High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

General Description
The HWD20011/HWD2001/HWD20012 compact, high efflciency, step-up DC-DC converters fit in small MSOP packages. They feature a built-in synchronous rectifier, which improves efficiency and reduces size and cost by eliminating the need for an external Schottky diode. Quiescent supply current is only $16 \mu \mathrm{~A}$.
The input voltage ranges from 0.7 V to Vout, where Vout can be set from 2 V to 5.5 V . Start-up is guaranteed from 1.1V inputs. The HWD20011/HWD2001/ HWD20012 have a preset, pin-selectable output for 5V or 3.3 V . The outputs can also be adjusted to other voltages using two external resistors.
All three devices have a $0.3 \Omega \mathrm{~N}$-channel MOSFET power switch. The HWD20011 has a 1A current limit. The HWD2001 has a 0.5A current limit, which permits the use of a smaller inductor. The HWD20012 comes in a 10-pin MSOP package and features an adjustable current limit and circuitry to reduce inductor ringing.

Applications
Pagers
Wireless Phones
Medical Devices
Hand-Held Computers
PDAs
RF Tags
1 to 3-Cell Hand-Held Devices
Typical Operating Circuit

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
HWD20011EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 MSOP
HWD2001EUA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 MSOP
HWD20012EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	10 MSOP

- 94% Efficient at $\mathbf{2 0 0 m A}$ Output Current
- 16 A A Quiescent Supply Current
- Internal Synchronous Rectifier (no external diode)
- 0.1 $\mu \mathrm{A}$ Logic-Controlled Shutdown
- LBI/LBO Low-Battery Detector
- Selectable Current Limit for Reduced Ripple
- Low-Noise, Anti-Ringing Feature (HWD20012)
- 8-Pin and 10-Pin MSOP Packages
- Preassembled Evaluation Kit (HWD20012EVKIT)

Pin Configurations

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (OUT to GND)
-0.3 V to +6.0 V
-0.3 V to (VOUT +0.3 V)
Switch Voltage (LX to GND) \qquad
Battery Voltage (BATT to GND) \qquad -0.3 V to +6.0 V
SHDN, $\overline{\text { LBO }}$ to GND -0.3 V to +6.0 V
LBI, REF, FB, CLSEL to GND-0.3V to (VOUT + 0.3V)
Switch Current (LX)
-1.5 A to +1.5 A
Output Current (OUT)
1.5 A to +1.5 A

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
8-Pin MSOP (derate $4.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) 330 mW
10-Pin MSOP (derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) $\ldots444 \mathrm{~mW}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature ... $150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\text {BATT }}=2 \mathrm{~V}, \mathrm{FB}=$ OUT ($\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$), $\mathrm{R}_{\mathrm{L}}={ }^{\circ} \infty, \mathrm{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{B A T T}=2 \mathrm{~V}, \mathrm{FB}=\mathrm{OUT}(\mathrm{VOUT}=3.3 \mathrm{~V}), \mathrm{R}_{\mathrm{L}}={ }^{\circ} \infty, \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
Output Voltage	Vout	FB = OUT	3.13	3.47	V
		$\mathrm{FB}=\mathrm{GND}$	4.75	5.25	
Output Voltage Range			2.20	5.5	V
Reference Voltage	VREF	IREF $=0$	1.2675	1.3325	V
FB, LBI Thresholds			1.2675	1.3325	V
Internal NFET, PFET On-Resistance	RDS(ON)			0.6	Ω
Operating Current into OUT (Note 3)		$\mathrm{V}_{\mathrm{FB}}=1.4 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$		40	$\mu \mathrm{A}$
Shutdown Current into OUT		$\overline{\text { SHDN }}=$ GND		1	$\mu \mathrm{A}$
LX Switch On-Time	ton	$\mathrm{V}_{\text {FB }}=1 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$	2.7	7.0	$\mu \mathrm{s}$
LX Switch Off-Time	toff	$\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}$	0.75	1.25	us
LX Switch Current Limit (NFET)	ILIM	HWD20012, HWD20012 (CLSEL = OUT)	0.75	1.25	A
		HWD2001, HWD20012 (CLSEL = GND)	0.36	0.69	

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

ELECTRICAL CHARACTERISTICS (continued)

($\mathrm{V}_{\text {BATT }}=2 \mathrm{~V}, \mathrm{FB}=\mathrm{OUT}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{T}_{\mathrm{A}}=-\mathbf{4 0 ^ { \circ } \mathrm { C } \text { to } + 8 5 ^ { \circ } \mathrm { C } \text { , unless otherwise noted.) (Note 4) } { } ^ { \text { (} } \text {) }}$

PARAMETER	SYMBOL	CONDITIONS	MIN MAX	UNITS
CLSEL Input Current	ICLSEL	HWD20012, CLSEL = OUT	3	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Current	ISHDN	$\mathrm{V}_{\text {SHDN }}=0$ or $\mathrm{V}_{\text {OUT }}$	75	nA
$\overline{\text { LBO }}$ Off Leakage Current	I $\overline{\mathrm{LBO}}$	$\mathrm{V}_{\overline{\mathrm{LBO}}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{LBI}}=5.5 \mathrm{~V}$	1	$\mu \mathrm{A}$

Note 1: Start-up voltage operation is guaranteed with the addition of a Schottky MBR0520 external diode between the input and output.
Note 2: Steady-state output current indicates that the device maintains output voltage regulation under load. See Figures 5 and 6.
Note 3: Device is bootstrapped (power to the IC comes from OUT). This correlates directly with the actual battery supply.
Note 4: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

Typical Operating Characteristics

($\mathrm{L}=22 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F}, \mathrm{C}_{\text {OUT }}=47 \mu \mathrm{~F} \| 0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$

EFFICIENCY vs. LOAD CURRENT

EFFICIENCY vs. LOAD CURRENT

EFFICIENCY vs. LOAD CURRENT

EFFICIENCY vs. LOAD CURRENT

REFERENCE OUTPUT VOLTAGE vs. TEMPERATURE

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

Typical Operating Characteristics (continued)
$\left(\mathrm{L}=22 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F}, \mathrm{COUT}^{2}=47 \mu \mathrm{~F} \| 0.1 \mu \mathrm{~F}, \mathrm{CREF}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

Typical Operating Characteristics (continued)
($\mathrm{L}=22 \mu \mathrm{H}, \mathrm{C}_{\mathrm{IN}}=47 \mu \mathrm{~F}, \mathrm{COUT}^{2}=47 \mu \mathrm{~F} \| 0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {REF }}=0.1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN		NAME	FUNCTION
HWD20011 HWD2001	HWD20012		
1	1	FB	Dual-Mode ${ }^{\text {TM }}$ Feedback Input. Connect to GND for +5.0 V output. Connect to OUT for +3.3 V output. Use a resistor network to set the output voltage from +2.0 V to +5.5 V .
2	2	LBI	Low-Battery Comparator Input. Internally set to trip at +1.30 V .
3	3	$\overline{\text { LBO }}$	Open-Drain Low-Battery Comparator Output. Connect $\overline{\mathrm{LBO}}$ to OUT through a $100 \mathrm{k} \Omega$ resistor. Output is low when $\mathrm{V}_{\mathrm{LBI}}$ is $<1.3 \mathrm{~V}$. $\overline{\mathrm{LBO}}$ is high impedance during shutdown.
-	4	CLSEL	Current-Limit Select Input. CLSEL = OUT sets the current limit to 1 A . CLSEL $=$ GND sets the current limit to 0.5 A .
4	5	REF	1.3V Reference Voltage. Bypass with a $0.1 \mu \mathrm{~F}$ capacitor.
5	6	$\overline{\text { SHDN }}$	Shutdown Input. Drive high ($>80 \%$ of $\mathrm{V}_{\text {OUT }}$) for operating mode. Drive low (<20\% of VOUT) for shutdown mode. Connect to OUT for normal operation.
-	7	BATT	Battery Input and Damping Switch Connection. If damping switch is unused, leave BATT unconnected.
6	8	GND	Ground
7	9	LX	N-Channel and P-Channel Power MOSFET Drain
8	10	OUT	Power Output. OUT provides bootstrap power to the IC.

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

Detailed Description

The HWD20011/HWD2001/HWD20012 compact, step-up DC-DC converters start up with voltages as low as 0.9 V and operate with an input voltage down to 0.7 V . Consuming only $16 \mu \mathrm{~A}$ of quiescent current, these devices offer a built-in synchronous rectifier that reduces cost by eliminating the need for an external diode and improves overall efficiency by minimizing losses in the circuit (see Synchronous Rectification section for details). The internal MOSFET resistance is typically 0.3Ω, which minimizes losses. The current limit of the HWD20011 and HWD2001 are 1A and 0.5A, respectively. The HWD2001's lower current limit allows the use of a physically smaller inductor in space-sensitive applications. The HWD20012 features a circuit that eliminates noise due to inductor ringing. In addition, the HWD20012 offers a selectable current limit (0.5A or 1A) for design flexibility.

PFM Control Scheme

A unique minimum-off-time, current-limited, pulse-fre-quency-modulation (PFM) control scheme is a key feature of the HWD20011/HWD2001/HWD20012. This scheme
combines the high output power and efficiency of a pulse-width-modulation (PWM) device with the ultra-low quiescent current of a traditional PFM (Figure 1). There is no oscillator; a constant-peak-current limit in the switch allows the inductor current to vary between this peak limit and some lesser value. At light loads, the switching frequency is governed by a pair of one-shots that set a typical minimum off-time ($1 \mu \mathrm{~s}$) and a typical maximum on-time ($4 \mu \mathrm{~s}$). The switching frequency depends upon the load and the input voltage, and can range up to 500 kHz . The peak current of the internal N channel MOSFET power switch is fixed at 1A (HWD20011), at 0.5A (HWD2001), or is selectable (HWD20012). Unlike conventional pulse-skipping DC-DC converters (where ripple amplitude varies with input voltage), ripple in these devices does not exceed the product of the switch current limit and the filter-capacitor equivalent series resistance (ESR).

Synchronous Rectification
The internal synchronous rectifier eliminates the need for an external Schottky diode, thus reducing cost and board space. During the cycle off-time, the P-channel MOSFET turns on and shunts the MOSFET body diode.

Figure 1. Simplified Functional Diagram

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

As a result, the synchronous rectifier significantly improves efficiency without the addition of an external component. Conversion efficiency can be as high as 94\%, as shown in the Typical Operating Characteristics. For low-voltage inputs from single cells (Alkaline, NiCd, or NiMH), use an external Schottky diode such as the 1N5817 to ensure start-up.

Voltage Reference The voltage at REF is nominally +1.30 V . REF can source up to $100 \mu \mathrm{~A}$ to external circuits. The reference maintains excellent load regulation (see Typical Operating Characteristics). A bypass capacitor of $0.1 \mu \mathrm{~F}$ is required for proper operation.

Shutdown

The device enters shutdown when V SHDN is low (VSHDN $<20 \%$ of VOUT). For normal operation, drive SHDN high (VSHDN $>80 \%$ of VOUT) or connect SHDN to OUT. During shutdown, the body diode of the Pchannel MOSFET allows current flow from the battery to the output. VOUT falls to approximately VIN -0.6 V and LX remains high impedance. The capacitance and load at OUT determine the rate at which VOUT decays. Shutdown can be pulled as high as 6 V , regardless of the voltage at OUT.

Current Limit Select Pin (HWD20012)
The HWD20012 allows a selectable inductor current limit of either 0.5 A or 1 A . This allows flexibility in designing for higher current applications or for smaller, compact designs. Connect CLSEL to OUT for 1A or to GND for 0.5 A . CLSEL draws $1.4 \mu \mathrm{~A}$ when connected to OUT.

BATT/Damping Switch (HWD20012)
The HWD20012 is designed with an internal damping switch to minimize ringing at LX. The damping switch connects an external resistor (R1) across the inductor when the inductor's energy is depleted (Figure 2). Normally, when the energy in the inductor is insufficient to supply current to the output, the capacitance and inductance at LX form a resonant circuit that causes ringing. The ringing continues until the energy is dissipated through the series resistance of the inductor. The damping switch supplies a path to quickly dissipate this energy, minimizing the ringing at LX. Damping LX ringing does not reduce Vout ripple, but does reduce EMI. R1 $=200 \Omega$ works well for most applications while reducing efficiency by only 1%. Larger R1 values provide less damping, but have less impact on efficiency. Generally, lower values of R1 are needed to fully damp LX when the VOUT/VIN ratio is high (Figures 2, 3, and 4).

Figure 2. Simplified Diagram of Inductor Damping Switch

Figure 3. LX Ringing Without Damping Switch

Figure 4. LX Waveform with Damping Switch (with 200 external resistor)

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

Selecting the Output Voltage
Vout can be set to 3.3 V or 5.0 V by connecting the FB pin to GND (5V) or OUT (3.3V) (Figures 5 and 6).
To adjust the output voltage, connect a resistor-divider from Vout to FB to GND (Figure 7). Choose a value less than $260 \mathrm{k} \Omega$ for R 6 . Use the following equation to calculate R5:

R5 = R6 [(VOUT / VREF) - 1]

Figure 5. Preset Output Voltage of +3.3 V

Figure 6. Preset Output Voltage of +5 V
where $\mathrm{V}_{\text {REF }}=+1.3 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT }}$ may range from 2 V to 5 V . The input bias current of FB has a maximum value of 50 nA which allows large-value resistors ($\mathrm{R} 6 \leq 260 \mathrm{k} \Omega$) to be used.

Low-Battery Detection

The HWD20011/HWD2001/HWD20012 contain an on-chir comparator for low-battery detection. If the voltage at LBI falls below the internal reference voltage (1.30V), $\overline{\mathrm{LBO}}$ (an open-drain output) sinks current to GND. The low-battery monitor threshold is set by two resistors, R3 and R4 (Figures 5, 6, and 7). Since the LBI current is less than 50 nA , large resistor values ($\mathrm{R} 4 \leq 260 \mathrm{k} \Omega$) can be used to minimize loading of the input supply. Calculate R3 using the following equation:

$$
\mathrm{R} 3=\mathrm{R} 4\left[\left(\mathrm{~V} \text { TRIP } / \mathrm{V}_{\mathrm{REF}}\right)-1\right]
$$

for $V_{\text {TRIP }} \geq 1.3 \mathrm{~V}$. VTRIP is the level where the low-battery detector output goes low, and $\mathrm{V}_{\text {REF }}$ is the internal 1.30 V reference. Connect a pull-up resistor of $100 \mathrm{k} \Omega$ or greater from $\overline{\mathrm{LBO}}$ to OUT when driving CMOS circuits. LBO is an open-drain output, and can be pulled as high as 6 V regardless of the voltage at OUT. When LBI is above the threshold, the $\overline{\mathrm{LBO}}$ output is high impedance. If the low-battery comparator is not used, ground

Figure 7. Setting an Adjustable Output

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

Figure 8. Setting Resistor Values for the Low-Battery Indicator when $V_{I N}<1.3 \mathrm{~V}$

LBI and $\overline{\mathrm{LBO}}$. For VTRIP less than 1.3 V , configure the comparator as shown in Figure 8. Calculate the value of the external resistors R3 and R4 as follows:

$$
\text { R3 } \left.=\text { R4(VREF }-\mathrm{V}_{\text {TRIP }}\right) /\left(\text { Vout }-\mathrm{V}_{\text {REF }}\right)
$$

Since the low-battery comparator is noninverting, external hysteresis can be added by connecting a resistor between $\overline{\mathrm{LBO}}$ and LBI as shown in Figure 9. When $\overline{\mathrm{LBO}}$ is high, the series combination of R 2 and R 7 source current into the LBI summing junction.

Applications Information

Inductor Selection

An inductor value of $22 \mu \mathrm{H}$ performs well in most applications. The HWD20011/HWD2001/HWD20012 will also work with inductors in the $10 \mu \mathrm{H}$ to $47 \mu \mathrm{H}$ range. Smaller inductance values typically offer a smaller physical size for a given series resistance, allowing the smallest overall circuit dimensions. However, due to higher peak inductor currents, the output voltage ripple (IPEAK x output filter capacitor ESR) also tends to be higher. Circuits using larger inductance values exhibit higher output current capability and larger physical dimensions for a given series resistance. The inductor's incremental saturation current rating should be greater than the peak switch-current limit, which is 1 A for the

Figure 9. Adding External Hysteresis to the Low-Battery Indicator

HWD20011, 500mA for the HWD2001, and 1A or 0.5A for the HWD20012. However, it is generally acceptable to bias the inductor into saturation by as much as 20%, although this will slightly reduce efficiency. Table 1 lists suggested components.
The inductor's DC resistance significantly affects efficiency. See Table 2 for a comparison of inductor specifications. Calculate the maximum output current as follows:

$$
\operatorname{IOUT}(\mathrm{MAX})=\frac{\mathrm{V}_{\text {IN }}}{\mathrm{V}_{\mathrm{OUT}}}\left[\operatorname{LIM}-\operatorname{t}_{\mathrm{OFF}}\left(\frac{\mathrm{~V}_{\mathrm{OUT}}-\mathrm{V}_{\mathbb{N}}}{2 \times \mathrm{L}}\right)\right] \eta
$$

where IOUT(MAX) = maximum output current in amps
$\mathrm{V}_{\mathrm{IN}}=$ input voltage
$\mathrm{L}=$ inductor value in $\mu \mathrm{H}$
$\eta=$ efficiency (typically 0.9)
toFF $=$ LX switch's off-time in $\mu \mathrm{s}$
$\operatorname{ILIM}=0.5 \mathrm{~A}$ or 1.0 A

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

Table 1. Suggested Components

PRODUCTION METHOD	INDUCTORS	CAPACITORS	RECTIFIERS (OPTIONAL)
Surface Mount	Sumida CD43 series Sumida CD54 series Coilcraft DT1608C Coilcraft DO1608C Coiltronics Uni-PAC Murata LQH4 series	Sprague 593D series Sprague 595D series AVX TPS series ceramic	Motorola MBR0530 Nihon EC 15QSO2L
Miniature Through-Hole	Sumida RCH654-220	Sanyo OS-CON series	-

Table 2. Surface-Mount Inductor Specifications

MANUFACTURER PART NUMBER	$\boldsymbol{\mu H}$	Ω (max)	IPEAK (A)	HEIGHT $\mathbf{(m m)}$
Coilcraft DT1608C-103	10	0.095	0.7	2.92
Coilcraft DO1608C-153	15	0.200	0.9	2.92
Coilcraft DO1608C-223	22	0.320	0.7	2.92
Coiltronics UP1B-100	10	0.111	1.9	5.0
Coiltronics UP1B-150	15	0.175	1.5	5.0
Coiltronics UP1B-220	22	0.254	1.2	5.0
Murata LQH4N100	10	0.560	0.4	2.6
Murata LQH4N220	22	0.560	0.4	2.6
Sumida CD43-8R2	8.2	0.132	1.26	3.2
Sumida CD43-100	10	0.182	1.15	3.2
Sumida CD54-100	10	0.100	1.44	4.5
Sumida CD54-180	18	0.150	1.23	4.5
Sumida CD54-220	22	0.180	1.11	4.5

Capacitor Selection

A $47 \mu \mathrm{~F}, 10 \mathrm{~V}$ surface-mount tantalum (SMT) output filter capacitor provides 80 mV output ripple when stepping up from 2 V to 5 V . Smaller capacitors (down to $10 \mu \mathrm{~F}$ with higher ESRs) are acceptable for light loads or in applications that can tolerate higher output ripple. Values in the $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$ range are recommended. The equivalent series resistance (ESR) of both bypass and filter capacitors affects efficiency and output ripple. Output voltage ripple is the product of the peak

Table 3. Component Suppliers

COMPANY	PHONE	FAX
AVX	USA (803) 946-0690	USA (803) 626-3123
Coilcraft	USA (847) 639-6400	USA (847) 639-1469
Coiltronics	USA (561) 241-7876	USA (561) 241-9339
Motorola	USA (303) 675-2140 (800) 521-6274	USA (303) 675-2150
Murata	USA (814) 237-1431 (800) 831-9172	USA (814) 238-0490
Nihon	USA (805) 867-2555 Japan 81-3-3494-7411	USA (805) 867-2556 Japan 81-3-3494-7414
Sanyo	USA (619) 661-6835 Japan 81-7-2070-6306	USA (619) 661-1055 Japan 81-7-2070-1174
Sprague	USA (603) 224-1961	USA (603) 224-1430
Sumida	USA (647) 956-0666 Japan 81-3-3607-5111	USA (647) 956-0702 Japan 81-3-3607-5144
Taiyo Yuden	USA (408) 573-4150	USA (408) 573-4159

inductor current and the output capacitor ESR. Use low-ESR capacitors for best performance, or connect two or more filter capacitors in parallel. Low-ESR, SMT tantalum capacitors are currently available from Sprague (595D series) AVX (TPS series) and other sources. Ceramic surface-mount and Sanyo OS-CON organic-semiconductor through-hole capacitors also exhibit very low ESR, and are especially useful for operation at cold temperatures. See Table 3 for a list of suggested component suppliers.

High-Efficiency, Low-Supply-Current, Compact, Step-Up DC-DC Converters

Optional External Rectifier

Although not required, a Schottky diode (such as the MBR0520) connected between LX and OUT allows lower start-up voltages (Figure 10) and is recommended when operating at input voltages below 1.3V. Note that adding this diode provides no significant efficiency improvement.

PC Board Layout and Grounding Careful printed circuit layout is important for minimizing ground bounce and noise. Keep the IC's GND pin and the ground leads of the input and output filter capacitors less than 0.2in (5 mm) apart. In addition, keep all connections to the FB and LX pins as short as possible. In particular, when using external feedback resistors, locate them as close to the FB as possible. To maximize output power and efficiency and minimize output ripple voltage, use a ground plane and solder the IC's GND directly to the ground plane.

Figure 10. Adding a Schottky Diode for Low Input Voltage Operation

Chip Information

Package Information

Chengdu Sino Microelectronics System Co., Ltd

