RAM must be controlled so that these parts do not overlap.

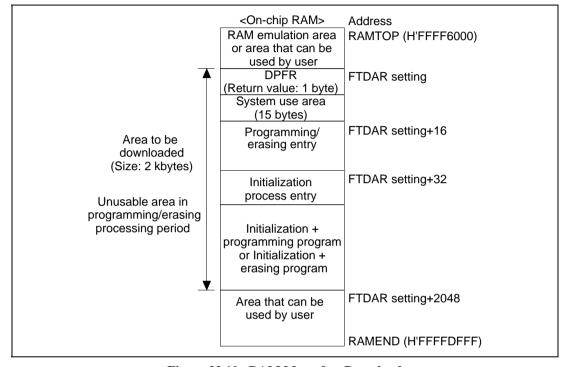



Figure 22.10 RAM Map after Download

(2) Programming Procedure in User Program Mode

The procedures for download, initialization, and programming are shown in figure 22.11.

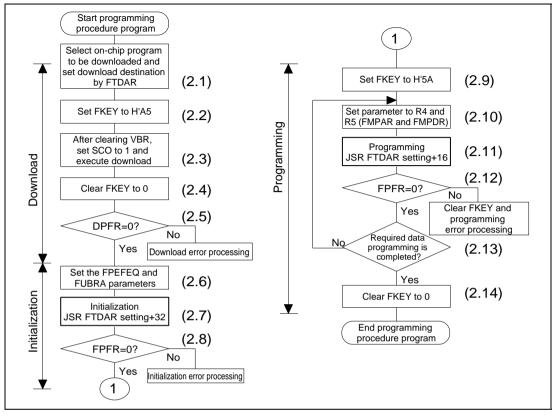



Figure 22.11 Programming Procedure

The details of the programming procedure are described below. The procedure program must be executed in an area other than the flash memory to be programmed. Especially the part where the SCO bit in FCCS is set to 1 for downloading must be executed in the on-chip RAM.

The area that can be executed in the steps of the user procedure program (on-chip RAM, user MAT, and external space) is shown in section 22.10.3, Storable Area for Procedure Program and Programming Data.

The following description assumes the area to be programmed on the user MAT is erased and program data is prepared in the consecutive area. When erasing has not been executed, carry out erasing before writing.

128-byte programming is performed in one program processing. When more than 128-byte programming is performed, programming destination address/program data parameter is updated in 128-byte units and programming is repeated.

When less than 128-byte programming is performed, data must total 128 bytes by adding the invalid data. If the invalid data to be added is H'FF, the program processing period can be shortened.

## (2.1) Select the on-chip program to be downloaded

When the PPVS bit of FPCS is set to 1, the programming program is selected.

Several programming/erasing programs cannot be selected at one time. If several programs are set, download is not performed and a download error is returned to the source select error detect (SS) bit in the DPFR parameter.

Specify the start address of the download destination by FTDAR.

## (2.2) Write H'A5 in FKEY

If H'A5 is not written to FKEY for protection, 1 cannot be written to the SCO bit for a download request.

(2.3) VBR is cleared to 0 and 1 is written to the SCO bit of FCCS, and then download is executed.

VBR must always be cleared to H'00000000 before setting the SCO bit to 1.

To write 1 to the SCO bit, the following conditions must be satisfied.

- RAM emulation mode is canceled.
- H'A5 is written to FKEY.
- The SCO bit writing is executed in the on-chip RAM.

When the SCO bit is set to 1, download is started automatically. When execution returns to the user procedure program, the SCO bit is cleared to 0. Therefore, the SCO bit cannot be confirmed to be 1 in the user procedure program.

The download result can be confirmed only by the return value of the DPFR parameter. Before the SCO bit is set to 1, incorrect judgement must be prevented by setting the DPFR parameter, that is one byte of the start address of the on-chip RAM area specified by FTDAR, to a value other than the return value (HFF).

When download is executed, particular interrupt processing, which is accompanied by the bank switch as described below, is performed as an internal microcomputer processing, so VBR need to be cleared to 0. Four NOP instructions are executed immediately after the instructions that set the SCO bit to 1.

- The user MAT space is switched to the on-chip program storage area.
- After the selection condition of the download program and the address set in FTDAR
  are checked, the transfer processing is executed starting from the on-chip RAM address
  specified by FTDAR.
- The SCO bits in FPCS, FECS, and FCCS are cleared to 0.
- The return value is set to the DPFR parameter.
- After the on-chip program storage area is returned to the user MAT space, execution returns to the user procedure program.

After download is completed and the user procedure program is running, the VBR setting can be changed.

The notes on download are as follows.

In the download processing, the values of the general registers of the CPU are retained.

During the download processing, the interrupt processing cannot be executed. However, the NMI, UBC, and H-UDI interrupt requests are retained, so that on returning to the user procedure program, the interrupt processing starts. For details on the relationship between download and interrupts, see section 22.8.2, Interrupts during Programming/Erasing.

Since a stack area of maximum 128 bytes is used, an area of at least 128 bytes must be saved before setting the SCO bit to 1.

If flash memory is accessed by the DMAC or AUD during downloading, operation cannot be guaranteed. Therefore, access by the DMAC or AUD must not be executed.

- (2.4) FKEY is cleared to H'00 for protection.
- (2.5) The value of the DPFR parameter must be checked to confirm the download result.

A recommended procedure for confirming the download result is shown below.

- Check the value of the DPFR parameter (one byte of start address of the download destination specified by FTDAR). If the value is H'00, download has been performed normally. If the value is not H'00, the source that caused download to fail can be investigated by the description below.
- If the value of the DPFR parameter is the same as before downloading (e.g. H'FF), the address setting of the download destination in FTDAR may be abnormal. In this case, confirm the setting of the TDER bit (bit 7) in FTDAR.
- If the value of the DPFR parameter is different from before downloading, check the SS bit (bit 2) and the FK bit (bit 1) in the DPFR parameter to ensure that the download program selection and FKEY register setting were normal, respectively.
- (2.6) The operating frequency is set to the FPEFEQ parameter and the user branch destination is set to the FUBRA parameter for initialization.
  - The current frequency of the CPU clock is set to the FPEFEQ parameter (general register R4). For the settable range of the FPEFEQ parameter, see section 25.3.2, Clock Timing.
    - For the settable range of the FPEFEQ parameter, see section 25.3.2, Clock Timing. When the frequency is set out of this range, an error is returned to the FPFR parameter of the initialization program and initialization is not performed. For details on the frequency setting, see the description in 22.4.3 (2.1) Flash programming/erasing frequency parameter (FPEFEQ).
  - The start address in the user branch destination is set to the FUBRA parameter (general register R5).
    - When the user branch processing is not required, 0 must be set to FUBRA. When the user branch is executed, the branch destination is executed in flash memory other than the one that is to be programmed. The area of the on-chip program that is downloaded cannot be set.
    - The program processing must be returned from the user branch processing by the RTS instruction.

See the description in 22.4.3 (2.2) Flash user branch address setting parameter (FUBRA).

### (2.7) Initialization

When a programming program is downloaded, the initialization program is also downloaded to on-chip RAM. There is an entry point of the initialization program in the area from (download start address set by FTDAR) + 32 bytes. The subroutine is called and initialization is executed by using the following steps.

```
MOV.L #DLTOP+32,R1 ; Set entry address to R1

JSR @R1 ; Call initialization routine

NOP
```

- The general registers other than R0 are saved in the initialization program.
- R0 is a return value of the FPFR parameter.
- Since the stack area is used in the initialization program, a stack area of maximum 128 bytes must be reserved in RAM.
- Interrupts can be accepted during the execution of the initialization program. However, the program storage area and stack area in on-chip RAM and register values must not be destroyed.
- (2.8) The return value of the initialization program, FPFR (general register R0) is judged.
- (2.9) FKEY must be set to H'5A and the user MAT must be prepared for programming.
- (2.10) The parameter which is required for programming is set.

The start address of the programming destination of the user MAT (FMPAR) is set to general register R5. The start address of the program data storage area (FMPDR) is set to general register R4.

## FMPAR setting

FMPAR specifies the programming destination start address. When an address other than one in the user MAT area is specified, even if the programming program is executed, programming is not executed and an error is returned to the return value parameter FPFR. Since the unit is 128 bytes, the lower eight bits (MOA7 to MOA0) must be in the 128-byte boundary of H'00 or H'80.

# • FMPDR setting

If the storage destination of the program data is flash memory, even when the program execution routine is executed, programming is not executed and an error is returned to the FPFR parameter. In this case, the program data must be transferred to on-chip RAM and then programming must be executed.

# (2.11) Programming

There is an entry point of the programming program in the area from (download start address set by FTDAR) + 16 bytes of on-chip RAM. The subroutine is called and programming is executed by using the following steps.

| MOV.L | #DLTOP+16,R1 | ; Set entry address to R1  |
|-------|--------------|----------------------------|
| JSR   | @R1          | ; Call programming routine |
| NOP   |              |                            |

- The general registers other than R0 are saved in the programming program.
- R0 is a return value of the FPFR parameter.
- Since the stack area is used in the programming program, a stack area of maximum 128 bytes must be reserved in RAM.
- (2.12) The return value in the programming program, FPFR (general register R0) is judged.
- (2.13) Determine whether programming of the necessary data has finished.

If more than 128 bytes of data are to be programmed, specify FMPAR and FMPDR in 128-byte units, and repeat steps (2.10) to (2.13). Increment the programming destination address by 128 bytes and update the programming data pointer correctly. If an address which has already been programmed is written to again, not only will a programming error occur, but also flash memory will be damaged.

finished, secure a reset period (period of  $\overline{RES} = 0$ ) that is at least as long as the normal 100 µs.

(2.14) After programming finishes, clear FKEY and specify software protection.

If this LSI is restarted by a power-on reset immediately after user MAT programming has

## (3) Erasing Procedure in User Program Mode

The procedures for download, initialization, and erasing are shown in figure 22.12.

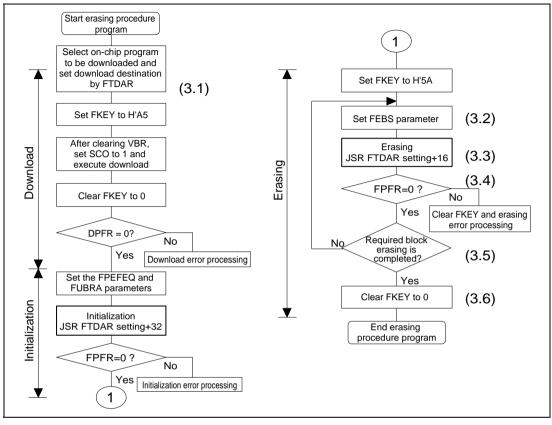



Figure 22.12 Erasing Procedure

The details of the erasing procedure are described below. The procedure program must be executed in an area other than the user MAT to be erased.

Especially the part where the SCO bit in FCCS is set to 1 for downloading must be executed in on-chip RAM.

The area that can be executed in the steps of the user procedure program (on-chip RAM, user MAT, and external space) is shown in section 22.10.3, Storable Area for Procedure Program and Programming Data.

For the downloaded on-chip program area, see the RAM map for programming/erasing in figure 22.10.

A single divided block is erased by one erasing processing. For block divisions, see figure 22.4. To erase two or more blocks, update the erase block number and perform the erasing processing for each block.

(3.1) Select the on-chip program to be downloaded

Set the EPVB bit in FECS to 1.

Several programming/erasing programs cannot be selected at one time. If several programs are set, download is not performed and a download error is returned to the source select error detect (SS) bit in the DPFR parameter.

Specify the start address of the download destination by FTDAR.

The procedures to be carried out after setting FKEY, e.g. download and initialization, are the same as those in the programming procedure. For details, see the description in 22.5.2 (2) Programming Procedure in User Program Mode.

(3.2) Set the FEBS parameter necessary for erasure

Set the erase block number of the user MAT in the flash erase block select parameter (FEBS: general register R4). If a value other than an erase block number of the user MAT is set, no block is erased even though the erasing program is executed, and an error is returned to the return value parameter FPFR.

## (3.3) Erasure

Similar to as in programming, there is an entry point of the erasing program in the area from (download start address set by FTDAR) + 16 bytes of on-chip RAM. The subroutine is called and erasing is executed by using the following steps.

```
MOV.L #DLTOP+16,R1 ; Set entry address to R1

JSR @R1 ; Call erasing routine

NOP
```

- The general registers other than R0L are saved in the erasing program.
- R0 is a return value of the FPFR parameter.
- Since the stack area is used in the erasing program, a stack area of maximum 128 bytes must be reserved in RAM.
- (3.4) The return value in the erasing program, FPFR (general register R0) is judged.
- (3.5) Determine whether erasure of the necessary blocks has finished.

If more than one block is to be erased, update the FEBS parameter and repeat steps (3.2) to (3.5). Blocks that have already been erased can be erased again.

(3.6) After erasure finishes, clear FKEY and specify software protection.

If this LSI is restarted by a power-on reset immediately after user MAT programming has finished, secure a reset period (period of  $\overline{RES} = 0$ ) that is at least as long as the normal 100 µs.

(4) Erasing and Programming Procedure in User Program Mode

By changing the on-chip RAM address of the download destination in FTDAR, the erasing program and programming program can be downloaded to separate on-chip RAM areas.

Figure 22.13 shows an example of repetitively executing RAM emulation, erasing, and programming.

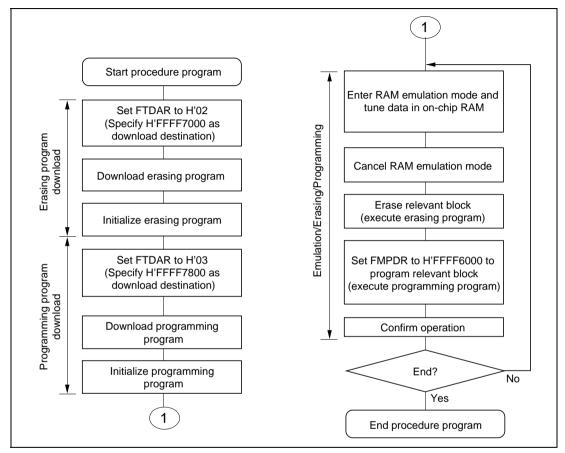



Figure 22.13 Sample Procedure of Repeating RAM Emulation, Erasing, and Programming (Overview)

In the above example, the erasing program and programming program are downloaded to areas excluding the 4 kbytes (H'FFFF6000 to H'FFFF6FFF) from the start of on-chip ROM.

Download and initialization are performed only once at the beginning.

In this kind of operation, note the following:

• Be careful not to damage on-chip RAM with overlapped settings.

In addition to the RAM emulation area, erasing program area, and programming program area,

areas for the user procedure programs, work area, and stack area are reserved in on-chip RAM. Do not make settings that will overwrite data in these areas.

• Be sure to initialize both the erasing program and programming program. Initialization by setting the FPEFEQ and FUBRA parameters must be performed for both the erasing program and the programming program. Initialization must be executed for both entry addresses: (download start address for erasing program) + 32 bytes (H'FFFF7020 in this example) and (download start address for programming program) + 32 bytes (H'FFFF7820 in this example).

#### 22.5.3 User Boot Mode

This LSI has user boot mode which is initiated with different mode pin settings than those in user program mode or boot mode. User boot mode is a user-arbitrary boot mode, unlike boot mode that uses the on-chip SCI.

Only the user MAT can be programmed/erased in user boot mode. Programming/erasing of the user boot MAT is only enabled in boot mode or programmer mode.

## (1) User Boot Mode Initiation

For the mode pin settings to start up user boot mode, see table 22.1, Relationship between FWE and MD Pins and Operating Modes.

When the reset start is executed in user boot mode, the check routine for flash-memory related registers runs. While the check routine is running, the RAM area about 1.2 kbytes from H'FFFF6800 is used by the routine and 4 bytes from H'FFFFDFFC is used as a stack area. NMI and all other interrupts cannot be accepted. Neither can the AUD be used in this period. This period is approximately 100 µs while operating at an internal frequency of 40 MHz. Next, processing starts from the execution start address of the reset vector in the user boot MAT. At this point, H'AA is set to the flash MAT select register (FMATS) because the execution MAT is the user boot MAT.

# (2) User MAT Programming in User Boot Mode

For programming the user MAT in user boot mode, additional processings made by setting FMATS are required: switching from user-boot-MAT selection state to user-MAT selection state, and switching back to user-boot-MAT selection state after programming completes. Figure 22.14 shows the procedure for programming the user MAT in user boot mode.

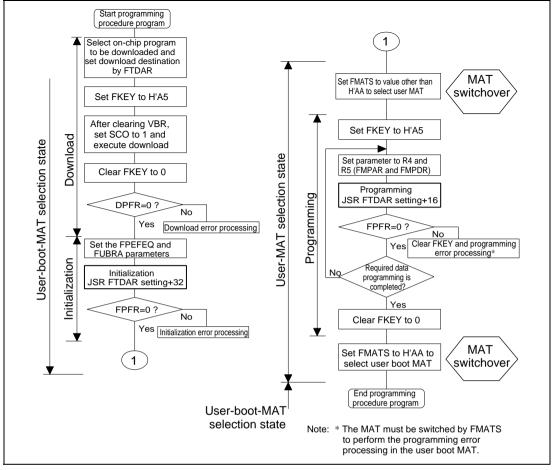



Figure 22.14 Procedure for Programming User MAT in User Boot Mode

The difference between the programming procedures in user program mode and user boot mode is whether the MAT is switched or not as shown in figure 22.14.

In user boot mode, the user boot MAT can be seen in the flash memory space with the user MAT hidden in the background. The user MAT and user boot MAT are switched only while the user MAT is being programmed. Because the user boot MAT is hidden while the user MAT is being programmed, the procedure program must be located in an area other than flash memory. After programming finishes, switch the MATs again to return to the first state.

MAT switchover is enabled by writing a specific value to FMATS. However note that while the MATs are being switched, the LSI is in an unstable state, e.g. access to a MAT is not allowed until MAT switching is completely finished, and if an interrupt occurs, from which MAT the interrupt vector is read from is undetermined. Perform MAT switching in accordance with the description in section 22.8.1, Switching between User MAT and User Boot MAT.

Except for MAT switching, the programming procedure is the same as that in user program mode.

The area that can be executed in the steps of the user procedure program (on-chip RAM, user MAT, and external space) is shown in section 22.10.3, Storable Area for Procedure Program and Programming Data.

## (3) User MAT Erasing in User Boot Mode

For erasing the user MAT in user boot mode, additional processings made by setting FMATS are required: switching from user-boot-MAT selection state to user-MAT selection state, and switching back to user-boot-MAT selection state after erasing completes.

Figure 22.15 shows the procedure for erasing the user MAT in user boot mode.

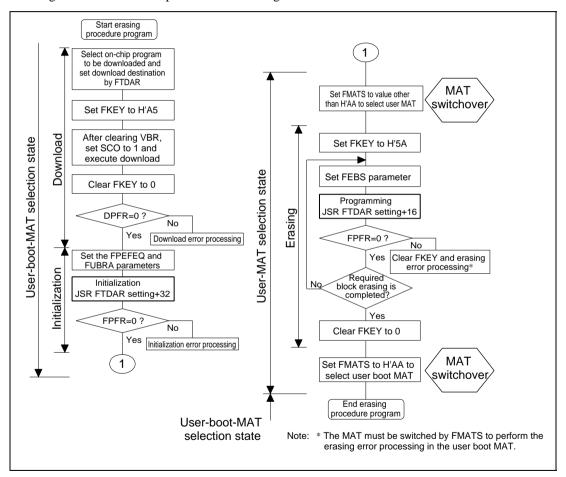



Figure 22.15 Procedure for Erasing User MAT in User Boot Mode

The difference between the erasing procedures in user program mode and user boot mode depends on whether the MAT is switched or not as shown in figure 22.15.

MAT switching is enabled by writing a specific value to FMATS. However note that while the MATs are being switched, the LSI is in an unstable state, e.g. access to a MAT is not allowed until MAT switching is completed finished, and if an interrupt occurs, from which MAT the interrupt vector is read from is undetermined. Perform MAT switching in accordance with the description in section 22.8.1, Switching between User MAT and User Boot MAT.

Except for MAT switching, the erasing procedure is the same as that in user program mode.

The area that can be executed in the steps of the user procedure program (on-chip RAM, user MAT, and external space) is shown in section 22.10.3, Storable Area for Procedure Program and Programming Data.

## 22.6 Protection

There are three kinds of flash memory program/erase protection: hardware, software, and error protection.

#### 22.6.1 Hardware Protection

Programming and erasing of flash memory is forcibly disabled or suspended by hardware protection. In this state, the downloading of an on-chip program and initialization of the flash memory are possible. However, an activated program for programming or erasure cannot program or erase locations in a user MAT, and the error in programming/erasing is reported in the FPFR parameter.

**Table 22.9 Hardware Protection** 

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Function to be Protected |                         |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|
| Item                     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Download                 | Programming/<br>Erasure |
| FWE-pin protection       | The input of a low-level signal on the FWE pin clears the FWE bit of FCCS and the LSI enters a programming/erasing-protected state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                        | 0                       |
| Reset/standby protection | <ul> <li>A power-on reset (including a power-on reset by the WDT) and entry to standby mode initializes the programming/erasing interface registers and the LSI enters a programming/erasing-protected state.</li> <li>Resetting by means of the RES pin after power is initially supplied will not make the LSI enter the reset state unless the RES pin is held low until oscillation has stabilized. In the case of a reset during operation, hold the RES pin low for the RES pulse width that is specified in the section on AC characteristics. If the LSI is reset during programming or erasure, data in the flash memory is not guaranteed. In this case, execute erasure and then execute programming again.</li> </ul> | 0                        | 0                       |

### 22.6.2 Software Protection

Software protection is set up in any of three ways: by disabling the downloading of on-chip programs for programming and erasing, by means of a key code, and by the RAM emulation register (RAMER).

Table 22.10 Software Protection

|                           |                                                                                                                                                                             | Function to be Protected |                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|
| Item                      | Description                                                                                                                                                                 | Download                 | Programming/<br>Erasure |
| Protection by the SCO bit | Clearing the SCO bit in FCCS disables downloading of the programming/erasing program, thus making the LSI enter a programming/erasing-protected state.                      | 0                        | 0                       |
| Protection by FKEY        | Downloading and programming/erasing are disabled unless the required key code is written in FKEY. Different key codes are used for downloading and for programming/erasing. | 0                        | 0                       |
| Emulation protection      | Setting the RAMS bit in RAMER to 1 makes the LSI enter a programming/erasing-protected state.                                                                               | 0                        | 0                       |

#### 22.6.3 Error Protection

Error protection is a mechanism for aborting programming or erasure when an error occurs, in the form of the microcomputer getting out of control during programming/erasing of the flash memory or operations that are not in accordance with the established procedures for programming/erasing. Aborting programming or erasure in such cases prevents damage to the flash memory due to excessive programming or erasing.

If the microcomputer malfunctions during programming/erasing of the flash memory, the FLER bit in FCCS is set to 1 and the LSI enters the error protection state, thus aborting programming or erasure.

The FLER bit is set to 1 in the following conditions:

- When the relevant block area of flash memory is read during programming/erasing (including a vector read or an instruction fetch)
- When a SLEEP instruction (including software standby mode) is executed during programming/erasing

Error protection is cancelled (FLER bit is cleared) only by a power-on reset or in hardware-standby mode.

Note that the reset signal should only be released after providing a reset input over a period longer than the normal  $100 \,\mu s$ . Since high voltages are applied during programming/erasing of the flash memory, some voltage may still remain even after the error protection state has been entered. For

this reason, it is necessary to reduce the risk of damage to the flash memory by extending the reset period so that the charge is released.

The state-transition diagram in figure 22.16 shows transitions to and from the error protection state.

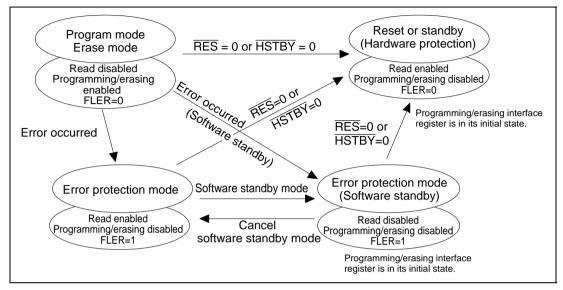



Figure 22.16 Transitions to and from Error Protection State

## 22.7 Flash Memory Emulation in RAM

To provide real-time emulation in RAM of data that is to be written to the flash memory, a part of the RAM can be overlaid on an area of flash memory (user MAT) that has been specified by the RAM emulation register (RAMER). After the RAMER setting is made, the RAM is accessible in both the user MAT area and as the RAM area that has been overlaid on the user MAT area. Such emulation is possible in user mode and user program mode.

Figure 22.17 shows an example of the emulation of realtime programming of the user MAT area.

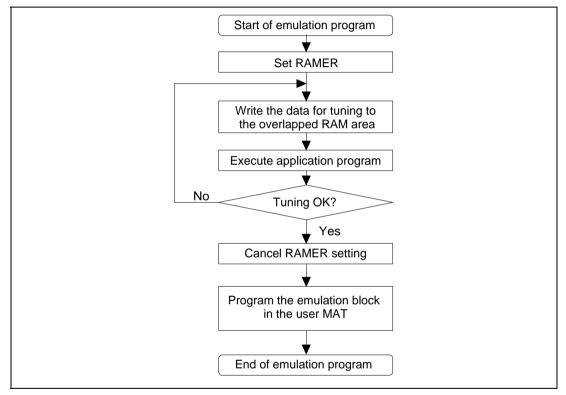



Figure 22.17 Emulation of Flash Memory in RAM

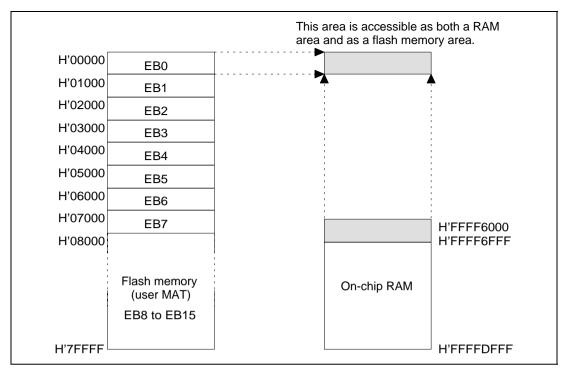



Figure 22.18 Example of Overlapped RAM Operation

Figure 22.18 shows an example of an overlap on block area EB0 of the flash memory.

Emulation is possible for a single area selected from among the eight areas, from EB0 to EB7, of the user MAT. The area is selected by the setting of the RAM2 to RAM0 bits in RAMER.

- (1) To overlap a part of the RAM on area EB0, to allow realtime programming of the data for this area, set the RAMS bit in RAMER to 1, and each of the RAM2 to RAM0 bits to 0.
- (2) Realtime programming is carried out using the overlaid area of RAM.

In programming or erasing the user MAT, it is necessary to run a program that implements a series of procedural steps, including the downloading of an on-chip program. In this process, set the download area with FTDAR so that the overlaid RAM area and the area where the on-chip program is to be downloaded do not overlap. The initial setting (H'00) of FTDAR causes the tuned data area to overlap with the download area. When using the initial setting of FTDAR, the data that is to be programmed must be saved beforehand in an area that is not used by the system.

Figure 22.19 shows an example of programming data that has been emulated to the EB0 area in the user MAT.

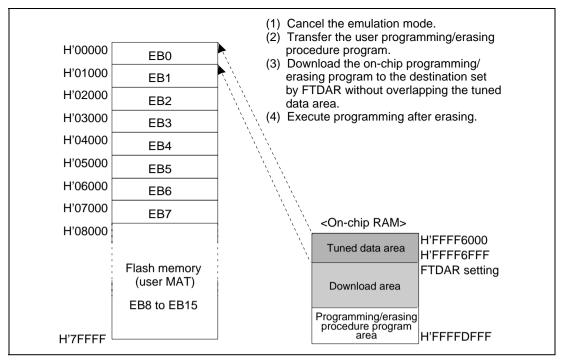



Figure 22.19 Programming of Tuned Data

- 1. After the data to be programmed has fixed values, clear the RAMS bit to 0 to cancel the overlap of RAM. Emulation mode is canceled and emulation protection is also cleared.
- 2. Transfer the user programming/erasing procedure program to RAM.
- Run the programming/erasing procedure program in RAM and download the on-chip programming/erasing program.
   Specify the download start address with FTDAR so that the tuned data area does not overlap with the download area.
- 4. When the EB0 area of the user MAT has not been erased, erasing must be performed before programming. Set the parameters FMPAR and FMPDR so that the tuned data is designated, and execute programming.

Note: Setting the RAMS bit to 1 puts all the blocks in flash memory in the programming/erasing-protected state regardless of the values of the RAM2 to RAM0 bits (emulation protection). Clear the RAMS bit to 0 before actual programming or erasure. RAM emulation can be performed when the user boot MAT is selected. However, programming/erasing user boot MAT can be performed only in boot mode or program mode.

# 22.8 Usage Notes

### 22.8.1 Switching between User MAT and User Boot MAT

It is possible to switch between the user MAT and user boot MAT. However, the following procedure is required because these MATs are allocated to address 0. (Switching to the user boot MAT disables programming and erasing. Programming of the user boot MAT must take place in boot mode or programmer mode.)

- (1) MAT switching by FMATS should always be executed from the on-chip RAM. The SH microcomputer prefetches execution instructions. Therefore, a switchover during program execution in the user MAT causes an instruction code in the user MAT to be prefetched or an instruction in the newly selected user boot MAT to be prefetched, thus resulting in unstable operation.
- (2) To ensure that the MAT that has been switched to is accessible, execute four NOP instructions in on-chip RAM immediately after writing to FMATS of on-chip RAM (this prevents access to the flash memory during MAT switching).
- (3) If an interrupt occurs during switching, there is no guarantee of which memory MAT is being accessed.
  - Always mask the maskable interrupts before switching MATs. In addition, configuring the system so that NMI interrupts do not occur during MAT switching is recommended.
- (4) After the MATs have been switched, take care because the interrupt vector table will also have been switched.
  - If the same interrupt processings are to be executed before and after MAT switching or interrupt requests cannot be disabled, transfer the interrupt processing routine to on-chip RAM, and use the VBR setting to place the interrupt vector table in on chip RAM. In this case, make sure the VBR setting change does not conflict with the interrupt occurrence.
- (5) Memory sizes of the user MAT and user boot MAT are different. When accessing the user boot MAT, do not access addresses exceeding the 8-kbyte memory space. If access goes beyond the 8-kbyte space, the values read are undefined.

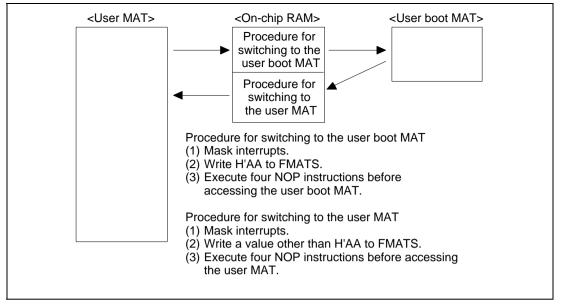


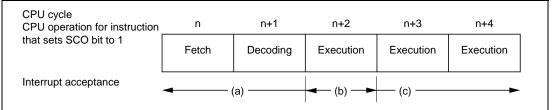

Figure 22.20 Switching between User MAT and User Boot MAT

### 22.8.2 Interrupts during Programming/Erasing

(1) Download of On-Chip Program

## (1.1) VBR setting change

Before downloading the on-chip program, VBR must be set to H'00000000 (initial value). If VBR is set to a value other than the initial value, the interrupt vector table is placed in the user MAT (FMATS is not H'AA) or the user boot MAT (FMATS is H'AA) on initialization of VBR.


When VBR setting change conflicts with interrupt occurrence, whether the vector table before or after VBR is changed is referenced may cause an error.

Therefore, for cases where VBR setting change may conflict with interrupt occurrence, prepare a vector table to be referenced when VBR is H'00000000 at the start of the user MAT or user boot MAT.

## (1.2) SCO download request and interrupt request

Download of the on-chip programming/erasing program that is initiated by setting the SCO bit in FCCS to 1 generates a particular interrupt processing accompanied by MAT switchover. Operation when the SCO download request and interrupt request conflicts is described below.

Contention between SCO download request and interrupt request
 Figure 22.21 shows the timing of contention between execution of the instruction that sets the
 SCO bit in FCCS to 1 and interrupt acceptance.



- (a) When the interrupt is accepted at or before the (n + 1) cycle

  After the interrupt processing completes, the SCO bit is set to 1 and download is executed.
- (b) When the interrupt is accepted at the (n + 2) cycle The interrupt conflicts with the SCO download request. For details on operation in this case, see 2. Operation when contention occurs.
- (c) When the interrupt is accepted at or after the (N + 3) cycle The SCO download request occurs prior to the interrupt request, and download is executed. During download, no other interrupt processing can be handled. If an interrupt is still being requested after download completes, the interrupt processing starts. For details on interrupt requests during download, see 3. Interrupt requests generated during download.

Figure 22.21 Timing of Contention between SCO Download Request and Interrupt Request

### 2. Operation when contention occurs

Operation differs according to the type of interrupt with which the SCO download request has conflicted.

 NMI, UBC, and H-UDI interrupt requests
 Operation for when these interrupts conflict with the SCO download request is described below.

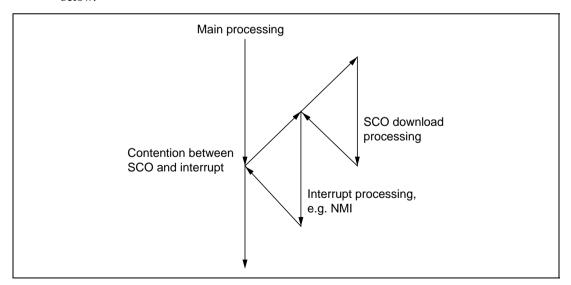



Figure 22.22 Contention between Interrupts (e.g. NMI)

- The NMI, UBC, or H-UDI interrupt processing is started. Processing proceeds up to the point where SR and PC are saved, the vector is fetched, and the start instruction of the interrupt processing routine is fetched.
- At this point, the SCO download request with a higher priority occurs. The SCO download processing is started.
- After the download processing has ended, the interrupt processing routine (e.g. NMI)
  that was in the middle of execution resumes from the point of fetching the start
  instruction of the interrupt processing routine.
- The interrupt processing routine is ended, and execution returns to the main processing.
- IRQ and on-chip peripheral module interrupt requests
   Operation for when these interrupts conflict with the SCO download request is described below.

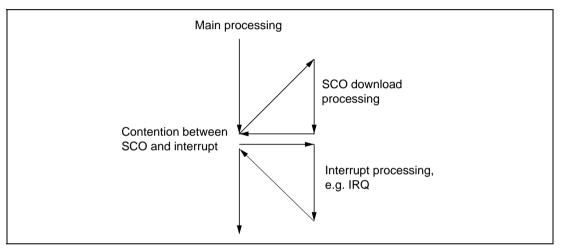



Figure 22.23 Contention between Interrupts (e.g. IRQ)

- An IRQ interrupt or interrupt from an on-chip peripheral module is replaced with the SCO download request and download is executed.
- If the IRQ or on-chip peripheral module interrupt is still being requested when the download processing has ended, the interrupt processing is executed. If these interrupt requests have been canceled, execution returns to the main processing.
- An interrupt request is canceled when the IRQ signal, for which low-level detection is set, has been driven high before download ends. Also refer to the description below (3. Interrupt requests generated during download).
- 3. Interrupt requests generated during download

Even though an interrupt is requested during SCO download, the interrupt processing is not executed until download ends. Note that interrupt requests are basically retained, so that on completion of download, the interrupt processing starts. When more than one type of interrupts are requested, their priorities are judged by the interrupt controller (INTC), and execution starts from the interrupt processing with higher priority.

- NMI, UBC, and H-UDI interrupt requests
   When these interrupt requests occur during SCO download, their interrupt sources are retained.
- IRQ interrupt request
  - Falling-edge detection or low-level detection can be specified for an IRQ interrupt.
  - Falling-edge detection is selected: When the falling-edge of IRQ is detected during SCO download, the interrupt source is retained.
  - Low-level detection is selected: When the low-level of IRQ is detected during SCO download, if the IRQ remains low when download ends, the interrupt processing starts. If the IRQ is high when download ends, the interrupt source will be canceled.
- On-chip peripheral module interrupt request
   An interrupt from an on-chip peripheral module is requested by input of the specified level.
   Since the interrupt signal continues to be output unless the interrupt flag is cleared, the interrupt source is retained.
- (2) Interrupts during programming/erasing

Though an interrupt processing can be executed at realtime during programming/erasing of the downloaded on-chip program, the following limitations and notes are applied.

- 1. When flash memory is being programmed or erased, both the user MAT and user boot MAT cannot be accessed. Prepare the interrupt vector table and interrupt processing routine in on-chip RAM or external memory. Make sure the flash memory being programmed or erased is not accessed by the interrupt processing routine. If flash memory is read, the read values are not guaranteed. If the relevant bank in flash memory that is being programmed or erased is accessed, the error protection state is entered, and programming or erasing is aborted. If a bank other than the relevant bank is accessed, the error protection state is not entered but the read values are not guaranteed.
- 2. Do not rewrite the program data specified by the FMPDR parameter. If new program data is to provided by the interrupt processing, temporarily save the new program data in another area. After confirming the completion of programming, save the new program data in the area specified by FMPDR or change the setting in FMPDR to indicated the other area in which the new program data was temporarily saved.
- 3. Make sure the interrupt processing routine does not rewrite the contents of the flash-memory related registers or data in the downloaded on-chip program area. During the interrupt processing, do not simultaneously perform RAM emulation, download of the on-chip program by an SCO request, or programming/erasing.
- 4. At the beginning of the interrupt processing routine, save the CPU register contents. Before returning from the interrupt processing, write the saved contents in the CPU registers again.

5. When a transition is made to sleep mode or software standby mode in the interrupt processing routine, the error protection state is entered and programming/erasing is aborted. If a transition is made to the reset state, the reset signal should only be released after providing a reset input over a period longer than the normal  $100~\mu s$  to reduce the damage to flash memory.

#### 22.8.3 Other Notes

1. Download time of on-chip program

The programming program that includes the initialization routine and the erasing program that includes the initialization routine are each 2 kbytes or less. Accordingly, when the CPU clock frequency is 40 MHz, the download for each program takes approximately 75  $\mu$ s at maximum.

2. User branch processing intervals

The intervals for executing the user branch processing differs in programming and erasing. The processing phase also differs. Table 22.11 lists the maximum and minimum intervals for initiating the user branch processing when the CPU clock frequency is 40 MHz.

**Table 22.11 Initiation Intervals of User Branch Processing** 

| Processing Name | Maximum Interval   | Minimum Interval    |  |
|-----------------|--------------------|---------------------|--|
| Programming     | Approximately 1 ms | Approximately 19 μs |  |
| Erasing         | Approximately 5 ms | Approximately 19 μs |  |

Table 22.12 lists the maximum and minimum periods until the user branch processing is initiated when the CPU clock frequency is 40 MHz.

**Table 22.12 Required Period for Initiating User Branch Processing** 

| Processing  | Max.                 | Min.                 |  |
|-------------|----------------------|----------------------|--|
| Programming | Approximately 113 μs | Approximately 113 μs |  |
| Erasing     | Approximately 85 μs  | Approximately 45 μs  |  |

- 3. Write to flash-memory related registers by AUD or DMAC While an instruction in on-chip RAM is being executed, the AUD or DMAC can write to the SCO bit in FCCS that is used for a download request or FMATS that is used for MAT switching. Make sure that these registers are not accidentally written to, otherwise an on-chip program may be downloaded and damage RAM or a MAT switchover may occur and the CPU get out of control.
- 4. State in which AUD operation is disabled and interrupts are ignored In the following modes or period, the AUD is in module standby mode and cannot operate. The NMI or maskable interrupt requests are ignored; they are not executed and the interrupt sources are not retained.

- Boot mode
- Programmer mode
- Checking the flash-memory related registers immediately after user boot mode is initiated (Approximately  $100 \, \mu s$  when operation with internal frequency of  $40 \, MHz$  is carried out after the reset signal is released.)
- 5. Compatibility with programming/erasing program of conventional F-ZTAT SH microcomputer
  - A programming/erasing program for flash memory used in the conventional F-ZTAT SH microcomputer which does not support download of the on-chip program by a SCO transfer request cannot run in this LSI.
  - Be sure to download the on-chip program to execute programming/erasing of flash memory in this LSL.
- 6. Monitoring runaway by WDT
  - Unlike the conventional F-ZTAT SH microcomputer, no countermeasures are available for a runaway by WDT during programming/erasing by the downloaded on-chip program. Prepare countermeasures (e.g. use of the user branch routine and periodic timer interrupts) for WDT while taking the programming/erasing time into consideration as required.

## 22.9 Programmer Mode

Along with its on-board programming mode, this LSI also has programmer mode as another mode for writing and erasing of programs and data. Programmer mode supports memory-read mode, auto-program mode, auto-erase mode, and status-read mode. Programming/erasing is possible on the user MAT and user boot MAT.

A status-polling system is adopted for operation in auto-program mode, auto-erase mode, and status-read mode. In status-read mode, details of the system's internal state are output after execution of automatic programming or automatic erasure.

In programmer mode, set the mode pins as shown in table 22.13, and provide a 6-MHz input-clock signal.

**Table 22.13 Programmer Mode Pin Settings** 

| Pin Name                                                      | Settings                                                       |
|---------------------------------------------------------------|----------------------------------------------------------------|
| Mode pins: MD2, MD1, and MD0                                  | 0, 1, 1                                                        |
| FWE                                                           | High-level input (automatic programming and automatic erasure) |
| RES                                                           | Power-on reset circuit                                         |
| EXTAL, XTAL, PLLV <sub>cc</sub> , PLLV <sub>ss</sub> , PLLCAP | Oscillation circuit and PLL circuit                            |
| V <sub>CL</sub>                                               | Internal stepdown stabilization capacitor                      |

### 22.9.1 Pin Arrangement of Socket Adapter

Attach the socket adapter to the LSI in the way shown in figure 22.25. This allows conversion to 40 pins. Figure 22.24 shows the memory mapping of on-chip ROM, and figure 22.25 shows the arrangement of the socket adapter's pins.

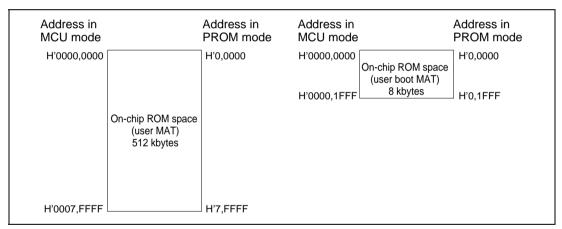



Figure 22.24 Mapping of On-Chip Flash Memory

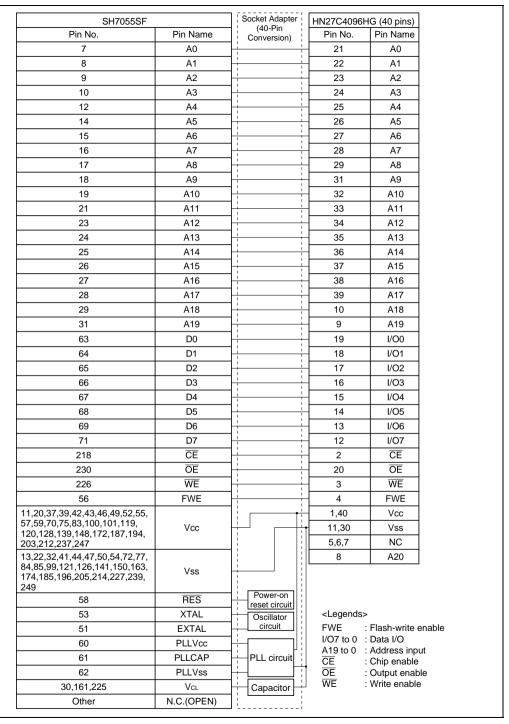



Figure 22.25 Pin Arrangement of Socket Adapter

### 22.9.2 Programmer Mode Operation

Table 22.14 shows the settings for the operating modes of programmer mode, and table 22.15 lists the commands used in programmer mode. The following sections provide detailed information on each mode.

- Memory-read mode
   Supports reading from the user MAT or user boot MAT in bytes.
- Auto-program mode
   Supports the simultaneous programming of the user MAT and user boot MAT in 128-byte units. Status polling is used to confirm the end of automatic programming.
- Auto-erase mode
   Supports only automatic erasure of the entire user MAT or user boot MAT. Status polling is
   used to confirm the end of automatic erasure.
- Status-read mode
   Status polling is used with automatic programming and automatic erasure. Normal completion
  can be detected by reading the signal on the I/O6 pin. In status-read mode, error information is
  output when an error has occurred.

Table 22.14 Settings for Each Operating Mode of Programmer Mode

|                | Pin Name |    |    |    |              |           |
|----------------|----------|----|----|----|--------------|-----------|
| Mode           | FWE      | CE | ŌĒ | WE | I/O7 to I/O0 | A19 to A0 |
| Read           | H or L   | L  | L  | Н  | Data output  | Ain       |
| Output disable | H or L   | L  | Н  | Н  | Hi-Z         | Х         |
| Command write  | H or L   | L  | Н  | L  | Data input   | Ain*      |
| Chip disable   | H or L   | Н  | Х  | Х  | Hi-Z         | Х         |

Notes: 1. The chip-disable mode is not a standby state; internally, it is an operational state.

- 2. To write commands when making a transition to auto-program or auto-erase mode, input a high-level signal on the FWE pin.
- \* Ain indicates that there is also an address input in auto-program mode.

**Table 22.15 Commands in Programmer Mode** 

|                  |                  |                                 | 1st Cycle |         |         | 2nd Cycle |         |      |
|------------------|------------------|---------------------------------|-----------|---------|---------|-----------|---------|------|
| Command          | Number of Cycles | Memory<br>MAT to be<br>Accessed | Mode      | Address | Command | Mode      | Address | Data |
| Memory-read      | 1+n              | User MAT                        | Write     | Х       | H'00    | Read      | RA      | Dout |
| mode             |                  | User boot<br>MAT                | Write     | Х       | H'05    | _         |         |      |
| Auto-program     | 129              | User MAT                        | Write     | Х       | H'40    | Write     | WA      | Din  |
| mode             |                  | User boot<br>MAT                | Write     | Х       | H'45    | _         |         |      |
| Auto-erase       | se 2             | User MAT                        | Write     | Х       | H'20    | Write     | Χ       | H'20 |
| mode             |                  | User boot<br>MAT                | Write     | Х       | H'25    | _         |         | H'25 |
| Status-read mode | 2                | Common to both MATs             | Write     | Х       | H'71    | Write     | Х       | H'71 |

Notes 1. In auto-program mode, 129 cycles are required in command writing because of the simultaneous 128-byte write.

- 2. In memory read mode, the number of cycles varies with the number of address writing cycles (n).
- 3. In an automatic erasure command, input the same command code for the 1st and 2nd cycles (for erasing of the user boot MAT, input H'25 for the 1st and 2nd cycles).

### 22.9.3 Memory-Read Mode

- (1) On completion of automatic programming, automatic erasure, or status read, the LSI enters a command input wait state. So, to read the contents of memory after these operations, issue the command to transit to memory-read mode before reading from the memory.
- (2) In memory-read mode, the writing of commands is possible in the same way as in command input wait state.
- (3) After entering memory-read mode, continuous reading is possible.
- (4) After power has first been supplied, the LSI enters memory-read mode of the user MAP.

For the AC characteristics in memory read mode, see section 22.10.2, AC Characteristics and Timing in programmer Mode.

### 22.9.4 Auto-Program Mode

- (1) In auto-program mode, programming is in 128-byte units. That is, 128 bytes of data are transferred in succession.
- (2) Even in the programming of less than 128 bytes, 128 bytes of data must be transferred. H'FF should be written to those addresses that are unnecessarily written to.
- (3) Set the lower seven bits of the address to be transferred to low level. Inputting an invalid address will result in a programming error, although processing will proceed to the memory-programming operation.
- (4) The memory address is transferred in the 2nd cycle. Do not transfer addresses in the 3rd or later cycles.
- (5) Do not issue commands while programming is in progress.
- (6) When programming, execute automatic programming once for each 128-byte block of addresses. Programming the block at an address where programming has already been performed is not possible.
- (7) To confirm the end of automatic programming, check the signal on the I/O6 pin. Confirmation in status-read mode is also possible (status polling of the I/O7 pin is used to check the end status of automatic programming).
- (8) Status-polling information on the I/O6 and I/O7 pins is retained until the next command is written. As long as no command is written, the information is made readable by enabling  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$ .

For the AC characteristics in auto-program mode, see section 22.10.2, AC Characteristics and Timing in programmer Mode.

#### 22.9.5 Auto-Erase Mode

- (1) Auto-erase mode only supports erasing of the entire memory.
- (2) Do not perform command writing while auto erasing is in progress.
- (3) To confirm the end of automatic erasure, check the signal on the I/O6 pin. Confirmation in the status-read mode is also possible (status polling of the I/O7 pin is used to check the end status of automatic erasure).
- (4) Status polling information on the I/O6 and I/O7 pins is retained until the next command writing. As long as no command is written, the information is made readable by enabling  $\overline{\text{CE}}$  and  $\overline{\text{OE}}$ .

For the AC characteristics in auto-erase mode, see section 22.10.2, AC Characteristics and Timing in programmer Mode.

#### 22.9.6 Status-Read Mode

- (1) Status-read mode is used to determine the type of an abnormal termination. Use this mode when automatic programming or automatic erasure ends abnormally.
- (2) The return code is retained until writing of a command that selects a mode other than statusread mode

Table 22.16 lists the return codes of status-read mode.

For the AC characteristics in status-read mode, see section 22.10.2, AC Characteristics and Timing in programmer Mode.

**Table 22.16 Return Codes of Status-Read Mode** 

| Pin<br>Name      | I/O7                                    | I/O6                                    | I/O5                                    | I/O4                                   | I/O3 | I/O2 | I/O1                                      | I/O0                                               |
|------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------|------|------|-------------------------------------------|----------------------------------------------------|
| Attribute        | Normal<br>end<br>indicator              | Command error                           | Programming error                       | Erasure<br>error                       | _    | _    | Programming<br>or erase count<br>exceeded | Invalid<br>address<br>error                        |
| Initial<br>value | 0                                       | 0                                       | 0                                       | 0                                      | 0    | 0    | 0                                         | 0                                                  |
| Indication       | Normal<br>end: 0<br>Abnorma<br>I end: 1 | Command<br>error: 1<br>Otherwise<br>: 0 | Programming<br>error: 1<br>Otherwise: 0 | Erasure<br>error:1<br>Otherwise<br>: 0 | _    | _    | Count<br>exceeded: 1<br>Otherwise: 0      | Invalid<br>address<br>error: 1<br>Otherwise<br>: 0 |

Note: I/O2 and I/O3 are undefined pins.

### 22.9.7 Status Polling

- (1) The I/O7 status-polling output is a flag that indicates the operating status in auto-program or auto-erase mode.
- (2) The I/O6 status-polling output is a flag that indicates normal/abnormal end of auto-program or auto-erase mode.

**Table 22.17 Truth Table of Status-Polling Output** 

| Pin Name     | In Progress | Abnormal End | _ | Normal End |
|--------------|-------------|--------------|---|------------|
| 1/07         | 0           | 1            | 0 | 1          |
| I/O6         | 0           | 0            | 1 | 1          |
| I/O0 to I/O5 | 0           | 0            | 0 | 0          |

### 22.9.8 Time Taken in Transition to Programmer Mode

Until oscillation has stabilized and while programmer mode is being set up, the LSI is unable to accept commands. After the programmer-mode setup time has elapsed, the LSI enters memory-read mode. For details, see section 22.10.2, AC Characteristics and Timing in Programmer Mode.

### 22.9.9 Notes on Programming in Programmer Mode

- (1) When programming addresses which have previously been programmed, apply auto-erasing before auto-programming.
- (2) When using programmer mode to program a chip that has been programmed/erased in an onboard programming mode, auto-erasing before auto-programming is recommended.
- (3) Do not take the chip out of the PROM programmer or reset the chip during programming or erasure. Flash memory is susceptible to permanent damage since a high voltage is being applied during the programming/erasing. When the reset signal is accidentally input to the chip, the period in the reset state until the reset signal is released should be longer than the normal  $100 \, \mu s$ .
- Notes: 1. The flash memory is initially in the erased state when the device is shipped by Renesas. For other chips for which the history of erasure is unknown, auto-erasing as a check and supplement for the initialization (erase) level is recommended.
  - Automatic programming to a single address block can only be performed once.
     Additional programming to an address block that has already been programmed is not allowed.

### 22.10 Further Information

### 22.10.1 Serial Communication Interface Specification for Boot Mode

Initiating boot mode enables the boot program to communicate with the host by using the on-chip SCI. The serial communication interface specifications are shown below.

#### Status

The boot program has three states.

### (1) Bit-rate-adjustment state

In this state, the boot program adjusts the bit rate to communicate with the host. Initiating boot mode enables starting of the boot program and entry to the bit-rate-adjustment state. The program receives the command from the host to adjust the bit rate. After adjusting the bit rate, the program enters the inquiry/selection state.

### (2) Inquiry/Selection state

In this state, the boot program responds to inquiry commands from the host. The device name, clock mode, and bit rate are selected. After selection of these settings, the program is made to enter the programming/erasing state by the command for a transition to the programming/erasing state. The boot program transfers the erasure program to RAM and erases the user MATs and user boot MATs before the transition.

### (3) Programming/erasing state

Programming and erasure by the boot program take place in this state. The boot program is made to transfer the programming/erasing program to RAM by commands from the host. Sum checks and blank checks are executed by sending these commands from the host.

These boot program states are shown in figure 22.26.

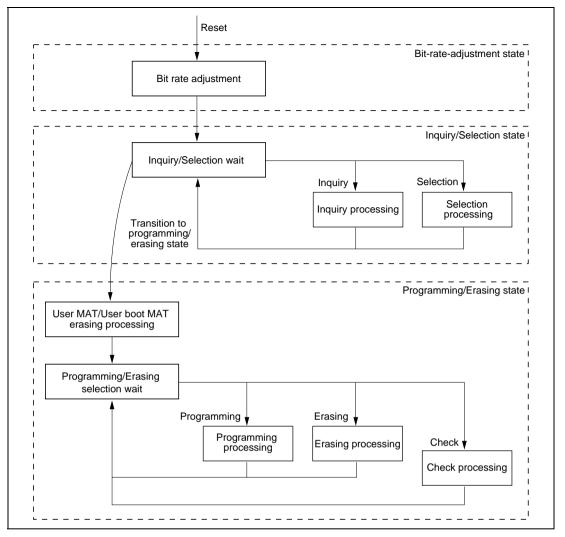



Figure 22.26 Boot Program Processing Flow

# Bit-rate-adjustment state

The bit rate is calculated by measuring the period of transfer of a low-level byte (H'00) from the host. The bit rate can be changed by the command for a new bit rate selection. After the bit rate has been adjusted, the boot program enters the inquiry/selection state. The bit-rate-adjustment sequence is shown in figure 22.27.

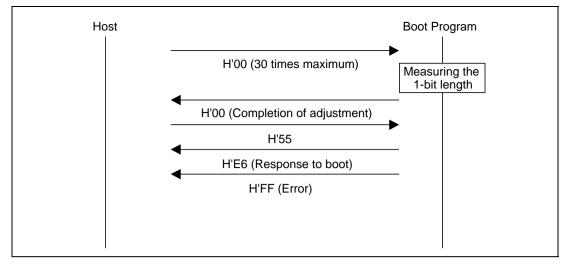



Figure 22.27 Bit-Rate-Adjustment Sequence

### Communications protocol

After adjustment of the bit rate, the protocol for serial communications between the host and the boot program is as shown below.

(1) One-byte commands and one-byte responses

These commands and responses are comprised of a single byte. These consists of the inquiries and ACK for successful completion.

(2) n-byte commands or n-byte responses

These commands and responses are comprised of n bytes of data. These are selections and responses to inquiries.

The amount of programming data is not included under this heading because it is determined in another command.

(3) Error response

The error response is a response to inquiries. It consists of an error response and an error code and which take up two bytes.

(4) Programming of 128 bytes

The size is not specified in commands. The data size is indicated in response to the programming unit inquiry.

(5) Memory read response

This response consists of four bytes of data.

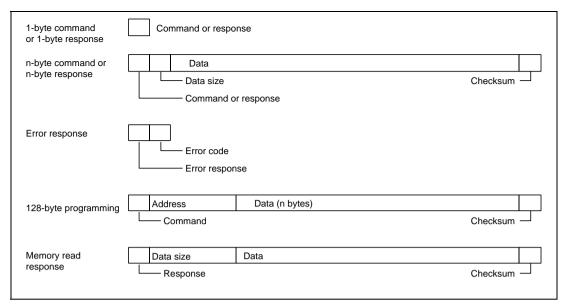



Figure 22.28 Communications Protocol Format

- Command (one byte): Commands including inquiries, selection, programming, erasing, and checking
- Response (one byte): Response to an inquiry
- Size (one or two bytes): The amount of data for transmission excluding the command, amount of data, and checksum
- Data (n bytes): Detailed data of a command or response
- Checksum (one byte): The checksum is calculated so that the total of all values from the command byte to the SUM byte becomes H'00.
- Error Response (one byte): Error response to a command
- Error Code (one byte): Type of the error
- Address (four bytes): Address for programming
- Data (n bytes): Data to be programmed. n is indicated in the response to the programming unit inquiry.
- Data Size (four bytes): Four-byte response to a memory read

## • Inquiry/Selection State

The boot program returns information from the flash memory in response to the host's inquiry commands and sets the device code, clock mode, and bit rate in response to the host's selection command.

Table 22.18 lists the inquiry and selection commands.

**Table 22.18 Inquiry and Selection Commands** 

| Command | Command Name                                         | Description                                                                                                                       |
|---------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| H'20    | Supported Device Inquiry                             | Inquiry regarding device codes and product names of F-ZTAT                                                                        |
| H'10    | Device Selection                                     | Selection of device code                                                                                                          |
| H'21    | Clock Mode Inquiry                                   | Inquiry regarding numbers of clock modes and values of each mode                                                                  |
| H'11    | Clock Mode Selection                                 | Indication of the selected clock mode                                                                                             |
| H'22    | Multiplication Ratio Inquiry                         | Inquiry regarding the number of clock types, the number of multiplication/division ratios, and the multiplication/division ratios |
| H'23    | Operating Clock Frequency Inquiry                    | Inquiry regarding the maximum and minimum values of the main clock and peripheral clocks                                          |
| H'24    | User Boot MAT Information Inquiry                    | Inquiry regarding the number of user boot MATs and the start and last addresses of each MAT                                       |
| H'25    | User MAT Information Inquiry                         | Inquiry regarding the a number of user MATs and the start and last addresses of each MAT                                          |
| H'26    | Block for Erasing Information Inquiry                | Inquiry regarding the number of blocks and the start and last addresses of each block                                             |
| H'27    | Programming Unit Inquiry                             | Inquiry regarding the unit of programming data                                                                                    |
| H'28    | Two-MAT Simultaneous Programming Information Inquiry | Inquiry into whether or not simultaneous two-MAT programming is allowed                                                           |
| H'3F    | New Bit Rate Selection                               | Selection of new bit rate                                                                                                         |
| H'40    | Transition to Programming/Erasing<br>State           | Erasing of user MAT and user boot MAT, and entry to programming/erasing state                                                     |
| H'4F    | Boot Program Status Inquiry                          | Inquiry into the operation status of the boot program                                                                             |

The selection commands, which are device selection (H'10), clock mode selection (H'11), and new bit rate selection (H'3F), should be sent from the host in this order. These commands are certainly required. When two or more selection commands are sent at once, the last command will be valid.

All of these commands, except for the boot program status inquiry command (H'4F), will be valid until the boot program receives the programming/erasing transition (H'40). The host can choose the needed commands out of the commands and inquiries listed above. The boot program status

inquiry command (H'4F) is valid after the boot program has received the programming/erasing transition command (H'40).

### (1) Supported device inquiry

The boot program will return the device codes of supported devices in response to the supported device inquiry.

Command H'20

— Command: H'20 (one byte): Inquiry regarding supported devices

### Response

| H'30                 | Size   | Number of devices |              |
|----------------------|--------|-------------------|--------------|
| Number of characters | Device | e code            | Product name |
|                      |        |                   |              |
| SUM                  |        |                   |              |

- Response: H'30 (one byte): Response to the supported device inquiry
- Size (one byte): Number of bytes to be transmitted, excluding the command, amount of data, and checksum, that is, the amount of data consists of the product names, the number of devices, characters, and device codes
- Number of devices (one byte): Number of device types supported by the boot program
- Number of characters (one byte): Number of characters in the device code and boot program's name
- Device code (four bytes): Supporting product (ASCII code)
- Product name (n bytes): Type name of the boot program (ASCII code)
- SUM (one byte): Checksum The checksum is calculated so that the total number of all values from the command byte to the SUM byte becomes H'00.

## (2) Device Selection

The boot program will set the supported device to the specified device code. The program will return the selected device code in response to the inquiry after this setting has been made.

### Command

| H'10 | Size | Device code | SUM |
|------|------|-------------|-----|

- Command: H'10 (one byte): Device selection
- Size (one byte): Number of characters in the device code (fixed at 2)
- Device code (four bytes): Device code returned in response to the supported device inquiry (ASCII code)
- SUM (one byte): Checksum

# Response H'06

Response: H'06, (one byte): Response to the device selection command
 ACK will be returned when the device code matches.

Error response H'90 ERROR

- Error response: H'90 (one byte): Error response to the device selection command
- ERROR: (one byte): Error code

H'11: Sum check error

H'21: Device code mismatch error

### (3) Clock Mode Inquiry

The boot program will return the supported clock modes in response to the clock mode inquiry.

# Command H'21

— Command: H'21 (one byte): Inquiry regarding clock mode

Response H'31 Size Number of modes Mode SUM

- Response: H'31 (one byte): Response to the clock-mode inquiry
- Size (one byte): Amount of data that represents the number of modes and modes
- Number of modes (one byte): Number of supported clock modes
   H'00 indicates no clock mode or the device allows the clock mode to be read.
- Mode (one byte): Supported clock modes (i.e. H'01 means clock mode 1.)
- SUM (one byte): Checksum

#### (4) Clock Mode Selection

The boot program will set the specified clock mode. The program will return the selected clock-mode information after this setting has been made.

The clock-mode selection command should be sent after the device selection command.

# Command H'11 Size Mode SUM

- Command: H'11 (one byte): Selection of clock mode
- Size (one byte): Number of characters that represents the mode (fixed at 1)
- Mode (one byte): Clock mode returned in reply to the supported clock mode inquiry.
- SUM (one byte): Checksum

Response H'06

 Response: H'06 (one byte): Response to the clock-mode selection command ACK will be returned when the clock mode matches.

# Error response H'91 ERROR

- Error response: H'91 (one byte): Error response to the clock-mode selection command
- ERROR (one byte): Error code

H'11: Sum check error

H'22: Clock mode mismatch error

## (5) Multiplication Ratio Inquiry

The boot program will return the supported multiplication/division ratios.

Command H'22

— Command: H'22 (one byte): Inquiry regarding multiplication ratio

### Response

| H'32                            | Size                      | Number clock t |  |  |  |
|---------------------------------|---------------------------|----------------|--|--|--|
| Number of multiplication ratios | Multiplica-<br>tion ratio | ???            |  |  |  |
|                                 |                           |                |  |  |  |
| SUM                             |                           |                |  |  |  |

- Response: H'32 (one byte): Response to the multiplication ratio inquiry
- Size (one byte): Amount of data that represents the number of clock types, the number of multiplication ratios, and the multiplication ratios
- Number of clock types (one byte): Number of supported multiplied clock types
   (e.g. when there are two multiplied clock types, which are the main operating frequency and the peripheral module operating frequency, the number of types will be H'02)
- Number of multiplication ratios (one byte): Number of multiplication ratios for each operating frequency
  - (e.g. the number of multiplication ratios to which the main operating frequency can be set and the peripheral module operating frequency can be set)
- Multiplication ratio (one byte)
  - Multiplication ratio: Value of the multiplication ratio (e.g. when the clock-frequency multiplier is four, the value of multiplication ratio will be H'04)
  - Division ratio: Value of the division ratio, inverted to be a negative number (e.g. when the clock is divided by two, the value of division ratio will be H'FE. H'FE = -2)
  - The number of multiplication ratios returned is the same as the number of multiplication ratios and as many groups of data are returned as there are types.
- SUM (one byte): Checksum

## (6) Operating Clock Frequency Inquiry

The boot program will return the number of operating clock frequencies, and the maximum and minimum values.

## Command

H'23

— Command: H'23, (one byte): Inquiry regarding operating clock frequencies

### Response

| H'33                                       | Size | Number of operating clock frequencies |          |
|--------------------------------------------|------|---------------------------------------|----------|
| Minimum value of operating clock frequency |      | Maximum value of operation frequency  | ng clock |
|                                            |      |                                       |          |
| SUM                                        |      |                                       |          |

— Response: H'33 (one byte): Response to operating clock frequency inquiry

- Size (one byte): Number of bytes that represents the number of types, minimum values, and maximum values of operating clock frequencies.
- Number of types (one byte): Number of supported operating clock frequency types (e.g. when there are two operating clock frequency types, which are the main and peripheral clocks, the number of types will be H'02)
- Minimum value of operating clock frequency (two bytes): Minimum value for each
  multiplied or divided clock frequency.
   The minimum and maximum values represent the values in MHz, valid to the hundredths

place of MHz, and multiplied by 100. (e.g. when the value is 20.00 MHz, it will be multiplied by 100 to be 2000 which is H'07D0)

- Maximum value of operating clock frequency (two bytes): Maximum value for each multiplied or divided clock frequency.
   There are as many pairs of minimum and maximum values as there are operating clock
- SUM (one byte): Checksum

### (7) User Boot MAT Information Inquiry

The boot program will return the number of user boot MATs and their addresses.

# Command H'24

frequencies.

— Command: H'24 (one byte): Inquiry regarding user boot MAT information

### Response

| H'34                  | Size | Number of areas |                      |
|-----------------------|------|-----------------|----------------------|
| Start address of area |      |                 | Last address of area |
|                       |      |                 |                      |
| SUM                   |      |                 |                      |

- Response: H'34 (one byte): Response to user boot MAT information inquiry
- Size (one byte): Amount of data that represents the number of areas, the start address of each area, and the last address of each area
- Number of areas (one byte): Number of non-consecutive user boot MAT areas
   When user boot MAT areas are consecutive, the number of areas returned is H'01.
- Start address of area (four bytes): Start address of the area
- Last address of area (four bytes): Last address of the area
   There are as many groups of data representing the start and last addresses as there are areas.
- SUM (one byte): Checksum

## (8) User MAT Information Inquiry

The boot program will return the number of user MATs and their addresses.

# Command H'25

— Command: H'25 (one byte): Inquiry regarding user MAT information

#### Response

| H'35                  | Size | Number of areas |                      |
|-----------------------|------|-----------------|----------------------|
| Start address of area |      |                 | Last address of area |
|                       |      |                 |                      |
| SUM                   |      |                 |                      |

- Response: H'35 (one byte): Response to the user MAT information inquiry
- Size (one byte): Amount of data that represents the number of areas, the start address of each area, and the last address of each area
- Number of areas (one byte): Number of non-consecutive user MAT areas
   When user MAT areas are consecutive, the number of areas returned is H'01.
- Start address of area (four bytes): Start address of the area
- Last address of area (four bytes): Last address of the area
   There are as many groups of data representing the start and last addresses as there are areas.
- SUM (one byte): Checksum

### (9) Erased Block Information Inquiry

The boot program will return the number of erased blocks and their addresses.

### Command

H'26

— Command: H'26 (one byte): Inquiry regarding erased block information

### Response

| H'36                   | Size | Number of blocks |                       |
|------------------------|------|------------------|-----------------------|
| Start address of block |      |                  | Last address of block |
|                        |      |                  |                       |
| SUM                    |      |                  |                       |

- Response: H'36 (one byte): Response to the number of erased blocks and addresses
- Size (two bytes): Amount of data that represents the number of blocks, the start address of each block, and the last address of each block
- Number of blocks (one byte): Number of erased blocks in flash memory
- Start address of block (four bytes): Start address of the block
- Last address of block (four bytes): Last address of the block
   There are as many groups of data representing the start and last addresses as there are blocks.
- SUM (one byte): Checksum

## (10) Programming Unit Inquiry

The boot program will return the programming unit used to program data.

## Command

H'27

— Command: H'27 (one byte): Inquiry regarding programming unit

Response H'37 Programming unit Size SUM

- Response: H'37 (one byte): Response to programming unit inquiry
- Size (one byte): Number of characters that indicate the programming unit (fixed at 2)
- Programming unit (two bytes): Unit for programming This is the unit for reception of program data.
- SUM (one byte): Checksum

### (11) Two-MAT Simultaneous Programming Information Inquiry

The boot program will return an indication whether or not two-MAT simultaneous programming is allowed and the start address.

### Command

H'28

— Command: H'28 (one byte): Inquiry regarding two-MAT simultaneous programming information

### Response

| H'38                     | Size Programming method |  |                          |
|--------------------------|-------------------------|--|--------------------------|
| Start address of 1st MAT |                         |  | Start address of 2nd MAT |
| SUM                      |                         |  |                          |

- Response: H'38 (one byte): Response to 2-MAT simultaneous programming information inquiry
- Size (one byte): Amount of data that represents the programming method and start addresses, which is fixed at five bytes for one-MAT programming and at nine bytes for two-MAT simultaneous programming.
- Programming method (one byte): H'01 = one-MAT programming H'02 = two-MAT simultaneous programming
- Start address of 1st MAT (four bytes): Start address of the first MAT
- Start address of 2nd MAT (four bytes): Start address of the second MAT The start address of the second MAT is included only when the two-MAT simultaneous programming method is allowed.
- SUM (one byte): Checksum

### (12) New Bit Rate Selection

The boot program will set a new bit rate and return the new bit rate.

This selection should be sent after sending the clock-mode selection command.

### Command

| H'3F                            | Size                   | Bit rate               | Input frequency |
|---------------------------------|------------------------|------------------------|-----------------|
| Number of multiplication ratios | Multiplication ratio 1 | Multiplication ratio 2 |                 |
| SUM                             |                        |                        |                 |

- Command: H'3F (one byte): Selection of new bit rate
- Size (one byte): Amount of data that represents the bit rate, input frequency, number of multiplication ratios, and multiplication ratios

- Bit rate (two bytes): New bit rate
   One hundredth of the value (e.g. when the value is 19200 bps, the bit rate is 192, which is H'00C0)
- Input frequency (two bytes): Frequency of the clock input to the boot program

  This value is valid to the hundredths place and represents the value in MHz multiplied by
  100. (e.g. when the value is 28.882 MHz, it will be multiplied by 100 to be 2888 which is
  H'0B48.
- Number of multiplication ratios (one byte): Number of multiplication ratios to which the device can be set.
- Multiplication ratio 1 (one byte): Value of the multiplication or division ratio for the main operating frequency

Multiplication ratio: Value of the multiplication ratio (e.g. when the clock frequency is multiplied by four, the multiplication ratio will be H'04.)

Division ratio: Value of the division ratio, inverted to be a negative number (e.g. when the clock is divided by two, the value of division ratio will be H'FE. H'FE = -2)

 Multiplication ratio 2 (one byte): Value of the multiplication or division ratio for the peripheral operating frequency

Multiplication ratio: Value of the multiplication ratio (e.g. when the clock frequency is multiplied by four, the multiplication ratio will be H'04.)

Division ratio: Value of the division ratio, inverted to be a negative number (e.g. when the clock is divided by two, the value of division ratio will be H'FE. H'FE = -2)

- SUM (one byte): Checksum

# Response H'06

— Response: H'06 (one byte): Response to selection of a new bit rate When it is possible to set the bit rate, the response will be ACK.

# Error response H'BF ERROR

- Error response: H'BF (one byte): Error response to selection of new bit rate
- ERROR: (one byte): Error code

H'11: Sum check error

H'24: Bit-rate selection error

This bit rate is not available.

H'25: Input frequency error

This input frequency is not within the range set by the minimum and maximum values.

H'26: Multiplication ratio error

This ratio does not match an available ratio.

H'27: Operating frequency error

This operating frequency is not within the range set by the minimum and maximum values.

The methods for checking of received data are listed below.

### • Input frequency

The received value of the input frequency is checked to ensure that it is within the range of minimum to maximum frequencies which matches the clock modes of the specified device. When the value is out of this range, an input frequency error is generated.

### • Multiplication ratio

The received value of the multiplication ratio or division ratio is checked to ensure that it matches the clock modes of the specified device. When the value is out of this range, a multiplication error is generated.

### • Operating frequency error

The operating frequency is calculated from the received value of the input frequency and the multiplication or division ratio. The input frequency is input to the LSI and the LSI is actually operated at the operating frequency. The expression is given below.

Operating frequency = Input frequency Multiplication ratio, or

Operating frequency = Input frequency/Division ratio

The calculated operating frequency should be checked to ensure that it is within the range of minimum to maximum frequencies which are available with the clock modes of the specified device. When it is out of this range, an operating frequency error is generated.

### • Bit rate

From peripheral operating clock  $(\phi)$  and bit rate (B), the clock select (CKS) value (n) in the serial mode register (SMR) and the bit rate register (BRR) value (N) are obtained. The error between n and N that is calculated by the method below is checked to ensure that it is less than 4%. When it is 4% or more, a bit-rate selection error is generated.

Error (%) = {[ 
$$\frac{\phi \times 10^6}{(N+1) \times B \times 64 \times 2^{(2 \times n-1)}} ] - 1} \times 100$$

When the new bit rate is selectable, the new bit rate will be set in the register after sending ACK in response. The host will send ACK with the new bit rate for confirmation and the boot program will response with that rate.

# Confirmation H'06

— Confirmation: H'06 (one byte): Confirmation of a new bit rate

# Response H'06

— Response: H'06 (one byte): Response to confirmation of a new bit rate

The sequence of new bit-rate selection is shown in figure 22.29.

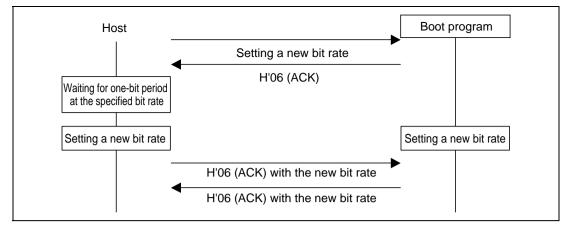



Figure 22.29 New Bit-Rate Selection Sequence

### (13) Transition to Programming/Erasing State

To enter the programming/erasing state, the boot program will transfer the erasing program, and erase the user MATs and user boot MATs in that order. On completion of this erasure, ACK will be returned and a transition is made to the programming/erasing state.

The host should select the device code, clock mode, and new bit rate with device selection, clock-mode selection, and new bit-rate selection commands, and then send the command for the transition to programming/erasing state. This procedure should be carried out before transferring the programming selection command or program data.

# Command H'40

— Command: H'40 (one byte): Transition to programming/erasing state

# Response H'06

Response: H'06 (one byte): Response to transition to programming/erasing state
 The boot program will send ACK when the user MATs and user boot MATs have been erased by the transferred erasing program.

# Error response H'C0 H'51

- Error response: H'C0 (one byte): Error response to transition to programming/erasing state
- Error code: H'51 (one byte): Erasing error
   An error occurred and erasure was not completed.

**Command Error:** A command error will occur when a command is undefined, the order of commands is incorrect, or a command is unacceptable. Issuing a clock-mode selection command before a device selection or issuing an inquiry command after the command for transition to the programming/erasing state, are examples.

Error response H'80 H'xx

- Error response: H'80 (one byte): Command error
- Command: H'xx (one byte): Received command

**Command Order:** The order for commands in the inquiry selection state is shown below.

- (1) A supported device inquiry (H'20) should be made to inquire about the supported devices.
- (2) The device should be selected from among those described by the returned information and set with a device selection (H'10) command.
- (3) A clock-mode inquiry (H'21) should be made to inquire about the supported clock modes.
- (4) The clock mode should be selected from among those described by the returned information and set with a clock-mode selection (H'11) command.
- (5) After selection of the device and clock mode, inquiries for other required information should be made, such as the multiplication ratio inquiry (H'22) or operating frequency inquiry (H'23).
- (6) A new bit rate should be selected with the new bit-rate selection (H'3F) command, according to the returned information on multiplication ratios and operating frequencies.
- (7) After selection of the device and clock mode, the information of the user boot MAT and user MAT should be made to inquire about the user boot MAT information inquiry (H'24), user MAT information inquiry (H'25), erased block information inquiry (H'26), programming unit inquiry (H'27), and two-MAT simultaneous programming information inquiry (H'28).
- (8) After making inquiries and selecting a new bit rate, issue the command for transition to the programming/erasing state (H'40). The boot program will then enter the programming/erasing state.

**Programming/Erasing State:** In the programming/erasing state, a programming selection command makes the boot program select the programming method, a 128-byte programming command makes it program the memory with data, and an erasing selection command and block erasing command make it erase the block. Table 22.19 lists the programming/erasing commands.

**Table 22.19 Programming/Erasing Commands** 

| Command | Command Name                                    | Description                                                 |
|---------|-------------------------------------------------|-------------------------------------------------------------|
| H'42    | User boot MAT programming selection             | Transfers the user boot MAT programming program             |
| H'43    | User MAT programming selection                  | Transfers the user MAT programming program                  |
| H'44    | Two-user-MAT simultaneous programming selection | Transfers the two-user-MAT simultaneous programming program |
| H'50    | 128-byte programming                            | Programs 128 bytes of data                                  |
| H'48    | Erasing selection                               | Transfers the erasing program                               |
| H'58    | Block erasing                                   | Erases a block of data                                      |
| H'52    | Memory read                                     | Reads the contents of memory                                |
| H'4A    | User boot MAT sum check                         | Checks the checksum of the user boot MAT                    |
| H'4B    | User MAT sum check                              | Checks the checksum of the user MAT                         |
| H'4C    | User boot MAT blank check                       | Checks whether the contents of the user boot MAT are blank  |
| H'4D    | User MAT blank check                            | Checks whether the contents of the user MAT are blank       |
| H'4F    | Boot program status inquiry                     | Inquires into the boot program's state                      |

**Programming:** Programming is executed by a programming selection command and a 128-byte programming command.

First, the host should send the programming selection command and select the programming method and programming MATs. There are three programming selection commands used according to the area and method for programming.

- (1) User boot MAT programming selection
- (2) User MAT programming selection
- (3) Two-user-MAT simultaneous programming selection

After issuing the programming selection command, the host should send the 128-byte programming command. The 128-byte programming command that follows the selection command represents the data programmed according to the method specified by the selection command. When more than 128-byte data is programmed, 128-byte commands should repeatedly be executed. Sending a 128-byte programming command with HFFFFFFFF as the address will stop the programming. On completion of programming, the boot program will wait for selection of programming or erasing.

To continue programming with another method or of another MAT, the procedure must be repeated from the programming selection command.

The programming selection command and sequence for the 128-byte programming commands are shown in figure 22.30.

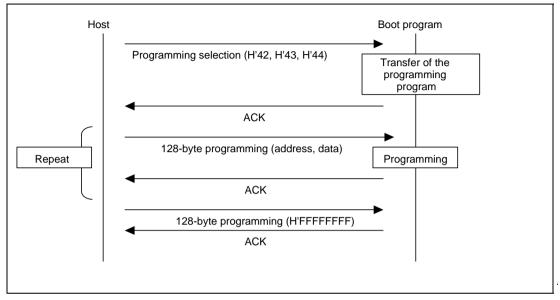



Figure 22.30 Programming Sequence

## (1) User boot MAT programming selection

The boot program will transfer a programming program. The data is programmed to the user boot MATs by the transferred programming program.

# Command H'42

— Command: H'42 (one byte): User boot MAT programming selection

# Response H'06

Response: H'06 (one byte): Response to user boot MAT programming selection
 When the programming program has been transferred, the boot program will return ACK.

# Error response H'C2 ERROR

- Error response: H'C2 (one byte): Error response to user boot MAT programming selection
- ERROR: (one byte): Error code
   H'54: Selection processing error (transfer error occurs and processing is not completed)

## (2) User MAT programming selection

The boot program will transfer a programming program. The data is programmed to the user MATs by the transferred programming program.

| — Command: I   | H'43 (oı | ne byte): Use | er MAT programming selection                              |
|----------------|----------|---------------|-----------------------------------------------------------|
| Response H'06  |          |               |                                                           |
| — Response: H  | I'06 (on | e byte): Resp | ponse to user MAT programming selection                   |
| When the pr    | ogramr   | ning progran  | n has been transferred, the boot program will return ACK. |
| Error response | H'C3     | ERROR         |                                                           |
| — Error respon | ise: H'C | (3 (one byte) | : Error response to user MAT programming selection        |
| — ERROR: (or   | ne byte) | : Error code  |                                                           |

(3) Two-user-MAT simultaneous programming selection

The boot program will transfer the two-user-MAT simultaneous programming program. Data is simultaneously programmed to the two user MATs by the transferred two-user-MAT simultaneous programming program. The host must alternately send addresses and data that correspond to each MAT for simultaneous programming to two user MATs. The boot program will return one ACK for one 128-byte programming command, however, programming of the data will start when the boot program has received data for both MATs.

H'54: Selection processing error (transfer error occurs and processing is not completed)

Command H'44

Command H'43

— Command: H'44 (one byte): Two-user-MAT simultaneous programming selection Response H'06

— Response: H'06 (one byte): Response to two-user-MAT simultaneous programming selection

After the two-user-MAT simultaneous programming program has been transferred, the boot program will return ACK.

Error response H'C4 ERROR

- Error response: H'C4 (one byte): Error response to two-user-MAT simultaneous programming selection
- ERROR: (one byte): Error code
   H'54: Selection processing error (transfer error occurs and processing is not completed)

## (4) 128-byte programming

The boot program will use the programming program transferred by the programming selection command for programming the user boot MATs or user MATs. When two-user-MAT simultaneous programming command is selected, programming will start after the boot program has received data for both MATs.

| program has received data for both wifers. |      |       |        |         |  |  |  |
|--------------------------------------------|------|-------|--------|---------|--|--|--|
| Command                                    | H'50 | Progr | amming | g addre |  |  |  |
|                                            | Data |       |        |         |  |  |  |
|                                            |      |       |        |         |  |  |  |
|                                            | SUM  |       |        |         |  |  |  |

— Command: H'50 (one byte): 128-byte programming

- Programming address (four bytes): Start address for programming
   Multiple of the size specified in response to the programming unit inquiry; a 128-byte boundary (e.g. H'00, H'01, H'00, H'00: H'01000000)
- Data (n bytes): Data to be programmed
   The size is specified in response to the programming unit inquiry.
- SUM (one byte): Checksum

# Response H'06

Response: H'06 (one byte): Response to 128-byte programming
 On completion of programming, the boot program will return ACK. In two-MAT programming, when all data for the first MAT has been received, the boot program will return ACK.

# Error response H'D0 ERROR

- Error response: H'D0 (one byte): Error response to 128-byte programming
- ERROR: (one byte): Error code
  - H'11: Sum check error
  - H'2A: Address error (address is not within the specified range)
  - H'53: Programming error (a programming error has occurred and programming cannot be continued)

The specified address should match the unit for programming of data. For example, when the programming is in 128-byte units, the lower byte of the address should be H'00 or H'80.

When there are less than 128 bytes of data to be programmed, the host should fill the rest with H'FF.

In two-user-MAT simultaneous programming, the host should alternately send the data for each MAT address.

Sending the 128-byte programming command with the address of HTFFFFFFF will stop the programming operation. The boot program will interpret this as the end of programming and wait for selection of programming or erasing. When the most recently received data has not been programmed in two-user-MAT simultaneous programming, the most recent data is programmed before programming is stopped.

# Command

| H'50 | Programming | SUM |
|------|-------------|-----|
|      | address     |     |

- Command: H'50 (one byte): 128-byte programming
- Programming address (four bytes): End code is H'FF, H'FF, H'FF, H'FF.
- SUM (one byte): Checksum

Error response H'D0 ERROR

— Error response: H'D0 (one byte): Error response to 128-byte programming

— ERROR: (one byte): Error code

H'11: Sum check error H'53: Programming error

An error has occurred in programming, and programming cannot be continued (in two-user-MAT simultaneous programming, when programming to the last MAT has not been completed.)

**Erasure:** Erasure is performed with the erasing selection and block erasing command.

First, erasure is selected by the erasing selection command and the boot program then erases the block specified by the block erasing command. The command should be repeatedly executed if two or more blocks are to be erased. Sending a block erasing command from the host with the block number H'FF will stop erasure. On completion of erasing, the boot program will wait for selection of programming or erasing.

The erasing selection command and sequence for erasing data are shown in figure 22.31.

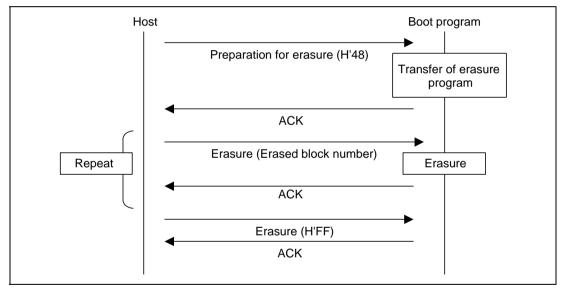



Figure 22.31 Erasing Sequence

## (1) Erasing selection

The boot program will transfer the erasing program. User MAT data is erased by the transferred erasing program.

Command H'48

— Command: H'48 (one byte): Erasing selection

Response H'06

— Response: H'06 (one byte): Response to erasing selection

After the erasing program has been transferred, the boot program will return ACK.

Error response

H'C8 ERROR

— Error response: H'C8 (one byte): Error response to erasing selection

- ERROR: (one byte): Error code

H'54: Selection processing error (transfer error occurs and processing is not completed)

## (2) Block erasing

The boot program will erase the contents of the specified block.

Command H'58 Size Block number SUM

- Command: H'58 (one byte): Erasing
- Size (one byte): Number of characters that represents the erasure block number (fixed at 1)
- Block number (one byte): Number of the block whose data is to be erased
- SUM (one byte): Checksum

Response H'06

— Response: H'06 (one byte): Response to erasing

After erasure has been completed, the boot program will return ACK.

Error response

H'D8 ERROR

— Error response: H'D8 (one byte): Error response to erasing

H'11: Sum check error

H'29: Block number error

Block number is incorrect.

H'51: Erasure error

An error has occurred during erasure.

On receiving block number H'FF, the boot program will stop erasure and wait for a selection command.

Command H'58 Size Block number SUM

- Command: H'58 (one byte): Erasure
- Size (one byte): Number of characters that represents the block number (fixed at 1)
- Block number (one byte): H'FF (stop code for erasure)
- SUM (one byte): Checksum

Response H'06

— Response: H'06 (one byte): Response to end of erasure (ACK)

When erasure is to be performed again after the block number H'FF has been sent, the procedure should be executed from the erasure selection command.

## (3) Memory read

The boot program will return the data in the specified address.

# Command H'52 Size Area Read address Read size SUM

- Command: H'52 (one byte): Memory read
- Size (one byte): Amount of data that represents the area, read address, and read size (fixed at 9)
- Area (one byte)

H'00: User boot MAT

H'01: User MAT

An address error occurs when the area setting is incorrect.

- Read start address (four bytes): Start address to be read from
- Read size (four bytes): Size of data to be read
- SUM (one byte): Checksum

| Daa | nonc  |     |
|-----|-------|-----|
| Res | DUITS | , – |
|     |       |     |

| H'52 | Read s | ize |  |  |  |  |
|------|--------|-----|--|--|--|--|
| Data |        |     |  |  |  |  |
| SUM  |        |     |  |  |  |  |

- Response: H'52 (one byte): Response to memory read
- Read size (four bytes): Size of data to be read
- Data (n bytes): Data for the read size from the read address
- SUM (one byte): Checksum

Error response

H'D2 ERROR

- Error response: H'D2 (one byte): Error response to memory read
- ERROR: (one byte): Error code

H'11: Sum check error

H'2A: Address error

The start address for reading is not in the MAT.

H'2B: Size error

The read size exceeds the MAT, the last address for reading calculated from the start address for reading and the read size is not in the MAT, or read size is 0.

#### (4) User boot MAT sum check

The boot program will add the amount of data in user boot MATs and return the result.

Command H'4A

— Command: H'4A (one byte): Sum check of user boot MATs

Response H'5A Size MAT checksum SUM

- Response: H'5A (one byte): Response to sum check of user boot MATs
- Size (one byte): Number of characters in checksum data (fixed at 4)
- MAT checksum (four bytes): Checksum of user boot MATs

The total amount of data is obtained in byte units.

— SUM (one byte): Checksum (for transmit data)

(5) User MAT sum check

The boot program will add the amount of data in user MATs and return the result.

Command H'4B

— Command: H'4B (one byte): Sum check of user MATs

Response H'5B Size MAT checksum SUM

- Response: H'5B (one byte): Response to sum check of user MATs
- Size (one byte): Number of characters in checksum data (fixed at 4)
- MAT checksum (four bytes): Checksum of user MATs
   The total amount of data is obtained in byte units.
- SUM (one byte): Checksum (for transmit data)

#### (6) User boot MAT blank check

H'06

The boot program will check whether or not all user boot MATs are blank and return the result.

Command H'4C

— Command: H'4C (one byte): Blank check of user boot MATs

Response

Response: H'06 (one byte): Response to blank check of user boot MATs
 If all user boot MATs are blank (H'FF), the boot program will return ACK.

Error response H'CC H'52

- Error response: H'CC (one byte): Error response to blank check of user boot MATs
- Error code: H'52 (one byte): Erasure has not been completed

#### (7) User MAT blank check

The boot program will check whether or not all user MATs are blank and return the result.

Command H'4D

— Command: H'4D (one byte): Blank check of user MATs

Response H'06

— Response: H'06 (one byte): Response to blank check of user MATs If all user MATs are blank (H'FF), the boot program will return ACK.

Error response H'CD H'52

- Error response: H'CD (one byte): Error response to blank check of user MATs
- Error code: H'52 (one byte): Erasure has not been completed.

## (8) Boot program status inquiry

The boot program will return indications of its present state and error condition. This inquiry can be made in the inquiry/selection state or the programming/erasing state.

Command H'4F

— Command: H'4F (one byte): Inquiry regarding boot program status

Rev.2.0, 07/03, page 828 of 960

| Response | H'5F | Size | STATUS  | ERROR | SUM |
|----------|------|------|---------|-------|-----|
| responds |      | 0.20 | 0.71.00 |       | 00  |

- Response: H'5F (one byte): Response to inquiry regarding boot program status
- Size (one byte): Number of characters in data (fixed at 2)
- STATUS (one byte): Standard boot program status For details, see table 22.20, Status Code.

— ERROR (one byte): Error state

ERROR = 0 indicates normal operation.

ERROR = 1 indicates error has occurred.

For details, see table 22.21, Error Code.

— SUM (one byte): Checksum

#### Table 22.20 Status Code

| Code | Description                                                                 |
|------|-----------------------------------------------------------------------------|
| H'11 | Device Selection Wait                                                       |
| H'12 | Clock Mode Selection Wait                                                   |
| H'13 | Bit Rate Selection Wait                                                     |
| H'1F | Programming/Erasing State Transition Wait (bit rate selection is completed) |
| H'31 | Programming State for Erasing User MAT and User Boot MAT                    |
| H'3F | Programming/Erasing Selection Wait (Erasure is completed)                   |
| H'4F | Programming Data Receive Wait                                               |
| H'5F | Erasure Block Specification Wait (erasure is completed)                     |

#### Table 22.21 Error Code

| Code | Description                            |
|------|----------------------------------------|
| H'00 | No Error                               |
| H'11 | Sum Check Error                        |
| H'21 | Device Code Mismatch Error             |
| H'22 | Clock Mode Mismatch Error              |
| H'24 | Bit Rate Selection Error               |
| H'25 | Input Frequency Error                  |
| H'26 | Multiplication Ratio Error             |
| H'27 | Operating Frequency Error              |
| H'29 | Block Number Error                     |
| H'2A | Address Error                          |
| H'2B | Data Length Error                      |
| H'51 | Erasure Error                          |
| H'52 | Erasure Incompletion Error             |
| H'53 | Programming Error                      |
| H'54 | Selection Error                        |
| H'80 | Command Error                          |
| H'FF | Bit-Rate-Adjustment Confirmation Error |

## 22.10.2 AC Characteristics and Timing in Programmer Mode

Table 22.22 AC Characteristics in Memory Read Mode

| Code                    | Symbol            | Min | Max | Unit | Note |
|-------------------------|-------------------|-----|-----|------|------|
| Command write cycle     | t <sub>nxtc</sub> | 20  |     | μs   |      |
| CE hold time            | t <sub>ceh</sub>  | 0   |     | ns   |      |
| CE setup time           | t <sub>ces</sub>  | 0   |     | ns   |      |
| Data hold time          | t <sub>dh</sub>   | 50  |     | ns   |      |
| Data setup time         | t <sub>ds</sub>   | 50  |     | ns   |      |
| Programming pulse width | $t_{wep}$         | 70  |     | ns   |      |
| WE rise time            | t <sub>r</sub>    |     | 30  | ns   |      |
| WE fall time            | t <sub>f</sub>    |     | 30  | ns   |      |
|                         |                   |     |     |      |      |

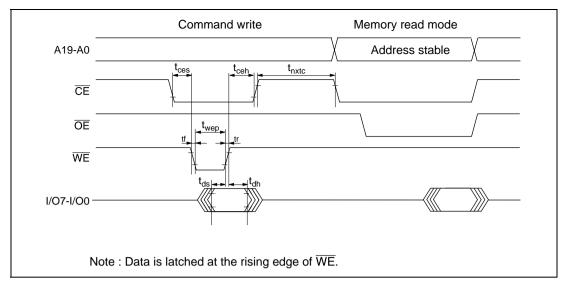



Figure 22.32 Memory Read Timing after Command Write

Table 22.23 AC Characteristics in Transition from Memory Read Mode to Others

| Code                    | Symbol            | Min | Max | Unit | Note |
|-------------------------|-------------------|-----|-----|------|------|
| Command write cycle     | t <sub>nxtc</sub> | 20  |     | μs   |      |
| CE hold time            | t <sub>ceh</sub>  | 0   |     | ns   |      |
| CE setup time           | t <sub>ces</sub>  | 0   |     | ns   |      |
| Data hold time          | t <sub>dh</sub>   | 50  |     | ns   |      |
| Data setup time         | t <sub>ds</sub>   | 50  |     | ns   |      |
| Programming pulse width | t <sub>wep</sub>  | 70  |     | ns   |      |
| WE rise time            | t,                |     | 30  | ns   |      |
| WE fall time            | t <sub>f</sub>    |     | 30  | ns   |      |

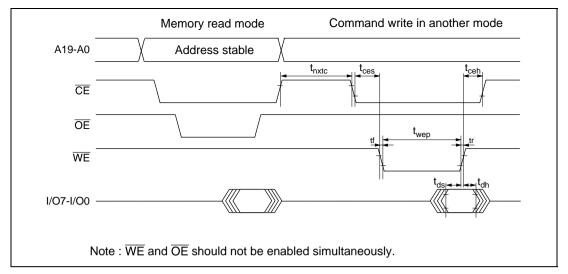



Figure 22.33 Timing at Transition from Memory Read Mode to Other Modes

## Table 22.24 AC Characteristics in Memory Read Mode

| Code                      | Symbol           | Min | Max | Unit | Note |  |
|---------------------------|------------------|-----|-----|------|------|--|
| Access time               | t <sub>acc</sub> |     | 20  | μs   |      |  |
| CE output delay time      | t <sub>ce</sub>  |     | 150 | ns   |      |  |
| OE output delay time      | t <sub>oe</sub>  |     | 150 | ns   |      |  |
| Output disable delay time | t <sub>df</sub>  |     | 100 | ns   |      |  |
| Data output hold time     | t <sub>oh</sub>  | 5   |     | ns   |      |  |

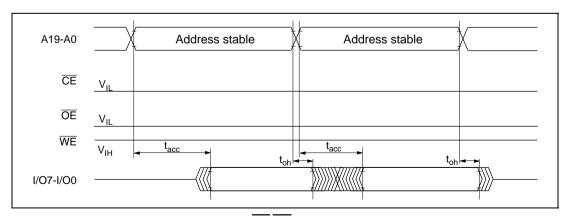
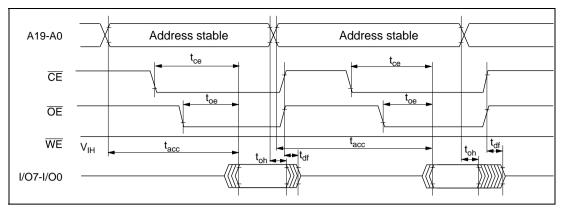




Figure 22.34  $\overline{\text{CE}}/\overline{\text{OE}}$  Enable State Read



## Table 22.25 AC Characteristics in Auto-Program Mode

Condition:  $V_{cc}$  = 3.3 V ± 0.3 V,  $V_{ss}$  = 0 V,  $T_a$  = 25°C ± 5°C

| Code                       | Symbol             | Min | Max  | Unit | Note |
|----------------------------|--------------------|-----|------|------|------|
| Command write cycle        | t <sub>nxtc</sub>  | 20  |      | μs   |      |
| CE hold time               | t <sub>ceh</sub>   | 0   |      | ns   |      |
| CE setup time              | t <sub>ces</sub>   | 0   |      | ns   |      |
| Data hold time             | t <sub>dh</sub>    | 50  |      | ns   |      |
| Data setup time            | t <sub>ds</sub>    | 50  |      | ns   |      |
| Programming pulse width    | t <sub>wep</sub>   | 70  |      | ns   |      |
| Status polling start time  | t <sub>wsts</sub>  | 1   |      | ms   |      |
| Status polling access time | t <sub>spa</sub>   |     | 150  | ns   |      |
| Address setup time         | t <sub>as</sub>    | 0   |      | ns   |      |
| Address hold time          | t <sub>ah</sub>    | 60  |      | ns   |      |
| Memory programming time    | t <sub>write</sub> | 1   | 3000 | ms   |      |
| Programming setup time     | t <sub>pns</sub>   | 100 |      | ns   |      |
| Programming end setup time | t <sub>pnh</sub>   | 100 |      | ns   |      |
| WE rise time               | t <sub>r</sub>     |     | 30   | ns   |      |
| WE fall time               | t,                 |     | 30   | ns   |      |

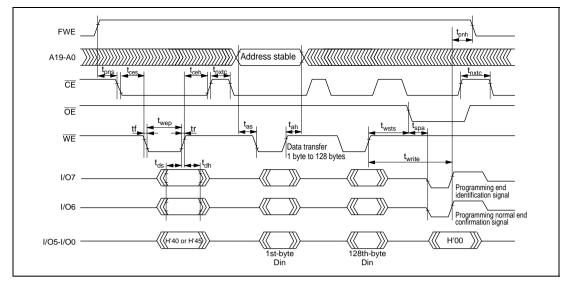



Figure 22.36 Timing in Auto-Program Mode

Table 22.26 AC Characteristics in Auto-Erase Mode

| Code                       | Symbol             | Min | Max   | Unit | Note |
|----------------------------|--------------------|-----|-------|------|------|
| Command write cycle        | t <sub>nxtc</sub>  | 20  |       | μs   | _    |
| CE hold time               | t <sub>ceh</sub>   | 0   |       | ns   |      |
| CE setup time              | t <sub>ces</sub>   | 0   |       | ns   |      |
| Data hold time             | t <sub>dh</sub>    | 50  |       | ns   |      |
| Data setup time            | t <sub>ds</sub>    | 50  |       | ns   |      |
| Programming pulse width    | t <sub>wep</sub>   | 70  |       | ns   |      |
| Status polling start time  | t <sub>ests</sub>  | 1   |       | ms   |      |
| Status polling access time | t <sub>spa</sub>   |     | 150   | ns   |      |
| Memory erase time          | t <sub>erase</sub> | 100 | 40000 | ms   |      |
| Erase setup time           | t <sub>ens</sub>   | 100 |       | ns   |      |
| Erase end setup time       | t <sub>enh</sub>   | 100 |       | ns   |      |
| WE rise time               | t <sub>r</sub>     |     | 30    | ns   |      |
| WE fall time               | t,                 |     | 30    | ns   |      |

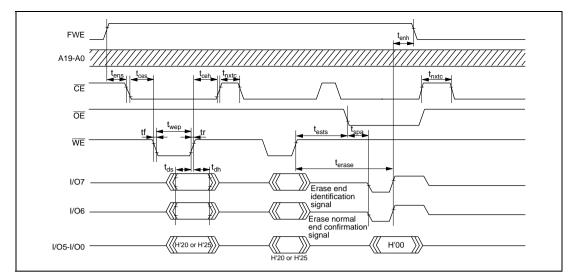



Figure 22.37 Timing in Auto-Erase Mode

Table 22.27 AC Characteristics Status Read Mode

| Code                    | Symbol            | Min | Max | Unit | Note |  |
|-------------------------|-------------------|-----|-----|------|------|--|
| Command write cycle     | t <sub>nxtc</sub> | 20  |     | μs   |      |  |
| CE hold time            | t <sub>ceh</sub>  | 0   |     | ns   |      |  |
| CE setup time           | t <sub>ces</sub>  | 0   |     | ns   |      |  |
| Data hold time          | t <sub>dh</sub>   | 50  |     | ns   |      |  |
| Data setup time         | t <sub>ds</sub>   | 50  |     | ns   |      |  |
| Programming pulse width | t <sub>wep</sub>  | 70  |     | ns   |      |  |
| OE output delay time    | t <sub>oe</sub>   |     | 150 | ns   |      |  |
| Disable delay time      | t <sub>df</sub>   |     | 100 | ns   |      |  |
| CE output delay time    | t <sub>ce</sub>   |     | 150 | ns   |      |  |
| WE rise time            | t <sub>r</sub>    |     | 30  | ns   |      |  |
| WE fall time            | t,                |     | 30  | ns   |      |  |

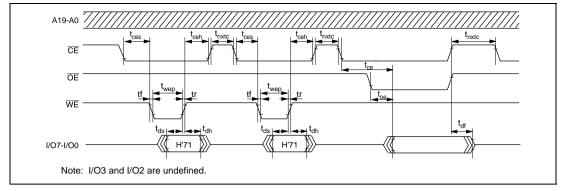



Figure 22.38 Timing in Status Read Mode

**Table 22.28 Stipulated Transition Times to Command Wait State** 

| Code                                             | Symbol            | Min | Max | Unit | Note |
|--------------------------------------------------|-------------------|-----|-----|------|------|
| Standby release (oscillation stabilization time) | t <sub>osc1</sub> | 30  |     | ms   |      |
| Programmer mode setup time                       | t <sub>bmv</sub>  | 10  |     | ms   |      |
| V <sub>cc</sub> hold time                        | t <sub>dwn</sub>  | 0   |     | ms   |      |

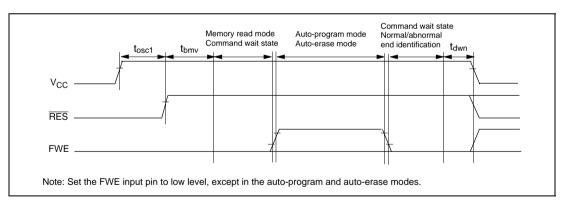



Figure 22.39 Oscillation Stabilization Time, Programmer Mode Setup Time, and Power-Down Sequence

### 22.10.3 Storable Area for Procedure Program and Programming Data

In the descriptions in the previous section, storable areas for the programming/erasing procedure programs and program data are assumed to be in on-chip RAM. However, the procedure programs and data can be stored in and executed from other areas (e.g. external address space) as long as the following conditions are satisfied.

- (1) The on-chip programming/erasing program is downloaded from the address set by FTDAR in on-chip RAM, therefore, this area is not available for use.
- (2) The on-chip programming/erasing program will use 128 bytes or more as a stack. Make sure this area is reserved.
- (3) Since download by setting the SCO bit to 1 will cause the MATs to be switched, it should be executed in on-chip RAM.
- (4) The flash memory is accessible until the start of programming or erasing, that is, until the result of downloading has been judged. When in a mode in which the external address space is not accessible, such as single-chip mode, the required procedure programs, interrupt vector table, interrupt processing routine, and user branch program should be transferred to on-chip RAM before programming/erasing of the flash memory starts.
- (5) The flash memory is not accessible during programming/erasing operations. Therefore, the programming/erasing program must be downloaded to on-chip RAM in advance. Areas for executing each procedure program for initiating programming/erasing, the user program at the user branch destination for programming/erasing, the interrupt vector table, and the interrupt processing routine must be located in on-chip memory other than flash memory or the external address space.
- (6) After programming/erasing, access to flash memory is inhibited until FKEY is cleared. A reset state ( $\overline{RES} = 0$ ) for more than at least 100  $\mu$ s must be taken when the LSI mode is changed to reset on completion of a programming/erasing operation. Transitions to the reset state or hardware standby mode during programming/erasing are inhibited. When the reset signal is accidentally input to the LSI, a longer period in the reset state than usual (100  $\mu$ s) is needed before the reset signal is released.
- (7) Switching of the MATs by FMATS is needed for programming/erasing of the user MAT in user boot mode. The program which switches the MATs should be executed from the on-chip RAM. For details, see section 22.8.1, Switching between User MAT and User Boot MAT. Please make sure you know which MAT is selected when switching the MATs.
- (8) When the program data storage area indicated by the FMPDR parameter in the programming processing is within the flash memory area, an error will occur. Therefore, temporarily transfer the program data to on-chip RAM to change the address set in FMPDR to an address other than flash memory.

Based on these conditions, tables 22.29 and 22.30 show the areas in which the program data can be stored and executed according to the operation type and mode.

Table 22.29 Executable MAT

#### **Initiated Mode**

| Operation   | User Program Mode | User Boot Mode* |
|-------------|-------------------|-----------------|
| Programming | Table 22.30 (1)   | Table 22.30 (3) |
| Erasing     | Table 22.30 (2)   | Table 22.30 (4) |

Note: \* Programming/Erasing is possible to user MATs.

Table 22.30 (1) Usable Area for Programming in User Program Mode

|                       |                                            | Storable /Executable Area |             |                                             | Selected MAT |                                       |  |
|-----------------------|--------------------------------------------|---------------------------|-------------|---------------------------------------------|--------------|---------------------------------------|--|
|                       | ltem                                       | On-Chip<br>RAM            | User<br>MAT | External Space (Expanded Mode with MD0 = 0) | User<br>MAT  | Embedded<br>Program<br>Storage<br>MAT |  |
|                       | Program data storage area                  | 0                         | X*          | 0                                           | _            | _                                     |  |
|                       | Selecting on-chip program to be downloaded | 0                         | 0           | 0                                           | 0            |                                       |  |
|                       | Writing H'A5 to key register               | 0                         | 0           | 0                                           | 0            |                                       |  |
|                       | Writing 1 to SCO in FCCS (download)        | 0                         | Х           | Х                                           |              | 0                                     |  |
|                       | Key register clearing                      | 0                         | 0           | 0                                           | 0            |                                       |  |
| Due                   | Judging download result                    | 0                         | 0           | 0                                           | 0            |                                       |  |
| Pro-<br>gram-<br>ming | Download error processing                  | 0                         | 0           | 0                                           | 0            |                                       |  |
| proce-<br>dure        | Setting initialization parameters          | 0                         | 0           | 0                                           | 0            |                                       |  |
|                       | Initialization                             | 0                         | Χ           | Х                                           | 0            | _                                     |  |
|                       | Judging initialization result              | 0                         | 0           | 0                                           | 0            |                                       |  |
|                       | Initialization error processing            | 0                         | 0           | 0                                           | 0            |                                       |  |
|                       | Interrupt processing routine               | 0                         | Х           | 0                                           | 0            |                                       |  |
|                       | Writing H'5A to key register               | 0                         | 0           | 0                                           | 0            |                                       |  |
|                       | Setting programming parameters             | 0                         | Х           | 0                                           | 0            |                                       |  |
|                       | Programming                                | 0                         | Χ           | Х                                           | 0            |                                       |  |
|                       | Judging programming result                 | 0                         | Х           | 0                                           | 0            |                                       |  |
|                       | Programming error processing               | 0                         | Х           | 0                                           | 0            |                                       |  |
|                       | Key register clearing                      | 0                         | X           | 0                                           | 0            |                                       |  |
|                       |                                            |                           | _           |                                             |              |                                       |  |

Note: \* If the data has been transferred to on-chip RAM in advance, this area can be used.

Table 22.30 (2) Usable Area for Erasure in User Program Mode

|                |                                            | Stora          | ble /Execu  | table Area                                  | Selected MAT |                                       |  |
|----------------|--------------------------------------------|----------------|-------------|---------------------------------------------|--------------|---------------------------------------|--|
|                | ltem                                       | On-Chip<br>RAM | User<br>MAT | External Space (Expanded Mode with MD0 = 0) | User<br>MAT  | Embedded<br>Program<br>Storage<br>MAT |  |
|                | Selecting on-chip program to be downloaded | 0              | 0           | 0                                           | 0            |                                       |  |
|                | Writing H'A5 to key register               | 0              | 0           | 0                                           | 0            |                                       |  |
|                | Writing 1 to SCO in FCCS (download)        | 0              | Х           | Х                                           |              | 0                                     |  |
| ,              | Key register clearing                      | 0              | 0           | 0                                           | 0            |                                       |  |
|                | Judging download result                    | 0              | 0           | 0                                           | 0            |                                       |  |
| ▼<br>Erasing   | Download error processing                  | 0              | 0           | 0                                           | 0            |                                       |  |
| proce-<br>dure | Setting initialization parameters          | 0              | 0           | 0                                           | 0            |                                       |  |
| •              | Initialization                             | 0              | Х           | Х                                           | 0            |                                       |  |
|                | Judging initialization result              | 0              | 0           | 0                                           | 0            |                                       |  |
|                | Initialization error processing            | 0              | 0           | 0                                           | 0            |                                       |  |
| ·              | Interrupt processing routine               | 0              | Х           | 0                                           | 0            |                                       |  |
|                | Writing H'5A to key register               | 0              | 0           | 0                                           | 0            |                                       |  |
| •              | Setting erasure parameters                 | 0              | Х           | 0                                           | 0            |                                       |  |
| •              | Erasure                                    | 0              | Х           | Х                                           | 0            |                                       |  |
|                | Judging erasure result                     | 0              | Х           | 0                                           | 0            |                                       |  |
|                | Erasing error processing                   | 0              | Х           | 0                                           | 0            |                                       |  |
|                | Key register clearing                      | 0              | Х           | 0                                           | 0            |                                       |  |

Table 22.30 (3) Usable Area for Programming in User Boot Mode

|                                            | Stor               | Storable/Executable Area |                                             |             | Selected MAT        |                                        |  |
|--------------------------------------------|--------------------|--------------------------|---------------------------------------------|-------------|---------------------|----------------------------------------|--|
| ltem                                       | On-<br>Chip<br>RAM | User<br>MAT              | External Space (Expanded Mode with MD0 = 0) | User<br>MAT | User<br>Boot<br>Mat | Embedded<br>Program<br>Storage<br>Area |  |
| Program data storage area                  | 0                  | X* <sup>1</sup>          | 0                                           | _           | _                   | _                                      |  |
| Selecting on-chip program to be downloaded | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Writing H'A5 to key register               | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Writing 1 to SCO in FCCS (download)        | 0                  | Х                        | Х                                           |             |                     | 0                                      |  |
| Key register clearing                      | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Judging download result                    | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Download error processing                  | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Setting initialization parameters          | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Initialization                             | 0                  | Χ                        | Х                                           |             | 0                   |                                        |  |
| Judging initialization result              | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Initialization error processing            | 0                  | 0                        | 0                                           |             | 0                   |                                        |  |
| Interrupt processing routine               | 0                  | Х                        | 0                                           |             | 0                   |                                        |  |
| Switching MATs by FMATS                    | 0                  | Х                        | Х                                           | 0           |                     |                                        |  |
| Writing H'5A to Key<br>Register            | 0                  | Х                        | 0                                           | 0           |                     |                                        |  |

Programming procedure

|                  |                                | Stora              | able/Exe        | cutable Area                                | Selected MAT |                     |                                        |  |
|------------------|--------------------------------|--------------------|-----------------|---------------------------------------------|--------------|---------------------|----------------------------------------|--|
|                  | ltem                           | On-<br>Chip<br>RAM | User<br>MAT     | External Space (Expanded Mode with MD0 = 0) | User<br>MAT  | User<br>Boot<br>Mat | Embedded<br>Program<br>Storage<br>Area |  |
|                  | Setting programming parameters | 0                  | Χ               | 0                                           | 0            |                     |                                        |  |
|                  | Programming                    | 0                  | Х               | X                                           | 0            |                     | _                                      |  |
| <b>♥</b><br>Pro- | Judging programming result     | 0                  | Χ               | 0                                           | 0            |                     |                                        |  |
| gram-<br>ming    | Programming error processing   | 0                  | X* <sup>2</sup> | 0                                           | 0            |                     |                                        |  |
| proce-<br>dure   | Key register clearing          | 0                  | Χ               | 0                                           | 0            |                     |                                        |  |
|                  | Switching MATs by FMATS        | 0                  | Х               | Х                                           |              | 0                   |                                        |  |

Notes \*1 If the data has been transferred to on-chip RAM in advance, this area can be used.

<sup>\*2</sup> If the MATs have been switched by FMATS in on-chip RAM, this MAT can be used.

Table 22.30 (4) Usable Area for Erasure in User Boot Mode

|                |                                            | Stora              | able/Exe    | cutable Area                                | Selected MAT |                     |                                        |
|----------------|--------------------------------------------|--------------------|-------------|---------------------------------------------|--------------|---------------------|----------------------------------------|
|                | ltem                                       | On-<br>Chip<br>RAM | User<br>MAT | External Space (Expanded Mode with MD0 = 0) | User<br>MAT  | User<br>Boot<br>Mat | Embedded<br>Program<br>Storage<br>Area |
|                | Selecting on-chip program to be downloaded | 0                  | 0           | 0                                           |              | 0                   |                                        |
|                | Writing H'A5 to key register               | 0                  | 0           | 0                                           |              | 0                   |                                        |
|                | Writing 1 to SCO in FCCS (download)        | 0                  | Х           | Х                                           |              |                     | 0                                      |
|                | Key register clearing                      | 0                  | 0           | 0                                           |              | 0                   |                                        |
|                | Judging download result                    | 0                  | 0           | 0                                           |              | 0                   |                                        |
| <b>V</b>       | Download error processing                  | 0                  | 0           | 0                                           |              | 0                   |                                        |
| Erasing proce- | Setting initialization parameters          | 0                  | 0           | 0                                           |              | 0                   |                                        |
| duio           | Initialization                             | 0                  | Χ           | Х                                           |              | 0                   |                                        |
|                | Judging initialization result              | 0                  | 0           | 0                                           |              | 0                   |                                        |
|                | Initialization error processing            | 0                  | 0           | 0                                           |              | 0                   |                                        |
|                | Interrupt processing routine               | 0                  | Х           | 0                                           |              | 0                   |                                        |
| •              | Switching MATs by FMATS                    | 0                  | Х           | Х                                           |              | 0                   |                                        |
| •              | Writing H'5A to key register               | 0                  | Х           | 0                                           | 0            |                     |                                        |
|                | Setting erasure parameters                 | 0                  | Х           | 0                                           | 0            |                     |                                        |

|              |                          | Stor               | able/Exe    | cutable Area                                | Selected MAT |                     |                                        |
|--------------|--------------------------|--------------------|-------------|---------------------------------------------|--------------|---------------------|----------------------------------------|
|              | ltem                     | On-<br>Chip<br>RAM | User<br>MAT | External Space (Expanded Mode with MD0 = 0) | User<br>MAT  | User<br>Boot<br>Mat | Embedded<br>Program<br>Storage<br>Area |
| T            | Erasure                  | 0                  | Χ           | X                                           | 0            |                     |                                        |
|              | Judging erasure result   | 0                  | Х           | 0                                           | 0            |                     |                                        |
| ▼<br>Erasing | Erasing error processing | 0                  | X*          | 0                                           | 0            |                     |                                        |
| proce-       | Key register clearing    | 0                  | Х           | 0                                           | 0            |                     |                                        |
| dure         | Switching MATs by FMATS  | 0                  | Х           | Х                                           |              | 0                   |                                        |

Note: \* If the MATs have been switched by FMATS in on-chip RAM, this MAT can be used.

## Section 23 RAM

#### 23.1 Overview

The SH7055SF has 32 kbytes of on-chip RAM. The on-chip RAM is linked to the CPU, direct memory access controller (DMAC), and advanced user debugger (AUD) with a 32-bit data bus (figure 23.1).

The CPU, DMAC, and AUD can access data in the on-chip RAM in 8, 16, or 32 bit widths. On-chip RAM data can always be accessed in one state, making the RAM ideal for use as a program area, stack area, or data area, which require high-speed access. The contents of the on-chip RAM are held in both the sleep and software standby modes. When the RAME bit (see below) is cleared to 0, the on-chip RAM contents are also held in hardware standby mode.

The on-chip RAM is allocated to addresses H'FFFF6000 to H'FFFFDFFF.

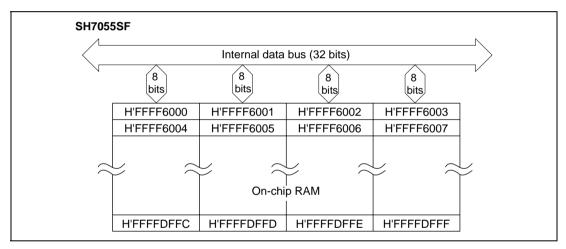



Figure 23.1 Block Diagram of RAM

## 23.2 Operation

The on-chip RAM is controlled by means of the system control register (SYSCR).

When the RAME bit in SYSCR is set to 1, the on-chip RAM is enabled. Accesses to addresses H'FFFF6000–H'FFFFDFFF are then directed to the on-chip RAM.

When the RAME bit in SYSCR is cleared to 0, the on-chip RAM is not accessed. A read will return an undefined value, and a write is invalid. If a transition is made to hardware standby mode after the RAME bit in SYSCR is cleared to 0, the contents of the on-chip RAM are held.

For details of SYSCR, see 24.2.2, System Control Register (SYSCR), in section 24, Power-Down State.

## Section 24 Power-Down State

#### 24.1 Overview

Three modes are provided as power-save modes, namely, the hardware standby, software standby and sleep modes. Also, a module stop function is available to stop some modules. These standby modes can be selected depending on applications to reduce the power consumption of the SH7055SF.

#### 24.1.1 Power-Down States

The power-down state is effected by the following modes:

## 1. Hardware standby mode

A transition to hardware standby mode is made according to the input level of the  $\overline{RES}$  and  $\overline{HSTBY}$  pins.

In hardware standby mode, all SH7055SF functions are halted.

This state is exited by means of a power-on reset.

#### 2. Software standby mode

A transition to software standby mode is made by means of software (a CPU instruction).

In software standby mode, all SH7055SF functions are halted.

This state is exited by means of a power-on reset or an NMI interrupt.

#### 3. Sleep mode

A transition to sleep mode is made by means of a CPU instruction.

In software standby mode, basically only the CPU is halted, and all on-chip peripheral modules operate.

This state is exited by means of a power-on reset, a manual reset, interrupt, or DMA address error.

## 4. Module standby mode

Operation of the on-chip peripheral modules\* which can be placed in a standby mode can be stopped by stopping the clock supply. Clock supply to the individual modules can be controlled by setting bits in the module standby control register (MSTCR).

Note: \* AUD, H-UDI, FPU, and UBC

Table 24.1 shows the transition conditions for entering the modes from the program execution state, as well as the CPU and peripheral function status in each mode and the procedures for canceling each mode.

**Table 24.1 Power-Down State Conditions** 

|                  |                                                                              | State  |        |                  |                                  |        |                                     |                                                                                                                        |
|------------------|------------------------------------------------------------------------------|--------|--------|------------------|----------------------------------|--------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Mode             | Entering<br>Procedure                                                        | Clock  | CPU    | CPU<br>Registers | On-Chip<br>Peripheral<br>Modules | RAM    | Pins                                | Canceling<br>Procedure                                                                                                 |
| Hardware standby | Low-level<br>input at<br>HSTBY pin                                           | Halted | Halted | Halted           | Undefined                        | Held*2 | Initialized                         | High-level input<br>at HSTBY pin,<br>executing<br>power-on reset                                                       |
| Software standby | Execute<br>SLEEP<br>instruction<br>with SSBY<br>bit set to 1 in<br>SBYCR     | Halted | Halted | Held             | Halted*1                         | Held   | Held or<br>high<br>imped-<br>ance*3 | <ul><li>NMI interrupt</li><li>Power-on reset</li></ul>                                                                 |
| Sleep            | Execute<br>SLEEP<br>instruction<br>with SSBY<br>bit cleared to<br>0 in SBYCR | Runs   | Halted | Held             | Run                              | Held   | Held                                | <ul> <li>Interrupt</li> <li>DMA<br/>address<br/>error</li> <li>Power-on<br/>reset</li> <li>Manual<br/>reset</li> </ul> |

Notes: SBYCR: Standby control register

SSBY: Software standby bit

- \*1 Some bits within on-chip peripheral module registers are initialized in software standby mode, and some are not. See table A.2, Register States in Reset and Power-Down States. Also refer to the register descriptions for each peripheral module.
- \*2 Clear the RAME bit of the SYSCR to 0 in advance when changing the state from the program execution state to the hardware standby state.
- \*3 The state of the I/O ports in standby mode is set by the port high impedance bit (HIZ) in SBYCR. See section 24.2.1, Standby Control Register (SBYCR). For details of other pin states, refer to appendix B, Pin States.

#### 24.1.2 Pin Configuration

Pins related to power-down modes are shown in table 24.2.

**Table 24.2** Pin Configuration

| Pin Name                   | Abbreviation | I/O   | Function                                                   |
|----------------------------|--------------|-------|------------------------------------------------------------|
| Hardware standby input pin | HSTBY        | Input | Input level determines transition to hardware standby mode |
| Power-on reset input pin   | RES          | Input | Power-on reset signal input pin                            |

## 24.1.3 Related Registers

Table 24.3 shows the registers used for power-down state control.

**Table 24.3 Related Registers** 

|                                 |              | Initial _ |        |         | Access             |                    |
|---------------------------------|--------------|-----------|--------|---------|--------------------|--------------------|
| Name                            | Abbreviation | R/W       | Value  | Write   | Read               | Size               |
| Standby control register        | SBYCR*1      | R/W       | H'1F   |         | H'FFFFEC14         | 8                  |
| System control register         | SYSCR*1      | R/W       | H'01*4 |         | H'FFFFF708         | 8                  |
| Module standby control register | MSTCR*1      | R/W       | H'01   | H'FFFFI | F70A*2 H'FFFFF70B* | <sup>3</sup> 8, 16 |

Notes: \*1 SBYCR is accessed in three cycles, SYSCR and MSTCR in four or five cycles.

- \*2 Write data in word units. Data cannot be written in byte or longword units.
- \*3 Read data in byte units. Values cannot be read correctly if data is read in word or longword units.
- \*4 The initial value of bit 7 in SYSCR is not defined.

## 24.2 Register Descriptions

#### 24.2.1 Standby Control Register (SBYCR)

The standby control register (SBYCR) is an 8-bit readable/writable register that sets the transition to standby mode, and the port state in standby mode. SBYCR is initialized to H'1F by a power-on reset.

| Bit:           | 7    | 6   | 5 | 4 | 3 | 2 | 1 | 0 |
|----------------|------|-----|---|---|---|---|---|---|
|                | SSBY | HIZ | _ | _ | _ | _ | _ | _ |
| Initial value: | 0    | 0   | 0 | 1 | 1 | 1 | 1 | 1 |
| R/W:           | R/W  | R/W | R | R | R | R | R | R |

Bit 7—Software Standby (SSBY): Specifies transition to software standby mode. The SSBY bit cannot be set to 1 while the watchdog timer is running (when the timer enable bit (TME) in the WDT timer control/status register (TCSR) is set to 1). To enter software standby mode, always halt the WDT by clearing the TME bit to 0, then set the SSBY bit.

| Bit 7: SSBY | Description                                                                   |
|-------------|-------------------------------------------------------------------------------|
| 0           | Executing SLEEP instruction puts the SH7055SF into sleep mode (Initial value) |
| 1           | Executing SLEEP instruction puts the SH7055SF into standby mode               |

• Bit 6—Port High Impedance (HIZ): In software standby mode, this bit selects whether to set I/O port pins to high impedance or hold the pin state. The HIZ bit cannot be set to 1 when the TME bit of the WDT timer control/status register (TCSR) is set to 1. When making the I/O port pin state high impedance, always clear the TME bit to 0 before setting the HIZ bit.

| Bit 6: HIZ | Description                                        |                 |
|------------|----------------------------------------------------|-----------------|
| 0          | Pin states held in software standby mode           | (Initial value) |
| 1          | Pins go to high impedance in software standby mode |                 |

- Bit 5—Reserved: This bit always reads 0. The write value should always be 0.
- Bits 4 to 0—Reserved: These bits always read 1. The write value should always be 1.

#### 24.2.2 System Control Register (SYSCR)

| Bit:           | 7 | 6 | 5 | 4 | 3 | 2 | 1       | 0    |
|----------------|---|---|---|---|---|---|---------|------|
|                | _ | _ | _ | _ | _ | _ | AUDSRST | RAME |
| Initial value: | 0 | 0 | 0 | 0 | 0 | 0 | 0       | 1    |
| R/W:           | R | R | R | R | R | R | R/W     | R/W  |

The system control register (SYSCR) is an 8-bit readable/writable register that performs AUD software reset control and enables or disables access to the on-chip RAM.

SYSCR is initialized to H'01 by a power-on reset.

- Bit 7—Reserved: The read value is not defined. The write value should always be 0.
- Bits 6 to 2—Reserved: These bits always read 0. The write value should always be 0.
- Bit1— AUD Software Reset (AUDSRST): This bit controls AUD reset using software. Setting AUDSRST bit to 1 places, the AUD module in the power-on reset state.

#### Bit 1: AUDSRST Description

| 0 | AUD reset state cleared |                 |
|---|-------------------------|-----------------|
| 1 | AUD reset state entered | (Initial value) |

• Bit 0—RAME Enable (RAME): Selects enabling or disabling of the on-chip RAM. When RAME is set to 1, on-chip RAM is enabled. When RAME is cleared to 0, on-chip RAM cannot be accessed. In this case, a read or instruction fetch from on-chip RAM will return an undefined value, and a write to on-chip RAM will be ignored. The initial value of RAME is 1. When on-chip RAM is disabled by clearing RAME to 0, do not place an instruction that attempts to access on-chip RAM immediately after the SYSCR write instruction, as normal access cannot be guaranteed in this case.

When on-chip RAM is enabled by setting RAME to 1, place an SYSCR read instruction immediately after the SYSCR write instruction. Normal access cannot be guaranteed if an on-chip RAM access instruction is placed immediately after the SYSCR write instruction.

| Bit 0: RAME D | escription |
|---------------|------------|
|---------------|------------|

\_\_\_\_\_

| 0 | On-chip RAM disabled |                 |
|---|----------------------|-----------------|
| 1 | On-chip RAM enabled  | (Initial value) |

### 24.2.3 Module Standby Control Register (MSTCR)

| Bit:           | 7 | 6 | 5 | 4 | 3      | 2      | 1      | 0      |
|----------------|---|---|---|---|--------|--------|--------|--------|
|                | _ | _ | _ | _ | MSTOP3 | MSTOP2 | MSTOP1 | MSTOP0 |
| Initial value: | 0 | 0 | 0 | 0 | 0      | 0      | 0      | 1      |
| R/W:           | R | R | R | R | R/W    | R/W    | R/W    | R/W    |

The module standby control register (MSTCR) is an 8-bit readable/writable register that controls the standby state of the AUD, H-UDI, FPU, and UBC on-chip modules.

MSTCR is initialized to H'01 by a power-on reset.

Note: The method of writing to MSTCR is different from that of ordinary registers to prevent inadvertent rewriting. See section 24.2.4, Notes on Register Access, for more information.

- Bits 7 to 4—Reserved: These bits always read 0. The write value should always be 0.
- Bit 3—Module Stop 3 (MSTOP3): Specifies halting of the clock supply to the AUD on-chip
  peripheral module. Setting the MSTOP3 bit to 1 stops the clock supply to the AUD. To cancel
  halting of the clock supply to the AUD, first set the AUD software reset bit (AUDSRST) in the
  system control register (SYSCR) to the AUD reset state value. Use of the AUD will then be
  enabled by clearing the AUD reset.

## Bit 3: MSTOP3 Description

| 0 | AUD operates                | (Initial value) |
|---|-----------------------------|-----------------|
| 1 | Clock supply to AUD stopped |                 |

• Bit 2—Module Stop 2 (MSTOP2): Specifies halting of the clock supply to the H-UDI on-chip peripheral module. Setting the MSTOP2 bit to 1 stops the clock supply to the H-UDI.

Bit 2: MSTOP2 Description

| 0 | H-UDI operates                |                 |
|---|-------------------------------|-----------------|
| 1 | Clock supply to H-UDI stopped | (Initial value) |

• Bit 1—Module Stop 1 (MSTOP1): Specifies halting of the clock supply to the FPU on-chip peripheral module. Setting the MSTOP1 bit to 1 stops the clock supply to the FPU.

The MSTOP1 bit cannot be cleared by writing 0 after it has been set to 1. In other words, once the MSTOP1 bit has been set to 1 and the clock supply to the FPU has been stopped, the clock supply to the FPU cannot be resumed by clearing the MSTOP1 bit to 0.

An SH7055SF power-on reset is necessary to restart the FPU clock supply after it has been stopped.

| Bit 1: MSTOP1 | Description |
|---------------|-------------|
|---------------|-------------|

| 0 | FPU operates                | (Initial value) |
|---|-----------------------------|-----------------|
| 1 | Clock supply to FPU stopped | _               |

• Bit 0—Module Stop 0 (MSTOP0): Specifies halting of the clock supply stop to the UBC onchip peripheral module.

Clearing the MSTOP0 bit to 0 starts the clock supply to the UBC.

Stopping clock supply to the UBC will reset the internal state of the UBC including its registers.

| Bit 0: | MSTOP0 | Description |
|--------|--------|-------------|
|        |        |             |

| 0 | UBC operates                | (Initial value) |
|---|-----------------------------|-----------------|
| 1 | Clock supply to UBC stopped | _               |

## 24.2.4 Notes on Register Access

The method of writing to the module standby control register (MSTCR) is different from that of ordinary registers to prevent inadvertent rewriting.

Be certain to use a word transfer instruction when writing data to MSTCR. Data cannot be written by a byte transfer instruction. As shown in figure 24.1, set the upper byte to H'3C and transfer data using the lower byte as write data.

Data can be read by the same method as for ordinary registers.

MSTCR is allocated to address H'FFFFF70A. Always use a byte transfer instruction to read data.

| When writing t | o MSTCR |      |   |   |            |   |
|----------------|---------|------|---|---|------------|---|
|                | 15      |      | 8 | 7 |            | 0 |
| Address: H'F   | FFF70A  | H'3C |   |   | Write data |   |

Figure 24.1 Writing to MSTCR

## 24.3 Hardware Standby Mode

#### 24.3.1 Transition to Hardware Standby Mode

The chip enters hardware standby mode when the  $\overline{\text{HSTBY}}$  and  $\overline{\text{RES}}$  pins go low. Set the pins following to mode setup pin shown in section 4, Operating modes. Operation with other pin set up are not guaranteed.

Hardware standby mode reduces power consumption drastically by halting all SH7055SF functions. As the transition to hardware standby mode is made by means of external pin input, the transition is made asynchronously, regardless of the current state of the SH7055SF, and therefore the chip state prior to the transition is not preserved. However, on-chip RAM data is retained as long as the specified voltage is supplied. To retain on-chip RAM data, clear the RAM enable bit (RAME) to 0 in the system control register (SYSCR) before driving the  $\overline{\text{HSTBY}}$  pin low. See appendix B, Pin States, for the pin states in hardware standby mode.

#### 24.3.2 Canceling Hardware Standby Mode

Hardware standby mode is canceled by means of the  $\overline{\text{HSTBY}}$  pin and  $\overline{\text{RES}}$  pin. When  $\overline{\text{HSTBY}}$  is driven high while  $\overline{\text{RES}}$  is low, the clock oscillator starts running. The  $\overline{\text{RES}}$  pin should be held low long enough for clock oscillation to stabilize. When  $\overline{\text{RES}}$  is driven high, power-on reset exception processing is started and a transition is made to the program execution state.

## 24.3.3 Hardware Standby Mode Timing

Figure 24.2 shows sample pin timings for hardware standby mode. A transition to hardware standby mode is made by driving the  $\overline{\text{HSTBY}}$  pin low after driving the  $\overline{\text{RES}}$  pin low. Hardware standby mode is canceled by driving  $\overline{\text{HSTBY}}$  high, waiting for clock oscillation to stabilize, then switching  $\overline{\text{RES}}$  from low to high.

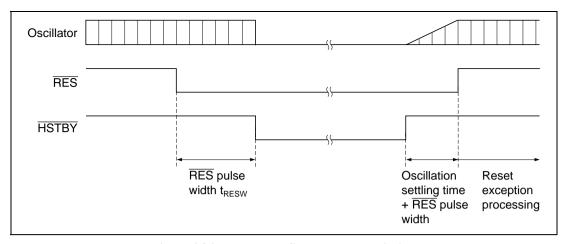



Figure 24.2 Hardware Standby Mode Timing

## 24.4 Software Standby Mode

#### 24.4.1 Transition to Software Standby Mode

To enter software standby mode, set the software standby bit (SSBY) to 1 in SBYCR, then execute the SLEEP instruction. The SH7055SF switches from the program execution state to software standby mode. In software standby mode, power consumption is greatly reduced by halting not only the CPU, but the clock and on-chip peripheral modules as well. CPU register contents and on-chip RAM data are held as long as the prescribed voltages are applied (when the RAME bit in SYSCR is 0). The register contents of some on-chip peripheral modules are initialized, but some are not. For details on the register states, refer to appendix A.2, Register States in Reset and Power-Down States. The I/O port state can be selected as held or high impedance by the port high impedance bit (HIZ) in SBYCR. For other pin states, refer to appendix B, Pin States.

#### 24.4.2 Canceling Software Standby Mode

Software standby mode is canceled by an NMI interrupt or a power-on reset.

**Cancellation by NMI:** Clock oscillation starts when a rising edge or falling edge (selected by the NMI edge select bit (NMIE) in the interrupt control register (ICR) of the INTC) is detected in the NMI signal. This clock is supplied only to the oscillation settling counter which counts the oscillation stablizing time.

The oscillation settling counter overflows when it counts 2<sup>16</sup>=65536 with the input clock frequency. Since the frequency of this counting clock is unstable until the PLL multiply curcuit is locked in the absolute time is not fixed, and the CK pin signal output is in the high level for the meantime.

Counting the oscillation settling time by the oscillation settling counter is used to indicate that the clock has stabilized, so the clock is supplied to the entire chip, software standby mode is canceled, and NMI exception processing begins.

When canceling standby mode with an NMI pin set for falling edge, be sure that the NMI pin level upon entering software standby (when the clock is halted) is high, and that the NMI pin level upon returning from software standby (when the clock starts after oscillation stabilization) is low. When canceling software standby mode with an NMI pin set for rising edge, be sure that the NMI pin level upon entering software standby (when the clock is halted) is low, and that the NMI pin level upon returning from software standby (when the clock starts after oscillation stabilization) is high.

**Cancellation by Power-On Reset:** A power-on reset of the SH7055SF caused by driving the  $\overline{RES}$  pin low cancels software standby mode.

#### 24.4.3 Software Standby Mode Application Example

This example describes a transition to software standby mode on the falling edge of the NMI signal, and cancellation on the rising edge of the NMI signal. The timing is shown in figure 24.3.

When the NMI pin is changed from high to low level while the NMI edge select bit (NMIE) in ICR is set to 0 (falling edge detection), the NMI interrupt is accepted. When the NMIE bit is set to 1 (rising edge detection) by the NMI exception service routine, the software standby bit (SSBY) in SBYCR is set to 1, and a SLEEP instruction is executed, software standby mode is entered. Thereafter, software standby mode is canceled when the NMI pin is changed from low to high level.

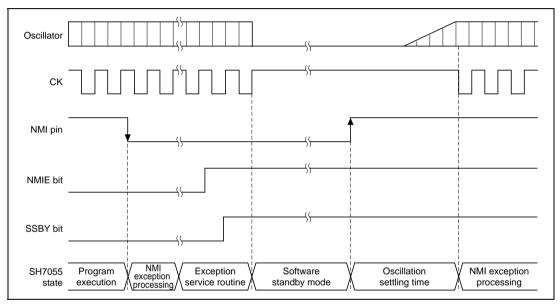



Figure 24.3 Software Standby Mode NMI Timing (Application Example)

## 24.5 Sleep Mode

#### 24.5.1 Transition to Sleep Mode

Executing the SLEEP instruction after the software standby bit (SSBY) in SBYCR has been cleared to 0 causes a transition from the program execution state to sleep mode. Although the CPU halts immediately after executing the SLEEP instruction, the contents of its internal registers remain unchanged. The on-chip peripheral modules continue to run during sleep mode.

## 24.5.2 Canceling Sleep Mode

Cancellation by Interrupt: When an interrupt occurs, sleep mode is canceled and interrupt exception processing is executed. The sleep mode is not canceled if the interrupt cannot be accepted because its priority level is equal to or less than the mask level set in the CPU's status register (SR) or if an interrupt by an on-chip peripheral module is disabled at the peripheral module.

**Cancellation by DMA Address Error:** If a DMA address error occurs, sleep mode is canceled and DMA address error exception processing is executed.

**Cancellation by Manual Reset:** When an internal manual reset is triggered by the WDT and the CPU acquires the bus during the internal manual reset period, the state of the SH7055SF changes to the manual reset state and sleep mode will be released.

Cancellation by Power-On Reset: A power-on reset of the SH7055SF resulting from driving the RES pin low, or caused by the WDT, cancels sleep mode.

## Section 25 Reliability

## 25.1 Reliability

A failure rate curve represents an index of the reliability of a semiconductor device. The failure rate curve traces a bathtub shape over the course of time, as is shown in figure 25.1. The curve is divided into three periods according to the type of failure phenomena: an initial failure period, a random failure period (functional lifetime), and a wear-out failure period. Initial failures, which occur during the initial failure period, are caused by contamination with foreign matter and localized chemical pollution; these can be eliminated by screening. Wear-out failures in the final period are caused by the deterioration of materials that make up semiconductor devices during long periods of usage. Random failures, which occur during the random failure period, are thought to occur in cases where a device with a minor failure is not removed by screening, and so is shipped, and then fails during the customer's production process or in the field, and in cases where a failure which should normally not have occurred until the wear-out period occurs earlier because of variations in production. Therefore, the reliability of semiconductor device is secured by appropriate screening to reduce the presence of initial failures and high reliability design to prevent the occurrence of wear-out failures. The reliability of a product is confirmed by producing a large quantity of prototypes for checking of the initial failure rate and executing accelerated life testing to identify the wear-out failure time in a realistic environment.

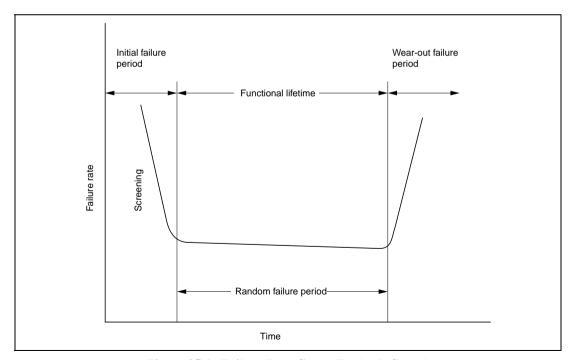



Figure 25.1 Failure Rate Curve (Bathtub Curve)

The reliability of products is estimated on the assumption that products developed for the automotive sector are used in a tougher environment than products for the consumer and industrial sectors. The representative failure phenomena of semiconductor devices, such as the dielectric breakdown of oxide films and electromigration in wiring, constitute wear-out failures. The stress factors in such failures are the voltage, current, and temperature applied to devices while they are in use. Since the temperature range for the guaranteed operation of products for use in automobiles is conventionally -40°C to 85°C, their reliability in terms of the above failure phenomena has to be confirmed by accelerated life testing at all temperatures in this range. Operation at temperatures in excess of 85°C leads to failure within a short time, since high temperatures induce failures in semiconductor devices. Figure 25.2 shows the temperature dependence of semiconductor device lifetimes. The type of failure in this figure is a wear-out failure, i.e. the dielectric breakdown of oxide film. According to figure 25.2, the life at 125°C is 1/10 of life at 85°C, and operation at the higher temperature leads to a correspondingly higher probability of a failure in the field. Therefore, the reliability of operation at a temperature in excess of 85°C is checked on the assumption that the period of operation at the upper-limit temperature of the range for guaranteed operation is 3000 hours.

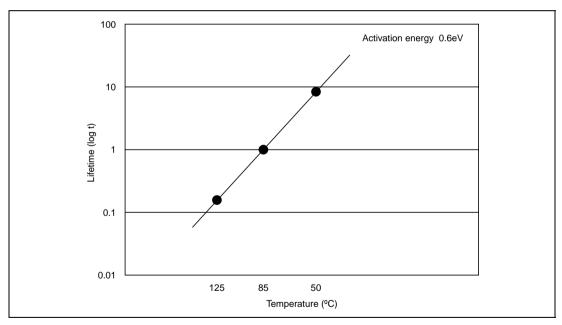



Figure 25.2 Temperature Reliability of Dielectric Breakdown of Oxide Film

# Section 26 Electrical Characteristics

# **26.1** Absolute Maximum Ratings

Table 26.1 shows the absolute maximum ratings.

**Table 26.1 Absolute Maximum Ratings** 

| Item                                                                      |                                                                       | Symbol           | Rating                                            | Unit | Remarks                                                                                                     |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|---------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------|
| Power<br>supply<br>voltage*                                               | $V_{cc}$ and $PLLV_{cc}$ pins                                         | V <sub>cc</sub>  | -0.3 to +4.3                                      | V    | The PLLCAP, EXTAL, XTAL, CK, and H-UDI pins are concerned. $(V_{cc}$ and PLLV $_{cc}$ are the same voltage) |
|                                                                           | PV <sub>cc</sub> 1 and<br>PV <sub>cc</sub> 2 pins                     | PV <sub>cc</sub> | -0.3 to +6.5                                      | V    | Except for the PLLCAP,<br>EXTAL, XTAL, CK, and<br>H-UDI pins and the analog<br>input pin                    |
| Input<br>voltage                                                          | voltage H-UDI pins                                                    |                  | $-0.3$ to $V_{cc} + 0.3$                          | V    |                                                                                                             |
|                                                                           | All pins other<br>than analog<br>input, EXTAL,<br>and H-UDI pins      | Vin              | $-0.3$ to PV <sub><math>\infty</math></sub> + 0.3 | V    | Refer to table 26.2,<br>Correspondence between<br>Power Supply Names and<br>Pins                            |
| Analog su                                                                 | pply voltage                                                          | $AV_cc$          | -0.3 to +7.0                                      | V    |                                                                                                             |
| Analog ref                                                                | erence voltage                                                        | AVref            | -0.3 to AV <sub>cc</sub> + 0.3                    | V    |                                                                                                             |
| Analog inp                                                                | out voltage                                                           | $V_{_{AN}}$      | -0.3 to AV <sub>cc</sub> + 0.3                    | V    |                                                                                                             |
| Operating temperature ** (except writing or erasing on chip flash memory) |                                                                       | Topr             | -40 to +125                                       | °C   |                                                                                                             |
| (writing or                                                               | Operating temperature<br>(writing or erasing on-chip<br>flash memory) |                  | -40 to +85                                        | °C   |                                                                                                             |
| Storage te                                                                | mperature                                                             | Tstg             | -55 to +125                                       | °C   |                                                                                                             |

# [Operating precautions]

Operating the LSI in excess of the absolute maximum ratings may result in permanent damage. The two power supply voltages of  $PV_{cc}$  of 5V and  $V_{cc}$  of 3V may be used simultaneously with the LSI. Be sure to use the LSI in compliance with the connection of power pins, combination conditions of applicable power supply voltages, voltage applicable to each pin, and conditions of output voltage, as specified in the manual. Connecting a non-specified power supply or using the LSI at an incorrect voltage may result in permanent damage of the LSI or the system that contains the LSI.

Note: \* Do not apply any power supply voltage to the  $V_{\scriptscriptstyle CL}$  pin. Connect to GND through an external capacitor.

\*\* When this LSI is used at temperatures in excess of the range from -40 to +85 °C, it can be operated within following accumulated hours.

| Temperature Range for Operation | Accumulated Time |
|---------------------------------|------------------|
| 85 to 105 °C                    | 3000 hours       |

# 26.2 DC Characteristics

Table 26.2 shows the correspondence between power supply names and pins.

Table 26.4 shows DC characteristics.

Table 26.2 Correspondence between Power Supply Names and Pins

|            | Power<br>Supply<br>Pin  |                  |            | Use           | r Pin      | Output<br>Circuit Inp | Input              | •                             |       |
|------------|-------------------------|------------------|------------|---------------|------------|-----------------------|--------------------|-------------------------------|-------|
| Pin<br>No. | Power<br>Supply<br>Name | Dedicated<br>Pin | Function 1 | Function<br>2 | Function 3 | Function<br>4         | Power              | Voltage<br>Upper<br>Limit (V) | Notes |
| 1          |                         |                  | PD8        | PULS0         |            |                       | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3        |       |
| 2          |                         |                  | PD9        | PULS1         |            |                       | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3        |       |
| 3          |                         |                  | PD10       | PULS2         |            |                       | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3        |       |
| 4          |                         |                  | PD11       | PULS3         |            |                       | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3        |       |
| 5          |                         |                  | PD12       | PULS4         |            |                       | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3        |       |
| 6          |                         |                  | PD13       | PULS6         | HTxD0      | HTxD1                 | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3        |       |
| 7          |                         |                  | PE0        | A0            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 8          |                         |                  | PE1        | A1            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 9          |                         |                  | PE2        | A2            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 10         |                         |                  | PE3        | A3            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 11         | V <sub>cc</sub>         |                  |            |               |            |                       |                    |                               |       |
| 12         |                         |                  | PE4        | A4            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 13         | V <sub>ss</sub>         |                  |            |               |            |                       |                    |                               |       |
| 14         |                         |                  | PE5        | A5            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 15         |                         |                  | PE6        | A6            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 16         |                         |                  | PE7        | A7            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 17         |                         |                  | PE8        | A8            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 18         |                         |                  | PE9        | A9            |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 19         |                         |                  | PE10       | A10           |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 20         | PV <sub>cc</sub> 1      |                  |            |               |            |                       |                    |                               |       |
| 21         |                         |                  | PE11       | A11           |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
| 22         | V <sub>ss</sub>         |                  |            |               |            |                       |                    |                               |       |
| 23         |                         |                  | PE12       | A12           |            |                       | PV <sub>cc</sub> 1 | PV <sub>cc</sub> 1+0.3        |       |
|            |                         |                  |            |               |            |                       |                    |                               |       |

 Table 26.2
 Correspondence between Power Supply Names and Pins (cont)

|            | Power<br>Supply<br>Pin  |                  |               | Use           | r Pin         | Output        | Input                   |                               |       |
|------------|-------------------------|------------------|---------------|---------------|---------------|---------------|-------------------------|-------------------------------|-------|
| Pin<br>No. | Power<br>Supply<br>Name | Dedicated<br>Pin | Function<br>1 | Function<br>2 | Function<br>3 | Function<br>4 | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes |
| 24         |                         |                  | PE13          | A13           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 25         |                         |                  | PE14          | A14           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 26         |                         |                  | PE15          | A15           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 27         |                         |                  | PF0           | A16           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 28         |                         |                  | PF1           | A17           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 29         |                         |                  | PF2           | A18           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 30         | V <sub>CL</sub>         |                  |               |               |               |               |                         |                               |       |
| 31         |                         |                  | PF3           | A19           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 32         | V <sub>ss</sub>         |                  |               |               |               |               |                         |                               |       |
| 33         |                         |                  | PF4           | A20           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 34         |                         |                  | PF5           | A21           | POD           |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 35         |                         |                  | PF6           | WRL           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 36         |                         |                  | PF7           | WRH           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 37         |                         |                  | PF8           | WAIT          |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 38         |                         |                  | PF9           | RD            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 39         | PV <sub>cc</sub> 1      |                  |               |               |               |               |                         |                               |       |
| 40         |                         |                  | PF10          | CS0           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 41         | V <sub>ss</sub>         |                  |               |               |               |               |                         |                               |       |
| 42         |                         |                  | PF11          | CS1           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 43         |                         |                  | PF12          | CS2           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 44         |                         |                  | PF13          | CS3           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 45         |                         |                  | PF14          | BACK          |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 46         |                         |                  | PF15          | BREQ          |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 47         | V <sub>ss</sub>         |                  |               |               |               |               |                         |                               |       |
| 48         |                         |                  | CK            |               |               |               | V <sub>cc</sub>         |                               |       |
| 49         | V <sub>cc</sub>         |                  |               |               |               |               |                         |                               |       |
| 50         |                         | MD2              |               |               |               |               |                         | 5.5+0.3                       |       |
| 51         |                         | EXTAL            |               |               |               |               |                         | V <sub>cc</sub> +0.3          |       |
| 52         | V <sub>cc</sub>         |                  |               |               |               |               |                         |                               |       |
| 53         |                         | XTAL             |               |               |               |               | V <sub>cc</sub>         |                               |       |

Table 26.2 Correspondence between Power Supply Names and Pins (cont)

|            | Power<br>Supply<br>Pin |                  | User Pin      |               |               |               |                         | Input                         |       |
|------------|------------------------|------------------|---------------|---------------|---------------|---------------|-------------------------|-------------------------------|-------|
| Pin<br>No. | Name                   | Dedicated<br>Pin | Function<br>1 | Function<br>2 | Function<br>3 | Function<br>4 | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes |
| 54         | $V_{ss}$               |                  |               |               |               |               |                         |                               |       |
| 55         |                        | MD1              |               |               |               |               |                         | 5.5+0.3                       |       |
| 56         |                        | FWE              |               |               |               |               |                         | 5.5+0.3                       |       |
| 57         |                        | HSTBY            |               |               |               |               |                         | 5.5+0.3                       |       |
| 58         |                        | RES              |               |               |               |               |                         | 5.5+0.3                       |       |
| 59         |                        | MD0              |               |               |               |               |                         | 5.5+0.3                       |       |
| 60         | $PLLV_cc$              |                  |               |               |               |               |                         |                               |       |
| 61         |                        | PLLCAP           |               |               |               |               |                         |                               |       |
| 62         | $PLLV_{SS}$            |                  |               |               |               |               |                         |                               |       |
| 63         |                        |                  | PH0           | D0            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 64         |                        |                  | PH1           | D1            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 65         |                        |                  | PH2           | D2            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 66         |                        |                  | PH3           | D3            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 67         |                        |                  | PH4           | D4            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 68         |                        |                  | PH5           | D5            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 69         |                        |                  | PH6           | D6            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 70         | PV <sub>cc</sub> 1     |                  |               |               |               |               |                         |                               |       |
| 71         |                        |                  | PH7           | D7            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 72         | $V_{ss}$               |                  |               |               |               |               |                         |                               |       |
| 73         |                        |                  | PH8           | D8            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 74         |                        |                  | PH9           | D9            |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 75         | $V_{cc}$               |                  |               |               |               |               |                         |                               |       |
| 76         |                        |                  | PH10          | D10           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 77         | V <sub>ss</sub>        |                  |               |               |               |               |                         |                               |       |
| 78         |                        |                  | PH11          | D11           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 79         |                        |                  | PH12          | D12           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 80         |                        |                  | PH13          | D13           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 81         |                        |                  | PH14          | D14           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 82         |                        |                  | PH15          | D15           |               |               | PV <sub>cc</sub> 1      | PV <sub>cc</sub> 1+0.3        |       |
| 83         | PV <sub>cc</sub> 1     |                  |               |               |               |               |                         |                               |       |

Table 26.2 Correspondence between Power Supply Names and Pins (cont)

|            | Power<br>Supply<br>Pin  |                  |               | Use           | r Pin         | Output<br>Circuit | Input                   |                               |       |
|------------|-------------------------|------------------|---------------|---------------|---------------|-------------------|-------------------------|-------------------------------|-------|
| Pin<br>No. | Power<br>Supply<br>Name | Dedicated<br>Pin | Function<br>1 | Function<br>2 | Function<br>3 | Function<br>4     | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes |
| 84         |                         | NMI              |               |               |               |                   |                         | 5.5+0.3                       |       |
| 85         | $V_{\rm ss}$            |                  |               |               |               |                   |                         |                               |       |
| 86         |                         |                  | AN0           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 87         |                         |                  | AN1           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 88         |                         |                  | AN2           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 89         |                         |                  | AN3           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 90         |                         |                  | AN4           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 91         |                         |                  | AN5           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 92         |                         |                  | AN6           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 93         |                         |                  | AN7           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 94         |                         |                  | AN8           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 95         |                         |                  | AN9           |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 96         |                         |                  | AN10          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 97         |                         |                  | AN11          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 98         |                         |                  | AN12          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 99         | $AV_{\mathtt{ss}}$      |                  |               |               |               |                   |                         |                               |       |
| 100        |                         | AVref            |               |               |               |                   |                         |                               |       |
| 101        | $AV_cc$                 |                  |               |               |               |                   |                         |                               |       |
| 102        |                         |                  | AN13          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 103        |                         |                  | AN14          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 104        |                         |                  | AN15          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 105        |                         |                  | AN16          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 106        |                         |                  | AN17          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 107        |                         |                  | AN18          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 108        |                         |                  | AN19          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 109        |                         |                  | AN20          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 110        |                         |                  | AN21          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 111        |                         |                  | AN22          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 112        |                         |                  | AN23          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |
| 113        |                         |                  | AN24          |               |               |                   |                         | AV <sub>cc</sub> +0.3         |       |

Table 26.2 Correspondence between Power Supply Names and Pins (cont)

|            | Power<br>Supply<br>Pin  |                  | User Pin      |               |            | Output<br>Circuit | Input                   |                               |                                  |
|------------|-------------------------|------------------|---------------|---------------|------------|-------------------|-------------------------|-------------------------------|----------------------------------|
| Pin<br>No. | Power<br>Supply<br>Name | Dedicated<br>Pin | Function<br>1 | Function<br>2 | Function 3 | Function<br>4     | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes                            |
| 114        |                         |                  | AN25          |               |            |                   |                         | AV <sub>cc</sub> +0.3         |                                  |
| 115        |                         |                  | AN26          |               |            |                   |                         | AV <sub>cc</sub> +0.3         |                                  |
| 116        |                         |                  | AN27          |               |            |                   |                         | AV <sub>cc</sub> +0.3         |                                  |
| 117        |                         |                  | AN28          |               |            |                   |                         | AV <sub>cc</sub> +0.3         |                                  |
| 118        |                         |                  | AN29          |               |            |                   |                         | AV <sub>cc</sub> +0.3         |                                  |
| 119        | $AV_cc$                 |                  |               |               |            |                   |                         |                               |                                  |
| 120        |                         | AVref            |               |               |            |                   |                         |                               |                                  |
| 121        | $AV_{ss}$               |                  |               |               |            |                   |                         |                               |                                  |
| 122        |                         |                  | AN30          |               |            |                   |                         | AV <sub>cc</sub> +0.3         |                                  |
| 123        |                         |                  | AN31          |               |            |                   |                         | AV <sub>cc</sub> +0.3         |                                  |
| 124        |                         | WDTOVF           |               |               |            |                   | PV <sub>cc</sub> 2      |                               |                                  |
| 125        |                         |                  | PA0           | TIOA          |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |
| 126        | $V_{ss}$                |                  |               |               |            |                   |                         |                               |                                  |
| 127        |                         |                  | PA1           | TI0B          |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |
| 128        | PV <sub>cc</sub> 2      |                  |               |               |            |                   |                         |                               |                                  |
| 129        |                         |                  | PA2           | TI0C          |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-                         |
| 130        |                         |                  | PA3           | TI0D          |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | −trigger input<br>_pin           |
| 131        |                         |                  | PA4           | TIO3A         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |
| 132        |                         |                  | PA5           | TIO3B         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 133        |                         |                  | PA6           | TIO3C         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |
| 134        |                         |                  | PA7           | TIO3D         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |
| 135        |                         |                  | PA8           | TIO4A         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |
| 136        |                         |                  | PA9           | TIO4B         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |
| 137        |                         |                  | PA10          | TIO4C         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | <u> </u>                         |
| 138        |                         |                  | PA11          | TIO4D         |            |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 139        | $V_{cc}$                |                  |               |               |            |                   |                         |                               |                                  |

Table 26.2 Correspondence between Power Supply Names and Pins (cont)

| 141   V <sub>ss</sub>       | Power<br>Supply<br>Pin |  |      | Use   | r Pin  |      | Output<br>Circuit  | Input                  |               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------|--|------|-------|--------|------|--------------------|------------------------|---------------|--|
| trigger inp pin           141         V <sub>ss</sub> PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           142         PA13         TIO5B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           143         PA14         TxD0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3           144         PA15         RxD0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3           145         PB0         TO6A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3           146         PB1         TO6B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3           148         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> V <sub>ss</sub> PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Supply                 |  |      |       |        |      | Supply             | Upper                  | Notes         |  |
| Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140 |                        |  | PA12 | TIO5A |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 | trigger input |  |
| 143         PA14         TxD0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           144         PA15         RxD0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           145         PB0         T06A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           146         PB1         T06B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           147         PB2         T06C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           148         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           151         PB4         T07A         T08A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         T07B         T08B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         T07C         T08C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         T07D         T08D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         T08E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         T08F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         T08G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 141 | V <sub>ss</sub>        |  |      |       |        |      |                    |                        |               |  |
| 144         PA15         RXD0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           145         PB0         TO6A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           146         PB1         TO6B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           147         PB2         TO6C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           148         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> V <sub>ss</sub> 151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 142 |                        |  | PA13 | TIO5B |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 | trigger input |  |
| 145         PB0         TO6A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           146         PB1         TO6B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           147         PB2         TO6C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           148         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> PB3         TO6D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 143 |                        |  | PA14 | TxD0  |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 146         PB1         TO6B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           147         PB2         TO6C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           148         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           149         PB3         TO6D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> V <sub>ss</sub> 151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 144 |                        |  | PA15 | RxD0  |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 147         PB2         TO6C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           148         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           149         PB3         TO6D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> V <sub>ss</sub> 151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 145 |                        |  | PB0  | TO6A  |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 148         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> 151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           162         PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146 |                        |  | PB1  | TO6B  |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 149         PB3         TO6D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           150         V <sub>ss</sub> 151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TXD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RXD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TXD4         HTXD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RXD4         HRXD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cc</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 147 |                        |  | PB2  | TO6C  |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 150         V <sub>ss</sub> 151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cc</sub> PP <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 148 | PV <sub>cc</sub> 2     |  |      |       |        |      |                    |                        |               |  |
| 151         PB4         TO7A         TO8A         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>ct</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 149 |                        |  | PB3  | TO6D  |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 152         PB5         TO7B         TO8B         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cL</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 150 | $V_{ss}$               |  |      |       |        |      |                    |                        |               |  |
| 153         PB6         TO7C         TO8C         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cL</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 151 |                        |  | PB4  | TO7A  | TO8A   |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 154         PB7         TO7D         TO8D         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           162         PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 152 |                        |  | PB5  | ТО7В  | TO8B   |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 155         PB8         TxD3         TO8E         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cL</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 153 |                        |  | PB6  | TO7C  | TO8C   |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 156         PB9         RxD3         TO8F         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cL</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 154 |                        |  | PB7  | TO7D  | TO8D   |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 157         PB10         TxD4         HTxD0         TO8G         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cL</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 155 |                        |  | PB8  | TxD3  | TO8E   |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 158         PB11         RxD4         HRxD0         TO8H         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           161         V <sub>cL</sub> PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 156 |                        |  | PB9  | RxD3  | TO8F   |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 159         PB12         TCLKA         UBCTRG         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3           161         V <sub>cL</sub> V <sub>cL</sub> PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           162         PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 157 |                        |  | PB10 | TxD4  | HTxD0  | TO8G | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 160         PB13         SCK0         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin           162         PB14         SCK1         TCLKB         TI10         PV <sub>cc</sub> 2         PV <sub>cc</sub> 2+0.3         Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 158 |                        |  | PB11 | RxD4  | HRxD0  | TO8H | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 |               |  |
| 161 V <sub>cL</sub> 162 PB14 SCK1 TCLKB TI10 PV <sub>cc</sub> 2 PV <sub>cc</sub> 2+0.3 Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 159 |                        |  | PB12 | TCLKA | UBCTRG |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 | trigger input |  |
| PB14 SCK1 TCLKB TI10 PV <sub>cc</sub> 2 PV <sub>cc</sub> 2+0.3 Schmitt-trigger inp pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 160 |                        |  | PB13 | SCK0  |        |      | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 | _             |  |
| trigger inp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 161 | V <sub>CL</sub>        |  |      |       |        |      |                    |                        |               |  |
| 163 V <sub>ss</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 162 |                        |  | PB14 | SCK1  | TCLKB  | TI10 | PV <sub>cc</sub> 2 | PV <sub>cc</sub> 2+0.3 | trigger input |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 163 | V <sub>ss</sub>        |  |      |       |        |      |                    |                        |               |  |

Table 26.2 Correspondence between Power Supply Names and Pins (cont)

|            | Power<br>Supply<br>Pin  | y                |               | Use           | r Pin         |               | Output<br>Circuit       | Input                         |                                  |  |
|------------|-------------------------|------------------|---------------|---------------|---------------|---------------|-------------------------|-------------------------------|----------------------------------|--|
| Pin<br>No. | Power<br>Supply<br>Name | Dedicated<br>Pin | Function<br>1 | Function<br>2 | Function<br>3 | Function<br>4 | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes                            |  |
| 164        |                         |                  | PB15          | PULS5         | SCK2          |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |  |
| 165        |                         |                  | PC0           | TxD1          |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 166        |                         |                  | PC1           | RxD1          |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 167        |                         |                  | PC2           | TxD2          |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 168        |                         |                  | PC3           | RxD2          |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 169        |                         |                  | PC4           | ĪRQ0          |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |  |
| 170        |                         |                  | PG0           | PULS7         | HRxD0         | HRxD1         | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 171        |                         |                  | PG1           | ĪRQ1          |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |  |
| 172        | PV <sub>cc</sub> 2      |                  |               |               |               |               |                         |                               |                                  |  |
| 173        |                         |                  | PG2           | ĪRQ2          | ADEND         |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |  |
| 174        | V <sub>ss</sub>         |                  |               |               |               |               |                         |                               |                                  |  |
| 175        |                         |                  | PG3           | IRQ3          | ADTRG0        |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-                         |  |
| 176        |                         |                  | PJ0           | TIO2A         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | ⁻trigger input<br>_pin           |  |
| 177        |                         |                  | PJ1           | TIO2B         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 178        |                         |                  | PJ2           | TIO2C         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 179        |                         |                  | PJ3           | TIO2D         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 180        |                         |                  | PJ4           | TIO2E         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |  |
| 181        |                         |                  | PJ5           | TIO2F         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |  |
| 182        |                         |                  | PJ6           | TIO2G         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | <u></u>                          |  |
| 183        |                         |                  | PJ7           | TIO2H         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 184        |                         |                  | PJ8           | TIO5C         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 185        | V <sub>ss</sub>         |                  |               |               |               |               |                         |                               |                                  |  |
| 186        |                         |                  | PJ9           | TIO5D         |               |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |  |

 Table 26.2
 Correspondence between Power Supply Names and Pins (cont)

|       | Power              |                  | User Pin      |               |               | Output<br>Circuit | Input                   |                               |                        |
|-------|--------------------|------------------|---------------|---------------|---------------|-------------------|-------------------------|-------------------------------|------------------------|
|       | Supply<br>Name     | Dedicated<br>Pin | Function<br>1 | Function<br>2 | Function<br>3 | Function<br>4     | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes                  |
| 187   | V <sub>cc</sub>    |                  |               |               |               |                   |                         |                               |                        |
| 188   |                    |                  | PJ10          | TI9A          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-               |
| 189   |                    |                  | PJ11          | TI9B          |               |                   | $PV_{cc}2$              | PV <sub>cc</sub> 2+0.3        | ⁻trigger input<br>_pin |
| 190   |                    |                  | PJ12          | TI9C          |               |                   | $PV_{cc}2$              | PV <sub>cc</sub> 2+0.3        |                        |
| 191   |                    |                  | PJ13          | TI9D          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                      |
| 192   |                    |                  | PJ14          | TI9E          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                      |
| 193   |                    |                  | PJ15          | TI9F          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                      |
| 194 I | PV <sub>cc</sub> 2 |                  |               |               |               |                   |                         |                               |                        |
| 195   |                    |                  | PK0           | TO8A          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 196   | V <sub>ss</sub>    |                  |               |               |               |                   |                         |                               |                        |
| 197   |                    |                  | PK1           | TO8B          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 198   |                    |                  | PK2           | TO8C          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 199   |                    |                  | PK3           | TO8D          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 200   |                    |                  | PK4           | TO8E          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 201   |                    |                  | PK5           | TO8F          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 202   |                    |                  | PK6           | TO8G          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 203   | V <sub>cc</sub>    |                  |               |               |               |                   |                         |                               |                        |
| 204   |                    |                  | PK7           | TO8H          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 205   | V <sub>ss</sub>    |                  |               |               |               |                   |                         |                               |                        |
| 206   |                    |                  | PK8           | TO8I          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 207   |                    |                  | PK9           | TO8J          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 208   |                    |                  | PK10          | TO8K          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 209   |                    |                  | PK11          | TO8L          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 210   |                    |                  | PK12          | TO8M          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 211   |                    |                  | PK13          | TO8N          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 212 I | PV <sub>cc</sub> 2 |                  |               |               |               |                   |                         |                               |                        |
| 213   |                    |                  | PK14          | TO8O          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |
| 214   | V <sub>ss</sub>    |                  |               |               |               |                   |                         |                               |                        |
| 215   |                    |                  | PK15          | TO8P          |               |                   | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                        |

Table 26.2 Correspondence between Power Supply Names and Pins (cont)

|            | Power<br>Supply<br>Pin      |                  |               | Use           | r Pin      |                | Output<br>Circuit       | Input                         |                                  |  |
|------------|-----------------------------|------------------|---------------|---------------|------------|----------------|-------------------------|-------------------------------|----------------------------------|--|
| Pin<br>No. | Power<br>Supply<br>Name     | Dedicated<br>Pin | Function<br>1 | Function<br>2 | Function 3 | Function<br>4  | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes                            |  |
| 216        |                             |                  | PL0           | TI10          |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-                         |  |
| 217        |                             |                  | PL1           | TIO11A        | IRQ6       |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | ⁻trigger input<br>_pin           |  |
| 218        |                             |                  | PL2           | TIO11B        | IRQ7       |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 219        |                             |                  | PL3           | TCLKB         |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |  |
| 220        |                             |                  | PL4           | ADTRG0        |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |  |
| 221        |                             |                  | PL5           | ADTRG1        |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |  |
| 222        |                             |                  | PL6           | ADEND         |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 223        |                             |                  | PL7           | SCK2          |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-                         |  |
| 224        |                             |                  | PL8           | SCK3          |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | trigger input<br>pin             |  |
| 225        | $V_{\scriptscriptstyle CL}$ |                  |               |               |            |                |                         |                               |                                  |  |
| 226        |                             |                  | PL9           | SCK4          | ĪRQ5       |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |  |
| 227        | $V_{ss}$                    |                  |               |               |            |                |                         |                               |                                  |  |
| 228        |                             |                  | PL10          | HTxD0         | HTxD1      | HTxD0<br>and 1 | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 229        |                             |                  | PL11          | HRxD0         | HRxD1      | HRxD0, 1       | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 230        |                             |                  | PL12          | ĪRQ4          |            |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |  |
| 231        |                             |                  | PL13          | IRQOUT        | IRQOUT     |                | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 232        |                             |                  | TMS           |               |            |                |                         | V <sub>cc</sub> +0.3          |                                  |  |
| 233        |                             |                  | TRST          |               |            |                |                         | V <sub>cc</sub> +0.3          |                                  |  |
| 234        |                             |                  | TDI           |               |            |                |                         | V <sub>cc</sub> +0.3          |                                  |  |
| 235        |                             |                  | TDO           |               |            |                | V <sub>cc</sub>         |                               |                                  |  |
| 236        |                             |                  | TCK           |               |            |                |                         | V <sub>cc</sub> +0.3          |                                  |  |
| 237        | V <sub>cc</sub>             |                  |               |               |            |                |                         |                               |                                  |  |
| 238        |                             |                  | AUDRST        |               |            |                |                         | PV <sub>cc</sub> 2+0.3        |                                  |  |
| 239        | $V_{\rm ss}$                |                  |               |               |            |                |                         |                               |                                  |  |

 Table 26.2
 Correspondence between Power Supply Names and Pins (cont)

|            | Power<br>Supply<br>Pin  |                  |            | Use           | r Pin      |               | Output<br>Circuit       | Input                         |                                  |
|------------|-------------------------|------------------|------------|---------------|------------|---------------|-------------------------|-------------------------------|----------------------------------|
| Pin<br>No. | Power<br>Supply<br>Name | Dedicated<br>Pin | Function 1 | Function<br>2 | Function 3 | Function<br>4 | Power<br>Supply<br>Name | Voltage<br>Upper<br>Limit (V) | Notes                            |
| 240        |                         |                  | AUDMD      |               |            |               |                         | PV <sub>cc</sub> 2+0.3        |                                  |
| 241        |                         |                  | AUDATA0    |               |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 242        |                         |                  | AUDATA1    |               |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 243        |                         |                  | AUDATA2    |               |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 244        |                         |                  | AUDATA3    |               |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 245        |                         |                  | AUDCK      |               |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 246        |                         |                  | AUDSYNC    |               |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |
| 247        | PV <sub>cc</sub> 2      |                  |            |               |            |               |                         |                               |                                  |
| 248        |                         |                  | PD0        | TIO1A         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-<br>trigger input<br>pin |
| 249        | V <sub>ss</sub>         |                  |            |               |            |               |                         |                               |                                  |
| 250        |                         |                  | PD1        | TIO1B         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | Schmitt-                         |
| 251        |                         |                  | PD2        | TIO1C         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | ⁻trigger input<br>_pin           |
| 252        |                         |                  | PD3        | TIO1D         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | - P                              |
| 253        |                         |                  | PD4        | TIO1E         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |
| 254        |                         |                  | PD5        | TIO1F         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | =                                |
| 255        |                         |                  | PD6        | TIO1G         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        | _                                |
| 256        |                         |                  | PD7        | TIO1H         |            |               | PV <sub>cc</sub> 2      | PV <sub>cc</sub> 2+0.3        |                                  |

### **Usage Notes**

Set power supply voltages during LSI operation as shown below.

$$\begin{aligned} &V_{cc} = PLLV_{cc} = 3.3 \text{ V } \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V } \pm 0.5 \text{ V}/3.3 \text{ V } \pm 0.3 \text{ V}, PV_{cc}2 = 5.0 \text{ V } \pm 0.5 \text{ V}, \\ &AV_{cc} = 5.0 \text{ V } \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V to } AV_{cc}, V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V} \end{aligned}$$

When 
$$PV_{CC}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$$
,  $V_{CC} = PV_{CC}1$ 

The  $PV_{cc}1$  power supply voltage depends on the operating mode as shown below. Operation cannot be guaranteed with other  $PV_{cc}1$  power supply voltages.

Table 26.3  $PV_{cc}1$  Voltage in Each Operating Mode

| Operating Mode No. | Pin Se | etting |     |     | Mode Name            | PV <sub>cc</sub> 1 Voltage |  |
|--------------------|--------|--------|-----|-----|----------------------|----------------------------|--|
|                    | FEW    | MD2    | MD1 | MD0 | _                    |                            |  |
| Mode 0             | 0      | 1      | 0   | 0   | MCU expanded mode    | 3.3 V ±0.3 V               |  |
| Mode 1             | 0      | 1      | 0   | 1   | <del></del>          |                            |  |
| Mode 2             | 0      | 1      | 1   | 0   | <del></del>          |                            |  |
| Mode 3             | 0      | 1      | 1   | 1   | MCU Single-chip mode | 5.0 V ±0.5 V               |  |
| Mode 4             | 1      | 1      | 0   | 0   | Boot mode            | 3.3 V ±0.3 V               |  |
| Mode 5             | 1      | 1      | 0   | 1   | <del></del>          | 5.0 V ±0.5 V               |  |
| Mode 6             | 1      | 1      | 1   | 0   | User program mode    | 3.3 V ±0.3 V               |  |
| Mode 7             | 1      | 1      | 1   | 1   | <del></del>          | 5.0 V ±0.5 V               |  |
| Mode 8             | 1      | 0      | 0   | 0   | User boot mode       | 3.3 V ±0.3 V               |  |
| Mode 9             | 1      | 0      | 0   | 1   | <del>_</del>         | 5.0 V ±0.5 V               |  |

### Table 26.4 DC Characteristics

$$\begin{split} \text{Conditions:} & \quad V_{cc} = \text{PLLV}_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{PV}_{cc} 1 = 5.0 \text{ V} \pm 0.5 \text{ V} / 3.3 \text{ V} \pm 0.3 \text{ V}, \\ & \quad \text{PV}_{cc} 2 = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{AV}_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{AV}_{ref} = 4.5 \text{ V} \text{ to AV}_{cc}, \\ & \quad V_{ss} = \text{PLLV}_{ss} = \text{AV}_{ss} = 0 \text{ V}, \text{T}_{a} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}. \\ & \quad \text{When PV}_{cc} 1 = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{V}_{cc} = \text{PV}_{cc} 1. \end{split}$$

| Item                                              |                                                                     | Symbol          | Min                      | Тур | Max                      | Unit | Measurement<br>Conditions             |
|---------------------------------------------------|---------------------------------------------------------------------|-----------------|--------------------------|-----|--------------------------|------|---------------------------------------|
| Input high-<br>level voltage                      | RES, NMI, FWE,<br>MD2-0, HSTBY                                      | V <sub>IH</sub> | V <sub>cc</sub><br>- 0.5 | _   | 5.8                      | V    | 2.7 V ≤ V <sub>CC</sub> ≤ 3.6V        |
| (except<br>Schmitt<br>trigger input               | EXTAL                                                               | •               | V <sub>cc</sub> × 0.7    | _   | V <sub>cc</sub><br>+ 0.3 | V    |                                       |
| voltage)                                          | D15–D0, WAIT, BREQ<br>(When in MCU<br>expansion mode)               | •               | 2.2                      | _   | PV <sub>cc</sub> 1 + 0.3 | · V  | PV <sub>cc</sub> 1 = 3.3 V<br>± 0.3 V |
|                                                   | PE15–PE0, PF15–<br>PF0, PH15–PH0<br>(When in MCU<br>expansion mode) | •               | 2.2                      | _   | PV <sub>cc</sub> 1 + 0.3 | V    | PV <sub>cc</sub> 1 = 3.3 V<br>± 0.3 V |
|                                                   | TRST                                                                |                 | V <sub>cc</sub><br>- 0.5 | _   | V <sub>cc</sub><br>+ 0.3 | V    |                                       |
|                                                   | TMS, TDI, TCK                                                       | •               | 2.2                      | _   | V <sub>cc</sub><br>+ 0.3 | V    |                                       |
|                                                   | AUDRST, AUDMD                                                       | -               | V <sub>cc</sub> – 0.5    | _   | PV <sub>cc</sub> 2 + 0.3 | V    |                                       |
|                                                   | PG0, PL11                                                           | -               | PV <sub>cc</sub> × 0.7   | _   | PV <sub>cc</sub> 2 + 0.3 | V    |                                       |
|                                                   | Other input pins                                                    | •               | 2.2                      | _   | PVcc<br>+ 0.3            | V    |                                       |
| Input low-<br>level voltage<br>(except<br>Schmitt | RES, NMI, FWE,<br>MD2-0, HSTBY,<br>TRST, AUDRST,<br>AUDMD           | V <sub>IL</sub> | -0.3                     | _   | 0.5                      | V    | 2.7 V ≤ V <sub>cc</sub> ≤ 3.6V        |
| trigger input<br>voltage)                         | PG0, PL11                                                           | -               | -0.3                     | _   | PV <sub>cc</sub> 2 × 0.3 | V    |                                       |
|                                                   | Other input pins                                                    |                 | -0.3                     | _   | 0.8                      | V    |                                       |

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{\rm CC}2 = 5.0~V~\pm 0.5~V,~AV_{\rm CC} = 5.0~V~\pm 0.5~V,~AV_{\rm ref} = 4.5~V~to~AV_{\rm CC},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

| Item                                |                                                                                                                                                                                                              | Symbol                                                                                                                                                                                                                                                                | Min      | Тур | Max                        | Unit | Measurement<br>Conditions                                                              |  |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----------------------------|------|----------------------------------------------------------------------------------------|--|
| Schmitt<br>trigger input<br>voltage | TI0A-TI0D, TIO1A-TIO1H, TIO2A-TIO2H, TIO3A-TIO3D, TIO4A-TIO4D, TIO5A-TIO5D, TI9A-TI9F, TI10, TIO11A-TIO11B, TCLKA, TCLKB, ADTRG0, ADTRG1, SCK0-SCK4, IRQ0-IRQ7 and when thses pins are selected as I/O ports | (V <sub>IH</sub> ) V <sub>T</sub> <sup>+</sup>                                                                                                                                                                                                                        | 4.0      | -   | (PV <sub>cc</sub> 2 + 0.3) | V    | Refer to table<br>26.2,<br>Correspondence<br>between Power<br>Supply Names<br>and Pins |  |
|                                     |                                                                                                                                                                                                              | (V <sub>I</sub> L)                                                                                                                                                                                                                                                    | (-0.3)   | _   | 1.0                        | V    | _                                                                                      |  |
|                                     |                                                                                                                                                                                                              | $V_T^+ - V_T^-$                                                                                                                                                                                                                                                       | 0.4      | _   | _                          | V    |                                                                                        |  |
| Input leak                          | RES, NMI, FWE,                                                                                                                                                                                               | lin                                                                                                                                                                                                                                                                   | _        | _   | 3.0*1                      | μΑ   | Vin = 0.5 V to                                                                         |  |
| current                             | MD2-0, <del>HSTBY</del> ,                                                                                                                                                                                    |                                                                                                                                                                                                                                                                       | 6.0*2    | _   | 5.8 V                      |      |                                                                                        |  |
|                                     | EXTAL (Standby)                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                     | _        | _   | 3.0*1                      | μΑ   | Vin = 0.5 V to                                                                         |  |
|                                     |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |          |     | 6.0*2                      | _    | $V_{cc} - 0.5 V$                                                                       |  |
|                                     | TMS, TRST, TDI,                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                     | _        | _   | 3.0*1                      | μА   | Vin = 0.5 V to                                                                         |  |
|                                     | TCK (Standby)                                                                                                                                                                                                |                                                                                                                                                                                                                                                                       |          |     | 6.0*2                      | _    | $V_{cc} - 0.5 V$                                                                       |  |
|                                     | AUDMD, AUDCK,                                                                                                                                                                                                | =                                                                                                                                                                                                                                                                     | _        | _   | 3.0*1                      | μΑ   | Vin = 0.5 V to                                                                         |  |
|                                     | AUDSYNC,<br>AUDATA3-0<br>(Standby)                                                                                                                                                                           |                                                                                                                                                                                                                                                                       |          |     | 6.0*2                      | _    | $PV_{cc}2 - 0.5 V$                                                                     |  |
|                                     | AUDRST (Standby)                                                                                                                                                                                             | $ \begin{array}{c} \hline{\text{Q11,}}\\ \text{when}\\ \hline{\text{orts}}\\ \hline{\begin{array}{c} (V_{\parallel})\\V_{\tau}^{-}\\\hline\\V_{\tau}^{+}-V_{\tau}^{-}\end{array}0.4\\ \hline{\begin{array}{c cccc} &-\\&-\\&-\\&-\\&&-\\&&-\\&&-\\&&-\\&&-\\&&-\\&&-$ | _        | _   | 3.0*1                      | μΑ   | Vin = 0.5 V to                                                                         |  |
|                                     |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |          |     | 6.0*2                      | _    | $PV_{cc}2 - 0.5 V$                                                                     |  |
|                                     | A/D port                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                     | _        |     | 0.2*1                      | μΑ   | Vin = 0 to AV <sub>cc</sub>                                                            |  |
|                                     |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       |          |     | 0.4*2                      | _    |                                                                                        |  |
| <del></del>                         |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                       | <u> </u> |     |                            |      | ·                                                                                      |  |

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$   $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc},$  $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_{a} = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

| Item                               |                                                                                      | Symbol          | Min                   | Тур      | Max                                    | Unit | Measurement<br>Conditions                                                 |
|------------------------------------|--------------------------------------------------------------------------------------|-----------------|-----------------------|----------|----------------------------------------|------|---------------------------------------------------------------------------|
| Input leak<br>current              | D15-D0, WAIT, BREQ                                                                   | lin             | _                     | _        | 3.0* <sup>1</sup><br>6.0* <sup>2</sup> | μΑ   | Vin = 0.5 V to<br>$PV_{cc}1 - 0.5 V$<br>$PV_{cc}1 = 3.3 V$<br>$\pm 0.3 V$ |
|                                    | PE15–PE0, PF15–<br>PF0, PH15–PH0<br>(When in MCU<br>expansion mode)                  | •               | _                     | _        | 3.0* <sup>1</sup><br>6.0* <sup>2</sup> | μΑ   | Vin = 0.5 V to<br>$PV_{cc}1 - 0.5 V$<br>$PV_{cc}1 = 3.3 V$<br>$\pm 0.3 V$ |
|                                    | Other input pins                                                                     |                 | _                     | _        | 3.0* <sup>1</sup> 6.0* <sup>2</sup>    | μA   | $Vin = 0.5 V to  PV_{cc}2 - 0.5 V$                                        |
| Input pull-up<br>MOS current       | TMS, TRST, TDI, TCK (pull-up characteristic)                                         | –lpu            | _                     | _        | 350                                    | μΑ   | Vin = 0 V                                                                 |
|                                    | AUDMD, AUDCK,<br>AUDSYNC,<br>AUDATA3-0 (pull-up<br>characteristic)                   | •               | _                     | _        | 800                                    | μΑ   | Vin = 0 V                                                                 |
| Input pull-<br>down MOS<br>current | AUDRST (pull-down characteristic)                                                    | lpd             | _                     | _        | 500                                    | μΑ   | Vin = PV <sub>cc</sub> 2                                                  |
| Three-state                        | A21–A0, D15–D0,                                                                      | l Its I         | _                     | _        | 3.0*1                                  | μΑ   | Vin = 0.5 to                                                              |
| leak current<br>(while OFF)        | CS3–CS0, WRH, WRL, RD, BACK (When in MCU expansion mode)                             |                 |                       |          | 6.0*2                                  | _    | $PV_{cc}1 - 0.5 V$<br>$PV_{cc}1 = 3.3 V$<br>$\pm 0.3 V$                   |
| Output high-<br>level voltage      | A21-A0, D15-D0,<br>CS3-CS0, WRH,<br>WRL, RD, BACK<br>(When in MCU<br>expansion mode) | V <sub>OH</sub> | PVcc1-<br>0.5         |          | _                                      | V    | $I_{OH} = 200 \mu A$<br>$PV_{CC}1 = 3.3 V$<br>$\pm 0.3 V$                 |
|                                    | PE15–PE0, PF15–<br>PF0, PH15–PH0<br>(When in MCU<br>expansion mode)                  | -               | PVcc1-<br>0.5         | <u> </u> | _                                      | V    | $I_{OH} = 200 \mu A$<br>$PV_{CC}1 = 3.3 V$<br>$\pm 0.3 V$                 |
|                                    | CK, TDO                                                                              | -               | V <sub>cc</sub> – 0.5 | _        | _                                      | V    | I <sub>OH</sub> = 200 μA                                                  |

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V} \pm 0.3 \text{ V}, V \pm 0.3 \text{ V}$ 

 $PV_{\rm cc}2 = 5.0~V~\pm 0.5~V,~AV_{\rm cc} = 5.0~V~\pm 0.5~V,~AV_{\rm ref} = 4.5~V~to~AV_{\rm cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C to } 125^{\circ}\text{C}.$ 

When  $PV_{CC}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{CC} = PV_{CC}1$ .

| Item                          |                                                                                      | Symbol           | Min                    | Тур | Max  | Unit | Measurement<br>Conditions                                                      |
|-------------------------------|--------------------------------------------------------------------------------------|------------------|------------------------|-----|------|------|--------------------------------------------------------------------------------|
| Output high-<br>level voltage | Other output pins                                                                    | $V_{\text{OH}}$  | PV <sub>cc</sub> – 0.5 | _   | _    | V    | I <sub>OH</sub> = 200 μA                                                       |
|                               |                                                                                      |                  | PV <sub>cc</sub> – 1.0 | _   | _    | V    | I <sub>OH</sub> = 1 mA                                                         |
| Output low-<br>level voltage  | A21-A0, D15-D0,<br>CS3-CS0, WRH,<br>WRL, RD, BACK<br>(When in MCU<br>expansion mode) | V <sub>oL</sub>  | _                      | _   | 0.4  | V    | $I_{oL} = 1.6 \text{ mA}$<br>$PV_{cc}1 = 3.3 \text{ V}$<br>$\pm 0.3 \text{ V}$ |
|                               | PE15–PE0, PF15–<br>PF0, PH15–PH0<br>(When in MCU<br>expansion mode)                  | _                | _                      | _   | 0.4  | V    | $I_{oL} = 1.6 \text{ mA}$<br>$PV_{cc}1 = 3.3 \text{ V}$<br>$\pm 0.3 \text{ V}$ |
|                               | Other output pins                                                                    | <del>_</del>     | _                      |     | 0.4  | V    | I <sub>oL</sub> = 1.6 mA                                                       |
|                               | (except XTAL)                                                                        |                  |                        |     | 1.2  | V    | I <sub>oL</sub> = 6 mA                                                         |
| Input                         | RES                                                                                  | Cin              | _                      | _   | 60   | pF   | Vin = 0 V                                                                      |
| capacitance                   | NMI                                                                                  |                  | _                      | _   | 30   | pF   | f = 1 MHz                                                                      |
|                               | All other input pins                                                                 | <del></del>      | _                      | _   | 20   | pF   | $T_a = 25^{\circ}C$                                                            |
| Current                       | Normal operation                                                                     | I <sub>cc</sub>  | _                      | 50  | 80   | mA   | f = 40 MHz                                                                     |
| consumption                   | Sleep                                                                                | <del></del>      | _                      | 40  | 60   | mΑ   |                                                                                |
|                               | Standby                                                                              | <u> </u>         | _                      | 50  | 200  | μΑ   | $T_a \le 50^{\circ}C$                                                          |
|                               |                                                                                      |                  | _                      | _   | 500  | μΑ   | 50°C <<br>Ta≤105°C                                                             |
|                               |                                                                                      |                  | _                      | _   | 1000 | μΑ   | Ta > 105°C                                                                     |
|                               | Write operation                                                                      |                  | _                      | 60  | 90   | mA   | V <sub>CC</sub> = 3.3 V                                                        |
|                               |                                                                                      |                  |                        |     |      |      | f = 40 MHz                                                                     |
| Analog<br>supply              | During A/D conversion                                                                | Al <sub>cc</sub> | _                      | 1.2 | 5    | mA   |                                                                                |
| current                       | Awaiting A/D conversion                                                              |                  | _                      | 1   | 30   | μΑ   |                                                                                |
|                               |                                                                                      |                  |                        |     |      |      | · · · · · · · · · · · · · · · · · · ·                                          |

$$\begin{split} \text{Conditions:} \quad & V_{cc} = \text{PLLV}_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{PV}_{cc} 1 = 5.0 \text{ V} \pm 0.5 \text{ V} / 3.3 \text{ V} \pm 0.3 \text{ V}, \\ & \text{PV}_{cc} 2 = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{AV}_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{AV}_{ref} = 4.5 \text{ V} \text{ to AV}_{cc}, \\ & V_{ss} = \text{PLLV}_{ss} = \text{AV}_{ss} = 0 \text{ V}, T_{a} = -40^{\circ}\text{C to } 125^{\circ}\text{C}. \\ & \text{When PV}_{cc} 1 = 3.3 \text{ V} \pm 0.3 \text{ V}, V_{cc} = \text{PV}_{cc} 1. \end{split}$$

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Item                   |                         | Symbol    | Min | Тур | Max | Unit | Measurement<br>Conditions |
|------------------------|-------------------------|-----------|-----|-----|-----|------|---------------------------|
| Reference power supply | During A/D conversions  | Alref     | _   | 1.3 | 5   | mA   | $AV_{ref} = 5 V$          |
| current                | Awaiting A/D conversion |           | _   | 1.1 | 10  | μΑ   | _                         |
| RAM standby voltage    |                         | $V_{RAM}$ | 2.7 | _   | _   | V    | V <sub>cc</sub>           |

Notes: \*1 Ta≤105°C

\*2 Ta>105°C

## [Operating precautions]

- 1. When the A/D converter is not used (including during standby), do not leave the  $AV_{cc}$ ,  $AV_{ref}$ , and  $AV_{ss}$  pins open.
- 2. The current consumption is measured when  $V_{\text{IH}} min = V_{\text{CC}} 0.3 \text{ V/PV}_{\text{CC}} 0.3 \text{ V}$ ,  $V_{\text{IL}} = 0.3 \text{ V}$ , with all output pins unloaded.
- 3. The guaranteed operating range of power supply  $PV_{cc}1$  in the MCU expanded modes is only  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ . Do not use a voltage outside this range.
- 4. The guaranteed operating range of power supply  $PV_{cc}1$  in MCU single-chip mode is only  $PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}$ . Do not use a voltage outside this range.

### **Table 26.5 Permitted Output Current Values**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 1 = 5.0 \text{ V} \pm 0.5 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 1 = 5.0 \text{ V} \pm 0.5 \text{ V} \pm 0.3 \text{ V}$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{V} \text{ to } AV_{cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, Ta = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to  $85^{\circ}$ C.

| Item                                            | Symbol                   | Min | Тур | Max | Unit |
|-------------------------------------------------|--------------------------|-----|-----|-----|------|
| Output low-level permissible current (per pin)  | I <sub>OL</sub>          | _   | _   | 6   | mA   |
| Output low-level permissible current (total)    | $\Sigma$ I <sub>OL</sub> | _   | _   | 80  | mA   |
| Output high-level permissible current (per pin) | I <sub>OH</sub>          | _   | _   | 2   | mA   |
| Output high-level permissible current (total)   | $\Sigma$ l <sub>ol</sub> | _   | _   | 25  | mA   |

# [Operating precautions]

To assure LSI reliability, do not exceed the output values listed in this table.

# 26.3 AC Characteristics

#### 26.3.1 Timing for switching the power supply on/off

### Table 26.6 Timing for switching the power supply on/off

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

| Item                                                     | Symbol            | Min | Max | Unit | Figures     |
|----------------------------------------------------------|-------------------|-----|-----|------|-------------|
| Time taken to switch $V_{\text{cc}}$ on                  | t <sub>vccs</sub> | 0   | _   | ms   | Figure 26.1 |
| $\rm V_{cc}$ hold-time when $\rm PV_{cc}$ is swtched off | t <sub>vcch</sub> | 0   |     | ms   |             |

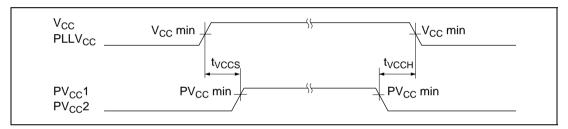



Figure 26.1 Power-On/Off Timing

### 26.3.2 Clock Timing

Table 26.7 shows the clock timing.

## **Table 26.7 Clock Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}$ ,  $AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}$ ,  $AV_{ref} = 4.5 \text{ V}$  to  $AV_{cc}$ ,

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Item                                    | Symbol             | Min | Max | Unit | Figures      |
|-----------------------------------------|--------------------|-----|-----|------|--------------|
| Operating frequency                     | f <sub>op</sub>    | 20  | 40  | MHz  | Figure 26.2  |
| Clock cycle time                        | t <sub>cyc</sub>   | 25  | 50  | ns   | <del>_</del> |
| Clock low-level pulse width             | t <sub>cL</sub>    | 4   | _   | ns   | <del>_</del> |
| Clock high-level pulse width            | t <sub>ch</sub>    | 4   | _   | ns   | <del>_</del> |
| Clock rise time                         | t <sub>cr</sub>    | _   | 8   | ns   | <del>_</del> |
| Clock fall time                         | t <sub>cf</sub>    | _   | 8   | ns   | _            |
| EXTAL clock input frequency             | f <sub>ex</sub>    | 5   | 10  | MHz  | Figure 26.3  |
| EXTAL clock input cycle time            | t <sub>excyc</sub> | 100 | 200 | ns   | _            |
| EXTAL clock input low-level pulse width | t <sub>ext</sub>   | 30  | _   | ns   | _            |
| EXTAL clock input low-level pulse width | t <sub>exh</sub>   | 30  | _   | ns   | <del>_</del> |
| EXTAL clock input rise time             | t <sub>exr</sub>   | _   | 8   | ns   | <del>_</del> |
| EXTAL clock input fall time             | t <sub>exf</sub>   | _   | 8   | ns   | _            |
| Reset oscillation settling time         | t <sub>osc1</sub>  | 30  | _   | ms   | Figure 26.4  |
| Standby return clock settling time      | t <sub>osc2</sub>  | 30  | _   | ms   | _            |

# [Operating precautions]

The EXTAL, XTAL, and CK pins constitute a circuit requiring a power supply voltage of  $V_{\rm cc}$  = 3.3 V ±0.3 V. Comply with the input and output voltages specified in the DC characteristics.

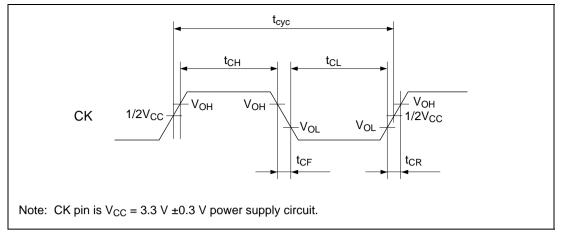



Figure 26.2 System Clock Timing

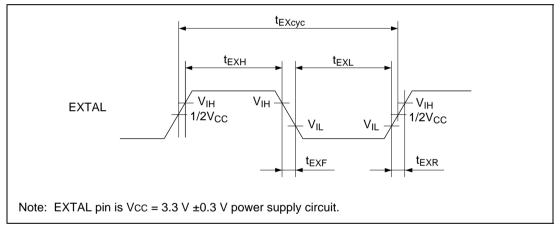



Figure 26.3 EXTAL Clock Input Timing

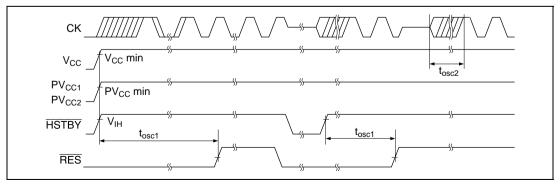



Figure 26.4 Oscillation Settling Time

#### 26.3.3 Control Signal Timing

Table 26.8 shows control signal timing.

### **Table 26.8 Control Signal Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40$ °C to 85°C.

| 20 |                                        |                                                 |                                                                                                                       |
|----|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 20 | _                                      | t <sub>cyc</sub>                                | Figure 26.5                                                                                                           |
| 40 | _                                      | ns                                              | _                                                                                                                     |
| 20 | _                                      | t <sub>cyc</sub>                                | _                                                                                                                     |
| 24 | _                                      | ns                                              | Figure 26.6                                                                                                           |
| 24 | _                                      | ns                                              | _                                                                                                                     |
| 24 | _                                      | ns                                              | _                                                                                                                     |
| 24 | _                                      | ns                                              | _                                                                                                                     |
| 24 | _                                      | ns                                              | _                                                                                                                     |
| _  | 100                                    | ns                                              | Figure 26.7                                                                                                           |
| 24 | _                                      | ns                                              | Figure 26.8*2                                                                                                         |
| _  | 30                                     | ns                                              | _                                                                                                                     |
| _  | 30                                     | ns                                              | _                                                                                                                     |
|    | 30                                     | ns                                              |                                                                                                                       |
|    | 20<br>24<br>24<br>24<br>24<br>24<br>24 | 40 — 20 — 24 — 24 — 24 — 24 — 24 — 24 — 24 — 24 | 40 — ns 20 — t <sub>cyc</sub> 24 — ns 24 — ns 24 — ns 24 — ns 24 — ns 24 — ns 24 — ns 24 — ns 24 — ns — 30 ns — 30 ns |

# [Operating precautions]

- \*1 The RES, NMI, and IRQ7–IRQ0 signals are asynchronous inputs, but when the setup times shown here are provided, the signals are considered to have been changed at clock fall. If the setup times are not provided, recognition is delayed until the next clock rise or fall.
- \*2 The guaranteed operating range of power supply  $PV_{cc}1$  in the MCU expanded modes is only  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ . Do not use a voltage outside this range.

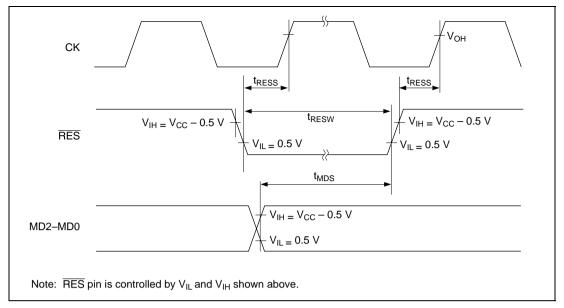



Figure 26.5 Reset Input Timing

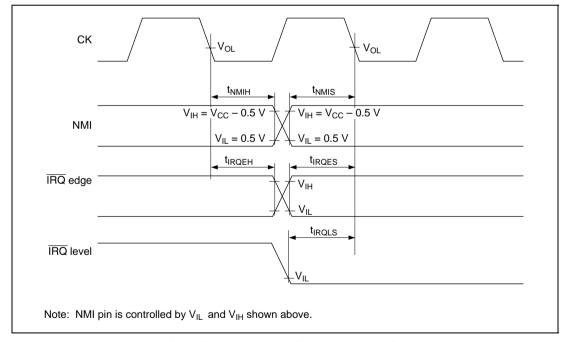



Figure 26.6 Interrupt Signal Input Timing

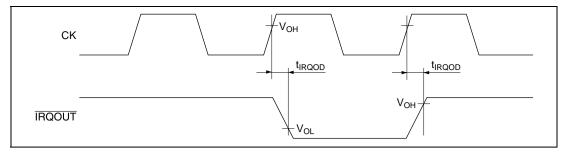



Figure 26.7 Interrupt Signal Output Timing

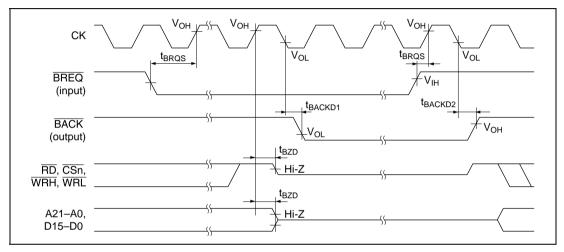



Figure 26.8 Bus Right Release Timing

#### 26.3.4 Bus Timing

Table 26.9 shows bus timing.

### Table 26.9 Bus Timing

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Item                         | Symbol             | Min                                         | Max | Unit | Figures            |
|------------------------------|--------------------|---------------------------------------------|-----|------|--------------------|
| Address delay time           | t <sub>AD</sub>    | _                                           | 35  | ns   | Figure 26.9, 26.10 |
| CS delay time 1              | t <sub>CSD1</sub>  | _                                           | 30  | ns   | <del></del>        |
| CS delay time 2              | t <sub>CSD2</sub>  | _                                           | 30  | ns   | _                  |
| Read strobe delay time 1     | t <sub>RSD1</sub>  | _                                           | 30  | ns   | _                  |
| Read strobe delay time 2     | t <sub>RSD2</sub>  | _                                           | 30  | ns   | <del></del>        |
| Read data setup time         | t <sub>RDS</sub>   | 15                                          | _   | ns   | _                  |
| Read data hold time          | t <sub>RDH</sub>   | 0                                           | _   | ns   | _                  |
| Write strobe delay time 1    | t <sub>wsD1</sub>  | _                                           | 30  | ns   | <del></del>        |
| Write strobe delay time 2    | t <sub>wsD2</sub>  | _                                           | 30  | ns   | _                  |
| Write data delay time        | t <sub>wdd</sub>   | _                                           | 30  | ns   | <del></del>        |
| Write data hold time         | t <sub>wdh</sub>   | $t_{\text{cyc}} \times m$                   | _   | ns   | <del></del>        |
| WAIT setup time              | t <sub>wts</sub>   | 15                                          | _   | ns   | Figure 26.11       |
| WAIT hold time               | $\mathbf{t}_{WTH}$ | 0                                           | _   | ns   | _                  |
| Read data access time        | t <sub>ACC</sub>   | $t_{\text{cyc}} \times (\text{n+1.5}) - 39$ | _   | ns   | Figure 26.9, 26.10 |
| Access time from read strobe | t <sub>oe</sub>    | $t_{\text{cyc}} \times (\text{n+1.0}) - 39$ | _   | ns   | _                  |
| Write address setup time     | t <sub>AS</sub>    | 0                                           | _   | ns   | <del>_</del>       |
| Write address hold time      | t <sub>wr</sub>    | 5                                           | _   | ns   | <del>_</del>       |
| - N                          | )                  | 1                                           |     | (    | 1                  |

n: Number of waits

# [Operating precautions]

The guaranteed operating range of power supply  $PV_{cc}1$  in the MCU expanded modes is only  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ . Do not use a voltage outside this range.

m = 1: CS assertion extension cycle

m = 0: Normal cycle (CS assertion non-extension cycle)

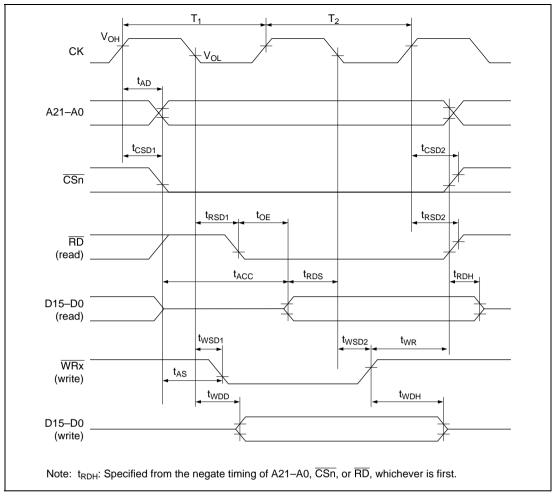



Figure 26.9 Basic Cycle (No Waits)

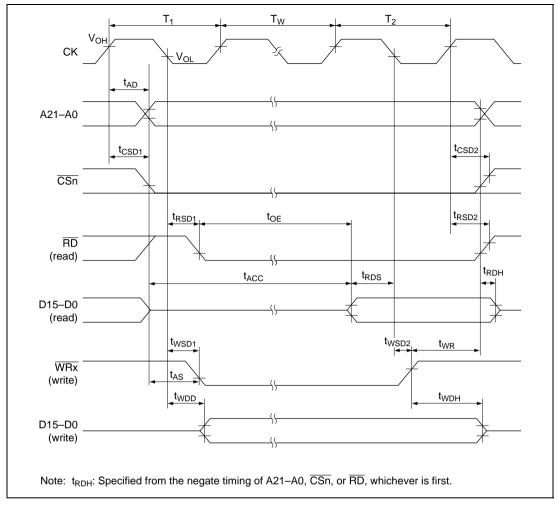
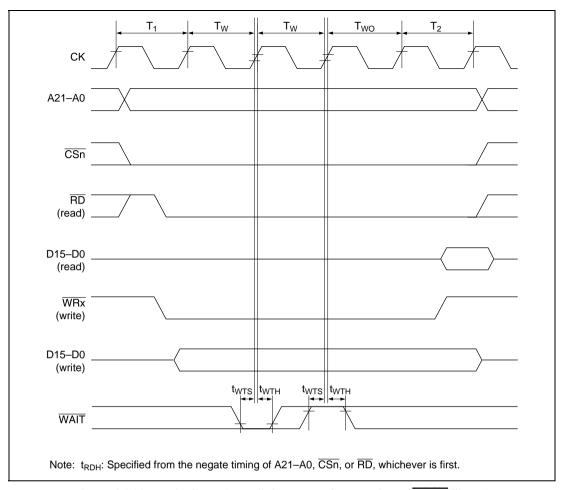




Figure 26.10 Basic Cycle (One Software Wait)



 $Figure\ 26.11\quad Basic\ Cycle\ (Two\ Software\ Waits+Waits\ by\ \overline{WAIT}\ Signal)$ 

### 26.3.5 Advanced Timer Unit Timing and Advance Pulse Controller Timing

Table 26.10 shows advanced timer unit timing and advanced pulse controller timing.

### Table 26.10 Advanced Timer Unit Timing and Advanced Pulse Controller Timing

 $\begin{array}{ll} \text{Conditions:} & V_{cc} = \text{PLLV}_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{PV}_{cc} 1 = 5.0 \text{ V} \pm 0.5 \text{ V} / 3.3 \text{ V} \pm 0.3 \text{ V}, \\ \text{PV}_{cc} 2 = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{AV}_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, \text{AV}_{ref} = 4.5 \text{ V} \text{ to AV}_{cc}, \\ \text{V}_{ss} = \text{PLLV}_{ss} = \text{AV}_{ss} = 0 \text{ V}, \text{T}_{a} = -40 ^{\circ}\text{C} \text{ to } 125 ^{\circ}\text{C}. \end{array}$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40$ °C to 85°C.

| Item                                            | Symbol               | Min                          | Max | Unit             | Figures      |
|-------------------------------------------------|----------------------|------------------------------|-----|------------------|--------------|
| Output compare output delay time                | t <sub>TOCD</sub>    | _                            | 100 | ns               | Figure 26.12 |
| Input capture input setup time                  | t <sub>TICS</sub>    | 24*<br>24 + t <sub>cyc</sub> | _   | ns               | _            |
| PULS output delay time                          | t <sub>PLSD</sub>    | _                            | 100 | ns               |              |
| Timer clock input setup time                    | t <sub>TCKS</sub>    | 24*<br>24 + t <sub>cyc</sub> | _   | ns               | Figure 26.13 |
| Timer clock pulse width (single edge specified) | t <sub>TCKWH/L</sub> | 3.0                          | _   | t <sub>cyc</sub> | _            |
| Timer clock pulse width (both edges specified)  | t <sub>TCKWH/L</sub> | 5.0                          | _   | t <sub>cyc</sub> |              |

# [Operating precautions]

\* The timer input signals and timer clock input signals are asynchronous, but judged to have been changed at clock rise with two-state intervals shown in figures 26.12 and 26.13. If the setup times shown here are not provided, recognition is delayed until the clock rise two states after that timing.

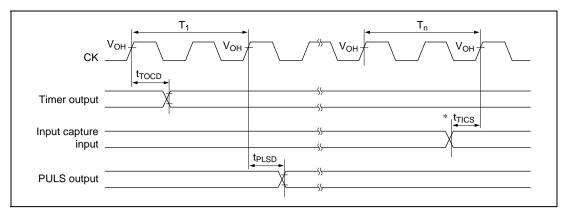



Figure 26.12 ATU Input/Output timing and APC Output timing

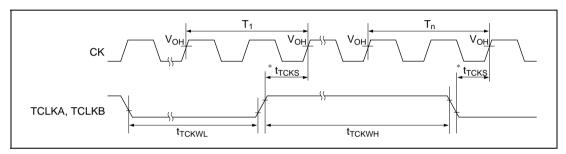



Figure 26.13 ATU Clock Input Timing

#### 26.3.6 I/O Port Timing

Table 26.11 shows I/O port timing.

#### Table 26.11 I/O Port Timing

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40$ °C to 85°C.

| Item                        | Symbol           | Min            | Max | Unit | Figures      |
|-----------------------------|------------------|----------------|-----|------|--------------|
| Port output data delay time | t <sub>PWD</sub> | _              | 100 | ns   | Figure 26.14 |
| Port input hold time        | t <sub>PRH</sub> | 24*<br>24+tcyc | _   | ns   | _            |
| Port input setup time       | t <sub>PRS</sub> | 24*<br>24+tcyc | _   | ns   |              |

### [Operating precautions]

The port input signals are asynchronous, but judged to have been changed at CK clock rise with two-state intervals shown in figure 26.14. If the setup times shown here are not provided, recognition is delayed until the clock rise two states after that timing.

\* The guaranteed operating range of power supply  $PV_{cc}1$  in MCU single-chip mode is only  $PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}$ . Do not use a voltage outside this range.

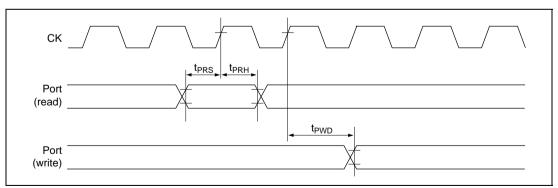



Figure 26.14 I/O Port Input/Output timing

### 26.3.7 Watchdog Timer Timing

Table 26.12 shows watchdog timer timing.

### **Table 26.12 Watchdog Timer Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}^2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{CC}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{CC} = PV_{CC}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}\text{C}$  to  $85^{\circ}\text{C}$ .

| Item              | Symbol            | Min | Max | Unit | Figures      |
|-------------------|-------------------|-----|-----|------|--------------|
| WDTOVF delay time | t <sub>wovd</sub> | _   | 100 | ns   | Figure 26.15 |

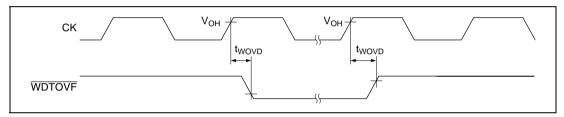



Figure 26.15 Watchdog Timer Timing

#### **26.3.8** Serial Communication Interface Timing

Table 26.13 shows serial communication interface timing.

### **Table 26.13 Serial Communication Interface Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{CC}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{CC} = PV_{CC}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Item                     | Symbol            | Min | Max          | Unit              | Figures      |
|--------------------------|-------------------|-----|--------------|-------------------|--------------|
| Clock cycle              | t <sub>scyc</sub> | 8   | _            | t <sub>cyc</sub>  | Figure 26.16 |
| Clock cycle (clock sync) | t <sub>scyc</sub> | 12  | <del>_</del> | t <sub>cyc</sub>  | <del></del>  |
| Clock pulse width        | t <sub>sckw</sub> | 0.4 | 0.6          | t <sub>scyc</sub> |              |
| Input clock rise time    | t <sub>sckr</sub> | _   | 3.0          | t <sub>cyc</sub>  |              |
| Input clock fall time    | t <sub>sckf</sub> | _   | 3.0          | t <sub>cyc</sub>  |              |
| Transmit data delay time | t <sub>TxD</sub>  | _   | 100          | ns                | Figure 26.17 |
| Transmit data setup time | t <sub>RxS</sub>  | 100 | _            | ns                |              |
| Transmit data hold time  | t <sub>RxH</sub>  | 100 | _            | ns                |              |

### [Operating precautions]

The inputs and outputs are asynchronous in start-stop synchronous mode, but as shown in figure 26.17, the receive data are judged to have been changed at CK clock rise (two-clock intervals). The transmit signals change with a reference of CK clock rise (two-clock intervals).

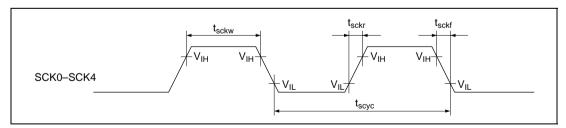



Figure 26.16 SCI Input/Output Timing

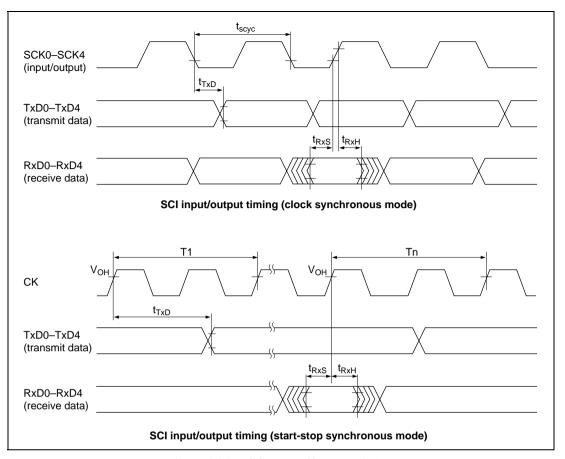



Figure 26.17 SCI Input/Output Timing

#### 26.3.9 HCAN Timing

Table 26.14 shows HCAN timing.

#### **Table 26.14 HCAN Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{CC}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{CC}$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{CC}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{CC} = PV_{CC}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Item                     | Symbol            | Min | Max | Unit | Figures      |
|--------------------------|-------------------|-----|-----|------|--------------|
| Transmit data delay time | t <sub>htxD</sub> | _   | 100 | ns   | Figure 26.18 |
| Transmit data setup time | t <sub>HRxS</sub> | 100 | _   | ns   |              |
| Transmit data hold time  | t <sub>HRxH</sub> | 100 | _   | ns   |              |

#### [Operating precautions]

The HCAN input signals are asynchronous, but judged to have been changed at CK clock rise (two-clock intervals) shown in figure 26.18. The HCAN output signals are asynchronous, but they change with a reference of CK clock rise (two-clock intervals) shown in figure 26.18.

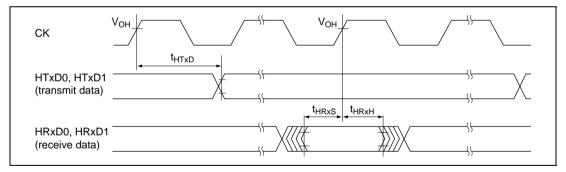



Figure 26.18 HCAN Input/Output timing

### 26.3.10 A/D Converter Timing

Table 26.15 shows A/D converter timing.

### **Table 26.15 A/D Converter Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{\rm cc}2 = 5.0~V~\pm 0.5~V,~AV_{\rm cc} = 5.0~V~\pm 0.5~V,~AV_{\rm ref} = 4.5~V~to~AV_{\rm cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

|                                         |                     | fop | CSK =<br>= 20-4 |     |     | CSK =<br>p = 20 |     |                  |                 |
|-----------------------------------------|---------------------|-----|-----------------|-----|-----|-----------------|-----|------------------|-----------------|
| Item                                    | Symbol              | Min | Тур             | Max | Min | Тур             | Max | Unit             | Figure          |
| External trigger input start delay time | $\mathbf{t}_{TRGS}$ | 50  | _               | _   | 50  | _               | _   | ns               | Figure<br>26.19 |
| A/D conversion time                     | t <sub>conv</sub>   | 518 | _               | 532 | 262 | _               | 268 | t <sub>cyc</sub> | Figure<br>26.20 |
| A/D conversion start delay time         | t <sub>D</sub>      | 20  | _               | 34  | 12  | _               | 18  | t <sub>cyc</sub> | _               |
| Input sampling time                     | t <sub>SPL</sub>    | _   | 128             | _   | _   | 64              |     | t <sub>cyc</sub> | _               |
| ADEND output delay time                 | t <sub>ADENDD</sub> | _   | _               | 100 | _   | _               | 100 | ns               | _               |

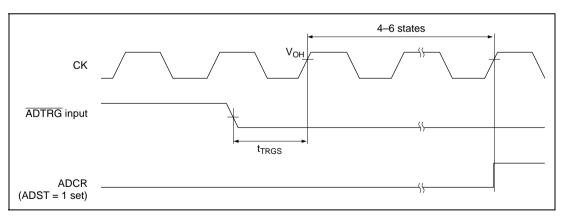



Figure 26.19 External Trigger Input Timing

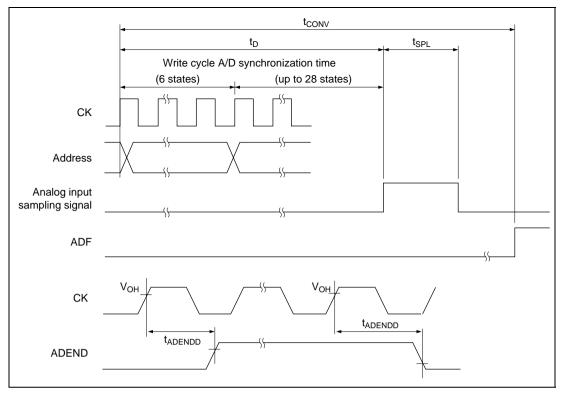



Figure 26.20 Analog Conversion Timing

### **26.3.11 H-UDI Timing**

Table 26.16 shows H-UDI timing.

#### Table 26.16 H-UDI Timing

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0~V \pm 0.5~V,~AV_{cc} = 5.0~V \pm 0.5~V,~AV_{ref} = 4.5~V$  to  $AV_{cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Symbol            | Min                                                                                                                                                                                                                                                                                        | Max                                                                                                                                                                                                                                                                                                                                        | Unit                                                 | Figures                                              |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| t <sub>tcyc</sub> | 4                                                                                                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                          | t <sub>tcyc</sub>                                    | Figure 26.21                                         |
| t <sub>тскн</sub> | 0.4                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                                                                                                                                                                                                                        | t <sub>tcyc</sub>                                    | <u> </u>                                             |
| t <sub>TCKL</sub> | 0.4                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                                                                                                                                                                                                                        | t <sub>tcyc</sub>                                    | <del></del>                                          |
| t <sub>rrsw</sub> | 20                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                          | t <sub>cyc</sub>                                     | Figure 26.22                                         |
| t <sub>TRSS</sub> | 30                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                          | ns                                                   | <del></del>                                          |
| t <sub>mss</sub>  | 30                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                          | ns                                                   | Figure 26.23                                         |
| t <sub>msh</sub>  | 10                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                          | ns                                                   |                                                      |
| t <sub>TDIS</sub> | 30                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                          | ns                                                   | <del></del>                                          |
| t <sub>TDIH</sub> | 10                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                          | ns                                                   |                                                      |
| t <sub>tdod</sub> | _                                                                                                                                                                                                                                                                                          | 30                                                                                                                                                                                                                                                                                                                                         | ns                                                   |                                                      |
|                   | $\begin{array}{c} \mathbf{t}_{\text{tcyc}} \\ \mathbf{t}_{\text{TCKH}} \\ \mathbf{t}_{\text{TCKL}} \\ \mathbf{t}_{\text{TRSW}} \\ \mathbf{t}_{\text{TRSS}} \\ \mathbf{t}_{\text{TMSS}} \\ \mathbf{t}_{\text{TMSH}} \\ \mathbf{t}_{\text{TDIS}} \\ \mathbf{t}_{\text{TDIH}} \\ \end{array}$ | $\begin{array}{cccc} & & & & & \\ & t_{\text{tcyc}} & & 4 & \\ & t_{\text{TCKH}} & & 0.4 & \\ & t_{\text{TCKL}} & & 0.4 & \\ & t_{\text{TRSW}} & & 20 & \\ & t_{\text{TRSS}} & & 30 & \\ & t_{\text{TMSS}} & & 30 & \\ & t_{\text{TMSH}} & & 10 & \\ & t_{\text{TDIS}} & & 30 & \\ & t_{\text{TDIH}} & & 10 & \\ & & & & & \\ \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

### [Operating precautions]

The H-UDI pins constitute a circuit requiring the voltage of  $V_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}$ . Comply with the input and output voltages specified in the DC characteristics, for operation.

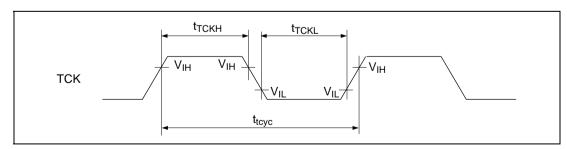



Table 26.21 H-UDI Clock Timing

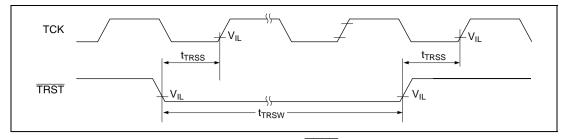



Table 26.22 H-UDI TRST Timing

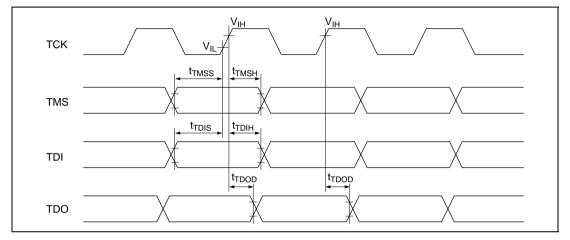



Table 26.23 H-UDI Input/Output Timing

#### **26.3.12 AUD Timing**

Table 26.17 shows AUD timing.

### **Table 26.17 AUD Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V} \pm 0.3 \text{ V}, PV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V} \pm 0.3 \text{ V}$ 

 $PV_{\rm CC}2 = 5.0~V~\pm 0.5~V,~AV_{\rm CC} = 5.0~V~\pm 0.5~V,~AV_{\rm ref} = 4.5~V$  to  $AV_{\rm CC},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Item                               | Symbol               | Min | Max              | Unit               | Figures      |
|------------------------------------|----------------------|-----|------------------|--------------------|--------------|
| AUDRST pulse width (Branch trace)  | t <sub>AUDRSTW</sub> | 20  | _                | t <sub>cyc</sub>   | Figure 26.24 |
| AUDRST pulse width (RAM monitor)   | t <sub>AUDRSTW</sub> | 5   | _                | t <sub>RMCYC</sub> | _            |
| AUDMD setup time (Branch trace)    | t <sub>AUDMDS</sub>  | 20  | _                | t <sub>cyc</sub>   | _            |
| AUDMD setup time (RAM monitor)     | t <sub>AUDMDS</sub>  | 5   | _                | t <sub>RMCYC</sub> | _            |
| Branch trace clock cycle           | t <sub>BTCYC</sub>   | 2   | 2                | t <sub>cyc</sub>   | Figure 26.25 |
| Branch trace clock duty            | t <sub>BTCKW</sub>   | 40  | 60               | %                  | _            |
| Branch trace data delay time       | t <sub>BTDD</sub>    | _   | 40               | ns                 | _            |
| Branch trace data hold time        | t <sub>втрн</sub>    | 0   | _                | ns                 | _            |
| Branch trace SYNC delay time       | t <sub>BTSD</sub>    | _   | 40               | ns                 | _            |
| Branch trace SYNC hold time        | t <sub>BTSH</sub>    | 0   | _                | ns                 | _            |
| RAM monitor clock cycle            | t <sub>RMCYC</sub>   | 100 | _                | ns                 | Figure 26.26 |
| RAM monitor clock low pulse width  | t <sub>rmckw</sub>   | 45  | _                | ns                 | _            |
| RAM monitor output data delay time | t <sub>rmdd</sub>    | 7   | $t_{RMCYC} - 20$ | ns                 | _            |
| RAM monitor output data hold time  | t <sub>rmdhd</sub>   | 5   | _                | ns                 | _            |
| RAM monitor input data setup time  | t <sub>RMDS</sub>    | 20  | _                | ns                 | _            |
| RAM monitor input data hold time   | t <sub>rmdh</sub>    | 5   | _                | ns                 |              |
| RAM monitor SYNC setup time        | t <sub>RMSS</sub>    | 20  | _                | ns                 |              |
| RAM monitor SYNC hold time         | t <sub>RMSH</sub>    | 5   |                  | ns                 | <del>_</del> |

Load conditions: AUDCK (branch trace): CL = 30 pF: otherwise CL = 100 pF

AUDSYNC: CL = 100 pF AUDATA3 to AUDATA0: CL = 100 pF

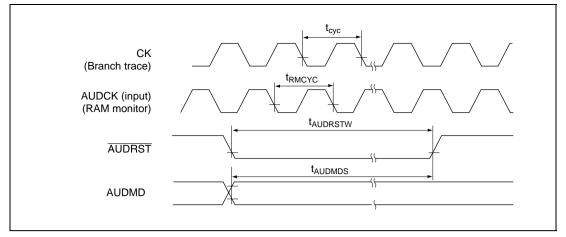



Figure 26.24 AUD Reset Timing

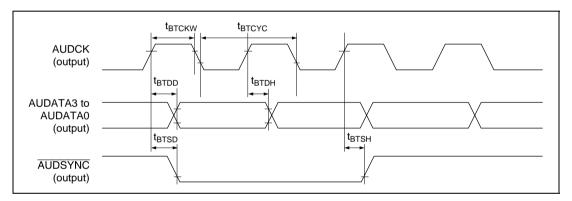



Figure 26.25 Branch Trace Timing

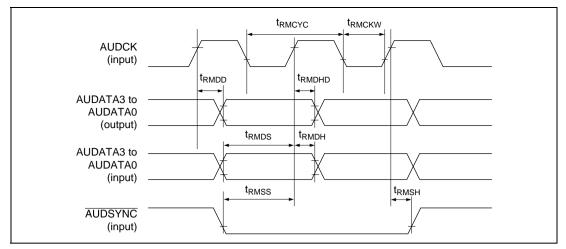



Figure 26.26 RAM Monitor Timing

#### 26.3.13 UBC Trigger Timing

Table 26.18 shows UBC trigger timing.

### **Table 26.18 UBC Trigger Timing**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc}, AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text{ to } AV_{cc} = 4.5 \text{ V} \text$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40$ °C to 85°C.

| Item              | Symbol              | Min | Max | Unit | Figures      |
|-------------------|---------------------|-----|-----|------|--------------|
| UBCTRG delay time | t <sub>UBCTGD</sub> | _   | 35  | ns   | Figure 26.27 |

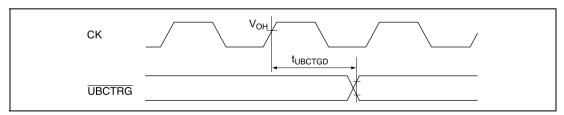



Figure 26.27 UBC Trigger Timing

### 26.3.14 Measuring Conditions for AC Characteristics

Input reference levels High level:  $V_{H}$  min. value, low level:  $V_{H}$  max. value

Output reference level High level: 2.0 V, Low level: 0.8 V

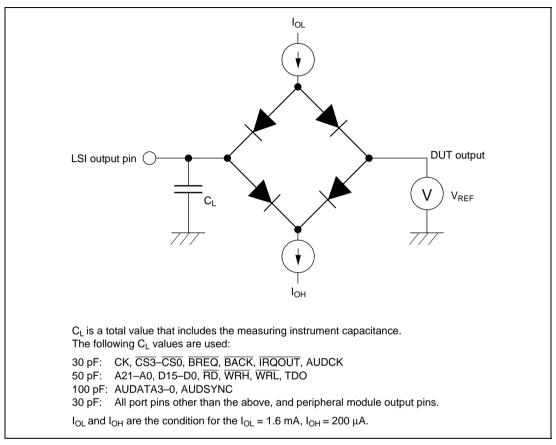



Figure 26.28 Output Test Circuit

### 26.4 A/D Converter Characteristics

Table 26.19 shows A/D converter characteristics.

#### Table 26.19 A/D Converter Characteristics

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{cc}2 = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{cc} = 5.0 \text{ V} \pm 0.5 \text{ V}, AV_{ref} = 4.5 \text{ V} \text{ to } AV_{cc},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 125^{\circ}\text{C}.$ 

When  $PV_{cc}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{cc} = PV_{cc}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

|                                          | CSK : | = 0: fop = | 10-20 MHz   | CS  | = 10 MHz |        |      |
|------------------------------------------|-------|------------|-------------|-----|----------|--------|------|
| Item                                     | Min   | Тур        | Max         | Min | Тур      | Max    | Unit |
| Resolution                               | 10    | 10         | 10          | 10  | 10       | 10     | bit  |
| A/D conversion time                      | _     | _          | 13.3        | _   | _        | 13.4   | μs   |
| Analog input capacitance                 | _     | _          | 20          | _   | _        | 20     | pF   |
| Permitted analog signal source impedance | _     | _          | 3           | _   | _        | 3      | kΩ   |
| Non-linear error                         | _     | _          | ±1.5*1      | _   | _        | ±1.5*1 | LSB  |
|                                          |       |            | ±2.5*2      |     |          | ±2.5*2 | _    |
| Offset error                             | _     | _          | ±1.5*1      | _   | _        | ±1.5*1 | LSB  |
|                                          |       |            | ±2.5*2      |     |          | ±2.5*2 | _    |
| Full-scale error                         | _     | _          | ±1.5*1      | _   | _        | ±1.5*1 | LSB  |
|                                          |       |            | ±2.5*2      |     |          | ±2.5*2 |      |
| Quantization error                       | _     | _          | ±0.5        | _   | _        | ±0.5   | LSB  |
| Absolute error                           | _     | _          | ±2.0*1      | _   | _        | ±2.0*1 | LSB  |
|                                          |       |            | ±2.5*2      |     |          | ±2.5*2 | _    |
| N                                        |       |            | <del></del> |     |          |        |      |

Note: \*1 Ta≤105°C

\*2 Ta>105°C

### **26.5** Flash Memory Characteristics

Table 26.20 shows the flash memory characteristics.

### **Table 26.20 Flash Memory Characteristics**

Conditions:  $V_{cc} = PLLV_{cc} = 3.3 \text{ V} \pm 0.3 \text{ V}, PV_{cc}1 = 5.0 \text{ V} \pm 0.5 \text{ V}/3.3 \text{ V} \pm 0.3 \text{ V},$ 

 $PV_{\rm CC}2 = 5.0~V~\pm 0.5~V,~AV_{\rm CC} = 5.0~V~\pm 0.5~V,~AV_{\rm ref} = 4.5~V~to~AV_{\rm CC},$ 

 $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}, T_a = -40^{\circ}\text{C} \text{ to } 105^{\circ}\text{C}.$ 

When  $PV_{CC}1 = 3.3 \text{ V} \pm 0.3 \text{ V}$ ,  $V_{CC} = PV_{CC}1$ .

When writing or erasing on-chip flash memory,  $T_a = -40^{\circ}$ C to 85°C.

| Item                 | Symbol           | Min | Тур | Max | Unit         |
|----------------------|------------------|-----|-----|-----|--------------|
| Programming time*1*2 | t <sub>P</sub>   | _   | 20  | 200 | ms/128 bytes |
| Erase time*1*3       | t <sub>E</sub>   | _   | 1   | 10  | s/block      |
| Reprogramming count  | N <sub>wec</sub> | _   | _   | 100 | Times        |

Note: \*1 Use the on-chip programming/erasing routine for programming/erasure.

<sup>\*2</sup> When all 0 are programmed.

<sup>\*3 64</sup> kbytes of block

### 26.6 Usage Note

#### 26.6.1 Notes on Connecting External Capacitor for Current Stabilization

The SH7055SF includes an internal step-down curcuit to automatically reduce the microporocessor power supply voltage to an appropriate level. Between this internal stepped-down power supply ( $V_{CL}$  pin) and the  $V_{SS}$  pin, an capacitor (0.33 to 0.47  $\mu$ F) for stabilizing the internal voltage. Connection of the external capacitor is shown in figure 26.29. The external capacitor should be located near the pin. Do not apply any power supply voltage to the  $V_{CL}$  pin.

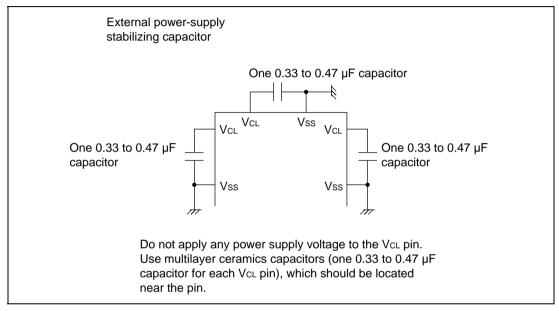



Figure 26.29 Connection of  $V_{CL}$  Capacitor

### 26.6.2 Notes on Mode Pin Input

When power is supplied and in hardware standby mode, mode setup time is determined by tMDS1. When power-on reset is performed only by the  $\overline{RES}$  pin, mode setup time is differs according to the combination of input to the FWE and MD2 to MD0. When low is input to the  $\overline{RES}$  pin with the pins FWE and MD2 to MD0 operated in mode specified in table 26.3, the mode setup time is determined by tMDS2. When combination which is not specified in table 26.3 is input, the mode setup time is determined by tMDS1.

**Table 26.21 Mode Pin Input Timing** 

| Item              | Symbol            | Min | Тур | Max | Unit             | Remark       |
|-------------------|-------------------|-----|-----|-----|------------------|--------------|
| Mode setup time 1 | t <sub>MDS1</sub> | 30  | _   | _   | ms               | Figure 26.30 |
| Mode setup time 2 | t <sub>MDS2</sub> | 10  | _   | _   | t <sub>cyc</sub> | _            |

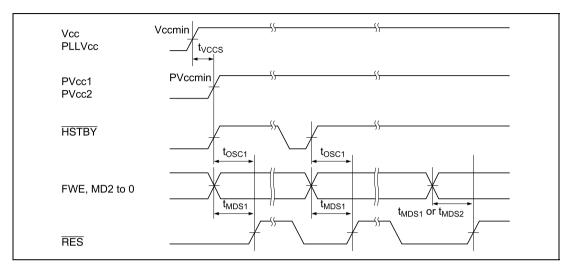



Figure 26.30 Mode Pin Input Timing

# Appendix A On-chip peripheral module Registers

### A.1 Address

On-chip peripheral module register addresses and bit names are shown in the following table. 16-bit and 32-bit registers are shown in two and four rows of 8 bits, respectively.

Table A.1 Address

|            | Register |         |         |         | Bit N   | lames   |         |        |        |                   |
|------------|----------|---------|---------|---------|---------|---------|---------|--------|--------|-------------------|
| Address    | Abbr.    | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1  | Bit 0  | Module            |
| H'FFFFE400 | MCR      | MCR7    | _       | MCR5    | _       | _       | MCR2    | MCR1   | MCR0   | HCAN              |
| H'FFFFE401 | GSR      | _       | _       | _       | _       | GSR3    | GSR2    | GSR1   | GSR0   | (channel 0        |
| H'FFFFE402 | BCR      | BCR7    | BCR6    | BCR5    | BCR4    | BCR3    | BCR2    | BCR1   | BCR0   | _                 |
| H'FFFFE403 | _        | BCR15   | BCR14   | BCR13   | BCR12   | BCR11   | BCR10   | BCR9   | BCR8   | _                 |
| H'FFFFE404 | MBCR     | MBCR7   | MBCR6   | MBCR5   | MBCR4   | MBCR3   | MBCR2   | MBCR1  | _      | _                 |
| H'FFFFE405 | _        | MBCR15  | MBCR14  | MBCR13  | MBCR12  | MBCR11  | MBCR10  | MBCR9  | MBCR8  | _                 |
| H'FFFFE406 | TXPR     | TXPR7   | TXPR6   | TXPR5   | TXPR4   | TXPR3   | TXPR2   | TXPR1  | _      | _                 |
| H'FFFFE407 | _        | TXPR15  | TXPR14  | TXPR13  | TXPR12  | TXPR11  | TXPR10  | TXPR9  | TXPR8  | _                 |
| H'FFFE408  | TXCR     | TXCR7   | TXCR6   | TXCR5   | TXCR4   | TXCR3   | TXCR2   | TXCR1  | _      | _                 |
| H'FFFE409  | _        | TXCR15  | TXCR14  | TCR13   | TXCR12  | TXCR11  | TSCR10  | TXCR9  | TXCR8  | _                 |
| H'FFFE40A  | TXACK    | TXACK7  | TXACK6  | TXACK5  | TXACK4  | TXACK3  | TXACK2  | TXACK1 | _      | _                 |
| H'FFFE40B  | _        | TXACK15 | TXACK14 | TXACK13 | TXACK12 | TXACK11 | TXACK10 | TXACK9 | TXACK8 | _                 |
| H'FFFE40C  | ABACK    | ABACK7  | ABACK6  | ABACK5  | ABACK4  | ABACK3  | ABACK2  | ABACK1 | _      | _                 |
| H'FFFFE40D | _        | ABACK15 | ABACK14 | ABACK13 | ABACK12 | ABACK11 | ABACK10 | ABACK9 | ABACK8 | _                 |
| H'FFFFE40E | RXPR     | RXPR7   | RXPR6   | RXPR5   | RXPR4   | RXPR3   | RXPR2   | RXPR1  | RXPR0  | _                 |
| H'FFFFE40F | _        | RXPR15  | RXPR14  | RXPR13  | RXPR12  | RXPR11  | RXPR10  | RXPR9  | RXPR8  | _                 |
| H'FFFFE410 | RFPR     | RFPR7   | RFPR6   | RFPR5   | RFPR4   | RFPR3   | RFPR2   | RFPR1  | RFPR0  | _                 |
| H'FFFFE411 | _        | RFPR15  | RFPR14  | RFPR13  | RFPR12  | RFPR11  | RFPR10  | RFPR9  | RFPR8  | _                 |
| H'FFFFE412 | IRR      | IRR7    | IRR6    | IRR5    | IRR4    | IRR3    | IRR2    | IRR1   | IRR0   | _                 |
| H'FFFFE413 | _        | _       | _       | _       | IRR12   | _       | _       | IRR9   | IRR8   | _                 |
| H'FFFFE414 | MBIMR    | MBIMR7  | MBIMR6  | MBIMR5  | MBIMR4  | MBIMR3  | MBIMR2  | MBIMR1 | MBIMR0 | _                 |
| H'FFFFE415 | _        | MBIMR15 | MBIMR14 | MBIMR13 | MBIMR12 | MBIMR11 | MBIMR10 | MBIMR9 | MBIMR8 | _                 |
| H'FFFFE416 | IMR      | IMR7    | IMR6    | IMR5    | IMR4    | IMR3    | IMR2    | IMR1   | _      | _                 |
| H'FFFFE417 | _        | _       | _       | _       | IMR12   | _       | _       | IMR9   | IMR8   | _                 |
| H'FFFFE418 | REC      |         |         |         |         |         |         |        |        | <del>-</del><br>_ |
| H'FFFFE419 | TEC      |         |         |         |         |         |         |        |        | =                 |
| H'FFFFE41A | UMSR     | UMSR7   | UMSR6   | UMSR5   | UMSR4   | UMSR3   | UMSR2   | UMSR1  | UMSR0  | _                 |
| H'FFFFE41B |          | UMSR15  | UMSR14  | UMSR13  | UMSR12  | UMSR11  | UMSR10  | UMSR9  | UMSR8  |                   |

Table A.1 Address (cont)

|            | Register |          |          |          | Bit N    | lames    |          |          |          |                   |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------------|
| Address    | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | Module            |
| H'FFFFE41C | LAFML    | LAFML7   | LAFML6   | LAFML5   | LAFML4   | LAFML3   | LAFML2   | LAFML1   | LAFML0   | HCAN              |
| H'FFFFE41D | _        | LAFML15  | LAFML14  | LAFML13  | LAFML12  | LAFML11  | LAFML10  | LAFML9   | LAFML8   | (channel 0)       |
| H'FFFFE41E | LAFMH    | LAFMH7   | LAFMH6   | LAFMH5   | _        | _        | _        | LAFMH1   | LAFMH0   | -                 |
| H'FFFFE41F | _        | LAFMH15  | LAFMH14  | LAFMH13  | LAFMH12  | LAFMH11  | LAFMH10  | LAFMH9   | LAFMH8   | -                 |
| H'FFFFE420 | MC0[1]   |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     | -                 |
| H'FFFFE421 | MC0[2]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE422 | MC0[3]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE423 | MC0[4]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE424 | MC0[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 | -                 |
| H'FFFFE425 | MC0[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | -                 |
| H'FFFFE426 | MC0[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE427 | MC0[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | -                 |
| H'FFFFE428 | MC1[1]   |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     | -                 |
| H'FFFFE429 | MC1[2]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE42A | MC1[3]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE42B | MC1[4]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE42C | MC1[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 | <del>-</del><br>i |
| H'FFFFE42D | MC1[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | -                 |
| H'FFFFE42E | MC1[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE42F | MC1[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | -                 |
| H'FFFFE430 | MC2[1]   |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     | -                 |
| H'FFFFE431 | MC2[2]   |          |          |          |          |          |          |          |          | =                 |
| H'FFFFE432 | MC2[3]   |          |          |          |          |          |          |          |          | =                 |
| H'FFFFE433 | MC2[4]   |          |          |          |          |          |          |          |          | =                 |
| H'FFFFE434 | MC2[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 | -                 |
| H'FFFFE435 | MC2[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | =                 |
| H'FFFFE436 | MC2[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | =                 |
| H'FFFFE437 | MC2[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | =                 |
| H'FFFFE438 | MC3[1]   |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     | =                 |
| H'FFFFE439 | MC3[2]   |          |          |          |          |          |          |          |          | =                 |
| H'FFFFE43A | MC3[3]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE43B | MC3[4]   |          |          |          |          |          |          |          |          | -                 |
| H'FFFFE43C | MC3[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 | <del>-</del><br>i |
| H'FFFFE43D | MC3[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | -                 |
| H'FFFFE43E | MC3[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE43F | MC3[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | -                 |

|            | Register |          |          |          | Bit I      | Names      |            |          |           |                   |
|------------|----------|----------|----------|----------|------------|------------|------------|----------|-----------|-------------------|
| Address    | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4      | Bit 3      | Bit 2      | Bit 1    | Bit 0     | Modul             |
| H'FFFFE440 | MC4[1]   |          |          |          |            | DLC3       | DLC2       | DLC1     | DLC0      | HCAN              |
| H'FFFFE441 | MC4[2]   |          |          |          |            |            |            |          |           | (chann            |
| H'FFFE442  | MC4[3]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFE443  | MC4[4]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFE444  | MC4[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE        |            | EXD_ID17 | EXD_ID16  | 5                 |
| H'FFFE445  | MC4[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6    | STD_ID5    | STD_ID4  | STD_ID3   | _                 |
| H'FFFFE446 | MC4[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3    | EXD_ID2    | EXD_ID1  | EXD_ID0   | _                 |
| H'FFFFE447 | MC4[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | 2 EXD_ID1  | EXD_ID10   | EXD_ID9  | EXD_ID8   | _                 |
| H'FFFFE448 | MC5[1]   |          |          |          |            | DLC3       | DLC2       | DLC1     | DLC0      | _                 |
| H'FFFFE449 | MC5[2]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE44A | MC5[3]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE44B | MC5[4]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE44C | MC5[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE        |            | EXD_ID17 | 'EXD_ID16 | 5                 |
| H'FFFFE44D | MC5[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6    | STD_ID5    | STD_ID4  | STD_ID3   | _                 |
| H'FFFFE44E | MC5[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3    | EXD_ID2    | EXD_ID1  | EXD_ID0   | _                 |
| H'FFFFE44F | MC5[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | 2 EXD_ID1  | EXD_ID10   | EXD_ID9  | EXD_ID8   | _                 |
| H'FFFFE450 | MC6[1]   |          |          |          |            | DLC3       | DLC2       | DLC1     | DLC0      | _                 |
| H'FFFFE451 | MC6[2]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE452 | MC6[3]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE453 | MC6[4]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE454 | MC6[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE        |            | EXD_ID17 | 'EXD_ID16 | <del>-</del><br>5 |
| H'FFFFE455 | MC6[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6    | STD_ID5    | STD_ID4  | STD_ID3   | _                 |
| H'FFFFE456 | MC6[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3    | EXD_ID2    | EXD_ID1  | EXD_ID0   | _                 |
| H'FFFFE457 | MC6[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | 2 EXD_ID1′ | EXD_ID10   | EXD_ID9  | EXD_ID8   | _                 |
| H'FFFFE458 | MC7[1]   |          |          |          |            | DLC3       | DLC2       | DLC1     | DLC0      | -                 |
| H'FFFFE459 | MC7[2]   |          |          |          |            |            |            |          |           | -                 |
| H'FFFFE45A | MC7[3]   |          |          |          |            |            |            |          |           | -                 |
| H'FFFFE45B | MC7[4]   |          |          |          |            |            |            |          |           | -                 |
| H'FFFFE45C | MC7[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE        |            | EXD_ID17 | 'EXD_ID16 | 3                 |
| H'FFFFE45D | MC7[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6    | STD_ID5    | STD_ID4  | STD_ID3   | -                 |
| H'FFFFE45E | MC7[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3    | EXD_ID2    | EXD_ID1  | EXD_ID0   | _                 |
| H'FFFFE45F | MC7[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | 2 EXD_ID1  | I EXD_ID10 | EXD_ID9  | EXD_ID8   | _                 |
| H'FFFFE460 | MC8[1]   |          |          |          |            | DLC3       | DLC2       | DLC1     | DLC0      | _                 |
| H'FFFFE461 | MC8[2]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE462 | MC8[3]   |          |          |          |            |            |            |          |           | _                 |
| H'FFFFE463 | MC8[4]   |          |          |          |            |            |            |          |           | _                 |
|            |          |          | -        |          |            |            |            |          |           |                   |

Table A.1 Address (cont)

|            | Register |          |          |          | Bit N      | lames    |          |          |          |                   |
|------------|----------|----------|----------|----------|------------|----------|----------|----------|----------|-------------------|
| Address    | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4      | Bit 3    | Bit 2    | Bit 1    | Bit 0    | Module            |
| H'FFFFE464 | MC8[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 |                   |
| H'FFFFE465 | MC8[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | (channel 0)       |
| H'FFFFE466 | MC8[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE467 | MC8[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | BEXD_ID12  | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | -                 |
| H'FFFFE468 | MC9[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | -                 |
| H'FFFE469  | MC9[2]   |          |          |          |            |          |          |          |          | =                 |
| H'FFFFE46A | MC9[3]   |          |          |          |            |          |          |          |          | =                 |
| H'FFFFE46B | MC9[4]   |          |          |          |            |          |          |          |          | =                 |
| H'FFFFE46C | MC9[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | -<br>i            |
| H'FFFFE46D | MC9[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | -                 |
| H'FFFFE46E | MC9[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE46F | MC9[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | BEXD_ID12  | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | -                 |
| H'FFFFE470 | MC10[1]  |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | -                 |
| H'FFFFE471 | MC10[2]  |          |          |          |            |          |          |          |          | -                 |
| H'FFFFE472 | MC10[3]  |          |          |          |            |          |          |          |          | -                 |
| H'FFFFE473 | MC10[4]  |          |          |          |            |          |          |          |          | -                 |
| H'FFFFE474 | MC10[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | -<br>;            |
| H'FFFFE475 | MC10[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | -                 |
| H'FFFFE476 | MC10[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE477 | MC10[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | BEXD_ID12  | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | -                 |
| H'FFFFE478 | MC11[1]  |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | -                 |
| H'FFFFE479 | MC11[2]  |          |          |          |            |          |          |          |          | -                 |
| H'FFFFE47A | MC11[3]  |          |          |          |            |          |          |          |          | =                 |
| H'FFFFE47B | MC11[4]  |          |          |          |            |          |          |          |          | -                 |
| H'FFFFE47C | MC11[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | <del>-</del><br>; |
| H'FFFFE47D | MC11[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | -                 |
| H'FFFFE47E | MC11[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE47F | MC11[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | =                 |
| H'FFFFE480 | MC12[1]  |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | -                 |
| H'FFFFE481 | MC12[2]  |          |          |          |            |          |          |          |          | =                 |
| H'FFFFE482 | MC12[3]  |          |          |          |            |          |          |          |          | -                 |
| H'FFFFE483 | MC12[4]  |          |          |          |            |          |          |          |          | -                 |
| H'FFFFE484 | MC12[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | <del>-</del><br>i |
| H'FFFFE485 | MC12[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | -                 |
| H'FFFFE486 | MC12[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | -                 |
| H'FFFFE487 | MC12[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12   | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | <u>-</u>          |

|                  | Register |           |          |          | Bit N    | lames    |          |          |           |         |
|------------------|----------|-----------|----------|----------|----------|----------|----------|----------|-----------|---------|
| Address          | Abbr.    | Bit 7     | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0     | Module  |
| H'FFFFE488       | MC13[1]  |           |          |          |          | DLC3     | DLC2     | DLC1     | DLC0      | HCAN    |
| H'FFFE489        | MC13[2]  |           |          |          |          |          |          |          |           | (channe |
| H'FFFE48A        | MC13[3]  |           |          |          |          |          |          |          |           | -       |
| H'FFFFE48B       | MC13[4]  |           |          |          |          |          |          |          |           | -       |
| H'FFFE48C        | MC13[5]  | STD_ID2   | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16  | -       |
| H'FFFFE48D       | MC13[6]  | STD_ID10  | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3   | -       |
| H'FFFE48E        | MC13[7]  | EXD_ID7   | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0   | -       |
| H'FFFE48F        | MC13[8]  | EXD_ID15  | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8   | -       |
| H'FFFFE490       | MC14[1]  |           |          |          |          | DLC3     | DLC2     | DLC1     | DLC0      | -       |
| H'FFFFE491       | MC14[2]  |           |          |          |          |          |          |          |           | -       |
| H'FFFFE492       | MC14[3]  |           |          |          |          |          |          |          |           | =       |
| H'FFFE493        | MC14[4]  |           |          |          |          |          |          |          |           | =       |
| H'FFFFE494       | MC14[5]  | STD_ID2   | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | 'EXD_ID16 | -       |
| H'FFFFE495       | MC14[6]  | STD_ID10  | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3   | -       |
| H'FFFFE496       | MC14[7]  | EXD_ID7   | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0   | _       |
| H'FFFFE497       | MC14[8]  | EXD_ID15  | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8   | _       |
| H'FFFFE498       | MC15[1]  |           |          |          |          | DLC3     | DLC2     | DLC1     | DLC0      | _       |
| H'FFFFE499       | MC15[2]  |           |          |          |          |          |          |          |           | -       |
| H'FFFFE49A       | MC15[3]  |           |          |          |          |          |          |          |           | -       |
| H'FFFFE49B       | MC15[4]  |           |          |          |          |          |          |          |           | -       |
| H'FFFFE49C       | MC15[5]  | STD_ID2   | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16  | -       |
| H'FFFFE49D       | MC15[6]  | STD_ID10  | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3   | -       |
| H'FFFFE49E       | MC15[7]  | EXD_ID7   | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0   | -       |
| H'FFFFE49F       | MC15[8]  | EXD_ID15  | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8   | -       |
| H'FFFE4A0        | _        | _         | _        | _        | _        | _        | _        | _        | _         | -       |
| to<br>H'FFFFE4AF |          |           |          |          |          |          |          |          |           |         |
| H'FFFFE4B0       |          | MSG_DAT   | ^A 1     |          |          |          |          |          |           | -       |
| H'FFFFE4B1       |          | MSG_DAT   | _        |          |          |          |          |          |           | -       |
| H'FFFFE4B2       |          | MSG_DAT   | _        |          |          |          |          |          |           | -       |
| H'FFFFE4B3       |          | MSG_DAT   |          |          |          |          |          |          |           | -       |
| H'FFFFE4B4       |          | MSG_DAT   | _        |          |          |          |          |          |           | -       |
| H'FFFFE4B5       |          | MSG_DAT   |          |          |          |          |          |          |           | -       |
| H'FFFFE4B6       |          | MSG_DAT   |          |          |          |          |          |          |           | -       |
|                  |          | MSG_DAT   | _        |          |          |          |          |          |           | -       |
| H'FFFFE4B7       | ואוטטנסן | INIOG_DAT | A_0      |          |          |          |          |          |           |         |

Table A.1 Address (cont)

|            | Register |       |        |       | Bi    | t Names |       |       |       |             |
|------------|----------|-------|--------|-------|-------|---------|-------|-------|-------|-------------|
| Address    | Abbr.    | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Module      |
| H'FFFFE4B8 | MD1[1]   | MSG_[ | DATA_1 |       |       |         |       |       |       | HCAN        |
| H'FFFFE4B9 | MD1[2]   | MSG_[ | DATA_2 |       |       |         |       |       |       | (channel 0) |
| H'FFFFE4BA | MD1[3]   | MSG_[ | DATA_3 |       |       |         |       |       |       | _           |
| H'FFFFE4BB | MD1[4]   | MSG_[ | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE4BC | MD1[5]   | MSG_[ | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE4BD | MD1[6]   | MSG_[ | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE4BE | MD1[7]   | MSG_[ | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE4BF | MD1[8]   | MSG_[ | DATA_8 |       |       |         |       |       |       | _           |
| H'FFFFE4C0 | MD2[1]   | MSG_[ | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE4C1 | MD2[2]   | MSG_[ | DATA_2 |       |       |         |       |       |       | _           |
| H'FFFFE4C2 | MD2[3]   | MSG_[ | DATA_3 |       |       |         |       |       |       | _           |
| H'FFFFE4C3 | MD2[4]   | MSG_[ | DATA_4 |       |       |         |       |       |       | _           |
| H'FFFFE4C4 | MD2[5]   | MSG_[ | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE4C5 | MD2[6]   | MSG_[ | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE4C6 | MD2[7]   | MSG_[ | DATA_7 |       |       |         |       |       |       | _           |
| H'FFFFE4C7 | MD2[8]   | MSG_[ | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE4C8 | MD3[1]   | MSG_[ | DATA_1 |       |       |         |       |       |       | _           |
| H'FFFFE4C9 | MD3[2]   | MSG_[ | DATA_2 |       |       |         |       |       |       | _           |
| H'FFFFE4CA | MD3[3]   | MSG_[ | DATA_3 |       |       |         |       |       |       | _           |
| H'FFFFE4CB | MD3[4]   | MSG_[ | DATA_4 |       |       |         |       |       |       | _           |
| H'FFFFE4CC | MD3[5]   | MSG_[ | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE4CD | MD3[6]   | MSG_[ | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE4CE | MD3[7]   | MSG_[ | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE4CF | MD3[8]   | MSG_[ | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE4D0 | MD4[1]   | MSG_[ | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE4D1 | MD4[2]   | MSG_[ | DATA_2 |       |       |         |       |       |       | _           |
| H'FFFFE4D2 | MD4[3]   | MSG_[ | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE4D3 | MD4[4]   | MSG_[ | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE4D4 | MD4[5]   | MSG_[ | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE4D5 | MD4[6]   | MSG_[ | DATA_6 |       |       |         |       |       |       | _           |
| H'FFFFE4D6 | MD4[7]   | MSG_[ | DATA_7 |       |       |         |       |       |       | _           |
| H'FFFFE4D7 | MD4[8]   | MSG_[ | DATA_8 |       |       |         |       |       |       | _           |
| H'FFFFE4D8 | MD5[1]   | MSG_[ | DATA_1 |       |       |         |       |       |       | _           |
| H'FFFFE4D9 | MD5[2]   | MSG_[ | DATA_2 |       |       |         |       |       |       | _           |
| H'FFFFE4DA | MD5[3]   | MSG_[ | DATA_3 |       |       |         |       |       |       |             |

|            | Register |       |        |       | Bi    | t Names |       |       |       |             |
|------------|----------|-------|--------|-------|-------|---------|-------|-------|-------|-------------|
| Address    | Abbr.    | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Module      |
| H'FFFFE4DB | MD5[4]   | MSG_C | ATA_4  |       |       |         |       |       |       | HCAN        |
| H'FFFFE4DC | MD5[5]   | MSG_D | DATA_5 |       |       |         |       |       |       | (channel 0) |
| H'FFFFE4DD | MD5[6]   | MSG_E | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE4DE | MD5[7]   | MSG_D | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE4DF | MD5[8]   | MSG_D | B_ATA  |       |       |         |       |       |       |             |
| H'FFFFE4E0 | MD6[1]   | MSG_E | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE4E1 | MD6[2]   | MSG_E | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE4E2 | MD6[3]   | MSG_E | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE4E3 | MD6[4]   | MSG_E | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE4E4 | MD6[5]   | MSG_E | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE4E5 | MD6[6]   | MSG_E | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE4E6 | MD6[7]   | MSG_E | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE4E7 | MD6[8]   | MSG_D | B_ATA  |       |       |         |       |       |       |             |
| H'FFFFE4E8 | MD7[1]   | MSG_D | DATA_1 |       |       |         |       |       |       | _           |
| H'FFFFE4E9 | MD7[2]   | MSG_D | DATA_2 |       |       |         |       |       |       | _           |
| H'FFFFE4EA | MD7[3]   | MSG_D | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE4EB | MD7[4]   | MSG_D | DATA_4 |       |       |         |       |       |       | _           |
| H'FFFFE4EC | MD7[5]   | MSG_D | DATA_5 |       |       |         |       |       |       | _           |
| H'FFFFE4ED | MD7[6]   | MSG_D | DATA_6 |       |       |         |       |       |       | _           |
| H'FFFFE4EE | MD7[7]   | MSG_E | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE4EF | MD7[8]   | MSG_D | B_ATA  |       |       |         |       |       |       | _           |
| H'FFFFE4F0 | MD8[1]   | MSG_D | DATA_1 |       |       |         |       |       |       | _           |
| H'FFFFE4F1 | MD8[2]   | MSG_D | DATA_2 |       |       |         |       |       |       | _           |
| H'FFFFE4F2 | MD8[3]   | MSG_D | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE4F3 | MD8[4]   | MSG_D | DATA_4 |       |       |         |       |       |       | _           |
| H'FFFFE4F4 | MD8[5]   | MSG_D | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE4F5 | MD8[6]   | MSG_D | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE4F6 | MD8[7]   | MSG_D | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE4F7 | MD8[8]   | MSG_E | B_ATA  |       |       |         |       |       |       |             |
| H'FFFFE4F8 | MD9[1]   | MSG_D | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE4F9 | MD9[2]   | MSG_E | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE4FA | MD9[3]   | MSG_D | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE4FB | MD9[4]   | MSG_E | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE4FC | MD9[5]   | MSG_E | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE4FD | MD9[6]   | MSG_E | DATA_6 | _     |       | _       |       | _     |       |             |

|            | Register |       |        |       | Bi    | t Names |       |       |       |             |
|------------|----------|-------|--------|-------|-------|---------|-------|-------|-------|-------------|
| Address    | Abbr.    | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Module      |
| H'FFFFE4FE | MD9[7]   | MSG_I | DATA_7 |       |       |         |       |       |       | HCAN        |
| H'FFFFE4FF | MD9[8]   | MSG_I | DATA_8 |       |       |         |       |       |       | (channel 0) |
| H'FFFE500  | MD10[1]  | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE501 | MD10[2]  | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE502 | MD10[3]  | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE503 | MD10[4]  | MSG_I | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE504 | MD10[5]  | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE505 | MD10[6]  | MSG_I | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE506 | MD10[7]  | MSG_I | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE507 | MD10[8]  | MSG_I | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE508 | MD11[1]  | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE509 | MD11[2]  | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE50A | MD11[3]  | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE50B | MD11[4]  | MSG_I | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE50C | MD11[5]  | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE50D | MD11[6]  | MSG_I | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE50E | MD11[7]  | MSG_I | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE50F | MD11[8]  | MSG_I | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE510 | MD12[1]  | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE511 | MD12[2]  | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE512 | MD12[3]  | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE513 | MD12[4]  | MSG_I | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE514 | MD12[5]  | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE515 | MD12[6]  | MSG_I | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE516 | MD12[7]  | MSG_I | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE517 | MD12[8]  | MSG_I | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE518 | MD13[1]  | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE519 | MD13[2]  | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE51A | MD13[3]  | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE51B | MD13[4]  | MSG_I | DATA_4 |       |       |         |       |       |       | _           |
| H'FFFFE51C | MD13[5]  | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE51D | MD13[6]  | MSG_I | DATA_6 |       |       |         |       |       |       | _           |
| H'FFFFE51E | MD13[7]  | MSG_I | DATA_7 |       |       |         |       |       |       | _           |
| H'FFFFE51F | MD13[8]  | MSG_I | DATA_8 |       |       |         |       |       |       | _           |

Table A.1 Address (cont)

| Address Abbr. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HFFFFE521 MD14[2] MSG_DATA_2 HFFFFE522 MD14[3] MSG_DATA_3 HFFFFE523 MD14[4] MSG_DATA_4 HFFFFE524 MD14[5] MSG_DATA_5 HFFFFE525 MD14[6] MSG_DATA_6 HFFFFE526 MD14[7] MSG_DATA_7 HFFFFE527 MD14[8] MSG_DATA_8 HFFFFE528 MD15[1] MSG_DATA_1 HFFFFE529 MD15[2] MSG_DATA_2 HFFFFE529 MD15[2] MSG_DATA_3 HFFFFE528 MD15[3] MSG_DATA_3 HFFFFE528 MD15[4] MSG_DATA_4 HFFFFE520 MD15[5] MSG_DATA_6 HFFFFE520 MD15[6] MSG_DATA_5 HFFFFE520 MD15[6] MSG_DATA_6 HFFFFE520 MD15[6] MSG_DATA_6 HFFFFE520 MD15[7] MSG_DATA_8 HFFFFE520 MD15[8] MSG_DATA_8 HFFFFE520 MD15[8] MSG_DATA_8 HFFFFE520 MD15[8] MSG_DATA_8 |
| HFFFFE521 MD14[2] MSG_DATA_2 HFFFFE522 MD14[3] MSG_DATA_3 HFFFFE523 MD14[4] MSG_DATA_4 HFFFFE524 MD14[6] MSG_DATA_5 HFFFFE525 MD14[6] MSG_DATA_6 HFFFFE526 MD14[7] MSG_DATA_7 HFFFFE527 MD14[8] MSG_DATA_8 HFFFFE528 MD15[1] MSG_DATA_1 HFFFFE529 MD15[2] MSG_DATA_1 HFFFFE529 MD15[2] MSG_DATA_2 HFFFFE528 MD15[3] MSG_DATA_3 HFFFFFE528 MD15[4] MSG_DATA_4 HFFFFE52C MD15[5] MSG_DATA_5 HFFFFE52C MD15[6] MSG_DATA_6 HFFFFE52C MD15[6] MSG_DATA_6 HFFFFE52C MD15[7] MSG_DATA_6 HFFFFE52C MD15[8] MSG_DATA_8 HFFFFE52C MD15[8] MSG_DATA_8 HFFFFE52C MD15[8] MSG_DATA_8                             |
| H'FFFFE523 MD14[4] MSG_DATA_4 H'FFFFE524 MD14[5] MSG_DATA_5 H'FFFFE525 MD14[6] MSG_DATA_6 H'FFFFE526 MD14[7] MSG_DATA_7 H'FFFFE527 MD14[8] MSG_DATA_8 H'FFFFE528 MD15[1] MSG_DATA_1 H'FFFFE529 MD15[2] MSG_DATA_2 H'FFFFE529 MD15[3] MSG_DATA_2 H'FFFFE528 MD15[4] MSG_DATA_3 H'FFFFE528 MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52C MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_6 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE53O — — — — — — — — — — — — — — — — — — —                                                                                  |
| H'FFFFE524 MD14[5] MSG_DATA_5 H'FFFFE525 MD14[6] MSG_DATA_6 H'FFFFE526 MD14[7] MSG_DATA_7 H'FFFFE527 MD14[8] MSG_DATA_8 H'FFFFE528 MD15[1] MSG_DATA_1 H'FFFFE529 MD15[2] MSG_DATA_2 H'FFFFE529 MD15[3] MSG_DATA_2 H'FFFFE528 MD15[4] MSG_DATA_3 H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52C MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_6 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE52F MD15[8] MSG_DATA_8                                                                                                                                                                 |
| H'FFFFE525 MD14[6] MSG_DATA_6 H'FFFFE526 MD14[7] MSG_DATA_7 H'FFFFE527 MD14[8] MSG_DATA_8 H'FFFFE528 MD15[1] MSG_DATA_1 H'FFFFE529 MD15[2] MSG_DATA_2 H'FFFFE524 MD15[3] MSG_DATA_3 H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_6 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                          |
| H'FFFFE526 MD14[7] MSG_DATA_7 H'FFFFE527 MD14[8] MSG_DATA_8 H'FFFFE528 MD15[1] MSG_DATA_1 H'FFFFE529 MD15[2] MSG_DATA_2 H'FFFFE520 MD15[3] MSG_DATA_3 H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — — — —                                                                                                                                                                                                                                                    |
| H'FFFFE527 MD14[8] MSG_DATA_8 H'FFFFE528 MD15[1] MSG_DATA_1 H'FFFFE529 MD15[2] MSG_DATA_2 H'FFFFE52A MD15[3] MSG_DATA_3 H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — — —                                                                                                                                                                                                                                                                                    |
| H'FFFFE528 MD15[1] MSG_DATA_1 H'FFFFE529 MD15[2] MSG_DATA_2 H'FFFFE52A MD15[3] MSG_DATA_3 H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                  |
| H'FFFFE529 MD15[2] MSG_DATA_2 H'FFFFE52A MD15[3] MSG_DATA_3 H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                |
| H'FFFFE52A MD15[3] MSG_DATA_3 H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                              |
| H'FFFFE52B MD15[4] MSG_DATA_4 H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                              |
| H'FFFFE52C MD15[5] MSG_DATA_5 H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H'FFFFE52D MD15[6] MSG_DATA_6 H'FFFFE52E MD15[7] MSG_DATA_7 H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H'FFFFE52E MD15[7]     MSG_DATA_7       H'FFFFE52F MD15[8]     MSG_DATA_8       H'FFFFE530     —     —     —     —     —                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H'FFFFE52F MD15[8] MSG_DATA_8 H'FFFFE530 — — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| H'FFFFE530 — — — — — — — — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H'FFFFE5FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| H'FFFFE600 MCR MCR7 — MCR5 — — MCR2 MCR1 MCR0 HCAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| H'FFFFE601 GSR — — — — GSR3 GSR2 GSR1 GSR0 (chan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| H'FFFFE602 BCR BCR7 BCR6 BCR5 BCR4 BCR3 BCR2 BCR1 BCR0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| H'FFFFE603 BCR15 BCR14 BCR13 BCR12 BCR11 BCR10 BCR9 BCR8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H'FFFFE604 MBCR MBCR7 MBCR6 MBCR5 MBCR4 MBCR3 MBCR2 MBCR1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| H'FFFFE605 MBCR15 MBCR14 MBCR13 MBCR12 MBCR11 MBCR10 MBCR9 MBCR8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| H'FFFFE606 TXPR TXPR7 TXPR6 TXPR5 TXPR4 TXPR3 TXPR2 TXPR1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HFFFFE607 TXPR15 TXPR14 TXPR13 TXPR12 TXPR11 TXPR10 TXPR9 TXPR8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HFFFFE608 TXCR TXCR7 TXCR6 TXCR5 TXCR4 TXCR3 TXCR2 TXCR1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HFFFFE609 TXCR15 TXCR14 TCR13 TXCR12 TXCR11 TSCR10 TXCR9 TXCR8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| HFFFFE60A TXACK TXACK7 TXACK6 TXACK5 TXACK4 TXACK3 TXACK2 TXACK1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| HFFFFE60B TXACK15 TXACK14 TXACK13 TXACK12 TXACK11 TXACK10 TXACK9 TXACK8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| H'FFFFE60C ABACK ABACK7 ABACK6 ABACK5 ABACK4 ABACK3 ABACK2 ABACK1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| H'FFFFE60D ABACK15 ABACK14 ABACK13 ABACK12 ABACK11 ABACK10 ABACK9 ABACK8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| H'FFFFE60E RXPR RXPR7 RXPR6 RXPR5 RXPR4 RXPR3 RXPR2 RXPR1 RXPR0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H'FFFFE60F RXPR15 RXPR14 RXPR13 RXPR12 RXPR11 RXPR10 RXPR9 RXPR8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|            | Register |          |          |          | Bit N    | ames     |          |          |          |                   |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------------|
| Address    | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    | Module            |
| H'FFFFE610 | RFPR     | RFPR7    | RFPR6    | RFPR5    | RFPR4    | RFPR3    | RFPR2    | RFPR1    | RFPR0    | HCAN              |
| H'FFFFE611 | _        | RFPR15   | RFPR14   | RFPR13   | RFPR12   | RFPR11   | RFPR10   | RFPR9    | RFPR8    | (channel 1)       |
| H'FFFFE612 | IRR      | IRR7     | IRR6     | IRR5     | IRR4     | IRR3     | IRR2     | IRR1     | IRR0     | _                 |
| H'FFFFE613 | _        | _        | _        | _        | IRR12    | _        | _        | IRR9     | IRR8     | _                 |
| H'FFFFE614 | MBIMR    | MBIMR7   | MBIMR6   | MBIMR5   | MBIMR4   | MBIMR3   | MBIMR2   | MBIMR1   | MBIMR0   | _                 |
| H'FFFFE615 | =        | MBIMR15  | MBIMR14  | MBIMR13  | MBIMR12  | MBIMR11  | MBIMR10  | MBIMR9   | MBIMR8   | _                 |
| H'FFFFE616 | IMR      | IMR7     | IMR6     | IMR5     | IMR4     | IMR3     | IMR2     | IMR1     | _        | _                 |
| H'FFFFE617 | _        | _        | _        | _        | IMR12    | _        | _        | IMR9     | IMR8     | _                 |
| H'FFFFE618 | REC      |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE619 | TEC      |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE61A | UMSR     | UMSR7    | UMSR6    | UMSR5    | UMSR4    | UMSR3    | UMSR2    | UMSR1    | UMSR0    | _                 |
| H'FFFFE61B | _        | UMSR15   | UMSR14   | UMSR13   | UMSR12   | UMSR11   | UMSR10   | UMSR9    | UMSR8    | _                 |
| H'FFFFE61C | LAFML    | LAFML7   | LAFML6   | LAFML5   | LAFML4   | LAFML3   | LAFML2   | LAFML1   | LAFML0   | _                 |
| H'FFFFE61D | _        | LAFML15  | LAFML14  | LAFML13  | LAFML12  | LAFML11  | LAFML10  | LAFML9   | LAFML8   | _                 |
| H'FFFFE61E | LAFMH    | LAFMH7   | LAFMH6   | LAFMH5   | _        | _        | _        | LAFMH1   | LAFMH0   | _                 |
| H'FFFFE61F | _        | LAFMH15  | LAFMH14  | LAFMH13  | LAFMH12  | LAFMH11  | LAFMH10  | LAFMH9   | LAFMH8   | _                 |
| H'FFFFE620 | MC0[1]   |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     | _                 |
| H'FFFFE621 | MC0[2]   |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE622 | MC0[3]   |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE623 | MC0[4]   |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE624 | MC0[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 | <del>-</del><br>6 |
| H'FFFFE625 | MC0[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _                 |
| H'FFFFE626 | MC0[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | _                 |
| H'FFFFE627 | MC0[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _                 |
| H'FFFFE628 | MC1[1]   |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     | _                 |
| H'FFFFE629 | MC1[2]   |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE62A | MC1[3]   |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE62B | MC1[4]   |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE62C | MC1[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 | <del>-</del><br>5 |
| H'FFFFE62D | MC1[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _                 |
| H'FFFFE62E | MC1[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | _                 |
| H'FFFE62F  | MC1[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _                 |
| H'FFFE630  | MC2[1]   |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     | _                 |
| H'FFFFE631 | MC2[2]   |          |          |          |          |          |          |          |          | _                 |
| H'FFFFE632 | MC2[3]   |          |          |          |          |          |          |          |          | _                 |

Table A.1 Address (cont)

|            | Register |          |          |          | Bit N      | Names    |          |          |          |            |
|------------|----------|----------|----------|----------|------------|----------|----------|----------|----------|------------|
| Address    | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4      | Bit 3    | Bit 2    | Bit 1    | Bit 0    | Module     |
| H'FFFE633  | MC2[4]   |          |          |          |            |          |          |          |          | HCAN       |
| H'FFFFE634 | MC2[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | (channel 1 |
| H'FFFE635  | MC2[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _          |
| H'FFFE636  | MC2[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | _          |
| H'FFFE637  | MC2[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _          |
| H'FFFE638  | MC3[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _          |
| H'FFFE639  | MC3[2]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE63A  | MC3[3]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE63B  | MC3[4]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE63C  | MC3[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | <u>-</u>   |
| H'FFFE63D  | MC3[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _          |
| H'FFFE63E  | MC3[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | _          |
| H'FFFE63F  | MC3[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _          |
| H'FFFE640  | MC4[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _          |
| H'FFFFE641 | MC4[2]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE642  | MC4[3]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE643  | MC4[4]   |          |          |          |            |          |          |          |          | _          |
| H'FFFFE644 | MC4[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | Ī          |
| H'FFFE645  | MC4[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _          |
| H'FFFE646  | MC4[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | =          |
| H'FFFFE647 | MC4[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _          |
| H'FFFE648  | MC5[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _          |
| H'FFFFE649 | MC5[2]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE64A  | MC5[3]   |          |          |          |            |          |          |          |          | =          |
| H'FFFE64B  | MC5[4]   |          |          |          |            |          |          |          |          | =          |
| H'FFFE64C  | MC5[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | <u>-</u>   |
| H'FFFE64D  | MC5[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | =          |
| H'FFFE64E  | MC5[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | =          |
| H'FFFE64F  | MC5[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | =          |
| H'FFFE650  | MC6[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _          |
| H'FFFFE651 | MC6[2]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE652  | MC6[3]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE653  | MC6[4]   |          |          |          |            |          |          |          |          | _          |
| H'FFFE654  | MC6[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | _<br> -    |
| H'FFFE655  | MC6[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  |            |

Table A.1 Address (cont)

|            | Register |          |          |          | Bit N      | lames    |          |          |          |          |
|------------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|
| Address    | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4      | Bit 3    | Bit 2    | Bit 1    | Bit 0    | Module   |
| H'FFFFE656 | MC6[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  |          |
| H'FFFE657  | MC6[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | B EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | (channe  |
| H'FFFE658  | MC7[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _        |
| H'FFFFE659 | MC7[2]   |          |          |          |            |          |          |          |          | _        |
| H'FFFE65A  | MC7[3]   |          |          |          |            |          |          |          |          | _        |
| H'FFFFE65B | MC7[4]   |          |          |          |            |          |          |          |          | _        |
| H'FFFE65C  | MC7[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | ī        |
| H'FFFFE65D | MC7[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | =        |
| H'FFFE65E  | MC7[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | _        |
| H'FFFFE65F | MC7[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _        |
| H'FFFFE660 | MC8[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _        |
| H'FFFFE661 | MC8[2]   |          |          |          |            |          |          |          |          | _        |
| H'FFFE662  | MC8[3]   |          |          |          |            |          |          |          |          | _        |
| H'FFFE663  | MC8[4]   |          |          |          |            |          |          |          |          | _        |
| H'FFFE664  | MC8[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | <u>-</u> |
| H'FFFFE665 | MC8[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _        |
| H'FFFFE666 | MC8[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | _        |
| H'FFFFE667 | MC8[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _        |
| H'FFFE668  | MC9[1]   |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _        |
| H'FFFE669  | MC9[2]   |          |          |          |            |          |          |          |          | _        |
| H'FFFE66A  | MC9[3]   |          |          |          |            |          |          |          |          | _        |
| H'FFFE66B  | MC9[4]   |          |          |          |            |          |          |          |          | _        |
| H'FFFFE66C | MC9[5]   | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | <u> </u> |
| H'FFFFE66D | MC9[6]   | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _        |
| H'FFFE66E  | MC9[7]   | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | _        |
| H'FFFE66F  | MC9[8]   | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | _        |
| H'FFFE670  | MC10[1]  |          |          |          |            | DLC3     | DLC2     | DLC1     | DLC0     | _        |
| H'FFFE671  | MC10[2]  |          |          |          |            |          |          |          |          | _        |
| H'FFFE672  | MC10[3]  |          |          |          |            |          |          |          |          | _        |
| H'FFFE673  | MC10[4]  |          |          |          |            |          |          |          |          | _        |
| H'FFFFE674 | MC10[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |          | EXD_ID17 | EXD_ID16 | ;        |
| H'FFFFE675 | MC10[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  | _        |
| H'FFFE676  | MC10[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  | =        |
| H'FFFE677  | MC10[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | B EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  | =        |

Table A.1 Address (cont)

|            | Register |          |          |          | Bit N    | lames    |          |          |          |
|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Address    | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
| H'FFFE678  | MC11[1]  |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     |
| H'FFFE679  | MC11[2]  |          |          |          |          |          |          |          |          |
| H'FFFFE67A | MC11[3]  |          |          |          |          |          |          |          |          |
| H'FFFFE67B | MC11[4]  |          |          |          |          |          |          |          |          |
| H'FFFFE67C | MC11[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 |
| H'FFFFE67D | MC11[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  |
| H'FFFFE67E | MC11[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  |
| H'FFFFE67F | MC11[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  |
| H'FFFFE680 | MC12[1]  |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     |
| H'FFFFE681 | MC12[2]  |          |          |          |          |          |          |          |          |
| H'FFFFE682 | MC12[3]  |          |          |          |          |          |          |          |          |
| H'FFFFE683 | MC12[4]  |          |          |          |          |          |          |          |          |
| H'FFFFE684 | MC12[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 |
| H'FFFFE685 | MC12[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  |
| H'FFFFE686 | MC12[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  |
| H'FFFFE687 | MC12[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  |
| H'FFFFE688 | MC13[1]  |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     |
| H'FFFFE689 | MC13[2]  |          |          |          |          |          |          |          |          |
| H'FFFFE68A | MC13[3]  |          |          |          |          |          |          |          |          |
| H'FFFFE68B | MC13[4]  |          |          |          |          |          |          |          |          |
| H'FFFFE68C | MC13[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 |
| H'FFFFE68D | MC13[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  |
| H'FFFFE68E | MC13[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  |
| H'FFFFE68F | MC13[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  |
| H'FFFFE690 | MC14[1]  |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     |
| H'FFFFE691 | MC14[2]  |          |          |          |          |          |          |          |          |
| H'FFFFE692 | MC14[3]  |          |          |          |          |          |          |          |          |
| H'FFFFE693 | MC14[4]  |          |          |          |          |          |          |          |          |
| H'FFFFE694 | MC14[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR      | IDE      |          | EXD_ID17 | EXD_ID16 |
| H'FFFFE695 | MC14[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7  | STD_ID6  | STD_ID5  | STD_ID4  | STD_ID3  |
| H'FFFFE696 | MC14[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4  | EXD_ID3  | EXD_ID2  | EXD_ID1  | EXD_ID0  |
| H'FFFFE697 | MC14[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | EXD_ID12 | EXD_ID11 | EXD_ID10 | EXD_ID9  | EXD_ID8  |
| H'FFFFE698 | MC15[1]  |          |          |          |          | DLC3     | DLC2     | DLC1     | DLC0     |
| H'FFFFE699 | MC15[2]  |          |          |          |          |          |          |          |          |
|            | MC15[3]  |          |          |          |          |          |          |          |          |

Table A.1 Address (cont)

|                  | Register |          |          |          | Bit N      | lames    |            |          |          |                   |
|------------------|----------|----------|----------|----------|------------|----------|------------|----------|----------|-------------------|
| Address          | Abbr.    | Bit 7    | Bit 6    | Bit 5    | Bit 4      | Bit 3    | Bit 2      | Bit 1    | Bit 0    | Module            |
| H'FFFFE69B       | MC15[4]  |          |          |          |            |          |            |          |          | HCAN              |
| H'FFFFE69C       | MC15[5]  | STD_ID2  | STD_ID1  | STD_ID0  | RTR        | IDE      |            | EXD_ID17 | EXD_ID16 | (channel 1)       |
| H'FFFFE69D       | MC15[6]  | STD_ID10 | STD_ID9  | STD_ID8  | STD_ID7    | STD_ID6  | STD_ID5    |          |          | =                 |
| H'FFFE69E        | MC15[7]  | EXD_ID7  | EXD_ID6  | EXD_ID5  | EXD_ID4    | EXD_ID3  | EXD_ID2    | EXD_ID1  | EXD_ID0  | =                 |
| H'FFFFE69F       | MC15[8]  | EXD_ID15 | EXD_ID14 | EXD_ID13 | 3 EXD_ID12 | EXD_ID11 | 1 EXD_ID10 | EXD_ID9  | EXD_ID8  | =                 |
| H'FFFFE6A0       | _        | _        | _        | _        | _          | _        | _          | _        | _        | _                 |
| to<br>H'FFFFE6AF |          |          |          |          |            |          |            |          |          |                   |
| H'FFFE6B0        | MD0[1]   | MSG_DAT  | TA_1     |          |            |          |            |          |          | _                 |
| H'FFFFE6B1       | MD0[2]   | MSG_DAT  | A_2      |          |            |          |            |          |          | =                 |
| H'FFFFE6B2       | MD0[3]   | MSG_DAT  | TA_3     |          |            |          |            |          |          | -                 |
| H'FFFFE6B3       | MD0[4]   | MSG_DAT  | TA_4     |          |            |          |            |          |          | _                 |
| H'FFFFE6B4       | MD0[5]   | MSG_DAT  | TA_5     |          |            |          |            |          |          | _                 |
| H'FFFFE6B5       | MD0[6]   | MSG_DAT  | TA_6     |          |            |          |            |          |          | _                 |
| H'FFFFE6B6       | MD0[7]   | MSG_DAT  | A_7      |          |            |          |            |          |          | -                 |
| H'FFFFE6B7       | MD0[8]   | MSG_DAT  | A_8      |          |            |          |            |          |          | -                 |
| H'FFFFE6B8       | MD1[1]   | MSG_DAT  | TA_1     |          |            |          |            |          |          | _                 |
| H'FFFFE6B9       | MD1[2]   | MSG_DAT  | TA_2     |          |            |          |            |          |          | _                 |
| H'FFFFE6BA       | MD1[3]   | MSG_DAT  | TA_3     |          |            |          |            |          |          | _                 |
| H'FFFFE6BB       | MD1[4]   | MSG_DAT  | TA_4     |          |            |          |            |          |          | =                 |
| H'FFFFE6BC       | MD1[5]   | MSG_DAT  | TA_5     |          |            |          |            |          |          | =                 |
| H'FFFFE6BD       | MD1[6]   | MSG_DAT  | TA_6     |          |            |          |            |          |          | =                 |
| H'FFFFE6BE       | MD1[7]   | MSG_DAT  | TA_7     |          |            |          |            |          |          | =                 |
| H'FFFFE6BF       | MD1[8]   | MSG_DAT  | TA_8     |          |            |          |            |          |          | =                 |
| H'FFFFE6C0       | MD2[1]   | MSG_DAT  | TA_1     |          |            |          |            |          |          | =                 |
| H'FFFFE6C1       | MD2[2]   | MSG_DAT  | TA_2     |          |            |          |            |          |          | =                 |
| H'FFFFE6C2       | MD2[3]   | MSG_DAT  | TA_3     |          |            |          |            |          |          | =                 |
| H'FFFFE6C3       | MD2[4]   | MSG_DAT  | TA_4     |          |            |          |            |          |          | =                 |
| H'FFFFE6C4       | MD2[5]   | MSG_DAT  | TA_5     |          |            |          |            |          |          | =                 |
| H'FFFFE6C5       | MD2[6]   | MSG_DAT  | TA_6     |          |            |          |            |          |          | =                 |
| H'FFFFE6C6       | MD2[7]   | MSG_DAT  | TA_7     |          |            |          |            |          |          | =                 |
| H'FFFFE6C7       | MD2[8]   | MSG_DAT  | TA_8     |          |            |          |            |          |          | <del>-</del><br>_ |
| H'FFFFE6C8       | MD3[1]   | MSG_DAT  | TA_1     |          |            |          |            |          |          | =                 |
| H'FFFFE6C9       | MD3[2]   | MSG_DAT  | A_2      |          |            |          |            |          |          | _                 |
| H'FFFFE6CA       | MD3[3]   | MSG_DAT  | TA_3     |          |            |          |            |          |          | =<br>_            |
| H'FFFFE6CB       | MD3[4]   | MSG_DAT  | A_4      |          |            |          |            |          |          |                   |

|            | Register |       |        |       | Bi    | t Names |       |       |       |             |
|------------|----------|-------|--------|-------|-------|---------|-------|-------|-------|-------------|
| Address    | Abbr.    | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Module      |
| H'FFFFE6CC | MD3[5]   | MSG_I | DATA_5 |       |       |         |       |       |       | HCAN        |
| H'FFFFE6CD | MD3[6]   | MSG_I | DATA_6 |       |       |         |       |       |       | (channel 1) |
| H'FFFFE6CE | MD3[7]   | MSG_I | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE6CF | MD3[8]   | MSG_I | DATA_8 |       |       |         |       |       |       |             |
| H'FFFE6D0  | MD4[1]   | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE6D1 | MD4[2]   | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE6D2 | MD4[3]   | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE6D3 | MD4[4]   | MSG_I | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE6D4 | MD4[5]   | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE6D5 | MD4[6]   | MSG_I | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE6D6 | MD4[7]   | MSG_I | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE6D7 | MD4[8]   | MSG_I | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE6D8 | MD5[1]   | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE6D9 | MD5[2]   | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE6DA | MD5[3]   | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE6DB | MD5[4]   | MSG_I | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE6DC | MD5[5]   | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE6DD | MD5[6]   | MSG_I | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE6DE | MD5[7]   | MSG_I | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE6DF | MD5[8]   | MSG_I | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE6E0 | MD6[1]   | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE6E1 | MD6[2]   | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE6E2 | MD6[3]   | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE6E3 | MD6[4]   | MSG_I | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE6E4 | MD6[5]   | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE6E5 | MD6[6]   | MSG_I | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE6E6 | MD6[7]   | MSG_I | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE6E7 | MD6[8]   | MSG_I | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE6E8 | MD7[1]   | MSG_I | DATA_1 |       |       |         |       |       |       |             |
| H'FFFE6E9  | MD7[2]   | MSG_I | DATA_2 |       |       |         |       |       |       |             |
| H'FFFE6EA  | MD7[3]   | MSG_I | DATA_3 |       |       |         |       |       |       |             |
| H'FFFE6EB  | MD7[4]   | MSG_I | DATA_4 |       |       |         |       |       |       |             |
| H'FFFE6EC  | MD7[5]   | MSG_I | DATA_5 |       |       |         |       |       |       |             |
| H'FFFE6ED  | MD7[6]   | MSG_I | DATA_6 |       |       |         |       |       |       | <u> </u>    |
| H'FFFE6EE  | MD7[7]   | MSG_I | DATA_7 |       |       |         |       |       |       |             |
|            |          | _     |        |       |       |         |       |       |       |             |

Table A.1 Address (cont)

|            | Register |       |        |       | Bi    | t Names |       |       |       |             |
|------------|----------|-------|--------|-------|-------|---------|-------|-------|-------|-------------|
| Address    | Abbr.    | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Module      |
| H'FFFFE6EF | MD7[8]   | MSG_[ | DATA_8 |       |       |         |       |       |       | HCAN        |
| H'FFFFE6F0 | MD8[1]   | MSG_[ | DATA_1 |       |       |         |       |       |       | (channel 1) |
| H'FFFFE6F1 | MD8[2]   | MSG_[ | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE6F2 | MD8[3]   | MSG_[ | DATA_3 |       |       |         |       |       |       | <del></del> |
| H'FFFE6F3  | MD8[4]   | MSG_[ | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE6F4 | MD8[5]   | MSG_[ | DATA_5 |       |       |         |       |       |       | <del></del> |
| H'FFFFE6F5 | MD8[6]   | MSG_[ | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE6F6 | MD8[7]   | MSG_[ | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE6F7 | MD8[8]   | MSG_[ | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE6F8 | MD9[1]   | MSG_[ | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE6F9 | MD9[2]   | MSG_[ | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE6FA | MD9[3]   | MSG_[ | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE6FB | MD9[4]   | MSG_[ | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE6FC | MD9[5]   | MSG_[ | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE6FD | MD9[6]   | MSG_[ | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE6FE | MD9[7]   | MSG_[ | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE6FF | MD9[8]   | MSG_[ | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE700 | MD10[1]  | MSG_[ | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE701 | MD10[2]  | MSG_[ | DATA_2 |       |       |         |       |       |       | <del></del> |
| H'FFFFE702 | MD10[3]  | MSG_[ | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE703 | MD10[4]  | MSG_[ | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE704 | MD10[5]  | MSG_[ | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE705 | MD10[6]  | MSG_[ | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE706 | MD10[7]  | MSG_[ | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE707 | MD10[8]  | MSG_[ | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE708 | MD11[1]  | MSG_[ | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE709 | MD11[2]  | MSG_[ | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE70A | MD11[3]  | MSG_[ | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE70B | MD11[4]  | MSG_[ | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE70C | MD11[5]  | MSG_[ | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE70D | MD11[6]  | MSG_[ | DATA_6 |       |       |         |       |       |       | <del></del> |
| H'FFFFE70E | MD11[7]  | MSG_[ | DATA_7 |       |       |         |       |       |       | <del></del> |
| H'FFFFE70F | MD11[8]  | MSG_[ | DATA_8 |       |       |         |       |       |       | <del></del> |
| H'FFFFE710 | MD12[1]  | MSG_[ | DATA_1 |       |       |         |       |       |       | <del></del> |
| H'FFFFE711 | MD12[2]  | MSG_[ | DATA_2 |       |       |         |       |       |       |             |

|                  | Register |       |        |       | Ві    | t Names |       |       |       |             |
|------------------|----------|-------|--------|-------|-------|---------|-------|-------|-------|-------------|
| Address          | Abbr.    | Bit 7 | Bit 6  | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Module      |
| H'FFFFE712       | MD12[3]  | MSG_  | DATA_3 |       |       |         |       |       |       | HCAN        |
| H'FFFFE713       | MD12[4]  | MSG_  | DATA_4 |       |       |         |       |       |       | (channel 1) |
| H'FFFFE714       | MD12[5]  | MSG_  | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE715       | MD12[6]  | MSG_  | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE716       | MD12[7]  | MSG_  | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE717       | MD12[8]  | MSG_  | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE718       | MD13[1]  | MSG_  | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE719       | MD13[2]  | MSG_  | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE71A       | MD13[3]  | MSG_  | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE71B       | MD13[4]  | MSG_  | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE71C       | MD13[5]  | MSG_  | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE71D       | MD13[6]  | MSG_  | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE71E       | MD13[7]  | MSG_  | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE71F       | MD13[8]  | MSG_  | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE720       | MD14[1]  | MSG_  | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE721       | MD14[2]  | MSG_  | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE722       | MD14[3]  | MSG_  | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE723       | MD14[4]  | MSG_  | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE724       | MD14[5]  | MSG_  | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE725       | MD14[6]  | MSG_  | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE726       | MD14[7]  | MSG_  | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE727       | MD14[8]  | MSG_  | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE728       | MD15[1]  | MSG_  | DATA_1 |       |       |         |       |       |       |             |
| H'FFFFE729       | MD15[2]  | MSG_  | DATA_2 |       |       |         |       |       |       |             |
| H'FFFFE72A       | MD15[3]  | MSG_  | DATA_3 |       |       |         |       |       |       |             |
| H'FFFFE72B       | MD15[4]  | MSG_  | DATA_4 |       |       |         |       |       |       |             |
| H'FFFFE72C       | MD15[5]  | MSG_  | DATA_5 |       |       |         |       |       |       |             |
| H'FFFFE72D       | MD15[6]  | MSG_  | DATA_6 |       |       |         |       |       |       |             |
| H'FFFFE72E       | MD15[7]  | MSG_  | DATA_7 |       |       |         |       |       |       |             |
| H'FFFFE72F       | MD15[8]  | MSG_  | DATA_8 |       |       |         |       |       |       |             |
| H'FFFFE730       | _        | _     | _      | _     | _     | _       | _     | _     | _     | _           |
| to<br>H'FFFFE7FF |          |       |        |       |       |         |       |       |       |             |

Table A.1 Address (cont)

|                                | Register Bit Names |           |            |             |       |       |       |       |       |                      |
|--------------------------------|--------------------|-----------|------------|-------------|-------|-------|-------|-------|-------|----------------------|
| Address                        | Abbr.              | Bit 7     | Bit 6      | Bit 5       | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module               |
| H'FFFFE800                     | FCCS               | FWE       | _          | _           | FLER  | _     | _     | _     | SCO   | FLASH                |
| H'FFFFE801                     | FPCS               | _         | _          | _           | _     | _     | _     | _     | PPVS  | _                    |
| H'FFFE802                      | FECS               | _         | _          | _           | _     | _     | _     | _     | EPVB  | _                    |
| H'FFFFE803                     | _                  | System ar | ea. Do not | access this | area. |       |       |       |       | _                    |
| H'FFFFE804                     | FKEY               | K7        | K6         | K5          | K4    | K3    | K2    | K1    | K0    | _                    |
| H'FFFFE805                     | FMATS              | MS7       | MS6        | MS5         | MS4   | MS3   | MS2   | MS1   | MS0   | _                    |
| H'FFFFE806                     | FTDAR              | TDER      | TDA6       | TDA5        | TDA4  | TDA3  | TDA2  | TDA1  | TDA0  | _                    |
| H'FFFFE807<br>to<br>H'FFFFEBFF |                    | System ar | ea. Do not | access this | area. |       |       |       |       |                      |
| H'FFFFEC00                     | UBARH              | UBA31     | UBA30      | UBA29       | UBA28 | UBA27 | UBA26 | UBA25 | UBA24 | UBC                  |
| H'FFFFEC01                     | _                  | UBA23     | UBA22      | UBA21       | UBA20 | UBA19 | UBA18 | UBA17 | UBA16 | _                    |
| H'FFFFEC02                     | UBARL              | UBA15     | UBA14      | UBA13       | UBA12 | UBA11 | UBA10 | UBA9  | UBA8  | _                    |
| H'FFFFEC03                     | _                  | UBA7      | UBA6       | UBA5        | UBA4  | UBA3  | UBA2  | UBA1  | UBA0  | _                    |
| H'FFFFEC04                     | UBAMRH             | UBM31     | UBM30      | UBM29       | UBM28 | UBM27 | UBM26 | UBM25 | UBM24 | _                    |
| H'FFFFEC05                     |                    | UBM23     | UBM22      | UBM21       | UBM20 | UBM19 | UBM18 | UBM17 | UBM16 | _                    |
| H'FFFFEC06                     | UBAMRL             | UBM15     | UBM14      | UBM13       | UBM12 | UBM11 | UBM10 | UBM9  | UBM8  | _                    |
| H'FFFFEC07                     |                    | UBM7      | UBM6       | UBM5        | UBM4  | UBM3  | UBM2  | UBM1  | UBM0  | _                    |
| H'FFFFEC08                     | UBBR               |           | _          | _           | _     | _     | _     | _     | _     | _                    |
| H'FFFFEC09                     |                    | CP1       | CP0        | ID1         | ID0   | RW1   | RW0   | SZ1   | SZ0   | _                    |
| H'FFFFEC0A                     | UBCR               |           | _          | _           |       | _     |       |       | _     | _                    |
| H'FFFFEC0B                     |                    | _         | _          | _           | _     | _     | CKS1  | CKS0  | UBID  |                      |
| H'FFFFEC0C<br>to<br>H'FFFFEC0F |                    | _         | _          | _           | _     | _     | _     | _     | _     | _                    |
| H'FFFFEC10                     | TCSR *             | OVF       | WT/IT      | TME         | _     | _     | CKS2  | CKS1  | CKS0  | WDT                  |
| H'FFFFEC11                     | TCNT *             |           |            |             |       |       |       |       |       | _                    |
| H'FFFFEC12                     | _                  | _         | _          | _           | _     | _     | _     | _     | _     | _                    |
| H'FFFFEC13                     | RSTCSR *           | WOVF      | RSTE       | RSTS        | _     | _     | _     | _     | _     |                      |
| H'FFFFEC14                     | SBYCR              | SSBY      | HIZ        | _           | _     | _     | _     | _     | _     | Power-<br>down state |
| H'FFFFEC15<br>to<br>H'FFFFEC1F | _                  | _         | _          | _           | _     | _     | _     | _     | _     | _                    |

Note: \* This is the read address. The write address is H'FFFEC10 for TCSR and TCNT, and H'FFFEC12 for RSTCSR. For details, see section 13.2.4, Register Access.

Table A.1 Address (cont)

|                  | Register          | Bit Names |       |       |       |       |       |       |       |              |  |
|------------------|-------------------|-----------|-------|-------|-------|-------|-------|-------|-------|--------------|--|
| Address          | Abbr.             | Bit 7     | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module       |  |
| H'FFFFEC20       | BCR1              | _         | _     | _     | _     | _     | _     | _     | _     | BSC          |  |
| H'FFFFEC21       | =                 | _         | _     | _     | _     | A3SZ  | A2SZ  | A1SZ  | A0SZ  |              |  |
| H'FFFEC22        | BCR2              | IW31      | IW30  | IW21  | IW20  | IW11  | IW10  | IW01  | IW00  |              |  |
| H'FFFEC23        | _                 | CW3       | CW2   | CW1   | CW0   | SW3   | SW2   | SW1   | SW0   |              |  |
| H'FFFFEC24       | WCR               | W33       | W32   | W31   | W30   | W23   | W22   | W21   | W20   |              |  |
| H'FFFFEC25       |                   | W13       | W12   | W11   | W10   | W03   | W02   | W01   | W00   |              |  |
| H'FFFFEC26       | RAMER             | _         | _     | _     | _     | _     | _     | _     | _     |              |  |
| H'FFFFEC27       |                   | _         | _     | _     | _     | RAMS  | RAM2  | RAM1  | RAM0  |              |  |
| H'FFFFEC28       | _                 | _         | _     | _     | _     | _     | _     | _     | _     | _            |  |
| to<br>H'FFFFECAF |                   |           |       |       |       |       |       |       |       |              |  |
| H'FFFFECB0       | DMAOR             | _         | _     | _     | _     | _     | _     | _     | _     | DMAC (all    |  |
| H'FFFFECB1       | _                 | _         | _     | _     | _     | _     | AE    | NMIF  | DME   | channels)    |  |
| H'FFFFECB2       | _                 | _         | _     | _     | _     | _     | _     | _     | _     |              |  |
| to<br>H'FFFFECBF |                   |           |       |       |       |       |       |       |       |              |  |
| H'FFFECC0        | SAR0              |           |       |       |       |       |       |       |       | DMAC         |  |
| H'FFFFECC1       | =                 |           |       |       |       |       |       |       |       | (channel 0)  |  |
| H'FFFFECC2       | _                 |           |       |       |       |       |       |       |       |              |  |
| H'FFFECC3        | _                 | -         |       |       |       |       |       |       |       |              |  |
| H'FFFFECC4       | DAR0              |           |       |       |       |       |       |       |       |              |  |
| H'FFFFECC5       | _                 | -         |       |       |       |       |       |       |       |              |  |
| H'FFFFECC6       | =                 | -         |       |       |       |       |       |       |       | <u> </u>     |  |
| H'FFFFECC7       | _                 | -         |       |       |       |       |       |       |       |              |  |
| H'FFFFECC8       | DMATCR0           | _         | _     | _     | _     | _     | _     | _     | _     | <u>—</u>     |  |
| H'FFFECC9        | _                 | -         |       |       |       |       |       |       |       |              |  |
| H'FFFFECCA       | <del>-</del><br>\ |           |       |       |       |       |       |       |       | _            |  |
| H'FFFECCB        | <del>-</del><br>5 |           |       |       |       |       |       |       |       |              |  |
| H'FFFFECCC       | CHCR0             | _         | _     | _     | _     | _     | _     | _     | _     | <del>_</del> |  |
| H'FFFFECCD       | <del>-</del><br>) | _         | _     | _     | RS4   | RS3   | RS2   | RS1   | RS0   |              |  |
| H'FFFFECCE       | <del>-</del><br>! | _         | _     | SM1   | SM0   | _     | _     | DM1   | DM0   |              |  |
| H'FFFFECCF       | <u>-</u><br>:     |           | _     | TS1   | TS0   | TM    | IE    | TE    | DE    |              |  |

Table A.1 Address (cont)

|            | Register          | Bit Names |       |       |       |       |       |       |       |             |  |
|------------|-------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------------|--|
| Address    | Abbr.             | Bit 7     | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module      |  |
| H'FFFFECD( | SAR1              |           |       |       |       |       |       |       |       | DMAC        |  |
| H'FFFFECD1 | _<br>             |           |       |       |       |       |       |       |       | (channel 1) |  |
| H'FFFFECD2 | 2                 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECD3 | 3                 |           |       |       |       |       |       |       |       | <del></del> |  |
| H'FFFFECD4 | DAR1              |           |       |       |       |       |       |       |       | <del></del> |  |
| H'FFFFECD5 | <del>_</del><br>5 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECD6 | 5                 |           |       |       |       |       |       |       |       | <del></del> |  |
| H'FFFFECD7 | 7                 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECD8 | B DMATCR1         | _         | _     | _     | _     | _     | _     | _     | _     |             |  |
| H'FFFFECD9 | 9                 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECD/ | 4                 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECDE | 3                 |           |       |       |       |       |       |       |       | <del></del> |  |
| H'FFFFECDO | C CHCR1           | _         | _     | _     | _     | _     | _     | _     | _     |             |  |
| H'FFFFECDI | <u> </u>          | _         | _     | _     | RS4   | RS3   | RS2   | RS1   | RS0   | _           |  |
| H'FFFFECDE | <u> </u>          | _         | _     | SM1   | SM0   | _     | _     | DM1   | DM0   |             |  |
| H'FFFFECDE | =                 | _         | _     | TS1   | TS0   | TM    | IE    | TE    | DE    | _           |  |
| H'FFFFECE  | SAR2              |           |       |       |       |       |       |       |       | DMAC        |  |
| H'FFFFECE1 |                   |           |       |       |       |       |       |       |       | (channel 2) |  |
| H'FFFFECE2 | 2                 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECE3 | 3                 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECE4 | DAR2              |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECE5 | <del>_</del><br>5 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECE6 | <del>_</del><br>5 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECE7 | 7                 |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECE8 | DMATCR2           | _         | _     | _     | _     | _     | _     | _     | _     |             |  |
| H'FFFFECES | <del>_</del>      |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECE/ | <del>\</del>      |           |       |       |       |       |       |       |       |             |  |
| H'FFFFECEE | 3                 |           |       |       |       |       |       |       |       | <del></del> |  |
| H'FFFFECE( | CHCR2             | _         | _     | _     | _     | _     | _     | _     | RO    | <del></del> |  |
| H'FFFFECE  | <del>-</del>      | _         | _     | _     | RS4   | RS3   | RS2   | RS1   | RS0   | <del></del> |  |
| H'FFFFECEE | _                 | _         | _     | SM1   | SM0   | _     | _     | DM1   | DM0   |             |  |
| H'FFFFECEF | :                 | _         | _     | TS1   | TS0   | TM    | IE    | TE    | DE    | <del></del> |  |
|            |                   |           |       |       |       |       |       |       |       |             |  |

|            | Register | Bit Names |       |       |       |       |       |       |       |             |
|------------|----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------------|
| Address    | Abbr.    | Bit 7     | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module      |
| H'FFFFECF0 | SAR3     |           |       |       |       |       |       |       |       | DMAC        |
| H'FFFFECF1 | _        |           |       |       |       |       |       |       |       | (channel 3) |
| H'FFFECF2  | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFECF3 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFECF4  | DAR3     |           |       |       |       |       |       |       |       |             |
| H'FFFFECF5 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFECF6 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFECF7 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFECF8 | DMATCR3  | _         | _     | _     | _     | _     | _     | _     | _     |             |
| H'FFFFECF9 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFECFA |          |           |       |       |       |       |       |       |       |             |
| H'FFFFECFB | _        |           |       |       |       |       |       |       |       | <del></del> |
| H'FFFFECFC | CHCR3    | _         | _     | _     | DI    | _     | _     | _     | _     |             |
| H'FFFFECFD | )        | _         | _     | _     | RS4   | RS3   | RS2   | RS1   | RS0   | <del></del> |
| H'FFFFECFE |          | _         | _     | SM1   | SM0   | _     | _     | DM1   | DM0   |             |
| H'FFFFECFF |          | _         | _     | TS1   | TS0   | TM    | IE    | TE    | DE    |             |
| H'FFFFED00 | IPRA     |           |       |       |       |       |       |       |       | INTC        |
| H'FFFFED01 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED02 | IPRB     |           |       |       |       |       |       |       |       |             |
| H'FFFFED03 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED04 | IPRC     |           |       |       |       |       |       |       |       |             |
| H'FFFFED05 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED06 | IPRD     |           |       |       |       |       |       |       |       |             |
| H'FFFFED07 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED08 | IPRE     |           |       |       |       |       |       |       |       |             |
| H'FFFFED09 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED0A | IPRF     |           |       |       |       |       |       |       |       |             |
| H'FFFFED0B | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED0C | IPRG     |           |       |       |       |       |       |       |       |             |
| H'FFFFED0D | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED0E | IPRH     |           |       |       |       |       |       |       |       |             |
| H'FFFFED0F | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED10 | IPRI     |           |       |       |       |       |       |       |       |             |
| H'FFFFED11 | _        |           |       |       |       |       |       |       |       |             |
| H'FFFFED12 | IPRJ     |           |       |       |       |       |       |       |       |             |
| H'FFFFED13 | _        | -         |       |       |       |       |       |       |       |             |
|            | -        |           |       |       |       |       |       |       | ,     |             |

Table A.1 Address (cont)

|                  | Register | Bit Names |       |       |       |       |       |       |       |             |  |
|------------------|----------|-----------|-------|-------|-------|-------|-------|-------|-------|-------------|--|
| Address          | Abbr.    | Bit 7     | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module      |  |
| H'FFFFED14       | IPRK     |           |       |       |       |       |       |       |       | INTC        |  |
| H'FFFFED15       | _        |           |       |       |       |       |       |       |       |             |  |
| H'FFFFED16       | IPRL     |           |       |       |       |       |       |       |       |             |  |
| H'FFFFED17       | _        |           |       |       |       |       |       |       |       | _           |  |
| H'FFFFED18       | ICR      | NMIL      | _     | _     | _     | _     | _     | _     | NMIE  |             |  |
| H'FFFFED19       | _        | IRQ0S     | IRQ1S | IRQ2S | IRQ3S | IRQ4S | IRQ5S | IRQ6S | IRQ7S | _           |  |
| H'FFFFED1A       | ISR      | _         | _     | _     | _     | _     | _     | _     | _     |             |  |
| H'FFFFED1B       | -        | IRQ0F     | IRQ1F | IRQ2F | IRQ3F | IRQ4F | IRQ5F | IRQ6F | IRQ7F |             |  |
| H'FFFFED1C       | : —      | _         | _     | _     | _     | _     | _     | _     | _     | _           |  |
| to<br>H'FFFFEFFF |          |           |       |       |       |       |       |       |       |             |  |
| H'FFFFF000       |          | C/Ā       | CHR   | PE    | O/Ē   | STOP  | MP    | CKS1  | CKS0  | SCI         |  |
| H'FFFFF001       | BRR0     |           | 01111 |       | 0,2   | 0101  |       | 01101 | 01.00 | (channel 0) |  |
| H'FFFFF002       |          | TIE       | RIE   | TE    | RE    | MPIE  | TEIE  | CKE1  | CKE0  | <u>—</u>    |  |
| H'FFFFF003       |          |           |       |       |       |       |       |       | 0.120 | <u>—</u>    |  |
| H'FFFFF004       |          | TDRE      | RDRF  | ORER  | FER   | PER   | TEND  | MPB   | MPBT  |             |  |
| H'FFFFF005       |          |           |       |       |       |       |       |       |       |             |  |
| H'FFFFF006       | SDCR0    | _         | _     | _     |       | DIR   | _     |       | _     |             |  |
| H'FFFFF007       |          | _         | _     | _     | _     | _     | _     | _     | _     | _           |  |
| H'FFFFF008       |          | C/Ā       | CHR   | PE    | O/E   | STOP  | MP    | CKS1  | CKS0  | SCI         |  |
| H'FFFFF009       | BRR1     |           |       |       |       |       |       |       |       | (channel 1) |  |
| H'FFFFF00A       | SCR1     | TIE       | RIE   | TE    | RE    | MPIE  | TEIE  | CKE1  | CKE0  | _           |  |
| H'FFFFF00B       | TDR1     |           |       |       |       |       |       |       |       | <u>—</u>    |  |
| H'FFFFF00C       | SSR1     | TDRE      | RDRF  | ORER  | FER   | PER   | TEND  | MPB   | MPBT  |             |  |
| H'FFFFF00D       | RDR1     |           |       |       |       |       |       |       |       |             |  |
| H'FFFFF00E       | SDCR1    | _         | _     | _     | _     | DIR   | _     | _     | _     | _           |  |
| H'FFFFF00F       | _        | _         | _     | _     | _     | _     | _     | _     | _     | _           |  |
| H'FFFFF010       | SMR2     | C/Ā       | CHR   | PE    | O/Ē   | STOP  | MP    | CKS1  | CKS0  | SCI         |  |
| H'FFFFF011       | BRR2     |           |       |       |       |       |       |       |       | (channel 2) |  |
| H'FFFFF012       | SCR2     | TIE       | RIE   | TE    | RE    | MPIE  | TEIE  | CKE1  | CKE0  | _           |  |
| H'FFFFF013       | TDR2     |           |       |       |       |       |       |       |       | _           |  |
| H'FFFFF014       | SSR2     | TDRE      | RDRF  | ORER  | FER   | PER   | TEND  | MPB   | MPBT  | _           |  |
| H'FFFFF015       | RDR2     |           |       |       |       |       |       |       |       |             |  |
| H'FFFFF016       | SDCR2    |           | _     | _     | _     | DIR   | _     | _     | _     | _           |  |
| H'FFFFF017       | _        | _         | _     | _     | _     | _     | _     | _     | _     | _           |  |
| -                | -        | -         |       |       |       |       | -     | -     |       |             |  |

Table A.1 Address (cont)

|                  | Register | Bit Names |       |       |       |         |         |       |       |             |  |
|------------------|----------|-----------|-------|-------|-------|---------|---------|-------|-------|-------------|--|
| Address          | Abbr.    | Bit 7     | Bit 6 | Bit 5 | Bit 4 | Bit 3   | Bit 2   | Bit 1 | Bit 0 | Module      |  |
| H'FFFFF018       | SMR3     | C/A       | CHR   | PE    | O/Ē   | STOP    | MP      | CKS1  | CKS0  | SCI         |  |
| H'FFFFF019       | BRR3     |           |       |       |       |         |         |       |       | (channel 3) |  |
| H'FFFFF01A       | SCR3     | TIE       | RIE   | TE    | RE    | MPIE    | TEIE    | CKE1  | CKE0  | _           |  |
| H'FFFFF01B       | TDR3     |           |       |       |       |         |         |       |       | _           |  |
| H'FFFFF01C       | SSR3     | TDRE      | RDRF  | ORER  | FER   | PER     | TEND    | MPB   | MPBT  | _           |  |
| H'FFFFF01D       | RDR3     |           |       |       |       |         |         |       |       | <del></del> |  |
| H'FFFFF01E       | SDCR3    | _         | _     | _     | _     | DIR     | _       | _     | _     | _           |  |
| H'FFFFF01F       | _        | _         | _     | _     | _     | _       | _       | _     | _     | <del></del> |  |
| H'FFFFF020       | SMR4     | C/Ā       | CHR   | PE    | O/Ē   | STOP    | MP      | CKS1  | CKS0  | SCI         |  |
| H'FFFFF021       | BRR4     |           |       |       |       |         |         |       |       | (channel 4) |  |
| H'FFFFF022       | SCR4     | TIE       | RIE   | TE    | RE    | MPIE    | TEIE    | CKE1  | CKE0  | <del></del> |  |
| H'FFFFF023       | TDR4     |           |       |       |       |         |         |       |       | _           |  |
| H'FFFFF024       | SSR4     | TDRE      | RDRF  | ORER  | FER   | PER     | TEND    | MPB   | MPBT  | _           |  |
| H'FFFFF025       | RDR4     |           |       |       |       |         |         |       |       | _           |  |
| H'FFFFF026       | SDCR4    | _         | _     | _     | _     | DIR     | _       | _     | _     | _           |  |
| H'FFFFF027       | _        | _         | _     | _     | _     | _       | _       | _     | _     | _           |  |
| to<br>H'FFFFF3FF |          |           |       |       |       |         |         |       |       |             |  |
| H'FFFFF400       | TSTR2    | STR7D     | STR7C | STR7B | STR7A | STR6D   | STR6C   | STR6B | STR6A | ATU-II (all |  |
| H'FFFFF401       | TSTR1    | STR10     | STR5  | STR4  | STR3  | STR1B,2 | B STR2A | STR1A | STR0  | channels)   |  |
| H'FFFFF402       | TSTR3    | _         | _     | _     | _     | _       | _       | _     | STR11 | _           |  |
| H'FFFFF403       | _        | _         | _     | _     | _     | _       | _       | _     | _     | _           |  |
| H'FFFFF404       | PSCR1    | _         | _     | _     | PSC1E | PSC1D   | PSC1C   | PSC1B | PSC1A | _           |  |
| H'FFFFF405       | _        | _         | _     | _     | _     | _       | _       | _     | _     | _           |  |
| H'FFFFF406       | PSCR2    |           |       |       | PSC2E | PSC2D   | PSC2C   | PSC2B | PSC2A | _           |  |
| H'FFFFF407       | _        | _         | _     | _     | _     | _       | _       | _     | _     | _           |  |
| H'FFFFF408       | PSCR3    | _         | _     | _     | PSC3E | PSC3D   | PSC3C   | PSC3B | PSC3A | _           |  |
| H'FFFFF409       | _        | _         | _     | _     | _     | _       | _       | _     | _     | _           |  |
| H'FFFFF40A       | PSCR4    | _         | _     | _     | PSC4E | PSC4D   | PSC4C   | PSC4B | PSC4A | _           |  |
| H'FFFFF40B       | _        | _         | _     | _     | _     | _       | _       | _     | _     | _           |  |
| H'FFFFF40C       | _        | _         | _     | _     | _     | _       | _       | _     | _     |             |  |
| to<br>H'FFFFF41F |          |           |       |       |       |         |         |       |       |             |  |
| H'FFFFF420       | ICR0DH   |           |       |       |       |         |         |       |       | ATU-II      |  |
| H'FFFFF421       | _        |           |       |       |       |         |         |       |       | (channel 0) |  |
| H'FFFFF422       | ICR0DL   |           |       |       |       |         |         |       |       | <u> </u>    |  |
| H'FFFFF423       | _        |           |       |       |       |         |         |       |       | _           |  |
|                  |          |           |       |       |       |         |         |       |       |             |  |

Table A.1 Address (cont)

|            | Register         | Bit Names |         |         |         |         |         |         |         |                  |  |
|------------|------------------|-----------|---------|---------|---------|---------|---------|---------|---------|------------------|--|
| Address    | Abbr.            | Bit 7     | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Module           |  |
| H'FFFFF424 | ITVRR1           | ITVA9     | ITVA8   | ITVA7   | ITVA6   | ITVE9   | ITVE8   | ITVE7   | TIVE6   | ATU-II           |  |
| H'FFFFF425 | _                | _         | _       | _       | _       | _       | _       | _       | _       | (channel 1)      |  |
| H'FFFFF426 | ITVRR2A          | ITVA13A   | ITVA12A | ITVA11A | ITVA10A | ITVE13A | ITVE12A | ITVE11A | ITVE10A | ATU-II           |  |
| H'FFFFF427 | _                | _         | _       | _       | _       | _       | _       | _       | _       | (channel 2)      |  |
| H'FFFFF428 | ITVRR2B          | ITVA13B   | ITVA12B | ITVA11B | ITVA10B | ITVE13B | ITVE12B | ITVE11B | ITVE10B | _                |  |
| H'FFFFF429 | _                | _         | _       | _       | _       | _       | _       | _       | _       | _                |  |
| H'FFFFF42A | TIOR0            | IO0D1     | IO0D0   | IO0C1   | IO0C0   | IO0B1   | IO0B0   | IO0A1   | IO0A0   | ATU-II           |  |
| H'FFFFF42B | _                | _         | _       | _       | _       | _       | _       | _       | _       | (channel 0)      |  |
| H'FFFFF42C | TSR0             | _         | _       | _       | _       | _       | _       | _       | _       | _                |  |
| H'FFFFF42D | _                | IIF2B     | IIF2A   | IIF1    | OVF0    | ICF0D   | ICF0C   | ICF0B   | ICF0A   | _                |  |
| H'FFFFF42E | TIER0            | _         | _       | _       | _       | _       | _       | _       | _       | _                |  |
| H'FFFFF42F | _                | _         | _       | _       | OVE0    | ICE0D   | ICE0C   | ICE0B   | ICE0A   | _                |  |
| H'FFFFF430 | TCNT0H           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF431 | _                |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF432 | TCNT0L           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF433 | _                |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF434 | ICR0AH           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF435 | _                |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF436 | ICR0AL           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF437 | _                |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF438 | ICR0BH           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF439 | _                |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF43A | ICR0BL           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF43B | _                |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF43C | ICR0CH           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF43D | _                |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF43E | ICR0CL           |           |         |         |         |         |         |         |         | _                |  |
| H'FFFFF43F | <del>-</del><br> |           |         |         |         |         |         |         |         | <del>-</del><br> |  |

|            | Register |       |       |        | Bit I  | Names   |         |         |         |     |
|------------|----------|-------|-------|--------|--------|---------|---------|---------|---------|-----|
| Address    | Abbr.    | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Мо  |
| H'FFFFF440 | TCNT1A   |       |       |        |        |         |         |         |         | ΑТ  |
| H'FFFFF441 | _        |       |       |        |        |         |         |         |         | (cl |
| H'FFFFF442 | TCNT1B   |       |       |        |        |         |         |         |         | •   |
| H'FFFFF443 | _        |       |       |        |        |         |         |         |         | •   |
| H'FFFFF444 | GR1A     |       |       |        |        |         |         |         |         | •   |
| H'FFFFF445 | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF446 | GR1B     |       |       |        |        |         |         |         |         | •   |
| H'FFFFF447 | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF448 | GR1C     |       |       |        |        |         |         |         |         | •   |
| H'FFFFF449 | _        |       |       |        |        |         |         |         |         | =   |
| H'FFFFF44A | GR1D     |       |       |        |        |         |         |         |         | •   |
| H'FFFFF44B | _        |       |       |        |        |         |         |         |         | •   |
| H'FFFFF44C | GR1E     |       |       |        |        |         |         |         |         | -   |
| H'FFFFF44D | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF44E | GR1F     |       |       |        |        |         |         |         |         | •   |
| H'FFFFF44F | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF450 | GR1G     |       |       |        |        |         |         |         |         | -   |
| H'FFFFF451 | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF452 | GR1H     |       |       |        |        |         |         |         |         | -   |
| H'FFFFF453 | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF454 | OCR1     |       |       |        |        |         |         |         |         | -   |
| H'FFFFF455 | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF456 | OSBR1    |       |       |        |        |         |         |         |         | •   |
| H'FFFFF457 | _        |       |       |        |        |         |         |         |         | -   |
| H'FFFFF458 | TIOR1B   | _     | IO1D2 | IO1D1  | IO1D0  | _       | IO1C2   | IO1C1   | IO1C0   | •   |
| H'FFFFF459 | TIOR1A   | _     | IO1B2 | IO1B1  | IO1B0  | _       | IO1A2   | IO1A1   | IO1A0   | •   |
| H'FFFFF45A | TIOR1D   | _     | IO1H2 | IO1H1  | IO1H0  | _       | IO1G2   | IO1G1   | IO1G0   | •   |
| H'FFFFF45B | TIOR1C   | _     | IO1F2 | IO1F1  | IO1F0  | _       | IO1E2   | IO1E1   | IO1E0   |     |
| H'FFFFF45C | TCR1B    | _     | _     | CKEGB1 | CKEGB0 | CKSELB3 | CKSELB2 | CKSELB1 | CKSELB0 | •   |
| H'FFFFF45D | TCR1A    | _     | _     | CKEGA1 | CKEGA0 | CKSELA3 | CKSELA2 | CKSELA1 | CKSELA0 | •   |
| H'FFFFF45E | TSR1A    | _     | _     | _      | _      | _       | _       | _       | OVF1A   |     |
| H'FFFFF45F | _        | IMF1H | IMF1G | IMF1F  | IMF1E  | IMF1D   | IMF1C   | IMF1B   | IMF1A   | -   |
| H'FFFFF460 | TSR1B    | _     | _     | _      | _      | _       | _       | _       | OVF1B   |     |
| H'FFFFF461 | =        |       | _     | _      | _      | _       | _       | _       | CMF1    | •   |

Table A.1 Address (cont)

|                                | Register |       |       |       | Bit   | Names  |        |        |        |                      |
|--------------------------------|----------|-------|-------|-------|-------|--------|--------|--------|--------|----------------------|
| Address                        | Abbr.    | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Module               |
| H'FFFFF462                     | TIER1A   | _     | _     | _     | _     | _      | _      | _      | OVE1A  | ATU-II               |
| H'FFFFF463                     | _        | IME1H | IME1G | IME1F | IME1E | IME1D  | IME1C  | IME1B  | IME1A  | (channel 1)          |
| H'FFFFF464                     | TIER1B   | _     | _     | _     | _     | _      | _      |        | OVE1B  | _                    |
| H'FFFFF465                     | _        | _     | _     | _     | _     | _      | _      | _      | CME1   | _                    |
| H'FFFFF466                     | TRGMDR   | TRGMD | _     | _     | _     | _      | _      | _      | _      | _                    |
| H'FFFFF467<br>to<br>H'FFFFF47F | -        | _     | _     | -     | _     | _      | _      | _      | _      | _                    |
| H'FFFFF480                     | TSR3     | _     | OVF5  | IMF5D | IMF5C | IMF5B  | IMF5A  | OVF4   | IMF4D  | ATU-II               |
| H'FFFFF481                     | _        | IMF4C | IMF4B | IMF4A | OVF3  | IMF3D  | IMF3C  | IMF3B  | IMF3A  | (channels<br>3 to 5) |
| H'FFFFF482                     | TIER3    | _     | OVE5  | IME5D | IME5C | IME5B  | IME5A  | OVE4   | IME4D  | ,                    |
| H'FFFFF483                     | _        | IME4C | IME4B | IME4A | OVE3  | IME3D  | IME3C  | IME3B  | IME3A  | _                    |
| H'FFFFF484                     | TMDR     | _     | _     | _     | _     | _      | T5PWM  | T4PWM  | T3PWM  |                      |
| H'FFFFF485<br>to<br>H'FFFFF49F | _        | _     | _     | -     | _     | _      | _      | _      | _      | _                    |
| H'FFFFF4A0                     | TCNT3    |       |       |       |       |        |        |        |        | ATU-II               |
| H'FFFFF4A1                     | =        | -     |       |       |       |        |        |        |        | (channel 3)          |
| H'FFFFF4A2                     | TGR3A    |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4A3                     | _        |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4A4                     | GR3B     |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4A5                     | _        |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4A6                     | GR3C     |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4A7                     | _        |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4A8                     | GR3D     |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4A9                     | _        |       |       |       |       |        |        |        |        | _                    |
| H'FFFFF4AA                     | TIOR3B   | CCI3D | IO3D2 | IO3D1 | IO3D0 | CCI3C  | IO3C2  | IO3C1  | IO3C0  | _                    |
| H'FFFFF4AB                     | TIOR3A   | CCI3B | IO3B2 | IO3B1 | IO3B0 | CCI3A  | IO3A2  | IO3A1  | IO3A0  | _                    |
| H'FFFFF4AC                     | TCR3     | _     | _     | CKEG1 | CKEG0 | CKSEL3 | CKSEL2 | CKSEL1 | CKSEL0 |                      |
| H'FFFFF4AD<br>to<br>H'FFFFF4BF | _        | _     | _     | _     | _     | _      | _      | _      | _      | _                    |

|                  | Register |       |       |       | Bit   | Names  |        |        |        |             |
|------------------|----------|-------|-------|-------|-------|--------|--------|--------|--------|-------------|
| Address          | Abbr.    | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3  | Bit 2  | Bit 1  | Bit 0  | Module      |
| H'FFFFF4C0       | TCNT4    |       |       |       |       |        |        |        |        | ATU-II      |
| H'FFFFF4C1       | _        |       |       |       |       |        |        |        |        | (channel 4) |
| H'FFFFF4C2       | GR4A     |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4C3       | _        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4C4       | GR4B     |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4C5       | _        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4C6       | GR4C     |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4C7       | _        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4C8       | GR4D     |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4C9       | _        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4CA       | TIOR4B   | CCI4D | IO4D2 | IO4D1 | IO4D0 | CCI4C  | IO4C2  | IO4C1  | IO4C0  | _           |
| H'FFFFF4CB       | TIOR4A   | CCI4B | IO4B2 | IO4B1 | IO4B0 | CCI4A  | IO4A2  | IO4A1  | IO4A0  | _           |
| H'FFFFF4CC       | TCR4     | _     | _     | CKEG1 | CKEG0 | CKSEL3 | CKSEL2 | CKSEL1 | CKSEL0 | _           |
| H'FFFFF4CD       | _        | _     | _     | _     | _     | _      | _      | _      | _      | _           |
| to<br>H'FFFFF4DF |          |       |       |       |       |        |        |        |        |             |
| H'FFFFF4E0       | TCNT5    |       |       |       |       |        |        |        |        | ATU-II      |
| H'FFFFF4E1       | _        |       |       |       |       |        |        |        |        | (channel 5) |
| H'FFFFF4E2       | GR5A     |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4E3       | _        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4E4       | GR5B     |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4E5       | _        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4E6       | GR5C     |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4E7       | _        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4E8       | GR5D     |       |       |       |       |        |        |        |        | =           |
| H'FFFFF4E9       | -        |       |       |       |       |        |        |        |        | _           |
| H'FFFFF4EA       | TIOR5B   | CCI5D | IO5D2 | IO5D1 | IO5D0 | CCI5C  | IO5C2  | IO5C1  | IO5C0  | =           |
| H'FFFFF4EB       | TIOR5A   | CCI5B | IO5B2 | IO5B1 | IO5B0 | CCI5A  | IO5A2  | IO5A1  | IO5A0  | =           |
| H'FFFFF4EC       | TCR5     | _     | _     | CKEG1 | CKEG0 | CKSEL3 | CKSEL2 | CKSEL1 | CKSEL0 | _           |
| H'FFFFF4ED       | _        | _     | _     | _     | _     | _      | _      | _      | _      | _           |
| to<br>H'FFFFF4EF |          |       |       |       |       |        |        |        |        |             |
|                  |          |       |       |       |       |        |        |        |        |             |

|            | Register         |       |       |       | Ві    | it Names |       |       |       |              |
|------------|------------------|-------|-------|-------|-------|----------|-------|-------|-------|--------------|
| Address    | Abbr.            | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3    | Bit 2 | Bit 1 | Bit 0 | Module       |
| H'FFFFF500 | TCNT6A           |       |       |       |       |          |       |       |       | ATU-II       |
| H'FFFFF501 | _                |       |       |       |       |          |       |       |       | (channel 6)  |
| H'FFFFF502 | TCNT6B           |       |       |       |       |          |       |       |       |              |
| H'FFFFF503 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF504 | TCNT6C           |       |       |       |       |          |       |       |       |              |
| H'FFFFF505 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF506 | TCNT6D           |       |       |       |       |          |       |       |       |              |
| H'FFFFF507 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF508 | CYLR6A           |       |       |       |       |          |       |       |       |              |
| H'FFFFF509 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF50A | CYLR6B           |       |       |       |       |          |       |       |       |              |
| H'FFFFF50B | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF50C | CYLR6C           |       |       |       |       |          |       |       |       |              |
| H'FFFFF50D | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF50E | CYLR6D           |       |       |       |       |          |       |       |       |              |
| H'FFFFF50F | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF510 | BFR6A            |       |       |       |       |          |       |       |       |              |
| H'FFFFF511 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF512 | BFR6B            |       |       |       |       |          |       |       |       |              |
| H'FFFFF513 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF514 | BFR6C            |       |       |       |       |          |       |       |       |              |
| H'FFFFF515 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF516 | BFR6D            |       |       |       |       |          |       |       |       |              |
| H'FFFFF517 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF518 | DTR6A            |       |       |       |       |          |       |       |       |              |
| H'FFFFF519 | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF51A | DTR6B            |       |       |       |       |          |       |       |       |              |
| H'FFFFF51B | _                |       |       |       |       |          |       |       |       |              |
| H'FFFFF51C | DTR6C            |       |       |       |       |          |       |       |       |              |
| H'FFFFF51D | <del>-</del><br> |       |       |       |       |          |       |       |       | <del>_</del> |

| Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   Module   M   |            | Register    |        |         |         | Bit N   | lames   |         |         |         |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------|---------|---------|---------|---------|---------|---------|---------|-------------|
| HFFFFF517   TCR68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Address    | _           | Bit 7  | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Module      |
| HFFFFF520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF51E | DTR6D       |        |         |         |         |         |         |         |         |             |
| HFFFFF521   TCR6A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H'FFFFF51F | <del></del> |        |         |         |         |         |         |         |         | (channel 6) |
| HFFFFF522 TSR6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H'FFFFF520 | TCR6B       | _      | CKSELD2 | CKSELD1 | CKSELD0 | _       | CKSELC2 | CKSELC1 | CKSELC0 | _'          |
| HFFFFF522   TIER6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H'FFFFF521 | TCR6A       | _      | CKSELB2 | CKSELB1 | CKSELB0 | _       | CKSELA2 | CKSELA1 | CKSELA0 | <u>-</u> '  |
| HFFFFF525 TIER6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFFF522 | TSR6        | _      | _       | _       | _       | _       | _       | _       | _       | -           |
| HEFFFF525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF523 | _           | UD6D   | UD6C    | UD6B    | UD6A    | CMF6D   | CMF6C   | CMF6B   | CMF6A   | -           |
| HIFFFFF526 PMDR6 DTSELD DTSELD DTSELB DTSELA CNTSELD CNTSELC CNTSELB CNTSELB HIFFFFF57F HIFFFFF57F HIFFFFF58D TCNT7A HIFFFFF581 HIFFFFF582 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFF588 HIFFFFFF888 HIFFFFF888 HIFFFFF888 HIFFFFF888 HIFFFFF888 HIFFFF888 HIFFFF888 HIFFFF888 HIFFFF888 HIFFFF888 HIFFFF888 HIFFF888 HIFFFF888 HIFFFF888 HIFFFF888 HIFFF888 HIFFFF888 HIFFFF888 HIFFF888 HIFFR888 HIFFF888 HIFFF888 HIFFF888 HIFFF888 HIFFF888 HIFFF888 HIFFF | H'FFFFF524 | TIER6       | _      | _       | _       | _       | _       | _       | _       | _       | -           |
| H'FFFF587 H'FFFF580 TCNT7A ATU-II H'FFFF581 TCNT7B H'FFFF582 TCNT7B H'FFFF583 TCNT7C H'FFFF585 TCNT7D H'FFFF586 TCNT7D H'FFFF586 TCNT7D H'FFFF587 H'FFFF588 CYLR7A H'FFFF588 CYLR7A H'FFFF588 CYLR7B H'FFFF588 CYLR7B H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF588 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFF589 TCNT7D H'FFFFF580 TCNT7D H'FFFFF580 TCNT7D H'FFFFF580 TCNT7D H'FFFFF580 TCNT7D H'FFFFF580 TCNT7D H'FFFFF580 TCNT7D H'FFFFFF580 TCNT7D H'FFFFFFFFFFFFFFFFFFFF | H'FFFFF525 | _           | _      | _       | _       | _       | CME6D   | CME6C   | CME6B   | CME6A   | -           |
| TOTA HIFFFF580         TONTA ATU-II (channel 7)           HIFFFF581         TONTA (channel 7)         ATU-II (channel 7)           HIFFFF582         TONTB (channel 7)         TONTA (channel 7)           HIFFFF583         TONTO (channel 7)         TONTA (channel 7)           HIFFFF585         TONTO (channel 7)         TONTA (channel 7)           HIFFFF586         TONTO (channel 7)         TONTA (channel 7)           HIFFFF588         CYLR7A (channel 7)         TONTA (channel 7)           HIFFFF588         CYLR7A (channel 7)         TONTA (channel 7)           HIFFFF588         CYLR7B (channel 7)         TONTA (channel 7)           HIFFFF580         CYLR7D (channel 7)         TONTA (channel 7)           HIFFFF590         BFR7A (channel 7)         TONTA (channel 7)           HIFFFF591         TONTA (channel 7)         TONTA (channel 7)           HIFFFF593         TONTA (channel 7)         TONTA (channel 7)           HIFFFF594         BFR7D         TONTA (channel 7)           HIFFFF595         TONTA (channel 7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF526 | PMDR6       | DTSELD | DTSELC  | DTSELB  | DTSELA  | CNTSELD | CNTSELC | CNTSELB | CNTSELA | -           |
| HFFFF580 TCNT7A ATU-II HFFFF581 TCNT7B HFFFF582 TCNT7B HFFFF583 TCNT7C HFFFF585 TCNT7D HFFFF586 TCNT7D HFFFF587 THFFF588 CYLR7A HFFFF588 CYLR7A HFFFF588 CYLR7B HFFFF588 CYLR7B HFFFF588 CYLR7C HFFFF588 HFFFF588 CYLR7B HFFFF588 HFFFF588 CYLR7B HFFFF588 HFFFF588 CYLR7C HFFFF588 HFFFF588 HFFFF588 CYLR7C HFFFF588 HFFFF588 CYLR7C HFFFF588 HFFFF588 HFFFF588 CYLR7C HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFFF588 HFFFF588 HFFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFFF588 HFFFF588 HFFFFF588 HFFFF588 HFFFFF588 HFFFFFF588 HFFFFFF588 HFFFFFF588 HFFFFFFF588 HFFFFFFFFF888 HFFFFFFFF888 HFFFFFFFF888 HFFFFFFFF                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | _           | _      | _       | _       | _       | _       | _       | _       | _       | _           |
| Channel 7)   HFFFFF582   TCNT7B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |             |        |         |         |         |         |         |         |         |             |
| H'FFFF582 TCNT7B H'FFFF588 TCNT7C H'FFFF586 TCNT7D H'FFFF587 H'FFFF588 CYLR7A H'FFFF588 CYLR7B H'FFFF588 CYLR7B H'FFFF588 CYLR7C H'FFFF58B H'FFFF58C CYLR7C H'FFFF58B H'FFFF58F H'FFFF58F H'FFFF58F H'FFFF590 BFR7A H'FFFF591 H'FFFF592 BFR7B H'FFFF593 H'FFFF594 BFR7C H'FFFF595 H'FFFF595 BFR7C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | TCNT7A      |        |         |         |         |         |         |         |         | ATU-II      |
| HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF589 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF588 HFFFF590 BFR7A HFFFFF591 HFFFFF593 HFFFFF593 HFFFFF594 BFR7C HFFFFF595 HFFFF595                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H'FFFFF581 | _           |        |         |         |         |         |         |         |         | (channel 7) |
| HFFFF588 TCNT7C H'FFFF588 TCNT7D H'FFFF588 CYLR7A H'FFFF588 CYLR7A H'FFFF588 CYLR7B H'FFFF58B H'FFFF58B H'FFFF58C CYLR7C H'FFFF58C CYLR7C H'FFFF58E H'FFFF58E H'FFFF58E H'FFFF58E H'FFFF58F H'FFFF590 BFR7A H'FFFFF591 H'FFFF593 H'FFFF593 H'FFFF594 BFR7C H'FFFF595 H'FFFF595 HFFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H'FFFF582  | TCNT7B      |        |         |         |         |         |         |         |         | -           |
| H'FFFF586 H'FFFF586 TCNT7D HFFFF587 H'FFFF588 CYLR7A H'FFFF589 H'FFFF588 H'FFFF58B H'FFFF58B H'FFFF58C CYLR7C H'FFFF58C H'FFFF58C H'FFFF58C H'FFFF58C H'FFFF58C H'FFFF58C H'FFFF58C H'FFFF591 H'FFFF591 H'FFFF593 H'FFFF593 H'FFFF594 BFR7C H'FFFF595 H'FFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H'FFFF583  | _           |        |         |         |         |         |         |         |         | =           |
| H'FFFF588 TCNT7D H'FFFF588 CYLR7A H'FFFF589 H'FFFF589 H'FFFF58B CYLR7B H'FFFF58B CYLR7C H'FFFF58C CYLR7C H'FFFF58C CYLR7D H'FFFF58F H'FFFF591 H'FFFF591 H'FFFF592 BFR7A H'FFFF593 H'FFFF595 BFR7C H'FFFF595 BFR7C H'FFFF596 BFR7C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H'FFFFF584 | TCNT7C      |        |         |         |         |         |         |         |         | -           |
| H'FFFF587 H'FFFF588 CYLR7A H'FFFFF589 H'FFFF58A CYLR7B H'FFFF58B H'FFFF58C CYLR7C H'FFFF58C CYLR7C H'FFFF58E CYLR7D H'FFFF58F H'FFFF590 BFR7A H'FFFF591 H'FFFF593 H'FFFF593 H'FFFF594 BFR7C H'FFFF595 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H'FFFFF585 | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFF588 CYLR7A H'FFFF589 H'FFFF58A CYLR7B H'FFFF58B H'FFFF58C CYLR7C H'FFFF58C CYLR7D H'FFFF58E H'FFFF58F H'FFFF590 BFR7A H'FFFF591 H'FFFF593 H'FFFF593 H'FFFF594 BFR7C H'FFFF595 BFR7C H'FFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF586 | TCNT7D      |        |         |         |         |         |         |         |         | -           |
| H'FFFF589 H'FFFF58B H'FFFF58B H'FFFF58C CYLR7C H'FFFF58C H'FFFF58C H'FFFF58C H'FFFF58C H'FFFF590 BFR7A H'FFFF591 H'FFFF593 H'FFFF593 H'FFFF594 BFR7C H'FFFF595 H'FFFF596 BFR7C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H'FFFFF587 | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFF58A CYLR7B H'FFFF58B H'FFFF58C CYLR7C H'FFFF58C CYLR7D H'FFFFF58E CYLR7D H'FFFFF590 BFR7A H'FFFFF591 H'FFFFF592 BFR7B H'FFFFF593 H'FFFFF594 BFR7C H'FFFFF596 BFR7C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H'FFFFF588 | CYLR7A      |        |         |         |         |         |         |         |         | -           |
| H'FFFF58B  H'FFFF58C CYLR7C  H'FFFF58D  H'FFFF58E CYLR7D  H'FFFF58F  H'FFFF590 BFR7A  H'FFFFF591  H'FFFFF592 BFR7B  H'FFFFF593  H'FFFFF594 BFR7C  H'FFFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H'FFFFF589 | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFF58C CYLR7C H'FFFF58D  H'FFFF58E CYLR7D H'FFFF58F H'FFFF590 BFR7A H'FFFFF591 H'FFFF592 BFR7B H'FFFF593 H'FFFF594 BFR7C H'FFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H'FFFFF58A | CYLR7B      |        |         |         |         |         |         |         |         | -           |
| H'FFFF58D  H'FFFF58E CYLR7D  H'FFFF58F  H'FFFF590 BFR7A  H'FFFFF591  H'FFFFF592 BFR7B  H'FFFFF593  H'FFFFF594 BFR7C  H'FFFFF595  H'FFFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H'FFFFF58B | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFF58E CYLR7D H'FFFF58F H'FFFF590 BFR7A H'FFFFF591 H'FFFFF592 BFR7B H'FFFFF593 H'FFFFF594 BFR7C H'FFFFF595 H'FFFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H'FFFFF58C | CYLR7C      |        |         |         |         |         |         |         |         | -           |
| H'FFFF596 BFR7D  H'FFFF596 BFR7D  H'FFFF598  H'FFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H'FFFFF58D | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFFF590 BFR7A H'FFFFF591 H'FFFFF592 BFR7B H'FFFFF593 H'FFFFF594 BFR7C H'FFFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF58E | CYLR7D      |        |         |         |         |         |         |         |         | -           |
| H'FFFF591  H'FFFF592  BFR7B  H'FFFF593  H'FFFF594  BFR7C  H'FFFF595  H'FFFF596  BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H'FFFFF58F | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFFF592 BFR7B H'FFFFF594 BFR7C H'FFFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H'FFFFF590 | BFR7A       |        |         |         |         |         |         |         |         | -           |
| H'FFFF593 H'FFFF594 BFR7C H'FFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF591 | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFFF594 BFR7C H'FFFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H'FFFFF592 | BFR7B       |        |         |         |         |         |         |         |         | -           |
| H'FFFF595 H'FFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF593 | _           |        |         |         |         |         |         |         |         | -           |
| H'FFFF596 BFR7D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFFF594 | BFR7C       |        |         |         |         |         |         |         |         | _           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFFF595 | -<br>       |        |         |         |         |         |         |         |         | <u>-</u> '  |
| H'FFFF597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF596 | BFR7D       |        |         |         |         |         |         |         |         | =           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFFF597 | (u          |        |         |         |         |         |         | -0-     | -0-     |             |

|                  | Register |       |         |         | Bit N   | lames |         |                                               |         |              |
|------------------|----------|-------|---------|---------|---------|-------|---------|-----------------------------------------------|---------|--------------|
| Address          | Abbr.    | Bit 7 | Bit 6   | Bit 5   | Bit 4   | Bit 3 | Bit 2   | Bit 1                                         | Bit 0   | Module       |
| H'FFFFF598       | DTR7A    |       |         |         |         |       |         |                                               |         | ATU-II       |
| H'FFFFF599       | _        |       |         |         |         |       |         |                                               |         | (channel 7)  |
| H'FFFFF59A       | DTR7B    |       |         |         |         |       |         |                                               |         | _            |
| H'FFFFF59B       | _        |       |         |         |         |       |         |                                               |         | -            |
| H'FFFFF59C       | DTR7C    |       |         |         |         |       |         |                                               |         | _            |
| H'FFFFF59D       | _        |       |         |         |         |       |         |                                               |         | _            |
| H'FFFFF59E       | DTR7D    |       |         |         |         |       |         |                                               |         | _            |
| H'FFFFF59F       | _        |       |         |         |         |       |         |                                               |         | _            |
| H'FFFFF5A0       | TCR7B    | _     | CKSELD2 | CKSELD1 | CKSELD0 | _     | CKSELC2 | CKSELC1                                       | CKSELC0 | -            |
| H'FFFFF5A1       | TCR7A    | _     | CKSELB2 | CKSELB1 | CKSELB0 | _     | CKSELA2 | CKSELA1                                       | CKSELA0 | _            |
| H'FFFFF5A2       | TSR7     | _     | _       | _       | _       | _     | _       | _                                             | _       | _            |
| H'FFFFF5A3       | _        | _     | _       | _       | _       | CMF7D | CMF7C   | C <f7b< td=""><td>CMF7A</td><td>_</td></f7b<> | CMF7A   | _            |
| H'FFFFF5A4       | TIER7    | _     | _       | _       | _       | _     | _       | _                                             | _       | _            |
| H'FFFFF5A5       | _        | _     | _       | _       | _       | CME7D | CME7C   | CME7B                                         | CME7A   | _            |
| H'FFFFF5A6       | _        | _     | _       | _       | _       | _     | _       | _                                             | _       | _            |
| to<br>H'FFFF5BF  |          |       |         |         |         |       |         |                                               |         |              |
| H'FFFF5C0        | TCNT11   |       |         |         |         |       |         |                                               |         | ATU-II       |
| H'FFFF5C1        | -        |       |         |         |         |       |         |                                               |         | (channel 11) |
| H'FFFF5C2        | GR11A    |       |         |         |         |       |         |                                               |         | _            |
| H'FFFF5C3        | _        |       |         |         |         |       |         |                                               |         | _            |
| H'FFFFF5C4       | GR11B    |       |         |         |         |       |         |                                               |         | -            |
| H'FFFFF5C5       | _        |       |         |         |         |       |         |                                               |         | -            |
| H'FFFF5C6        | TIOR11   | _     | IO11B2  | IO11B1  | IO11B0  | _     | IO11A2  | IO11A1                                        | IO11A0  | -            |
| H'FFFF5C7        | _        | _     | _       | _       | _       | _     | _       | _                                             | _       | -            |
| H'FFFF5C8        | TCR11    | _     | _       | CKEG1   | CKEG0   | _     | CKSELA2 | CKSELA1                                       | CKSELA0 | -            |
| H'FFFF5C9        | _        | _     | _       | _       | _       | _     | _       | _                                             | _       | =            |
| H'FFFF5CA        | TSR11    | _     | _       | _       | _       | _     | _       | _                                             | OVF11   | =            |
| H'FFFF5CB        | _        | _     | _       | _       | _       | _     | _       | IMF11B                                        | IMF11A  | _            |
| H'FFFF5CC        | TIER11   | _     | _       | _       | _       | _     | _       | _                                             | OVE11   | _            |
| H'FFFF5CD        | _        | _     | _       | _       | _       | _     | _       | IME11B                                        | IME11A  | _            |
| H'FFFF5CE        | _        | _     | _       | _       | _       | _     | _       | _                                             | _       | _            |
| to<br>H'FFFFF5FF |          |       |         |         |         |       |         |                                               |         |              |
| H'FFFFF600       | TCNT24   |       |         |         |         |       |         |                                               |         | ATU-II       |
| H'FFFFF601       | -        |       |         |         |         |       |         |                                               |         | (channel 2)  |
|                  | -0-      |       | _       |         | -       | -     |         |                                               |         |              |

| Address   Abbr.   Bit 7   Bit 6   Bit 5   Bit 4   Bit 3   Bit 2   Bit 1   Bit 0   Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | Register |       |       |       | Ві    | t Names |       |       |       |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------|-------|-------|-------|---------|-------|-------|-------|--------------|
| HFFFFF603   GR2A   HFFFFF605   GR2B   HFFFFF606   GR2B   HFFFFF607   HFFFFF607   HFFFFF608   GR2C   HFFFFF609   HFFFFF608   GR2C   HFFFFF609   HFFFFF600   HFFFF600   HFFFFF600   HFFFFF600   HFFFFF600   HFFFFF600   HFFFF600   HFFFFF600   HFFFF600   HFFFF6   | Address    | _        | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3   | Bit 2 | Bit 1 | Bit 0 | Module       |
| HFFFFF604 GR2A HFFFFF605 HFFFFF606 GR2B HFFFFF607 HFFFFF608 GR2C HFFFFF608 GR2C HFFFFF609 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFF608 HFFFFF608 HFFFF608 HFFFF | H'FFFFF602 | TCNT2B   |       |       |       |       |         |       |       |       |              |
| HFFFFF605 HFFFFF606 HFFFFF607 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF608 HFFFFF60B HFFFFF60B HFFFFF60B HFFFFF60B HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFFF60C HFFFFFF60C HFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF                                      | H'FFFF603  | _        |       |       |       |       |         |       |       |       | (channel 2)  |
| H'FFFFF60 GR2B H'FFFFF607 H'FFFFF608 GR2C H'FFFFF609 H'FFFFF608 GR2D H'FFFFF60C GR2E H'FFFFF60C GR2E H'FFFFF60C GR2F H'FFFFF60 GR2F H'FFFFF61 GR2G H'FFFFF61 GR2G H'FFFFF61 GR2G H'FFFFF61 OR2A H'FFFFF613 H'FFFFF61 OR2A H'FFFFF61 OR2A H'FFFFF61 OR2A H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF61 OR2C H'FFFFF OR2C H'FFFFF OR2C H'FFFFF OR2C H'FFFF  | H'FFFF604  | GR2A     |       |       |       |       |         |       |       |       |              |
| H'FFFFF607 H'FFFFF608 H'FFFFF609 H'FFFFF609 H'FFFFF600 H'FFFFF60C H'FFFFF60C H'FFFFF60C H'FFFFF60C H'FFFFF60C H'FFFFF610 H'FFFFF611 H'FFFFF612 GR2B H'FFFFF613 H'FFFFF614 OCR2A H'FFFFF615 H'FFFFF616 CR2B H'FFFFF617 H'FFFFF617 H'FFFFF618 H'FFFFF618 H'FFFFF619 H'FFFFF619 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFF610 H'FFFFF610 H'FFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFFF610 H'FFFF610 H'FFFFF610  H'FFFFF605 | _        |       |       |       |       |         |       |       |       |              |
| HFFFFF608 GR2C HFFFFF609 HFFFFF60A GR2D HFFFFF60C GR2E HFFFFF60C GR2E HFFFFF60F HFFFFF60F HFFFFF60F HFFFFF61 GR2G HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFF61 GR2C HFFFFFF61 GR2C HFFFFFF61 GR2C HFFFFFFFC1 GR2C HFFFFFFFC1 GR2C HFFFFFFC1 GR2C HFFFFFFC1 GR2C HFFFFFFC1 GR2C HFFFFFFC1 GR2C HFFFFFC1 GR2C HFFF | H'FFFFF606 | GR2B     |       |       |       |       |         |       |       |       |              |
| HFFFF609 HFFFF60A GR2D HFFFFF60B HFFFFF60B HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF60C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61S HFFFFF61S HFFFFF61S HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFF61C HFFFFFC1C HFFFFFC1C HFFFFFC1C HFFFFFC1C HFFFFFC1C HFFFFFC1C HFFFFFC1C HFFFFFC1C HFFFFC1C HFFFC1C HFFFC1C HFFFFC1C HFFFFC1C HFFFFC1C HFFFF | H'FFFF607  | _        |       |       |       |       |         |       |       |       | _            |
| H'FFFF60B H'FFFF60B H'FFFF60C R2E H'FFFF60D H'FFFFF60C H'FFFFF60C H'FFFFF60C H'FFFFF60C H'FFFFF60C H'FFFFF61C H'FFFF61C H'FFFFC1C H'FFFFC1C H'FFFF | H'FFFF608  | GR2C     |       |       |       |       |         |       |       |       |              |
| HFFFF60B HFFFF60C HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60E HFFFF60F HFFFF60F HFFFF60F HFFFF610 HFFFF611 HFFFF613 HFFFF614 HFFFF615 HFFFF616 HFFFF616 HFFFF616 HFFFF617 HFFFF618 HFFFF618 HFFFF618 HFFFF619 HFFFF619 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFFFF610 HFF | H'FFFF609  | _        |       |       |       |       |         |       |       |       |              |
| HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFF60D HFFFFF60D HFFFFFF60D HFFFFFF60D HFFFFF60D HFFFFF60D HFFFFF60D HFFFFF60D HFFFFFF60D HFFFFFF60D HFFFFFF60D                                                                                                                                                                                                                                  | H'FFFF60A  | GR2D     |       |       |       |       |         |       |       |       |              |
| HFFFF60D  HFFFF60E GR2F  HFFFF60F  HFFFF60F  HFFFF610 GR2G  HFFFF611  HFFFF612 GR2H  HFFFF613  HFFFF615  HFFFF616 OCR2B  HFFFF617  HFFFF618 OCR2C  HFFFF619  HFFFF619  HFFFF61D  HFFFF61D  HFFFF61C OCR2E  HFFFF61F  HFFFF61C OCR2E  HFFFF61C  HFFFF61C OCR2E  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFF61C  HFFFFC1C   | H'FFFF60B  | _        |       |       |       |       |         |       |       |       | _            |
| HFFFF60E GR2F HFFFF60F HFFFF60F HFFFF610 GR2G HFFFFF611 HFFFFF612 GR2H HFFFF613 HFFFF614 OCR2A HFFFF615 HFFFF616 OCR2B HFFFF617 HFFFF618 OCR2C HFFFF619 HFFFF61A OCR2D HFFFF61B HFFFF61B HFFFF61C OCR2E HFFFF61C HFFFF61C OCR2E HFFFF61C HFFFF61C OCR2E HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C HFFFF61C OCR2C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C HFFFF61C                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H'FFFF60C  | GR2E     |       |       |       |       |         |       |       |       |              |
| HFFFF60F HFFFF610 GR2G HFFFF611 GR2H HFFFF612 GR2H HFFFF613 HFFFF614 OCR2A HFFFF615 HFFFF616 OCR2B HFFFF617 HFFFF618 OCR2C HFFFF618 OCR2C HFFFF619 HFFFF619 OCR2E HFFFF619 HFFFF610 OCR2E HFFFF610 OCR2E HFFFF611 HFFFF610 OCR2E HFFFF611 HFFFF610 OCR2E HFFFF610 HFFFF610 OCR2E HFFFF611 HFFFF610 OCR2E HFFFF611 HFFFF610 OCR2E HFFFF610 OCR2E HFFFF611 OCR2E HFFFF611 OCR2E HFFFF612 OCR2B HFFFF613 OCR2B HFFFF614 OCR2B HFFFF615 OCR2B HFFFF615 OCR2B HFFFF615 OCR2B HFFFF616 OCR2B HFFFF617 OCR2B HFFFF618 OCR2B HFFFF619 OCR2B HFFFF619 OCR2B HFFFF610 OCR2B HFFFF610 OCR2B HFFFF610 OCR2B HFFFF621 OCR2B HFFFF621 OCR2B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H'FFFFF60D | _        |       |       |       |       |         |       |       |       |              |
| HFFFF611 HFFFF612 GR2H HFFFF613 HFFFF614 OCR2A HFFFF615 HFFFF616 OCR2B HFFFF617 HFFFF618 OCR2C HFFFF619 HFFFF61B HFFFF61B HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2E HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C HFFFF61C OCR2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H'FFFF60E  | GR2F     |       |       |       |       |         |       |       |       |              |
| H'FFFF612 GR2H H'FFFF613 H'FFFF613 OCR2A H'FFFFF616 OCR2B H'FFFF616 OCR2C H'FFFF617 H'FFFF618 OCR2C H'FFFF619 H'FFFF61B H'FFFF61D OCR2E H'FFFF61C OCR2E H'FFFF61C OCR2E H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C H'FFFF61C OCR2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H'FFFF60F  | _        |       |       |       |       |         |       |       |       | <del></del>  |
| H'FFFF612 GR2H H'FFFF613 H'FFFF614 OCR2A H'FFFF615 H'FFFF616 OCR2B H'FFFF617 H'FFFF618 OCR2C H'FFFF619 H'FFFF61A OCR2D H'FFFF61B H'FFFF61B H'FFFF61C OCR2E H'FFFF61C H'FFFF61C H'FFFF620 OCR2C H'FFFF621 H'FFFF621 H'FFFF621 H'FFFF623 H'FFFF623 H'FFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H'FFFF610  | GR2G     |       |       |       |       |         |       |       |       |              |
| HFFFF613 HFFFF614 OCR2A HFFFF615 HFFFF616 OCR2B HFFFF617 HFFFF618 OCR2C HFFFF619 HFFFF61A OCR2D HFFFF61B HFFFF61B HFFFF61C OCR2E HFFFF61C HFFFF61C OCR2E HFFFF61C HFFFF61C HFFFF61C HFFFF620 OCR2C HFFFFF621 HFFFFF622 OCR2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H'FFFFF611 | _        |       |       |       |       |         |       |       |       | <del></del>  |
| HFFFFF614 OCR2A HFFFFF615 HFFFFF616 OCR2B HFFFFF617 HFFFFF618 OCR2C HFFFFF619 HFFFFF61A OCR2D HFFFFF61B HFFFFF61B HFFFFF61C OCR2E HFFFFF61C HFFFFF61C HFFFFF620 OCR2F HFFFFF621 HFFFFF622 OCR2H HFFFFF623 HFFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFF612  | GR2H     |       |       |       |       |         |       |       |       |              |
| H'FFFF615 H'FFFF616 OCR2B H'FFFFF617 H'FFFFF618 OCR2C H'FFFFF619 H'FFFFF61A OCR2D H'FFFFF61B H'FFFFF61D H'FFFFF61C OCR2E H'FFFFF61D H'FFFFF61C H'FFFFF61C H'FFFFF621 H'FFFFF621 H'FFFFF621 H'FFFFF623 H'FFFFF623 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H'FFFF613  | _        |       |       |       |       |         |       |       |       | <del></del>  |
| H'FFFF616 OCR2B H'FFFF617 H'FFFF618 OCR2C H'FFFF619 H'FFFF61A OCR2D H'FFFF61B H'FFFF61C OCR2E H'FFFF61D H'FFFFF61C H'FFFF61C H'FFFF61C H'FFFF61E H'FFFF620 OCR2G H'FFFFF621 H'FFFFF621 H'FFFFF621 H'FFFFF623 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H'FFFFF614 | OCR2A    |       |       |       |       |         |       |       |       |              |
| HFFFF617 HFFFF618 OCR2C HFFFFF619 HFFFFF61A OCR2D HFFFFF61B HFFFFF61C OCR2E HFFFFF61C HFFFFF61E HFFFFF61E HFFFFF61E HFFFFF620 OCR2G HFFFFF621 HFFFFF621 HFFFFF623 HFFFFF623 HFFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H'FFFFF615 | _        |       |       |       |       |         |       |       |       | <del></del>  |
| H'FFFF618 OCR2C H'FFFF619 H'FFFFF61A OCR2D H'FFFFF61B H'FFFFF61C OCR2E H'FFFFF61D H'FFFFF61E OCR2F H'FFFFF61F H'FFFFF620 OCR2G H'FFFFF621 H'FFFFF621 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H'FFFFF616 | OCR2B    |       |       |       |       |         |       |       |       |              |
| H'FFFF619 H'FFFF61A OCR2D H'FFFFF61B H'FFFFF61C OCR2E H'FFFFF61D H'FFFFF61E OCR2F H'FFFFF61F H'FFFFF620 OCR2G H'FFFFF621 H'FFFFF621 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H'FFFFF617 | _        |       |       |       |       |         |       |       |       | _            |
| H'FFFF61A OCR2D H'FFFF61B H'FFFFF61C OCR2E H'FFFFF61D H'FFFFF61E OCR2F H'FFFFF61F H'FFFFF620 OCR2G H'FFFFF621 H'FFFFF621 H'FFFFF623 H'FFFFF623 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFF618  | OCR2C    |       |       |       |       |         |       |       |       |              |
| H'FFFF61B H'FFFF61C OCR2E H'FFFFF61D H'FFFFF61E OCR2F H'FFFFF61F H'FFFFF620 OCR2G H'FFFFF621 H'FFFFF621 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H'FFFFF619 | _        |       |       |       |       |         |       |       |       | _            |
| H'FFFF61C OCR2E H'FFFF61D H'FFFFF61E OCR2F H'FFFFF620 OCR2G H'FFFFF621 H'FFFFF622 OCR2H H'FFFFF623 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H'FFFF61A  | OCR2D    |       |       |       |       |         |       |       |       |              |
| H'FFFF61D  H'FFFF61E OCR2F  H'FFFF620 OCR2G  H'FFFFF621  H'FFFF622 OCR2H  H'FFFFF623  H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | H'FFFF61B  | _        |       |       |       |       |         |       |       |       | _            |
| H'FFFF61E OCR2F H'FFFF620 OCR2G H'FFFFF621 H'FFFFF622 OCR2H H'FFFFF623 H'FFFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H'FFFFF61C | OCR2E    |       |       |       |       |         |       |       |       |              |
| H'FFFF621 H'FFFF622 OCR2H H'FFFF623 H'FFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H'FFFFF61D | _        |       |       |       |       |         |       |       |       |              |
| H'FFFF620 OCR2G H'FFFF621 H'FFFF622 OCR2H H'FFFF623 H'FFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H'FFFFF61E | OCR2F    |       |       |       |       |         |       |       |       |              |
| H'FFFF621 H'FFFF622 OCR2H H'FFFF623 H'FFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H'FFFFF61F | _        |       |       |       |       |         |       |       |       |              |
| H'FFFF622 OCR2H H'FFFF623 H'FFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF620 | OCR2G    |       |       |       |       |         |       |       |       |              |
| H'FFFF623 H'FFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFFF621 | _        |       |       |       |       |         |       |       |       |              |
| H'FFFF624 OSBR2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFF622  | OCR2H    |       |       |       |       |         |       |       |       |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFFF623 |          |       |       |       |       |         |       |       |       |              |
| H'FFFF625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H'FFFF624  | OSBR2    |       |       |       |       |         |       |       |       | <del>_</del> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H'FFFFF625 |          |       |       |       |       |         |       |       | -0-   |              |

Table A.1 Address (cont)

|                                | Register |       |       |        | Bit N  | lames   |         |         |         |             |
|--------------------------------|----------|-------|-------|--------|--------|---------|---------|---------|---------|-------------|
| Address                        | Abbr.    | Bit 7 | Bit 6 | Bit 5  | Bit 4  | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Module      |
| H'FFFFF626                     | TIOR2B   | _     | IO2D2 | IO2D1  | IO2D0  | _       | IO2C2   | IO2C1   | IO2C0   | ATU-II      |
| H'FFFFF627                     | TIOR2A   | _     | IO2B2 | IO2B1  | IO2B0  | _       | IO2A2   | IO2A1   | IO2A0   | (channel 2) |
| H'FFFFF628                     | TIOR2D   | _     | IO2H2 | IO2H1  | IO2H0  | _       | IO2G2   | IO2G1   | IO2G0   | -           |
| H'FFFFF629                     | TIOR2C   | _     | IO2F2 | IO2F1  | IO2F0  | _       | IO2E2   | IO2E1   | IO2E0   | <u>-</u> '  |
| H'FFFFF62A                     | TCR2B    | _     | _     | CKEGB1 | CKEGB0 | CKSELB3 | CKSELB2 | CKSELB1 | CKSELB0 | -           |
| H'FFFFF62B                     | TCR2A    | _     | _     | CKEGA1 | CKEGA0 | CKSELA3 | CKSELA2 | CKSELA1 | CKSELA0 | <u>-</u> '  |
| H'FFFFF62C                     | TSR2A    | _     | _     | _      | _      | _       | _       | _       | OVF2A   | -           |
| H'FFFFF62D                     | _        | IMF2H | IMF2G | IMF2F  | IMF2E  | IMF2D   | IMF2C   | IMF2B   | IMF2A   | <u>-</u> '  |
| H'FFFFF62E                     | TSR2B    | _     | _     | _      | _      | _       | _       | _       | OVF2B   | -           |
| H'FFFFF62F                     | _        | CMF2H | CMF2G | CMF2F  | CMF2E  | CMF2D   | CMF2C   | CMF2B   | CMF2A   | •           |
| H'FFFFF630                     | TIER2A   | _     | _     | _      | _      | _       | _       | _       | OVE1A   | •           |
| H'FFFFF631                     | _        | IME2H | IME2G | IME2F  | IME2E  | IME2D   | IME2C   | IME2B   | IME2A   | •           |
| H'FFFFF632                     | TIER2B   | _     | _     | _      | _      | _       | _       | _       | OVE2B   | •           |
| H'FFFFF633                     | _        | CME2H | CME2G | CME2F  | CME2E  | CME2D   | CME2C   | CME2B   | CME2A   |             |
| H'FFFFF634<br>to<br>H'FFFFF63F | _        | _     | _     | _      | _      | _       | _       | _       | _       | _           |
| H'FFFFF640                     | DCNT8A   |       |       |        |        |         |         |         |         | ATU-II      |
| H'FFFFF641                     | _        |       |       |        |        |         |         |         |         | (channel 8) |
| H'FFFFF642                     | DNCT8B   |       |       |        |        |         |         |         |         | _           |
| H'FFFFF643                     |          |       |       |        |        |         |         |         |         | _           |
| H'FFFFF644                     | DNCT8C   |       |       |        |        |         |         |         |         | _           |
| H'FFFFF645                     |          |       |       |        |        |         |         |         |         | _           |
| H'FFFFF646                     | DCNT8D   |       |       |        |        |         |         |         |         | _           |
| H'FFFFF647                     |          |       |       |        |        |         |         |         |         | _           |
| H'FFFFF648                     | DCNT8E   |       |       |        |        |         |         |         |         | _           |
| H'FFFFF649                     |          |       |       |        |        |         |         |         |         | _           |
| H'FFFFF64A                     | DCNT8F   |       |       |        |        |         |         |         |         | -           |
| H'FFFFF64B                     |          |       |       |        |        |         |         |         |         | _           |
| H'FFFFF64C                     | DCNT8G   |       |       |        |        |         |         |         |         | _           |
| H'FFFFF64D                     |          |       |       |        |        |         |         |         |         | _           |
| H'FFFFF64E                     | DCNT8H   |       |       |        |        |         |         |         |         |             |
| H'FFFFF64F                     |          |       |       |        |        |         |         |         |         | _           |
| H'FFFFF650                     | DCNT8I   |       |       |        |        |         |         |         |         | _           |
| H'FFFFF651                     |          |       |       |        |        |         |         |         |         |             |

|                  | Register |       |         |         | Bit N   | lames |         |         |         |             |
|------------------|----------|-------|---------|---------|---------|-------|---------|---------|---------|-------------|
| Address          | Abbr.    | Bit 7 | Bit 6   | Bit 5   | Bit 4   | Bit 3 | Bit 2   | Bit 1   | Bit 0   | Module      |
| H'FFFFF652       | DCNT8J   |       |         |         |         |       |         |         |         | ATU-II      |
| H'FFFFF653       | _        |       |         |         |         |       |         |         |         | (channel 8) |
| H'FFFFF654       | DCNT8K   |       |         |         |         |       |         |         |         | -           |
| H'FFFFF655       | _        |       |         |         |         |       |         |         |         | _           |
| H'FFFFF656       | DCNT8L   |       |         |         |         |       |         |         |         | -           |
| H'FFFFF657       | _        |       |         |         |         |       |         |         |         | _           |
| H'FFFFF658       | DCNT8M   |       |         |         |         |       |         |         |         | -           |
| H'FFFFF659       | _        |       |         |         |         |       |         |         |         | _           |
| H'FFFFF65A       | DCNT8N   |       |         |         |         |       |         |         |         | =           |
| H'FFFFF65B       | _        |       |         |         |         |       |         |         |         | _           |
| H'FFFFF65C       | DCNT8O   |       |         |         |         |       |         |         |         | =           |
| H'FFFFF65D       | _        |       |         |         |         |       |         |         |         | _           |
| H'FFFFF65E       | DCNT8P   |       |         |         |         |       |         |         |         | =           |
| H'FFFFF65F       | _        |       |         |         |         |       |         |         |         | _           |
| H'FFFF660        | RLDR8    |       |         |         |         |       |         |         |         | -           |
| H'FFFFF661       | _        |       |         |         |         |       |         |         |         | <b>-</b>    |
| H'FFFF662        | TCNR     | CN8P  | CN8O    | CN8N    | CN8M    | CN8L  | CN8K    | CN8J    | CN8I    | -           |
| H'FFFF663        | _        | CN8H  | CN8G    | CN8F    | CN8E    | CN8D  | CN8C    | CN8B    | CN8A    | <b>-</b>    |
| H'FFFFF664       | OTR      | OTEP  | OTEO    | OTEN    | OTEM    | OTEL  | OTEK    | OTEJ    | OTEI    | <b>=</b>    |
| H'FFFFF665       | _        | OTEH  | OTEG    | OTEF    | OTEE    | OTED  | OTEC    | OTEB    | OTEA    | <b>-</b>    |
| H'FFFFF666       | DSTR     | DST8P | DST8O   | DST8N   | DST8M   | DST8L | DST8K   | DST8J   | DST8I   | <b>=</b>    |
| H'FFFFF667       | _        | DST8H | DST8G   | DST8F   | DST8E   | DST8D | DST8C   | DST8B   | DST8A   | ="          |
| H'FFFFF668       | TCR8     | _     | CKSELB2 | CKSELB1 | CKSELB0 | _     | CKSELA2 | CKSELA1 | CKSELA0 | <b>=</b>    |
| H'FFFF669        | _        | _     | _       | _       | _       | _     | _       | _       | _       | <b>=</b>    |
| H'FFFFF66A       | TSR8     | OSF8P | OSF8O   | OSF8N   | OSF8M   | OSF8L | OSF8K   | OSF8J   | OSF8I   | <b>=</b>    |
| H'FFFFF66B       | _        | OSF8H | OSF8G   | OSF8F   | OSF8E   | OSF8D | OSF8C   | OSF8B   | OSF8A   | =           |
| H'FFFFF66C       | TIER8    | OSE8P | OSE8O   | OSE8N   | OSE8M   | OSE8L | OSE8K   | OSE8J   | OSE8I   | -           |
| H'FFFFF66D       | _        | OSE8H | OSE8G   | OSE8F   | OSE8E   | OSE8D | OSE8C   | OSE8B   | OSE8A   | <b>-</b>    |
| H'FFFF66E        | RLDENR   | RLDEN | _       | _       | _       | _     | _       | _       | _       | <b>=</b>    |
| H'FFFFF66F       | _        | _     | _       | _       | _       | _     | _       | _       | _       |             |
| to<br>H'FFFFF67F |          |       |         |         |         |       |         |         |         |             |
| H'FFFF680        | ECNT9A   |       |         |         |         |       |         |         |         | ATU-II      |
| H'FFFFF681       | _        | _     | _       | _       | _       | _     | _       | _       | _       | (channel 9) |
|                  | ECNT9B   |       |         |         |         |       |         |         |         | _           |
| H'FFFF683        | _        | _     | _       | _       | _       | _     | _       | _       | _       | _           |
|                  | -        |       |         |         |         |       |         |         | -0      |             |

Table A.1 Address (cont)

|                  | Register |       |         |           | Bit N   | lames |         |         |         |                  |
|------------------|----------|-------|---------|-----------|---------|-------|---------|---------|---------|------------------|
| Address          | Abbr.    | Bit 7 | Bit 6   | Bit 5     | Bit 4   | Bit 3 | Bit 2   | Bit 1   | Bit 0   | Module           |
| H'FFFFF684       | ECNT9C   |       |         |           |         |       |         |         |         | ATU-II           |
| H'FFFFF685       | _        | _     | _       | _         | _       | _     | _       | _       | _       | (channel 9)      |
| H'FFFFF686       | ECNT9D   |       |         |           |         |       |         |         |         | _                |
| H'FFFFF687       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF688       | ECNT9E   |       |         |           |         |       |         |         |         | _                |
| H'FFFFF689       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF68A       | ECNT9F   |       |         |           |         |       |         |         |         | _                |
| H'FFFFF68B       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF68C       | GR9A     |       |         |           |         |       |         |         |         | _                |
| H'FFFFF68D       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFF68E        | GR9B     |       |         |           |         |       |         |         |         | _                |
| H'FFFFF68F       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF690       | GR9C     |       |         |           |         |       |         |         |         | _                |
| H'FFFFF691       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF692       | GR9D     |       |         |           |         |       |         |         |         | _                |
| H'FFFFF693       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF694       | GR9E     |       |         |           |         |       |         |         |         | _                |
| H'FFFFF695       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF696       | GR9F     |       |         |           |         |       |         |         |         | _                |
| H'FFFFF697       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF698       | TCR9A    | _     | TRG3BEN | I EGSELB1 | EGSELB0 | _     | TRG3AEN | EGSELA1 | EGSELA0 | _                |
| H'FFFFF699       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF69A       | TCR9B    | _     | TRG3DEN | I EGSELD1 | EGSELD0 | _     | TRG3CEN | EGSELC1 | EGSELC0 | _                |
| H'FFFFF69B       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF69C       | TCR9C    | _     | _       | EGSELF1   | EGSELF0 | _     | _       | EGSELE1 | EGSELE0 | _                |
| H'FFFFF69D       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF69E       | TSR9     | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF69F       | _        | _     | _       | CMF9F     | CMF9E   | CMF9D | CMF9C   | CMF9B   | CMF9A   | _                |
| H'FFFFF6A0       | TIER9    | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| H'FFFFF6A1       | _        | _     | _       | CME9F     | CME9E   | CME9D | CME9C   | CME9B   | CME9A   | -                |
| H'FFFFF6A2       | _        | _     | _       | _         | _       | _     | _       | _       | _       | _                |
| to<br>H'FFFFF6BF |          |       |         |           |         |       |         |         |         |                  |
| H'FFFF6C0        | TCNT10AH | I     |         |           |         |       |         |         |         | ATU-II           |
| H'FFFFF6C1       | _        |       |         |           |         |       |         |         |         | (channel<br>_10) |
| H'FFFF6C2        | TCNT10AL |       |         |           |         |       |         |         |         | _ 10)            |
| H'FFFFF6C3       | _        |       |         |           |         |       |         |         |         | -                |
|                  |          |       |         | -0        |         | -     |         |         | -       |                  |

|            | Register   |         |           |         | Bit N   | lames   |        |        |        |                 |
|------------|------------|---------|-----------|---------|---------|---------|--------|--------|--------|-----------------|
| Address    | Abbr.      | Bit 7   | Bit 6     | Bit 5   | Bit 4   | Bit 3   | Bit 2  | Bit 1  | Bit 0  | Module          |
| H'FFFF6C4  | TCNT10B    |         |           |         |         |         |        |        |        | ATU-II          |
| H'FFFF6C5  | _          | _       | _         | _       | _       | _       | _      | _      | _      | (channel<br>10) |
| H'FFFFF6C6 | TCNT10C    |         |           |         |         |         |        |        |        | ,               |
| H'FFFFF6C7 | _          |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6C8 | TCNT10D    |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6C9 | _          | _       | _         | _       | _       | _       | _      | _      | _      | _               |
| H'FFFF6CA  | TCNT10E    |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6CB | <u>-</u> " |         |           |         |         |         |        |        |        | _               |
| H'FFFF6CC  | TCNT10F    |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6CD |            |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6CE | TCNT10G    |         |           |         |         |         |        |        |        | _               |
| H'FFFF6CF  | _          |         |           |         |         |         |        |        |        | _               |
| H'FFFF6D0  | ICR10AH    |         |           |         |         |         |        |        |        | _               |
| H'FFFF6D1  | _          |         |           |         |         |         |        |        |        | _               |
| H'FFFF6D2  | ICR10AL    |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6D3 | _          |         |           |         |         |         |        |        |        | _               |
| H'FFFF6D4  | OCR10AH    |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6D5 |            |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6D6 | OCR10AL    |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6D7 |            |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6D8 | OCR10B     |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6D9 | _          | _       | _         | _       | _       | _       | _      | _      | _      | _               |
| H'FFFFF6DA | RLD10C     |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6DB |            |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6DC | GR10G      |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6DD |            |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6DE | TCNT10H    |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6DF | _          | _       | _         | _       | _       | _       | _      | _      | _      | _               |
| H'FFFFF6E0 | NCR10      |         |           |         |         |         |        |        |        | _               |
| H'FFFFF6E1 | _          | _       | _         | _       | _       | _       | _      | _      | _      | _               |
| H'FFFFF6E2 | TIOR10     | RLDEN   | ccs       | PIM1    | PIM0    | _       | IO10G2 | IO10G1 | IO10G0 | _               |
| H'FFFFF6E3 | _          | _       | _         | _       | _       | _       | _      | _      | _      | _               |
| H'FFFF6E4  | TCR10      | TRG2BEN | I TRG1BEN | TRG2AEN | TRG1AEN | TRG0DEN | NCE    | CKEG1  | CKEG0  | _               |
| H'FFFF6E5  | _          | _       | _         | _       | _       | _       | _      |        | _      | _               |
| H'FFFF6E6  | TCCLR10    |         |           |         |         |         |        |        |        | =               |
| H'FFFFF6E7 |            |         |           |         | -       |         |        |        |        | .,              |

Table A.1 Address (cont)

|                                | Register |              |              |              | Bit I        | Names        |              |              |              |                  |
|--------------------------------|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|
| Address                        | Abbr.    | Bit 7        | Bit 6        | Bit 5        | Bit 4        | Bit 3        | Bit 2        | Bit 1        | Bit 0        | Module           |
| H'FFFFF6E8                     | TSR10    | _            | _            | _            | _            | _            | _            | _            | _            | ATU-II           |
| H'FFFF6E9                      | _        | _            | _            | _            | _            | CMF10G       | CMF10B       | ICF10A       | CMF10A       | (channel<br>_10) |
| H'FFFFF6EA                     | TIER10   | _            | _            | _            | _            | _            | _            | _            | _            | ,                |
| H'FFFFF6EB                     | _        | _            | _            | _            | IREG         | CME10G       | CME10B       | ICE10A       | CME10A       | _                |
| H'FFFFF6EC<br>to<br>H'FFFFF6FF | _        | _            | _            | _            | _            | _            | _            | _            | _            | _                |
| H'FFFFF700                     | POPCR    | PULS7<br>ROE | PULS6<br>ROE | PULS5<br>ROE | PULS4<br>ROE | PULS3<br>ROE | PULS2<br>ROE | PULS1<br>ROE | PULS0<br>ROE | APC              |
| H'FFFFF701                     | _        | PULS7<br>SOE | PULS6<br>SOE | PULS5<br>SOE | PULS4<br>SOE | PULS3<br>SOE | PULS2<br>SOE | PULS1<br>SOE | PULS0<br>SOE | _                |
| H'FFFFF702                     | _        | _            | _            | _            | _            | _            | _            | _            | _            | _                |
| to<br>H'FFFFF707               |          |              |              |              |              |              |              |              |              |                  |
| H'FFFFF708                     | SYSCR    | _            | _            | _            | _            | _            | _            | AUDSRST      | RAME         | Power-           |
| H'FFFFF709                     | _        | _            | _            | _            | _            | _            | _            | _            | _            | down state       |
| H'FFFFF70A                     | _        | _            | _            | _            | _            | _            | _            | _            | _            | _                |
| H'FFFFF70B                     | MSTCR *  | _            | _            | _            | _            | MSTOP3       | MSTOP2       | MSTOP1       | MSTOP0       | _                |
| H'FFFFF70C<br>to<br>H'FFFFF70F | _        | _            | _            | _            | _            | _            | _            | _            | _            | _                |
| H'FFFFF710                     | CMSTR    | _            | _            | _            | _            | _            | _            | _            | _            | CMT              |
| H'FFFFF711                     | _        | _            | _            | _            | _            | _            | _            | STR1         | STR0         | _                |
| H'FFFFF712                     | CMCSR0   | _            | _            | _            | _            | _            | _            | _            | _            | _                |
| H'FFFFF713                     | _        | CMF          | CMIE         | _            | _            | _            | _            | CKS1         | CKS0         | _                |
| H'FFFFF714                     | CMCNT0   |              |              |              |              |              |              |              |              | _                |
| H'FFFFF715                     | _        |              |              |              |              |              |              |              |              | _                |
| H'FFFFF716                     | CMCOR0   |              |              |              |              |              |              |              |              | _                |
| H'FFFFF717                     | _        |              |              |              |              |              |              |              |              | _                |
| H'FFFFF718                     | CMCSR1   | _            | _            | _            | _            | _            | _            | _            | _            | _                |
| H'FFFFF719                     | _        | CMF          | CMIE         | _            | _            | _            | _            | CKS1         | CKS0         | _                |
| H'FFFFF71A                     | CMCNT1   |              |              |              |              |              |              |              |              | _                |
| H'FFFFF71B                     | _        |              |              |              |              |              |              |              |              | _                |
| H'FFFFF71C                     | CMCOR1   |              |              |              |              |              |              |              |              | _                |
| H'FFFFF71D                     | _        |              |              |              |              |              |              |              |              | _                |
| H'FFFFF71E                     | _        | _            | _            | _            | _            | _            | _            | _            | _            | _                |
| H'FFFFF71F                     | _        | _            | _            | _            | _            | _            | _            | _            | _            | _                |

Note: \* This is the read address. The write address is H'FFFF70A. For details, see section 24.2.4, Register Access.

Table A.1 Address (cont)

|            | Register |         |         |         | Bit N   | lames   |         |         |         |              |
|------------|----------|---------|---------|---------|---------|---------|---------|---------|---------|--------------|
| Address    | Abbr.    | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Module       |
| H'FFFFF720 | PAIOR    | PA15IOR | PA14IOR | PA13IOR | PA12IOR | PA11IOR | PA10IOR | PA9IOR  | PA8IOR  | Port A       |
| H'FFFFF721 | _        | PA7IOR  | PA6IOR  | PA5IOR  | PA4IOR  | PA3IOR  | PA2IOR  | PA1IOR  | PA0IOR  | <del>-</del> |
| H'FFFFF722 | PACRH    | _       | PA15MD  | _       | PA14MD  | _       | PA13MD  | _       | PA12MD  | -            |
| H'FFFFF723 | =        | _       | PA11MD  | _       | PA10MD  | _       | PA9MD   | _       | PA8MD   | _            |
| H'FFFFF724 | PACRL    | _       | PA7MD   | _       | PA6MD   | _       | PA5MD   | _       | PA4MD   | -            |
| H'FFFFF725 | _        | _       | PA3MD   | _       | PA2MD   | _       | PA1MD   | _       | PA0MD   | <del>-</del> |
| H'FFFFF726 | PADR     | PA15DR  | PA14DR  | PA13DR  | PA12DR  | PA11DR  | PA10DR  | PA9DR   | PA8DR   | -            |
| H'FFFFF727 | _        | PA7DR   | PA6DR   | PA5DR   | PA4DR   | PA3DR   | PA2DR   | PA1DR   | PA0DR   | _            |
| H'FFFFF728 | PHIOR    | PH15IOR | PH14IOR | PH13IOR | PH12IOR | PH11IOR | PH10IOR | PH9IOR  | PH8IOR  | Port H       |
| H'FFFFF729 | _        | PH7IOR  | PH6IOR  | PH5IOR  | PH4IOR  | PH3IOR  | PH2IOR  | PH1IOR  | PH0IOR  | _            |
| H'FFFFF72A | PHCR     | PH15MD  | PH14MD  | PH13MD  | PH12MD  | PH11MD  | PH10MD  | PH9MD   | PH8MD   | -            |
| H'FFFFF72B | _        | PH7MD   | PH6MD   | PH5MD   | PH4MD   | PH3MD   | PH2MD   | PH1MD   | PH0MD   | _            |
| H'FFFFF72C | PHDR     | PH15DR  | PH14DR  | PH13DR  | PH12DR  | PH11DR  | PH10DR  | PH9DR   | PH8DR   | -            |
| H'FFFFF72D | _        | PH7DR   | PH6DR   | PH5DR   | PH4DR   | PH3DR   | PH2DR   | PH1DR   | PH0DR   | _            |
| H'FFFFF72E | ADTRGR1  | EXTRG   | _       | _       | _       | _       | _       | _       | _       | A/D          |
| H'FFFFF72F | ADTRGR2  | EXTRG   | _       | _       | _       | _       | _       | _       | _       | -            |
| H'FFFFF730 | PBIOR    | PB15IOR | PB14IOR | PB13IOR | PB12IOR | PB11IOR | PB10IOR | PB9IOR  | PB8IOR  | Port B       |
| H'FFFFF731 | _        | PB7IOR  | PB6IOR  | PB5IOR  | PB4IOR  | PB3IOR  | PB2IOR  | PB1IOR  | PB0IOR  | _            |
| H'FFFFF732 | PBCRH    | PB15MD1 | PB15MD0 | PB14MD1 | PB14MD0 | _       | PB13MD  | PB12MD1 | PB12MD0 | -            |
| H'FFFFF733 | _        | PB11MD1 | PB11MD0 | PB10MD1 | PB10MD0 | PB9MD1  | PB9MD0  | PB8MD1  | PB8MD0  | _            |
| H'FFFFF734 | PBCRL    | PB7MD1  | PB7MD0  | PB6MD1  | PB6MD0  | PB5MD1  | PB5MD0  | PB4MD1  | PB4MD0  | -            |
| H'FFFFF735 | _        | _       | PB3MD   | _       | PB2MD   | _       | PB1MD   | _       | PB0MD   | _            |
| H'FFFFF736 | PBIR     | PB15IR  | PB14IR  | PB13IR  | _       | PB11IR  | PB10IR  | PB9IR   | PB8IR   | -            |
| H'FFFFF737 | _        | PB7IR   | PB6IR   | PB5IR   | PB4IR   | PB3IR   | PB2IR   | PB1IR   | PB0IR   | _            |
| H'FFFFF738 | PBDR     | PB15DR  | PB14DR  | PB13DR  | PB12DR  | PB11DR  | PB10DR  | PB9DR   | PB8DR   | -            |
| H'FFFFF739 | _        | PB7DR   | PB6DR   | PB5DR   | PB4DR   | PB3DR   | PB2DR   | PB1DR   | PB0DR   | _            |
| H'FFFFF73A | PCIOR    | _       | _       | _       | _       | _       | _       | _       | _       | Port C       |
| H'FFFFF73B | _        | _       | _       | _       | PC4IOR  | PC3IOR  | PC2IOR  | PC1IOR  | PC0IOR  | _            |
| H'FFFFF73C | PCCR     | _       | _       | _       | _       | _       | _       | _       | PC4MC   | -            |
| H'FFFFF73D | _        | _       | PC3MD   | _       | PC2MC   | _       | PC1MC   | _       | PC0MD   | _            |
| H'FFFFF73E | PCDR     | _       | _       | _       | _       | _       | _       | _       | _       | -            |
| H'FFFFF73F | _        | _       | _       | _       | PC4DR   | PC3DR   | PC2DR   | PC1DR   | PC0DR   | _            |
| H'FFFFF740 | PDIOR    | _       | _       | PD13IOR | PD12IOR | PD11IOR | PD10IOR | PD9IOR  | PD8IOR  | Port D       |
| H'FFFFF741 | =        | PD7IOR  | PD6IOR  | PD5IOR  | PD4IOR  | PD3IOR  | PD2IOR  | PD1IOR  | PD0IOR  | _            |

Table A.1 Address (cont)

|            | Register |         |         |         | Bit N   | lames   |         |        |        |        |
|------------|----------|---------|---------|---------|---------|---------|---------|--------|--------|--------|
| Address    | Abbr.    | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1  | Bit 0  | Module |
| H'FFFFF742 | PDCRH    | _       | _       | _       | _       | PD13MD1 | PD13MD0 | _      | PD12MD | Port D |
| H'FFFFF743 | _        | _       | PD11MD  | _       | PD10MD  | _       | PD9MD   | _      | PD8MD  | _      |
| H'FFFFF744 | PDCRL    | _       | PD7MD   | _       | PD6MD   | _       | PD5MD   | _      | PD4MD  | _      |
| H'FFFFF745 | _        | _       | PD3MD   | _       | PD2MD   | _       | PD1MD   | _      | PD0MD  | _      |
| H'FFFFF746 | PDDR     | _       | _       | PD13DR  | PD12DR  | PD11DR  | PD10DR  | PD9DR  | PD8DR  | _      |
| H'FFFFF747 | _        | PD7DR   | PD6DR   | PD5DR   | PD4DR   | PD3DR   | PD2DR   | PD1DR  | PD0DR  | _      |
| H'FFFFF748 | PFIOR    | PF15IOR | PF14IOR | PF13IOR | PF12IOR | PF11IOR | PF10IOR | PF9IOR | PF8IOR | Port F |
| H'FFFFF749 | _        | PF7IOR  | PF6IOR  | PF5IOR  | PF4IOR  | PF3IOR  | PF2IOR  | PF1IOR | PF0IOR | _      |
| H'FFFFF74A | PFCRH    | CKHIZ   | PF15MD  | _       | PF14MD  | _       | PF13MD  | _      | PF12MD | _      |
| H'FFFFF74B | _        | _       | PF11MD  | _       | PF10MD  | _       | PF9MD   | _      | PF8MD  | _      |
| H'FFFFF74C | PFCRL    | _       | PF7MD   | _       | PF6MD   | PF5MD1  | PF5MD0  | _      | PF4MD  | _      |
| H'FFFFF74D | _        | _       | PF3MD   | _       | PF2MD   | _       | PF1MD   | _      | PF0MD  | _      |
| H'FFFFF74E | PFDR     | PF15DR  | PF14DR  | PF13DR  | PF12DR  | PF11DR  | PF10DR  | PF9DR  | PF8DR  | _      |
| H'FFFFF74F | _        | PF7DR   | PF6DR   | PF5DR   | PF4DR   | PF3DR   | PF2DR   | PF1DR  | PF0DR  | _      |
| H'FFFFF750 | PEIOR    | PE15IOR | PE14IOR | PE13IOR | PE12IOR | PE11IOR | PE10IOR | PE9IOR | PE8IOR | Port E |
| H'FFFFF751 | _        | PE7IOR  | PE6IOR  | PE5IOR  | PE4IOR  | PE3IOR  | PE2IOR  | PE1IOR | PE0IOR | _      |
| H'FFFFF752 | PECR     | PE15MD  | PE14MD  | PE13MD  | PE12MD  | PE11MD  | PE10MD  | PE9MD  | PE8MD  | _      |
| H'FFFFF753 | _        | PE7MD   | PE6MD   | PE5MD   | PE4MD   | PE3MD   | PE2MD   | PE1MD  | PE0MD  | _      |
| H'FFFFF754 | PEDR     | PE15DR  | PE14DR  | PE13DR  | PE12DR  | PE11DR  | PE10DR  | PE9DR  | PE8DR  | _      |
| H'FFFFF755 | _        | PE7DR   | PE6DR   | PE5DR   | PE4DR   | PE3DR   | PE2DR   | PE1DR  | PE0DR  | _      |
| H'FFFFF756 | PLIOR    | _       | _       | PL13IOR | PL12IOR | PL11IOR | PL10IOR | PL9IOR | PL8IOR | Port L |
| H'FFFFF757 | _        | PL7IOR  | PL6IOR  | PL5IOR  | PL4IOR  | PL3IOR  | PL2IOR  | PL1IOR | PL0IOR | _      |
| H'FFFFF758 | PLCRH    | _       | _       | _       | _       | PL13MD1 | PL13MD0 | _      | PL12MD | _      |
| H'FFFFF759 | _        | PL11MD1 | PL11MD0 | PL10MD1 | PL10MD0 | PL9MD1  | PL9MD0  | _      | PL8MD  | _      |
| H'FFFFF75A | PLCRL    | _       | PL7MD   | _       | PL6MD   | _       | PL5MD   | _      | PL4MD  | _      |
| H'FFFFF75B | _        | _       | PL3MD   | PL2MD1  | PL2MD0  | PL1MD1  | PL1MD0  | _      | PL0MD0 | _      |
| H'FFFFF75C | PLIR     | _       | _       | _       | _       | _       | _       | PL9IR  | PL8IR  | _      |
| H'FFFFF75D | _        | PL7IR   | _       | _       | _       | _       | _       | _      | _      | _      |
| H'FFFFF75E | PLDR     | _       | _       | PL13DR  | PL12DR  | PL11DR  | PL10DR  | PL9DR  | PL8DR  | _      |
| H'FFFFF75F | _        | PL7DR   | PL6DR   | PL5DR   | PL4DR   | PL3DR   | PL2DR   | PL1DR  | PL0DR  | _      |
| H'FFFFF760 | PGIOR    | _       | _       | _       | _       | _       | _       | _      | _      | Port G |
| H'FFFFF761 | _        | _       | _       | _       | _       | PG3IOR  | PG2IOR  | PG1IOR | PG0IOR | _      |
| H'FFFFF762 | PGCR     | _       | _       | _       | _       | _       | _       | _      | _      | _      |
| H'FFFFF763 | _        | PG3MD1  | PG3MD0  | PG2MD1  | PG2MD0  | _       | PG1MD   | PG0MD1 | PG0MD0 | _      |
| H'FFFFF764 | PGDR     | _       | _       | _       | _       | _       | _       | _      | _      | _      |
| H'FFFFF765 | _        | _       | _       | _       | _       | PG3DR   | PG2DR   | PG1DR  | PG0DR  | _      |
|            |          |         |         |         |         |         |         |        |        |        |

Table A.1 Address (cont)

|                  | Register |         |         |         | Bit N   | lames   |         |        |        |        |
|------------------|----------|---------|---------|---------|---------|---------|---------|--------|--------|--------|
| Address          | Abbr.    | Bit 7   | Bit 6   | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1  | Bit 0  | Module |
| H'FFFFF766       | PJIOR    | PJ15IOR | PJ14IOR | PJ13IOR | PJ12IOR | PJ11IOR | PJ10IOR | PJ9IOR | PJ8IOR | Port J |
| H'FFFFF767       | _        | PJ7IOR  | PJ6IOR  | PJ5IOR  | PJ4IOR  | PJ3IOR  | PJ2IOR  | PJ1IOR | PJ0IOR | _      |
| H'FFFFF768       | PJCRH    | _       | PJ15MD  | _       | PJ14MD  | _       | PJ13MD  | _      | PJ12MD | _      |
| H'FFFFF769       | _        | _       | PJ11MD  | _       | PJ10MD  | _       | PJ9MD   | _      | PJ8MD  | _      |
| H'FFFFF76A       | PJCRL    | _       | PJ7MD   | _       | PJ6MD   | _       | PJ5MD   | _      | PJ4MD  | _      |
| H'FFFFF76B       | _        | _       | PJ3MD   | _       | PJ2MD   | _       | PJ1MD   | _      | PJ0MD  | _      |
| H'FFFFF76C       | PJDR     | PJ15DR  | PJ14DR  | PJ13DR  | PJ12DR  | PJ11DR  | PJ10DR  | PJ9DR  | PJ8DR  | _      |
| H'FFFFF76D       | _        | PJ7DR   | PJ6DR   | PJ5DR   | PJ4DR   | PJ3DR   | PJ2DR   | PJ1DR  | PJ0DR  | _      |
| H'FFFFF76E       | ADTRG0   | EXTRG   | _       | _       | _       | _       | _       | _      | _      | A/D    |
| H'FFFFF76F       | _        | _       | _       | _       | _       | _       | _       | _      | _      | _      |
| H'FFFFF770       | PKIOR    | PK15IOR | PK14IOR | PK13IOR | PK12IOR | PK11IOR | PK10IOR | PK9IOR | PK8IOR | Port K |
| H'FFFFF771       | _        | PK7IOR  | PK6IOR  | PK5IOR  | PK4IOR  | PK3IOR  | PK2IOR  | PK1IOR | PK0IOR | _      |
| H'FFFFF772       | PKCRH    | _       | PK15MD  | _       | PK14MD  | _       | PK13MD  | _      | PK12MD | _      |
| H'FFFFF773       | _        | _       | PK11MD  | _       | PK10MD  | _       | PK9MD   | _      | PK8MD  | _      |
| H'FFFFF774       | PKCRL    | _       | PK7MD   | _       | PK6MD   | _       | PK5MD   | _      | PK4MD  | _      |
| H'FFFFF775       | _        | _       | PK3MD   | _       | PK2MD   | _       | PK1MD   | _      | PK0MD  | _      |
| H'FFFFF776       | PKIR     | PK15IR  | PK14IR  | PK13IR  | PK12IR  | PK11IR  | PK10IR  | PK9IR  | PK8IR  | _      |
| H'FFFFF777       | _        | PK7IR   | PK6IR   | PK5IR   | PK4IR   | PK3IR   | PK2IR   | PK1IR  | PK0IR  | _      |
| H'FFFFF778       | PKDR     | PK15DR  | PK14DR  | PK13DR  | PK12DR  | PK11DR  | PK10DR  | PK9DR  | PK8DR  | _      |
| H'FFFFF779       | _        | PK7DR   | PK6DR   | PK5DR   | PK4DR   | PK3DR   | PK2DR   | PK1DR  | PK0DR  | _      |
| H'FFFFF77A       | _        | _       | _       | _       | _       | _       | _       | _      | _      | _      |
| to<br>H'FFFFF77F |          |         |         |         |         |         |         |        |        |        |
| H'FFFFF780       | PAPR     | PA15DR  | PA14DR  | PA13DR  | PA12DR  | PA11DR  | PA10DR  | PA9DR  | PA8DR  | Port A |
| H'FFFFF781       | _        | PA7DR   | PA6DR   | PA5DR   | PA4DR   | PA3DR   | PA2DR   | PA1DR  | PA0DR  | _      |
| H'FFFFF782       | PBPR     | PB15DR  | PB14DR  | PB13DR  | PB12DR  | PB11DR  | PB10DR  | PB9DR  | PB8DR  | Port B |
| H'FFFFF783       | _        | PB7DR   | PB6DR   | PB5DR   | PB4DR   | PB3DR   | PB2DR   | PB1DR  | PB0DR  | _      |
| H'FFFFF784       | PDPR     | _       | _       | PD13PR  | PD12PR  | PD11PR  | PD10PR  | PD9PR  | PD8PR  | Port D |
| H'FFFFF785       | _        | PD7PR   | PD6PR   | PD5PR   | PD4PR   | PD3PR   | PD2PR   | PD1PR  | PD0PR  | _      |
| H'FFFFF786       | PJPR     | PJ15PR  | PJ14PR  | PJ13PR  | PJ12PR  | PJ11PR  | PJ10PR  | PJ9PR  | PJ8PR  | Port J |
| H'FFFFF787       | _        | PJ7PR   | PJ6PR   | PJ5PR   | PJ4PR   | PJ3PR   | PJ2PR   | PJ1PR  | PJ0PR  | _      |
| H'FFFFF788       | PLPR     | _       | _       | PL13PR  | PL12PR  | PL11PR  | PL10PR  | PL9PR  | PL8PR  | Port L |
| H'FFFFF789       | _        | PL7PR   | PL6PR   | PL5PR   | PL4PR   | PL3PR   | PL2PR   | PL1PR  | PL0PR  | _      |
|                  | -        | -       | -       | -       | -       |         | -       | -      |        | _      |

Table A.1 Address (cont)

|                  | Register |       | Bit Names |       |       |       |       |       |       |        |  |  |
|------------------|----------|-------|-----------|-------|-------|-------|-------|-------|-------|--------|--|--|
| Address          | Abbr.    | Bit 7 | Bit 6     | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module |  |  |
| H'FFFFF78A       | _        | _     | _         | _     | _     | _     | _     | _     | _     | _      |  |  |
| to<br>H'FFFFF7BF |          |       |           |       |       |       |       |       |       |        |  |  |
| H'FFFFF7C0       | SDIR     | TS3   | TS2       | TS1   | TS0   | _     | _     | _     | _     | H-UDI  |  |  |
| H'FFFFF7C1       |          | _     | _         | _     | _     | _     | _     | _     | _     |        |  |  |
| H'FFFFF7C2       | SDSR     | _     | _         | _     | _     | _     | _     | _     | _     |        |  |  |
| H'FFFFF7C3       |          | _     | _         | _     | _     | _     | _     | _     | SDTRF | _      |  |  |
| H'FFFFF7C4       | SDDRH    |       |           |       |       |       |       |       |       | _      |  |  |
| H'FFFFF7C5       |          |       |           |       |       |       |       |       |       | _      |  |  |
| H'FFFFF7C6       | SDDRL    |       |           |       |       |       |       |       |       | _      |  |  |
| H'FFFFF7C7       |          |       |           |       |       |       |       |       |       | _      |  |  |
| H'FFFFF7C8       | _        | _     | _         | _     | _     | _     | _     | _     | _     | _      |  |  |
| to<br>H'FFFFF7FF |          |       |           |       |       |       |       |       |       |        |  |  |
| H'FFFFF800       | ADDR0H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | A/D    |  |  |
| H'FFFFF801       | ADDR0L   | AD1   | AD0       | _     | _     | _     | _     | _     | _     |        |  |  |
| H'FFFFF802       | ADDR1H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   |        |  |  |
| H'FFFFF803       | ADDR1L   | AD1   | AD0       | _     | _     | _     | _     | _     | _     |        |  |  |
| H'FFFFF804       | ADDR2H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |  |  |
| H'FFFFF805       | ADDR2L   | AD1   | AD0       | _     | _     | _     | _     | _     | _     | _      |  |  |
| H'FFFFF806       | ADDR3H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |  |  |
| H'FFFFF807       | ADDR3L   | AD1   | AD0       | _     | _     | _     | _     | _     | _     | _      |  |  |
| H'FFFFF808       | ADDR4H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |  |  |
| H'FFFFF809       | ADDR4L   | AD1   | AD0       | _     | _     | _     | _     | _     | _     | _      |  |  |
| H'FFFFF80A       | ADDR5H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |  |  |
| H'FFFFF80B       | ADDR5L   | AD1   | AD0       | _     | _     | _     | _     | _     | _     | _      |  |  |
| H'FFFFF80C       | ADDR6H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |  |  |
| H'FFFFF80D       | ADDR6L   | AD1   | AD0       | _     | _     | _     | _     | _     | _     | _      |  |  |
| H'FFFFF80E       | ADDR7H   | AD9   | AD8       | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |  |  |
| H'FFFFF80F       | ADDR7L   | AD1   | AD0       | _     |       |       |       |       | _     |        |  |  |

Table A.1 Address (cont)

|                  | Register |       |       |       | Bit   | Names |       |       |       |        |
|------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Address          | Abbr.    | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module |
| H'FFFFF810       | ADDR8H   | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | A/D    |
| H'FFFFF811       | ADDR8L   | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF812       | ADDR9H   | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF813       | ADDR9L   | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF814       | ADDR10H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF815       | ADDR10L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF816       | ADDR11H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF817       | ADDR11L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF818       | ADCSR0   | ADF   | ADIE  | ADM1  | ADM0  | CH3   | CH2   | CH1   | CH0   | _      |
| H'FFFFF819       | ADCR0    | TRGE  | CKS   | ADST  | ADCS  | _     | _     | _     | _     | _      |
| H'FFFFF81A       | _        | _     | _     | _     | _     | _     | _     | _     | _     | _      |
| to<br>H'FFFFF81F |          |       |       |       |       |       |       |       |       |        |
| H'FFFFF820       | ADDR12H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF821       | ADDR12L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF822       | ADDR13H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF823       | ADDR13L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF824       | ADDR14H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF825       | ADDR14L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF826       | ADDR15H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF827       | ADDR15L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF828       | ADDR16H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF829       | ADDR16L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF82A       | ADDR17H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF82B       | ADDR17L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF82C       | ADDR18H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF82D       | ADDR18L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF82E       | ADDR19H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF82F       | ADDR19L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF830       | ADDR20H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF831       | ADDR20L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF832       | ADDR21H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF833       | ADDR21L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF834       | ADDR22H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF835       | ADDR22L  | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF836       | ADDR23H  | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
|                  |          |       | _     |       | _     | -     | _     |       |       | _      |

Table A.1 Address (cont)

|                                | Register Bit Names |       |       |       |       |       |       |       |       |        |
|--------------------------------|--------------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
| Address                        | Abbr.              | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Module |
| H'FFFFF837                     | ADDR23L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | A/D    |
| H'FFFFF838                     | ADCSR1             | ADF   | ADIE  | ADM1  | ADM0  | CH3   | CH2   | CH1   | CH0   | _      |
| H'FFFFF839                     | ADCR1              | TRGE  | CKS   | ADST  | ADCS  | _     | _     | _     | _     | _      |
| H'FFFFF840                     | ADDR24H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF841                     | ADDR24L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF842                     | ADDR25H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF843                     | ADDR25L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF844                     | ADDR26H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF845                     | ADDR26L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF846                     | ADDR27H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF847                     | ADDR27L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF848                     | ADDR28H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF849                     | ADDR28L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF84A                     | ADDR29H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF84B                     | ADDR29L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF84C                     | ADDR30H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF84D                     | ADDR30L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF84E                     | ADDR31H            | AD9   | AD8   | AD7   | AD6   | AD5   | AD4   | AD3   | AD2   | _      |
| H'FFFFF84F                     | ADDR31L            | AD1   | AD0   | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF850<br>to               | _                  | _     | _     | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF857                     |                    |       |       |       |       |       |       |       |       |        |
| H'FFFFF858                     | ADCSR2             | ADF   | ADIE  | ADM1  | ADM0  | _     | CH2   | CH1   | CH0   | _      |
| H'FFFFF859                     | ADCR2              | TRGE  | CKS   | ADST  | ADCS  | _     | _     | _     | _     | _      |
| H'FFFFF85A<br>to<br>H'FFFFF85F | _                  | _     | _     | _     | _     | _     | _     | _     | _     | _      |
| H'FFFFF83A<br>to<br>H'FFFFF83F | _                  | _     | _     | _     | _     | _     | _     | _     | _     | _      |

# **A.2** Register States in Reset and Power-Down States

 Table A.2
 Register States in Reset and Power-Down States

|                          |                    | Reset State  | Power-Dow           | n State                                                                                                                                                                                                                      |       |
|--------------------------|--------------------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Туре                     | Name               | Power-On     | Hardware<br>Standby | Software<br>Standby                                                                                                                                                                                                          | Sleep |
| CPU                      | R0 to R15          | Initialized  | Initialized         | Held                                                                                                                                                                                                                         | Held  |
|                          | SR                 | -            |                     |                                                                                                                                                                                                                              |       |
|                          | GBR                | -            |                     |                                                                                                                                                                                                                              |       |
|                          | VBR                | -            |                     |                                                                                                                                                                                                                              |       |
|                          | MACH, MACL         | ='           |                     |                                                                                                                                                                                                                              |       |
|                          | PR                 | -            |                     |                                                                                                                                                                                                                              |       |
|                          | PC                 | -            |                     |                                                                                                                                                                                                                              |       |
| FPU                      | FR0 to FR15        | Initialized  | Initialized         | Held                                                                                                                                                                                                                         | Held  |
|                          | FPUL               | =            |                     |                                                                                                                                                                                                                              |       |
|                          | FPSCR              | -            |                     |                                                                                                                                                                                                                              |       |
| Interrupt                | IPRA to IPRL       | Initialized  | Initialized         | Held                                                                                                                                                                                                                         | Held  |
| controller (INTC)        | IOR                | =            |                     |                                                                                                                                                                                                                              |       |
|                          | ISR                | -            |                     |                                                                                                                                                                                                                              |       |
| User break               | UBARH, UBARL       | Initialized  | Initialized         | Held                                                                                                                                                                                                                         | Held  |
| controller (UBC)         | UBAMRH, UBAMRL     | =            |                     |                                                                                                                                                                                                                              |       |
|                          | UBBR               | =            |                     |                                                                                                                                                                                                                              |       |
|                          | UBCR               | -            |                     |                                                                                                                                                                                                                              |       |
| Bus state                | BCR1, BCR2         | Initialized  | Initialized         | Held                                                                                                                                                                                                                         | Held  |
| controller (BSC)         | WCR                | -            |                     |                                                                                                                                                                                                                              |       |
| Direct memory            | SAR0 to SAR3       | Initialized  | Initialized         | Initialized                                                                                                                                                                                                                  | Held  |
| access controller (DMAC) | DAR0 to DAR3       | =            |                     |                                                                                                                                                                                                                              |       |
| (DIVIAC)                 | DMATCR0 to DMATCR3 | -            |                     |                                                                                                                                                                                                                              |       |
|                          | CHCR0 to CHCR3     | =            |                     |                                                                                                                                                                                                                              |       |
|                          | DMAOR              | =            |                     | Hardware Standby Sleep Initialized Held Held Initialized Held Held Initialized Held Held Initialized Held Held Initialized Held Held Initialized Held Held Initialized Held Held Initialized Held Held Initialized Held Held |       |
| Advanced timer           | BFR6A-D, BFR7A-D   | Initialized  | Initialized         | Initialized                                                                                                                                                                                                                  | Held  |
| unit-II (ATU-II)         | CYLR6A-D, CYLR7A-D | <del>-</del> |                     |                                                                                                                                                                                                                              |       |
|                          | DCNT8A-P           | <del>-</del> |                     |                                                                                                                                                                                                                              |       |
|                          | DSTR               | <del>-</del> |                     |                                                                                                                                                                                                                              |       |
| -                        |                    |              | ()                  |                                                                                                                                                                                                                              | · · · |

 Table A.2
 Register States in Reset and Power-Down States (cont)

|                  |                                                                                              | Reset State | Power-Dow           | Power-Down State    |       |  |  |
|------------------|----------------------------------------------------------------------------------------------|-------------|---------------------|---------------------|-------|--|--|
| Туре             | Name                                                                                         | Power-On    | Hardware<br>Standby | Software<br>Standby | Sleep |  |  |
| Advanced timer   | DTR6A-D, DTR7A-D                                                                             | Initialized | Initialized         | Initialized         | Held  |  |  |
| unit-II (ATU-II) | ECNT9A-F                                                                                     | _           |                     |                     |       |  |  |
|                  | GR1A-H, GR2A-H<br>GR3A-D, GR4A-D<br>GR5A-D, GR9A-F<br>GR10G, GR11A, 11B                      | _           |                     |                     |       |  |  |
|                  | ICR0A-D, ICR10A                                                                              | _           |                     |                     |       |  |  |
|                  | ITVRR1, ITVRR2A, 2B                                                                          | =           |                     |                     |       |  |  |
|                  | NCR10                                                                                        | _           |                     |                     |       |  |  |
|                  | OCR1, OCR2A-H<br>OCR10AH, 10AL<br>OCR10B                                                     | -           |                     |                     |       |  |  |
|                  | OSBR1, OSBR2                                                                                 |             |                     |                     |       |  |  |
|                  | OTR                                                                                          | _           |                     |                     |       |  |  |
|                  | PMDR                                                                                         | _           |                     |                     |       |  |  |
|                  | PSCR1-4                                                                                      | =           |                     |                     |       |  |  |
|                  | PSTR                                                                                         | _           |                     |                     |       |  |  |
|                  | RLD10C                                                                                       | _           |                     |                     |       |  |  |
|                  | RLDENR                                                                                       | _           |                     |                     |       |  |  |
|                  | RLDR8                                                                                        | _           |                     |                     |       |  |  |
|                  | TCCLR10                                                                                      | _           |                     |                     |       |  |  |
|                  | TCNR                                                                                         | <u>_</u>    |                     |                     |       |  |  |
|                  | TCNT0H, L, TCNT1A 1B, TCNT2A, 2B TCNT3-5, TCNT6A-D TCNT7A-D TCNT10AH, 10AL TCNT10B-H, TCNT11 |             |                     |                     |       |  |  |
|                  | TCR1A, 1B<br>TCR2A, 2B, TCR3-5<br>TCR6A, 6B, TCR7A<br>7B, TCR8, TCR9A-C<br>TCR10, TCR11      |             |                     |                     |       |  |  |

 Table A.2
 Register States in Reset and Power-Down States (cont)

|                                 |                                                                                  | Reset State                                                                                                                                                             | Power-Dow           | n State             |          |
|---------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|----------|
| Туре                            | Name                                                                             | Power-On                                                                                                                                                                | Hardware<br>Standby | Software<br>Standby | Sleep    |
| Advanced timer unit-II (ATU-II) | TIER0, TIER1A, 1B<br>TIER2A, 2B, TIER3<br>TIER6-11                               | Initialized                                                                                                                                                             | Initialized         | Initialized         | Held     |
|                                 | TIOR0, TIOR1A-D<br>TIOR2A-D, TIOR3A<br>3B, TIOR4A, 4B<br>TIOR5A, 5B<br>TIOR10,11 |                                                                                                                                                                         |                     |                     |          |
|                                 | TMDR                                                                             | <del></del>                                                                                                                                                             |                     |                     |          |
|                                 | TNCT10E                                                                          | <del></del>                                                                                                                                                             |                     |                     |          |
|                                 | TRGMDR                                                                           | <del></del>                                                                                                                                                             |                     |                     |          |
|                                 | TSR0, TSR1A, 1B<br>TSR2A, 2B, TSR3<br>TSR6-11                                    |                                                                                                                                                                         |                     |                     |          |
|                                 | TSTR1-3                                                                          | <del></del>                                                                                                                                                             |                     |                     |          |
| Advanced pulse controller (APC) | POPCR                                                                            | Initialized                                                                                                                                                             | Initialized         | Held                | Held     |
| controller (APC) Watchdog timer | TCNT                                                                             | Initialized                                                                                                                                                             | Initialized         | Initialized         | Held     |
| (WDT)                           | TCSR                                                                             |                                                                                                                                                                         |                     |                     |          |
|                                 | RSTCSR                                                                           | Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized Initialized |                     |                     |          |
| Serial                          | SMR0 to SMR4                                                                     | Initialized                                                                                                                                                             | Initialized         | Held                | Held     |
| communication interface (SCI)   | BRR0 to BRR4                                                                     |                                                                                                                                                                         |                     |                     |          |
| interiace (eer)                 | SCR0 to SCR4                                                                     |                                                                                                                                                                         |                     |                     |          |
|                                 | TDR0 to TDR4                                                                     |                                                                                                                                                                         |                     | Intialized          |          |
|                                 | SSR0 to SSR4                                                                     |                                                                                                                                                                         |                     |                     |          |
|                                 | RDR0 to RDR4                                                                     |                                                                                                                                                                         |                     |                     | <u> </u> |
|                                 | SDCR0 to SDCR4                                                                   |                                                                                                                                                                         |                     | Held                |          |
| A/D converter                   | ADDR0 (H/L) to<br>ADDR31 (H/L)                                                   | Initialized                                                                                                                                                             | Initialized         | Initialized         | Held     |
|                                 | ADSCR0, ADCSR1<br>ADCSR2                                                         |                                                                                                                                                                         |                     |                     |          |
|                                 | ADCR0, ADCR1<br>ADCR2                                                            |                                                                                                                                                                         |                     |                     |          |
| A/D converter                   | ADDR0 (H/L) to<br>ADDR31 (H/L)<br>ADSCR0, ADCSR1<br>ADCSR2<br>ADCR0, ADCR1       | Initialized                                                                                                                                                             | Initialized         |                     | Held     |

 Table A.2
 Register States in Reset and Power-Down States (cont)

|                                  |                                                                                                                                 | Reset State  | Power-Dow           | n State               |              |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|-----------------------|--------------|
| Туре                             | Name                                                                                                                            | Power-On     | Hardware<br>Standby | Software<br>Standby   | Sleep        |
| A/D converter                    | ADTRGR0, ADTRGR1<br>ADTRGR2                                                                                                     | Initialized  | Initialized         | Initialized           | Held         |
| Compare match                    | CMSTR                                                                                                                           | Initialized  | Initialized         | Initialized           | Held         |
| timer (CMT)                      | CMCSR0, CMCSR1                                                                                                                  | _            |                     |                       |              |
|                                  | CMCNT0, CMCNT1                                                                                                                  | Initialized  | Initialized         | Initialized           | Held         |
|                                  | CMCOR0, CMCOR1                                                                                                                  | _            |                     |                       |              |
| Pin function<br>controller (PFC) | PAIOR, PBIOR<br>PCIOR, PDIOR<br>PEIOR, PFIOR<br>PGIOR, PHIOR<br>PJIOR, PKIOR, PLIOR                                             | Initialized  | Initialized         | Held                  | Held         |
|                                  | PACRH, PACRL PBCRH, PBCRL PBIR, PCCR, PDCRH PDCRL, PECR PFCRH, PFCRL PGCR, PHCR, PJCRH PJCRL PKCRH PKCRL PKIR, PLCRH PLCRL,PLIR | _            |                     |                       |              |
| I/O ports                        | PADR, PBDR, PCDR<br>PDDR, PEDR, PFDR<br>PGDE, PHDR, PJDR<br>PKDR, PLDR                                                          | Initialized  | Initialized         | Held                  | Held         |
|                                  | PAPR, PBPR, PDPR,<br>PJPR, PLPR                                                                                                 | Pin value    | Held                | Held                  | Pin value    |
| Flash ROM                        | RAMER                                                                                                                           | Initialized  | Initialized         | Held                  | Held         |
|                                  | FCCS                                                                                                                            | _            |                     | Initialized/<br>Held* | _            |
|                                  | FPCS                                                                                                                            | <del>_</del> |                     | Initialized           | _            |
|                                  | FECS                                                                                                                            | _            |                     |                       |              |
|                                  | FKEY                                                                                                                            | <del>_</del> |                     |                       |              |
|                                  | FMATS                                                                                                                           | <del>_</del> |                     | Held                  | <del>_</del> |
|                                  | FTDAR                                                                                                                           |              |                     | Initialized           |              |
| 1                                | -1                                                                                                                              |              |                     |                       | — (i         |

 Table A.2
 Register States in Reset and Power-Down States (cont)

|                              |                         | Reset State  | Power-Dow           | n State             |       |
|------------------------------|-------------------------|--------------|---------------------|---------------------|-------|
| Туре                         | Name                    | Power-On     | Hardware<br>Standby | Software<br>Standby | Sleep |
| Power-down                   | SBYCR                   | Initialized  | Initialized         | Held                | Held  |
| state related                | SYSCR                   | _            |                     |                     |       |
|                              | MSTCR                   | =            |                     |                     |       |
| Controller                   | MCR                     | Initialized  | Initialized         | Initialized         | Held  |
| area network<br>(HCAN)       | GSR                     | <del>-</del> |                     |                     |       |
| (1107111)                    | BCR                     | _            |                     |                     |       |
|                              | MBCR                    | <del>-</del> |                     |                     |       |
|                              | TXPR                    |              |                     |                     |       |
|                              | TXCR                    |              |                     |                     |       |
|                              | TXACK                   |              |                     |                     |       |
|                              | ABACK                   |              |                     |                     |       |
|                              | RXPR                    | _            |                     |                     |       |
|                              | RFPR                    | _            |                     |                     |       |
|                              | IRR                     | <u>-</u>     |                     |                     |       |
|                              | MBIMR                   | <u>-</u>     |                     |                     |       |
|                              | IMR                     | <u>-</u>     |                     |                     |       |
|                              | REC                     | <u>-</u>     |                     |                     |       |
|                              | TEC                     | =            |                     |                     |       |
|                              | UMSR                    | <del>_</del> |                     |                     |       |
|                              | LAFML                   | =            |                     |                     |       |
|                              | LAFMH                   |              |                     |                     | _     |
|                              | MC0 [1:8] to MC15 [1:8] | Underfined   | Underfined          | Underfined          |       |
|                              | MD0 [1:8] to MD15 [1:8] |              |                     |                     |       |
| High-performance             | SDIR                    | Held         | Held                | Held                | Held  |
| user debug interface (H-UDI) | SDSR                    | _            |                     |                     |       |
| 7                            | SDDRH, SDDRL            |              |                     |                     |       |

Note: \* Bit 7 (FLER) is held, and bit 0 (SCO) is initialized.

# Appendix B Pin States

Tables B.1, B.2, and B.3 show the SH7055SF pin states.

**Table B.1** Pin States

|                |                |        |                   |                       |      | Pin Sta | te       |                 |               |                  |
|----------------|----------------|--------|-------------------|-----------------------|------|---------|----------|-----------------|---------------|------------------|
|                |                |        | Rese              | t State               |      |         | Power-D  | own State       |               |                  |
|                |                |        | Pow               | /er-On                |      |         |          |                 |               |                  |
|                |                |        | Mless<br>ded Mode | Expanded<br>Mode with |      |         | Software | H-UDI<br>Module | AUD<br>Module | Bus-<br>Released |
| Туре           | Pin Name       | 8 Bits | 16 Bits           | ROM                   | Mode | Standby | Standby  | Standby         | Standby       | State            |
| Clock          | CK*2           | 0      |                   |                       |      | Z       | H*1      | 0               | 0             | 0                |
|                | XTAL           | 0      |                   |                       |      | L       | L        | 0               | 0             | 0                |
|                | EXTAL          | I      |                   |                       |      | Z       | I        | I               | I             | I                |
|                | PLLCAP         | I      |                   |                       |      | I       | I        | I               | I             | I                |
| System         | RES            | ı      |                   |                       |      | Z       | I        | I               | I             | I                |
| control        | FWE            | ı      |                   |                       |      | I       | I        | I               | I             | I                |
|                | HSTBY          | I      |                   |                       |      | I       | I        | I               | I             | I                |
|                | MD0            | I      |                   |                       |      | I       | I        | I               | I             | I                |
|                | MD1            | I      |                   |                       |      | I       | I        | I               | I             | I                |
|                | MD2            | I      |                   |                       |      | I       | I        | I               | I             | I                |
|                | WDTOVF         | 0      |                   |                       |      | Z       | O*1      | 0               | 0             | 0                |
| _              | BREQ           | _      |                   |                       |      | Z       | Z        | Ţ               | I             | I                |
|                | BACK           | _      |                   |                       |      | Z       | Z        | 0               | 0             | L                |
| Interrupt      | NMI            | 1      |                   |                       |      | Z       | I        | 1               | 1             | I                |
|                | IRQ0 to IRQ7   | _      |                   |                       |      | Z       | Z        | I               | I             | I                |
|                | ĪRQOUT         | _      |                   |                       |      | Z       | O*1      | 0               | 0             | 0                |
| Address<br>bus | A0 to A21      | 0      |                   | _                     |      | Z       | Z        | 0               | 0             | Z                |
| Data bus       | D0 to D7       | Z      |                   | _                     |      | Z       | Z        | I/O             | I/O           | Z                |
|                | D8 to D15      | _      | Z                 | _                     |      | Z       | Z        | I/O             | I/O           | Z                |
| Bus            | WAIT           | I      |                   |                       | _    | Z       | Z        | I               | I             | I                |
| control        | WRH, WRL       | Н      |                   |                       | _    | Z       | Z        | 0               | 0             | Z                |
|                | RD             | Н      |                   |                       | _    | Z       | Z        | 0               | 0             | Z                |
|                | CS0            | Н      |                   |                       | _    | Z       | Z        | 0               | 0             | Z                |
|                | CS1 to CS3     | _      |                   |                       |      | Z       | Z        | 0               | 0             | Z                |
| Port           | POD            | _      |                   |                       |      | Z       | Z        | I               | 1             | ı                |
| ATU-II         | TI0A to TI0D   | _      |                   |                       |      | Z       | Z        | 1               | ı             | I                |
|                | TIO1A to TIO1H | _      |                   |                       |      | Z       | K*1      | I/O             | I/O           | I/O              |
|                | TIO2A to TIO2H | _      |                   |                       |      | Z       | K*1      | I/O             | I/O           | I/O              |
|                | TIO3A to TIO3D | _      |                   |                       |      | Z       | K*1      | I/O             | I/O           | I/O              |

**Table B.1 Pin States (cont)** 

|          |                   | Pin State   |                   |                       |                  |         |          |         |               |                  |
|----------|-------------------|-------------|-------------------|-----------------------|------------------|---------|----------|---------|---------------|------------------|
|          |                   | Reset State |                   |                       | Power-Down State |         |          |         |               |                  |
|          |                   | Power-On    |                   |                       |                  |         |          |         |               | _                |
|          |                   | Expan       | Mless<br>ded Mode | Expanded<br>Mode with | Chip             |         | Software |         | AUD<br>Module | Bus-<br>Released |
| Туре     | Pin Name          | 8 Bits      | 16 Bits           | ROM                   | Mode             | Standby | Standby  | Standby | Standby       | State            |
| ATU-II   | TIO4A to TIO4D    | _           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | TIO5A to TIO5D    | _           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | TO6A to TO6D      | _           |                   |                       |                  | Z       | O*1      | 0       | 0             | 0                |
|          | TO7A to TO7D      | _           |                   |                       |                  | Z       | O*1      | 0       | 0             | 0                |
|          | TO8A to TO8P      | _           |                   |                       |                  | Z       | O*1      | 0       | 0             | 0                |
|          | TI9A to TI9F      | _           |                   |                       |                  | Z       | Z        | I       | I             | 1                |
|          | TI10              | _           |                   |                       |                  | Z       | Z        | 1       | 1             | 1                |
|          | TIO11A, TIO11B    | _           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | TCLKA, TCLKB      | _           |                   |                       |                  | Z       | Z        | I       | I             | I                |
| SCI      | SCK0 to SCK4      | _           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | TxD0 to TxD4      | _           |                   |                       |                  | Z       | O*1      | 0       | 0             | 0                |
|          | RxD0 to RxD4      | _           |                   |                       |                  | Z       | Z        | I       | I             | 1                |
| A/D      | AN0 to AN31       | Z           |                   |                       |                  | Z       | Z        | I       | I             | I                |
| converte | ADTRG0,<br>ADTRG1 | _           |                   |                       |                  | Z       | Z        | 1       | I             | I                |
|          | ADEND             | _           |                   |                       |                  | Z       | O*1      | 0       | 0             | 0                |
|          | AVref             | I           |                   |                       |                  | I       | I        | I       | I             | I                |
| APC      | PULS0 to PULS7    | _           |                   |                       |                  | Z       | O*1      | 0       | 0             | 0                |
| HCAN     | HTxD0, HTxD1      | _           |                   |                       |                  | Z       | O*1      | 0       | 0             | 0                |
|          | HRxD0, HRxD1      | _           |                   |                       |                  | Z       | Z        | I       | I             | I                |
| UBC      | UBCTRG            | _           |                   |                       |                  | Z       | O*1      | 0       | Z             | 0                |
| I/O      | PA0 to PA15       | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
| port     | PB0 to PB15       | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PC0 to PC4        | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PD0 to PD13       | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PE0 to PE15       | _           |                   | Z                     |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PF0 to PF5        | _           |                   | Z                     |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PF6 to PF10       | _           |                   |                       | Z                | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PH11 to PF15      | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PG0 to PG3        | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PH0 to PH7        | _           |                   | Z                     |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PH8 to PH15       | Z           | _                 | Z                     |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PJ0 to PJ15       | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PK0 to PK15       | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |
|          | PL0 to PL13       | Z           |                   |                       |                  | Z       | K*1      | I/O     | I/O           | I/O              |

Table B.2 Pin States

|       | Pin<br>Name | Reset State              |          |     | Power-Down State |         |          |                 |               |                  |                      |
|-------|-------------|--------------------------|----------|-----|------------------|---------|----------|-----------------|---------------|------------------|----------------------|
|       |             |                          | Power-On |     |                  |         |          |                 |               | -                |                      |
| Туре  |             | ROMIess<br>Expanded Mode |          | •   | Single-<br>Chip  |         | Software | H-UDI<br>Module | AUD<br>Module | Bus-<br>Released | No                   |
|       |             | 8 Bits                   | 16 Bits  | ROM | Mode             | Standby |          | Standby         | Standby       | State            | Connection           |
| H-UDI | TMS         | I                        |          |     |                  | Z       | I        | Z               | I             | I                | Pulled up internally |
|       | TRST        | I                        |          |     |                  | Z       | 1        | Z               | I             | 1                | Pulled up internally |
|       | TDI         | I                        |          |     |                  | Z       | 1        | Z               | I             | 1                | Pulled up internally |
|       | TDO         | 0                        |          |     |                  | Z       | 0        | Z               | 0             | 0                | O/Z                  |
|       | TCK         | I                        |          |     |                  | Z       | 1        | Z               | 1             | 1                | Pulled up internally |

Table B.3 Pin States

|      |                       | Pin State                           |                                                                  |                                                |                        |  |  |  |
|------|-----------------------|-------------------------------------|------------------------------------------------------------------|------------------------------------------------|------------------------|--|--|--|
| Туре | Pin Name              | Hardware Standby AUD Module Standby | AUD Reset<br>(AUDRST = L)                                        | Software Standby AUDSRST = 1/ Normal Operation | No Connection          |  |  |  |
| AUD  | AUDRST                | Z                                   | L input                                                          | H input                                        | Pulled down internally |  |  |  |
|      | AUDMD                 | Z                                   | I                                                                | I                                              | Pulled up internally   |  |  |  |
|      | AUDATA0 to<br>AUDATA3 | Z                                   | When AUDMD = H: I<br>When AUDMD = L: K<br>(pulled up internally) | When AUDMD = H: I/O<br>When AUDMD = L: O       | Pulled up internally   |  |  |  |
|      | AUDCK                 | Z                                   | When AUDMD = H: I<br>When AUDMD = L: K<br>(pulled up internally) | When AUDMD = H: I<br>When AUDMD = L: O         | Pulled up internally   |  |  |  |
|      | AUDSYNC               | Z                                   | When AUDMD = H: I<br>When AUDMD = L: K<br>(pulled up internally) | When AUDMD = H: I<br>When AUDMD = L: O         | Pulled up internally   |  |  |  |

: Not initial value

I : Input
O : Output

H : High-level outputL : Low-level outputZ : High impedance

K: Input pins become high-impedance, output pins retain their state.

Notes: \*1 When the port impedance bit (HIZ) in the standby control register (SBYCR) is set to 1, output pins become high-impedance.

\*2 When the CKHIZ bit in PFCRH is set to 1, becomes high-impedance unconditionally.

# Appendix C Product Lineup

# Table C.1 SH7055S F-ZTAT Product Lineup

| Product Type |        | Model Name | Mark Model Name | Package           |
|--------------|--------|------------|-----------------|-------------------|
| SH7055SF     | F-ZTAT | HD64F7055S | 64F7055F40      | 256-pin (FP-256H) |

# Appendix D Package Dimensions

Figure D.1 shows the FP-256H package dimensions of the SH7055SF.

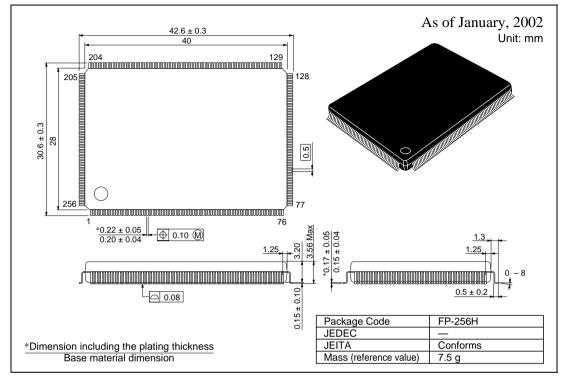



Figure D.1 Package Dimensions (FP-256H)

# SH-2E SH7055S F-ZTAT<sup>™</sup> Hardware Manual

Publication Date: 1st Edition, May, 2002

Rev.2.00, July 17, 2003

Published by: Sales Strategic Planning Div.

Renesas Technology Corp.

Edited by: Technical Documentation & Information Department

Renesas Kodaira Semiconductor Co., Ltd.

©2002, 2003 Renesas Technology Corp. All rights reserved. Printed in Japan.



### **RENESAS SALES OFFICES**

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

**Renesas Technology America, Inc.** 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

### Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

**Renesas Technology Taiwan Co., Ltd.** 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

# Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632

Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bidg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82 · Q. 796-3115, Fax: <82 · Q. 796-2145

### Renesas Technology Malaysia Sdn. Bhd

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

# SH-2E SH7055S F-ZTAT<sup>™</sup> Hardware Manual

