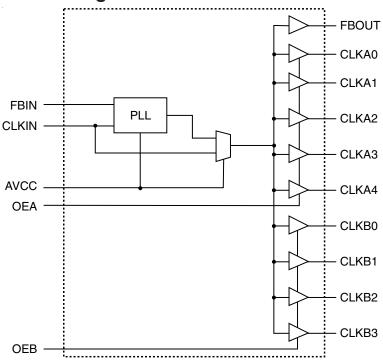


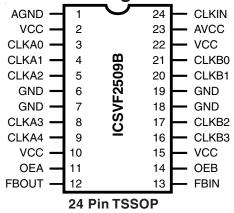
3.3V Phase-Lock Loop Clock Driver

General Description

The ICSVF2509B is a high performance, low skew, low jitter clock driver. It uses a phase lock loop (PLL) technology to align, in both phase and frequency, the CLKIN signal with the CLKOUT signal. It is specifically designed for use with synchronous SDRAMs. The ICSVF2509B operates at 3.3V VCC and drives up to nine clock loads.


One bank of five outputs and one bank of four outputs provide nine low-skew, low-jitter copies of CLKIN. Output signal duty cycles are adjusted to 50 percent, independent of the duty cycle at CLKIN. Each bank of outputs can be enabled or disabled separately via control (OEA and OEB) inputs. When the OE inputs are high, the outputs align in phase and frequency with CLKIN; when the OE inputs are low, the outputs are disabled to the logic low state.

The ICSVF2509B does not require external RC filter components. The loop filter for the PLL is included on-chip, minimizing component count, board space, and cost. The buffer mode shuts off the PLL and connects the input directly to the output buffer. This buffer mode, the ICSVF2509B can be use as low skew fanout clock buffer device. The ICSVF2509B comes in 24 pin 173mil Thin Shrink Small-Outline package (TSSOP) package.


Features

- Meets or exceeds PC133 registered DIMM specification1.1
- Spread Spectrum Clock Compatible
- Distributes one clock input to one bank of ten outputs
- Operating frequency 20MHz to 200MHz
- External feedback input (FBIN) terminal is used to synchrionize the outputs to the clock input
- No external RC network required
- Operates at 3.3V Vcc
- Plastic 24-pin 173mil TSSOP package

Pin Configuration

4.40 mm. Body, 0.65 mm. pitch

ICSVF2509B

Pin Descriptions

PIN NUMBER	PIN NAME	TYPE	DESCRIPTION
1	AGND	PWR	Analog Ground
2, 10, 15	VCC	PWR	Power Supply (3.3V)
3	CLKA0	OUT	Buffered clock output, Bank A
4	CLKA1	OUT	Buffered clock output, Bank A
5	CLKA2	OUT	Buffered clock output, Bank A
6, 7, 18, 19	GND	PWR	Ground
8	CLKA3	OUT	Buffered clock output, Bank A
9	CLKA4	OUT	Buffered clock output, Bank A
			Output enable (has internal pull_up). When high, normal
11	OEA ¹	IN	operation. When low bank A clock outputs are disabled to a
			logic low state.
12	FBOUT	OUT	Feedback output
13	FBIN	IN	Feedback input
			Output enable (has internal pull_up). When high, normal
14	OEB ¹	IN	operation. When low bank B clock outputs are disabled to a
			logic low state.
16	CLKB3	OUT	Buffered clock output. Bank B
17	CLKB2	OUT	Buffered clock output. Bank B
20	CLKB1	OUT	Buffered clock output. Bank B
21	CLKB0	OUT	Buffered clock output. Bank B
22	VCC	PWR	Power Supply (3.3V) digital supply.
00	AVCC	IN	Analog power supply (3.3V). When input is ground PLL is off
23			and bypassed.
24	CLKIN	IN	Clock input

Note:

Functionality

INPUTS			OUTPUTS				PLL
OEA	OEB	AVCC	CLKA (0:4)	CLKB (0:3)	FBOUT	Source	Shutdown
0	0	3.33	0	0	Driven	PLL	N
0	1	3.33	0	Driven	Driven	PLL	N
1	0	3.33	Driven	0	Driven	PLL	N
1	1	3.33	Driven	Driven	Driven	PLL	N
			Buffer	Mode			
0	0	0	0	0	Driven	CLKIN	Υ
0	1	0	0	Driven	Driven	CLKIN	Υ
1	0	0	Driven	0	Driven	CLKIN	Υ
1	1	0	Driven	Driven	Driven	CLKIN	Υ

Test mode:

When AVCC is 0, shuts off the PLL and connects the input directly to the output buffers

1036C-07/13/05

^{1.} Weak pull-ups on these inputs

Absolute Maximum Ratings

Supply Voltage (AVCC) AVCC < (V_{cc} + 0.7 V)

Supply Voltage (VCC) 4.3 V

Logic Inputs GND -0.5 V to V_{cc} + 0.5 V

Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics - OUTPUT

 $T_A = 0 - 70^{\circ}\text{C}$; $V_{DD} = V_{DDL} = 3.3 \text{ V} + /-10\%$; $C_L = 30 \text{ pF}$; $R_L = 500 \text{ Ohms}$ (unless otherwise stated)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output High Voltage	V _{OH}	$I_{OH} = -8 \text{ mA}$	2.4	2.9		V
Output Low Voltage	V_{OL}	$I_{OL} = 8 \text{ mA}$		0.25	0.4	V
Output High Current	ı	$V_{OH} = 2.4 \text{ V}$		27		m A
Output High Current	I _{OH}	$V_{OH} = 2.0 \text{ V}$		39		mA
Output Low Current	ı	$V_{OL} = 0.8 \text{ V}$		26		mA
Output Low Current	I _{OL}	$V_{OL} = 0.55 \text{ V}$		19		IIIA
Rise Time ¹	T _r	$V_{OL} = 0.8 \text{ V}, V_{OH} = 2.0 \text{ V}$	0.5	1.1	2.1	ns
Fall Time ¹	T _f	$V_{OH} = 2.0 \text{ V}, V_{OL} = 0.8 \text{ V}$	0.5	1.1	2.7	ns
Duty Cycle ¹	D _t	$V_T = 1.5 \text{ V;} C_L = 30 \text{ pF}$	48	50	52	%
Cycle to Cycle jitter ¹	T _{CYC} - T _{CYC}	at 66-100 MHz; loaded outputs			75	ps
Absolute Jitter ¹	T _{JABS}	10000 cycles; C _L = 30 pF			100	ps
Skew ¹	T _{sk}	$V_T = 1.5 \text{ V (Window) Output to Output}$			100	ps
Phase error ¹	T _{pe}	$V_T = Vdd/2$; CLKIN-FBIN	-75		75	ps
Delay Input-Output ¹	D _{R1}	$V_T = 1.5 \text{ V}; \text{ PLL_EN} = 0$		3.3	3.7	ns

¹ Guaranteed by design, not 100% tested in production.

ICSVF2509B

Electrical Characteristics - Input & Supply

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-}10\%$ (unless otherwise stated)

		•	•			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Input High Voltage	V_{IH}		2		$V_{DD} + 0.3$	V
Input Low Voltage	V_{IL}		V _{SS} - 0.3		0.8	V
Input High Current	I _{IH}	$V_{IN} = V_{DD}$		0.1	100	uA
Input Low Current	I _{IL}	$V_{IN} = 0 V;$		19	50	uA
Operating current	I_{DD}^{1}	C _L = 0 pF; F _{IN} @ 66MHz			170	mA
Input Capacitance	C _{IN} ¹	Logic Inputs		4		pF

¹Guaranteed by design, not 100% tested in production.

Timing requirements over recommended ranges of supply voltage and operating free-air temperature

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
F_{OP}	Operating frequency		20	200	MHz
F _{CLK}	Input clock frequency		25	200	MHz
	Input clock frequency duty cycle		40	60	%
	Stabilization time	After power up		15	μs

Note: Time required for the PLL circuit to obtain phase lock of its feedback signal to its reference signal.

In order for phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK.

Until phase lock is obtained, the specifications for parameters given in the switching characteristics table are not applicable.

PARAMETER MEASUREMENT INFORMATION

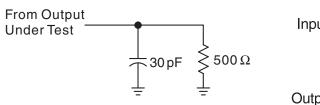


Figure 1. Load Circuit for Outputs

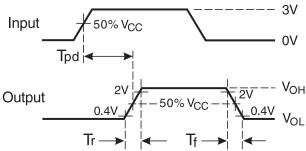


Figure 2. Voltage Waveforms

Propagation Delay Times

Notes:

- 1. C_L includes probe and jig capacitance.
- 2. All input pulses are supplied by generators having the following characteristics: PRR \leq 133MHz, $Z_0 = 50 \Omega$, $T_r \leq$ 1.2ns, $T_f \leq$ 1.2ns.
- 3. The outputs are measured one at a time with one transition per measurement.

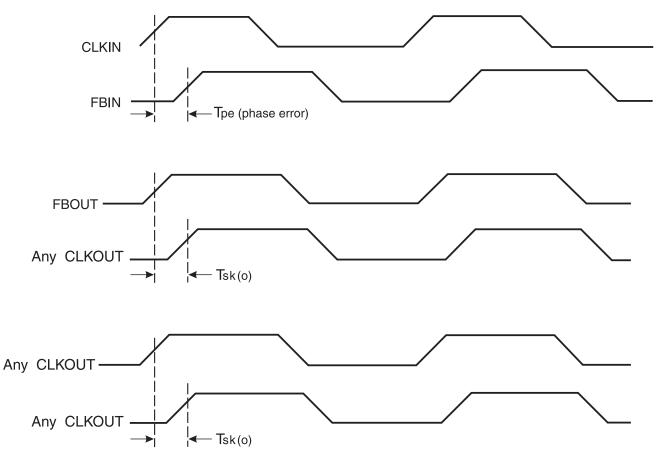
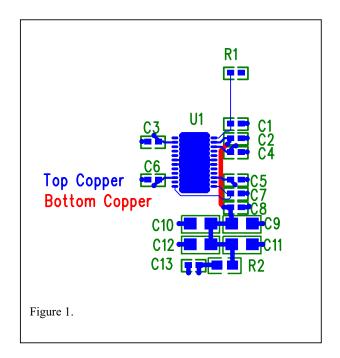


Figure 3. Phase Error and Skew Calculations

1036C-07/13/05


ICSVF2509B

General Layout Precautions:

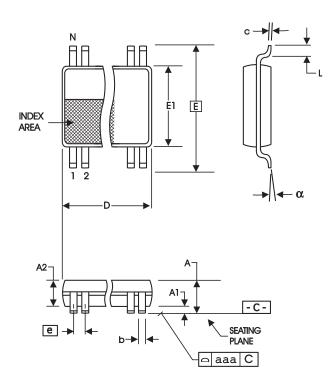
An ICS2509C is used as an example. It is similar to the ICSVF2509. The same rules and methods apply.

- 1) Use copper flooded ground on the top signal layer under the clock buffer The area under U1 in figure 1 on the right is an example. Every ground pin goes to a ground via. The vias are not visible in figure 1.
- 2) Use power vias for power and ground. Vias 20 mil or larger in diameter have lower high frequency impedance. Vias for signals may be minimum drill size.
- 3) Make all power and ground traces are as wide as the via pad for lower inductance.
- 4) VAA for pin 23 has a low pass RC filter to decouple the digital and analog supplies. C9-12 may be replaced with a single low ESR (0.8 ohm or less) device with the same total capacitance. R2 may be replaced with a ferrite bead. The bead should have a DC resistance of at least 0.5 ohms. 1 ohm is better. It should have an impedance of at least 300 ohms at 100MHz. 600 ohms at 100MHz is better.
- 5) Notice that ground vias are never shared.
- 6) All VCC pins have a decoupling capacitor. Power is always routed from the plane connection via to the capacitor pad to the VCC pin on the clock buffer.
- 7) Component R1 is located at the clock source.
- 8) Component C1, if used, has the effect of adding delay.
- 9) Component C7, if used, has the effect of subtracting delay. Delaying the FBIn clock will cause the output clocks to be earlier. A more effective method is to use the propagation time of a trace between FBOut and FBIn.

Component Values:

C1, C7 = As necessary for delay adjust

C[6:2] = .01uF


C8, C13=0.1uF

C[12:9]=4.7Uf

R1=10 ohm. Locate at driver

R2=10 ohm.

4.40 mm. Body, 0.65 mm. pitch TSSOP (173 mil) (0.0256 lnch)

	In Milli	meters	In Inches		
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α		1.20	-	.047	
A1	0.05	0.15	.002	.006	
A2	0.80	1.05	.032	.041	
b	0.19	0.30	.007	.012	
С	0.09	0.20	.0035	.008	
D	SEE VARIATIONS		SEE VARIATIONS		
Е	6.40	BASIC	0.252 BASIC		
E1	4.30	4.50	.169	.177	
е	0.65	BASIC	0.0256 BASIC		
L	0.45	0.75	.018	.030	
N	SEE VARIATIONS		SEE VAR	RIATIONS	
α	0°	8°	0°	8°	
aaa		0.10		.004	

VARIATIONS

NI	Dr	nm.	D (inch)		
N	MIN	MAX	MIN	MAX	
24	7.70	7.90	.303	.311	

Reference Doc.: JEDEC Publication 95, MO-153

10-0035

Ordering Information

ICSVF2509yGLN-T

Example:

ICS XXXX y G - PPP LN - T

Designation for tape and reel packaging

RoHS Compliant (Optional)

Pattern Number (2 or 3 digit number for parts with ROM code patterns)

Package Type

G = TSSOP

Revision Designator (will not correlate with datasheet revision)

Device Type (consists of 3 to 7 digit numbers)

Prefix

ICS, AV = Standard Device

1036C-07/13/05

Contact IDT | Investors | Press

Home Applications Products

Purchasing

Getting Support

About IDT

Document Search | Package Search | Parametric Search | Cross Reference Search | Green & RoHS | Calculators | Thermal Data | Reliability & Quality | Military

Home > Products > Memory Interface Products > RDIMM > SDR > SDR PLL > VF2509B

Add to myIDT [?]

You may also like...

VF2509B (SDR PLL) Description

Market Group DIMM **Additional Info**

Related Orderable Parts

Attributes	VF2509BG	VF2509BGLN	VF2509BGLNT	VF2509BGT
Package	TSSOP 24 (PG24)	TSSOP 24 (PGG24)	TSSOP 24 (PGG24)	TSSOP 24 (PG24)
Speed	NA	NA	NA	NA
Temperature	С	С	С	С
Voltage	3.3 V	3.3 V	3.3 V	3.3 V
Status	Active	Active	Active	Active
Sample	No	No	No	No
Minimum Order Quantity	372	372	2500	2500
Factory Order Increment	62	62	2500	2500

Related Documents

Title Size **Revision Date** Type

Product Change Notice PCN#: L-0607-01 MSL 3 to MSL 1 for ICS Classic Products 305 KB 08/03/2006 Node: www.idt.com