\square MN103E01, MN103E04 Series

Type	MN103E010HRA	MN103E040HYB
Instruction Cashe (byte)	16K (4-way, set-associative)	
Data Cashe (byte)	16K (4-way, set-associative)	
SRAM Used by Both Instructions and Data(byte)	16K	
Package (Lead-free)	BGA292-P-2727	FLGA424-C-1717
Minimum Instruction Execution Time	7.5 ns (at 1.8 V tolerance $= \pm 5 \%, 133 \mathrm{MHz}$)	

- Interrupts

XIRQ $\times 8, \mathrm{NMI}$, Timer $\times 14, \mathrm{DMAC} \times 4, \mathrm{WDT}, \mathrm{A} / \mathrm{D}, \mathrm{SIO} \times 6, \mathrm{I}^{2} \mathrm{C} \times 2, \mathrm{IrDA}$, Softmodem, Realtime clock, Asynchronous bus error

- Timer Counter

8-bit timer $\times 4$ (all down counters)
Cascade connection possible (usable as a 16/24/32-bit timer), Timer output possible (Duty $=1: 1$), Internal clock source or external clock source selectable, Selectable as a serial interface clock
16-bit timer $\times 7$ (down counters)
Cascade connection possible (usable as a 32-bit timer), Timer output possible (Duty $=1: 1$), Internal clock source or external clock source selectable, Partially selectable as a serial interface clock
16-bit timer $\times 1$ (up counter)
Internal clock source or external clock source selectable, Input capture function (rising edge, falling edges, or both selectable), PWM generating function (compare/capture register $\times 2$ contained)
Watchdog timer $\times 1$

\square Serial interface

UART/synchronous (co-used) $\times 2$-ch.
UART (with CTS control) $\times 1-\mathrm{ch}$.

DMA controller

Number of channels : 4
Transfer unit : 1/2/4/16 byte
Maximum number of bytes transferred : 1Mbyte
Start factor : External request, interrupt, software
Transfer mode : 2-bus cycle transfer
Transfer mode : Batch transfer, intermittent transfer
Addressing mode :
Source/destination each fixed, increment/decrement specification possible
Increment/decrement automatically executed according to the transfer unit

- Expanded Calculation Functions

Multiply-and-accumulate; Multiply saturation; Floating point(Single precision)
■ I/O Pins
I/O

$$
34 \text { : Common use : } 33
$$

A/D converter

10 -bit charge re-distribution mode (error : $\pm 4 \mathrm{LSB}$)
Number of channels: 8-channel
\square FPU (floating point unit)

- Data types complying with the IEEE754 standard supported
- Round to the nearest mode complying with the IEEE754 standard supported
- 32 single-precision floating point operation registers (FS0-FS31)

These can also be referenced as 16 double-precision floating point operation registers (FD0-FD30)

- Floating point operation exceptions (5 types) and floating point unload instruction exceptions complying with the IEEE754 standard supported

■ Memory Management Function

32-entry full-associative TLB loaded (instructions/data separated from each other)
Address conversion by paging (page size : 1 K -byte. 4 K -byte, 128 K-byte, 4 M -byte variable)

■ On-chip Bus Controller

Concurrent access from three types of master devices to four types of slave devices possible

■ System Bus Interface

External memory space allocation to 8 banks possible
The external interface can use the built-in memory, RAM, ROM, SDRAM interfaces
■ Memory Bus Interface
SDRAM directly connected interface contained

Soft Modem Interface

Interface with an external AFE (analog front end), Output data parallel-serial conversion, input data serial-parallel conversion Send/receive FIFO contained (16-bit width, 16 steps), NCU control via the parallel IO port

\square Real-time Clock

Clock/calendar function, Interrupt : periodic, alarm, update ended
BCD/binary accommodated,
Leap year automatic correcting function, 24-hout/12-hour selectable, Daylight saving time mode accommodated

\square IrDA Interface

IrDA 1.0 SIR ($-115.2 \mathrm{~Kb} / \mathrm{s}$, half-duplex)
IrDA 1.1 MIR ($0.576,1.152 \mathrm{Mb} / \mathrm{s}$, half-duplex)
IrDA 1.1 FIR (4.0 Mbp/s, half-duplex)
UART (-1.5 Mbp/s, full-duplex)
48 MHz clock input (baud rate generating function contained)

\square I²$^{2} \mathrm{C}$ Interface

2 ports
Master-slave interface (multi-master supported)
3.3 V interface (open drain output)

■ Electrical Charactreistics (Supply current)

Parameter	Symbol	Condition	Limit			Unit
			min	typ	max	
Operating supply current	IDD18A	VDD18 $=1.8 \mathrm{~V}$; VDD33, PVDD, AVDD, RVDD $=3.3 \mathrm{~V}$ fOSC $=33.33 \mathrm{MHz}($ core 133 MHz$) ; \operatorname{FRQS}[1: 0]=0.0$; Output open			460	mA
Supply current at stopping	IDD18D	VDD18 $=1.89 \mathrm{~V}$ VDD33, PVDD, AVDD, RVDD $=3.465 \mathrm{~V}$ fOSC $=$ Stop ; FRQS[1:0] $=0.0$; Output open ; $\mathrm{Tj}=70^{\circ} \mathrm{C}$			50	mA

Electrical Charactreistics (A/D converter characteristics)

Parameter	Symbol	Condition	Limit			Unit
			min	typ	max	
Resolution					10	Bit
A/D conversion relative error		VREFH $=3.3 \mathrm{~V}$ Conversion reference clock $=4.166 \mathrm{MHz}$			± 4	LSB
A/D conversion differential non-linear error					± 4	LSB
A/D conversion time			2.6			$\mu \mathrm{s}$

$\left(\mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}, \mathrm{AVDD}=3.3 \mathrm{~V} \pm 0.165 \mathrm{~V}, \mathrm{AVSS}=0.0 \mathrm{~V}\right)$
Development tools
ROM Emulator
PARTNER-ETII (KMC product)
On-board Development Tools
PX-ODB103E-J (On-board debug unit)
PX-ODB-AMT-20 (Trace unit)
PARTNER-J (KMC product)

Pin Assignment
BGA292-P-2727

FLGA424-C-1717
Perspective
,

ND		$\begin{gathered} \text { XSWE1 } \\ \hline \text { XSWE3 } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { XSCS6 } \\ \hline \text { SD31 } \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{XSCS} 2 \\ \hline \mathrm{XSCS} 7 \end{array}$	$\begin{array}{\|l\|} \hline \text { XSCS1 } \\ \hline \text { SD30 } \end{array}$	$\begin{array}{\|l\|} \hline \text { SD29 } \\ \hline \text { XSAS } \end{array}$	$\begin{array}{\|l} \mathrm{SD} 27 \\ \hline \mathrm{SD} 23 \end{array}$	$\begin{array}{\|l\|} \hline \text { VDD18 } \\ \hline \text { SD22 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{SD} 21 \\ \hline \mathrm{SD} 17 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { SD19 } \\ \hline \text { SD16 } \end{array}$	$\begin{array}{\|l\|} \hline \text { SD14 } \\ \hline \text { SD9 } \\ \hline \end{array}$	VDD18 SD8	$\begin{array}{\|c\|} \hline \text { SD6 } \\ \hline \text { SD3 } \end{array}$	SD1 SD4	$\begin{array}{\|l\|} \hline \text { CLK48 } \\ \hline \text { PIO5[1] } \end{array}$	$\begin{aligned} & \text { PIOI[3] } \\ & \hline \text { PIO5[2] } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{PIO1}[1] \\ \hline \mathrm{PIO1}[4] \end{array}$	$\begin{array}{\|l} \text { PIOI[0] } \\ \hline \text { PIOI[2] } \end{array}$	ND		2120
RCLKI	XSCS3	XSWE0	XSWE2	XSCS0	XSCS4	SD28	SD25	SD24	SD18	VDD33	SD15	SD11	SD10	VDD33	PIO00[7]	PIO5[0]	AN1	AN3	AN7	VREFH	
RCLKO	PIO2[0]	PWROK	ND	ND	ND	SD26	SD20	SD13	SD12	SD7	SD2	SD0	SD5	PIOO[1]	ND	ND	ND	AN5	PIOO[5]	AVSS	
RVDD	PIO2[4]	PIO2[2]	ND	AN6	AN0	AN2															
TCPOUT	PIO2[3]	XSDK	ND	PIOO[3]	XIRQ7	AN4															
PVDD	SSZ0	XSBG	VDD33	ND	XIRQ4	SBT2	PIOO[4]	AVDD													
PVSS	SA4	SA2	XSCS5	ND	SBO0	XIRQ5	XNMI	XIRQ2													
OSCI	SA10	SA5	VDD33	ND	ND	ND	ND	VSS	VSS	VSS	VSS	VSS	ND	ND	ND	ND	SBO1	XIRQ0	PIOO[6]	PIOO[2]	
OSCO	SA17	SA11	SA0	ND	ND	ND	ND	VSS	VSS	VSS	VSS	VSS	ND	ND	ND	ND	vDD33	XRESET	PIOO[0]	XIRQ6	
SYSCLK	SA18	SA12	XSRE	ND	ND	ND	ND	VSS	VSS	VSS	VSS	VSS	ND	ND	ND	ND	TRCST	VDD33	XIRQ3	VDD18	
PIO2[1]	SRXW	SSZ1	VDD33	ND	ND	ND	ND	VSS	VSS	VSS	VSS	VSS	ND	ND	ND	ND	SBI1	SBI2	SBO2	XIRQ1	1
XSBR	SA1	SA3	SA14	ND	ND	ND	ND	VSS	VSS	VSS	VSS	VSS	ND	ND	ND	ND	PIO3[2]	PIO3[3]	XRSTOUT	VDD18	0
VDD18	SA6	SA7	SA8	ND	PIO3[0]	PIO3[1]	SBT0	SBT1													
SA9	SA13	SA15	SA22	ND	$\begin{array}{\|l\|} \hline \text { TRST } \\ \text { MOD } \end{array}$	PIO4[0]	PIO4[2]	SBI0													
SA16	SA19	SA21	ND	PIO4[1]	PIO3[4]	TCK															
VDD18	SA23	VDD33	ND	TRCDI	PIO4[3]	TDI															
SA27	SA26	SA24	ND	ND	ND	VDD33	VDD18	VDD33	VDD33	VDD33	VDD33	VDD18	TRCD2	TRCD7	ND	ND	ND	TRCD5	TMS	TDO	
SA29	SA31	SA25	SA20	SA28	MA4	MA1	MA7	MA13	MA11	MA12	XMBE0	MD9	MD4	MD12	MD1	MD15	TRCD4	TRCD0	EXTRG	TRCCLK	
ND		SA30	MA3	MA5	MA0	MA8	MA14	XMCS1	SDCKE	XMWE	XMCAS	MD6	MD10	MD11	MD2	MD14	TRCD3	TRCD6	ND		
		NP	MA2	MA6	MA10	MA9	XMCS0	XMRAS	SDCLK	XMBE1	MDK	MD7	MD8	MD5	SDCKI	MD3	MD13	MD0			

A B

Note) ND has an electrode (pin) but NC is not guaranteed.
Please design so as not to cause short circuit with other wiring on the user board.
The NDs on the four corners are the lands intended for reinforcement.
You are required to connect them to the PCB. NP (No pin.) has no electrode.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

(1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
(2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
(3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances). Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
(4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
(5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.

