6 Watt DC-DC Converters

IMR 6-Series

Input voltage range up to 72 V DC 1 output up to 30 V DC 500 V DC I/O electric strengh test voltage

- Input voltage range up to 3:1
- · Input filter
- High efficiency up to 75%
- · Outputs short-circuit proof
- No derating
- 2 × 2" plastic case
- · Low cost

51 2.0" 51 2.0" 20"

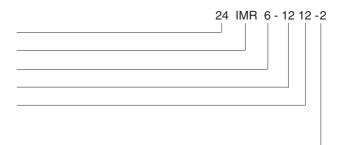
Summary

The IMR 6 series of DC-DC converters have been developed for powering commercial type of electronic circuits, e.g. telephone systems components, industrial controllers and small appliances. They are suitable for applications

with standard battery voltages. The IMR 6 converters feature good efficiency and good dynamic response to load changes and at start-up. The IMR 6 modules are short-circuit and no-load proof.

Type Survey and Key Data

Table 1: Type survey


Out	put	Output power	Efficiency 1		Input voltage range			
U _{o nom} [V]	l _{o nom} [mA]	$T_{A} = 71^{\circ}\text{C}$ $P_{\text{o nom}}[W]$	η _{min} [%]	U _{i min} U _{i max} 918 V DC	U _{i min} U _{i max} 1836 V DC	U _{i min} U _{i max} 2060 V DC	U _{i min} U _{i max} 3672 V DC	
3.3	1500	5	63	12 IMR 6-03-2	24 IMR 6-03-2	40 IMR 6-03-2	48 IMR 6-03-2	-7
5	1000	5	63	12 IMR 6-05-2	24 IMR 6-05-2	40 IMR 6-05-2	48 IMR 6-05-2	
12	500	6	68	12 IMR 6-12-2	24 IMR 6-12-2	40 IMR 6-12-2	48 IMR 6-12-2	
15	400	6	68	12 IMR 6-15-2	24 IMR 6-15-2	40 IMR 6-15-2	48 IMR 6-15-2	
±5	±500	5	67	12 IMR 6-0505-2	24 IMR 6-0505-2	40 IMR 6-0505-2	48 IMR 6-0505-2	
±12	±250	6	70	12 IMR 6-1212-2	24 IMR 6-1212-2	40 IMR 6-1212-2	48 IMR 6-1212-2	
±15	±200	6	70	12 IMR 6-1515-2	24 IMR 6-1515-2	40 IMR 6-1515-2	48 IMR 6-1515-2	

¹ Effiency at $U_{i \text{ nom}}$ and $I_{o \text{ nom}}$

Type Key

Type Key

Nominal input voltage in volt	. 12	.48
Series	IN	ИR
Nominal output power in watt		6
Nominal output voltage for output 1 in volt	. 05	.15
Nominal output voltage for output 2 in volt	. 05	.15
Operational ambient temperature range T _A -1050°C		-2
–2571°C		

Functional Description

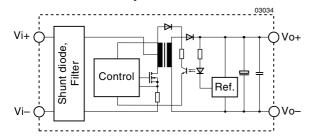


Fig. 1: Single output converter block diagram

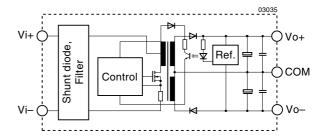


Fig. 2: Dual output converter block diagram

Electrical Input Data

General condition: $T_A = 25$ °C unless otherwise specified Table 2a: Input data

Input	nput			12 IMR 6			24 IMR 6		
Characteristics		Conditions	min	typ	max	min	typ	max	Unit
Ui	Input voltage range	T _{A min} T _{A max}	9		18	18		36	V DC
U _{i nom}	Nominal input voltage	$I_0 = 0I_{0 \text{ nom}}$		12		24			
U _i	Input voltage without damage	_	0		22	0		40	
I _{i 0}	No load input current	$U_{\text{i nom}}, I_{\text{o}} = 0$		22			26		mA
I _{i L}	Input current limitation response	U _{i nom} , full load	1	.25 <i>P</i> _{i n}	om	1	.25 P _{i no}	om	W
U _{i rev}	Reverse input voltage protection	U _i = negative or reverse polarity	_	nunt dio externa			nunt dio externa		

Table 2b: Input data

Input	nput			40 IMR 6			48 IMR 6		
Charact	teristics	Conditions	min	typ	max	min	typ	max	Unit
Ui	Input voltage range	T _{A min} T _{A max}	20		60	36		72	V DC
U _{i nom}	Nominal input voltage	$I_0 = 0I_{0 \text{ nom}}$		36		48			
<i>U</i> i	Input voltage without damage		0		75	0		75	
I _{i 0}	No load input current	$U_{\text{i nom}}, I_{\text{o}} = 0$		26			26		mA
I _{i L}	Input current limitation response	U _{i nom} , full load	1.25 P _{i nom}		1.25 P _{i nom}		W		
U _{i rev}	Reverse input voltage protection	U _i = negative or reverse polarity		nunt dio externa			nunt dio externa		

Electrical Output Data

General condition: $T_A = 25$ °C unless otherwise specified

Table 3a: Output data for single output types

Output	t		IMR 6-03	IMR 6-05	IMR 6-12	IMR 6-15	
Charac	eteristics	Conditions	min typ max	min typ max	min typ max	min typ max	Unit
Uo	Output voltage	U _{i nom} , I _{o nom}	3.24 3.36	4.90 5.10	11.76 12.24	14.70 15.30	V
I _{o nom}	Nominal output current	U _{i min} U _{i max}	1500	1000	500	400	mA
u _o	Output voltage noise	U _{i nom} (01) I _{o nom} (BW = 20 MHz)	100 150	100 150	100 150	100 150	mV _{pp}
ΔU _{o U}	Static line regulation	U _{i min} U _{i max} I _{o nom}	±1	±1	±1	±1	%
ΔU _{ol}	Static load regulation	U _{i nom} (0.21) I _{o nom}	±2	±2	±2	±2	
$lpha_{Uo}$	Temperature coefficient	U _{i nom}	±0.02	±0.02	±0.02	±0.02	%/K
f _s	Switching frequency	I _{o nom}	50	50	50	50	kHz

Table 3b: Output data for dual output types

Outpu	Output			/IR 6-0	505	IMR 6-1212 .			IN	IMR 6-1515		
Charac	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	Unit
Uo	Output voltage	U _{i nom} , I _{o nom}	±4.90		±5.10	±11.76		±12.24	±14.70		±15.30	V
I _{o nom}	Nominal output current	U _{i min} U _{i max}		±500			±250)		±200)	mA
u _o	Output voltage noise	U _{i nom} (0.21) I _{o nom} (BW = 20 MHz)		100	150		100	150		100	150	mV _{pp}
∆U _{o U}	Static line regulation	U _{i min} U _{i max} I _{o nom}			±1			±1			±1	%
ΔU _{ol}	Static load regulation	U _{i nom} (0.21) I _{o nom}		±5			±5			±5		
$lpha_{\sf Uo}$	Temperature coefficient	U _{i nom}			±0.02			±0.02			±0.02	%/K
f _s	Switching frequency	I _{o nom}	50			50			50			kHz

Thermal Considerations

If a converter is operated, the relationship between the ambient temperature $T_{\rm A}$ and the case temperature $T_{\rm C}$ depends heavily on the conditions of operation and integration into a system. The thermal conditions are influenced by input voltage, output current, airflow, temperature of surrounding components and surfaces and the properties of the printed circuit board. The specified maximum ambient temperature $T_{\rm A\,max}$ is therefore only an indicative value and under practical operating conditions, the ambient temperature $T_{\rm A\,max}$ be higher or lower than this value.

Caution: The case temperature $T_{\rm C}$ measured at the *Measuring point of case temperature* $T_{\rm C}$ (see: *Mechanical Data*) may under no circumstances exceed the specified maximum value. The installer must ensure that under all operating conditions $T_{\rm C}$ remains within the limits stated in the table: *Temperature specifications*.

Connection in Series

The outputs of one or more units can be connected in series. No suppressor diodes are required. Power-One however recommends to protect each individual output with a Zener diode or preferably a suppressor diode, to avoid reverse polarity that may occur if the output voltages do not rise simultaneously.

Connection in Parallel

The outputs of several units can be connected in parallel. However, the use of a single unit with a higher power rating is a better choice because of uneven power distribution among the outputs connected in parallel. It is recommended to select converters to be connected in parallel with very small output voltage differences at full load (i.e. $<\pm 1\%$). A decoupling diode is not required but recommended.

Protection Scheme

The IMR series is continuously short circuit protected by means of input power limitation. The unit will not be damaged if started up into a short circuit. After removal of the short circuit, it will resume normal operation.

The IMR series is also no-load proof, meaning that the regulation is still effective with no load and the output voltage does not rise. However, due to component tolerances, oscillation could occur and ripple and noise can be outside of specified values. If the converter is used in senitive electronic circuits with no-load conditions, it is recommended to pre-load the outputs with at least 20% of the specified nominal load.

Electromagnetic Compatibility (EMC)

Filter recommendations for compliance with CISPR 22/EN 55022, class B

Electromagnetic emission requirements according to EN 55022, class B can be easely achieved by adding an external input filter consisting of additional capacitors and a choke.

The filter components should be placed as close as possible to the input of the converter.

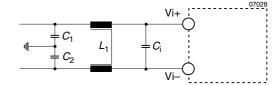


Fig. 3 Input filter arrangement for 12, 24 and 40 V DC types

Table 4: Input filter components

Input voltage	C ₁	C_2	Type	<i>L</i> ₁	Type	C _i	Туре
12, 24, 40, 48 V DC	2.2 μF 100 V	2.2 μF 100 V	Siemens B 32522- C1225-K	2.2 mH	Siemens B 82722- A2202-N1	2.2 μF 100 V	Siemens B 32522- C1225-K

Immunity to Environmental Conditions

Table 5: Temperature specifications, valid for air pressure of 800...1200 hPa (800...1200 mbar)

Temperature			Stand	ard -2	Opti		
Char	racteristics	Conditions	min	max	min	max	Unit
T_{A}	Ambient temperature	U _{i nom}	-10	50	-25	71	°C
T _C	Case temperature	$I_0 = 0I_{0 \text{ nom}}$	-10	80	-25	80	
Ts	Storage temperature	Non operational	-25	85	-40	100	

Table 6: MTBF

MTBF	Ground Benign	Ground Fixed	Ground Mobile
MTBF according to MIL-HDBK-217F, N2	40°C	40°C	50°C
	3'332'000 h	647'200 h	244'600 h

Mechanical Data

Dimensions in mm. Tolerances ± 0.3 mm unless otherwise specified.

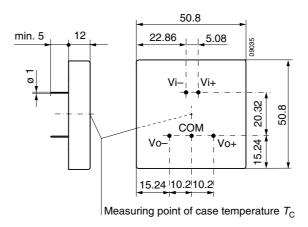


Fig. 5 Case 2" × 2" Weight: 50 g

Safety and Installation Instructions

Installation Instruction

Installation of the DC-DC converters must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings and segregation requirements of the end-use application.

Connection to the system shall be made via a printed circuit board according to: *Mechanical Data*.

The units should be connected to a secondary circuit.

Check for hazardous voltages before altering any connections.

Ensure that a unit failure (e.g. by an internal short-circuit) does not result in a hazardous condition. See also: *Safety of operator accessible output circuit.*

Standards and approvals

The units have been evaluated for:

- · Building in
- · Operational insulation input to output
- The use in a pollution degree 2 environment
- Connecting the input to a secondary circuit which is subject to a maximum transient rating of 1500 V.

Isolation

The electric strength test is performed as factory test in accordance with IEC/EN 60950 and UL 1950 and should not be repeated in the field. Power-One will not honour any guarantee claims resulting from electric strength field tests.

Input Fuse

To prevent excessive current flowing through the input supply line in case of a short-circuit across the converter input an external fuse should be installed in a non earthed input supply line. We recommend a fast acting fuse F3.15A for 12 IMR 6 types, F1.6A for 24 IMR 6, F0.8A for 40 IMR 6 and 48 IMR 6 types.

Cleaning Agents

In order to avoid possible damage, any penetration of cleaning fluids is to be prevented, since the power supplies are not hermetically sealed.

Protection Degree

The protection degree of the DC-DC converters is IP 40.

Table 7: Electric strength test voltages, clearance and creepage distances

Characteristic	Input to output	Unit
Electric strength	350	V_{rms}
test voltage 1 s	500	V DC
Coupling capacitance	≈320	pF
Isulation resistance at 500 V DC	>1000	ΜΩ

Safety of operator accessible output circuit

If the output circuit of a DC-DC converter is operator accessible, it shall be an SELV circuit according to IEC/EN 60950 related safety standards

The following table shows some possible installation configurations, compliance with which causes the output circuit of the DC-DC converter to be an SELV circuit according to

IEC/EN 60950 up to a configured output voltage (sum of nominal voltages if in series or +/- configuration) of 30 V.

However, it is the sole responsibility of the installer to assure the compliance with the relevant and applicable safety regulations. More information is given in: *Technical Information: Safety*.

Table 8: Insulation concept leading to an SELV output circuit

Conditions	Front end			DC-DC converter	Result
Supply voltage	Minimum required grade of isolation, to be provided by the AC-DC front end, including mains supplied battery charger	Maximum DC output voltage from the front end ¹	Minimum required safety status of the front end output circuit	Measures to achieve the specified safety status of the output circuit	Safety status of the DC-DC converter output circuit
Mains ≤250 V AC	Basic	· ·		Operational insulation, provided by the DC-DC converter	SELV circuit
			ELV circuit	Input fuse 3 output suppressor	Earthed SELV
		>60 V	Hazardous voltage secondary circuit	diodes ⁴ , and earthed output circuit ²	circuit
	Double or reinforced	≤60 V	SELV circuit	Operational insulation, provided by the DC-DC converter	SELV circuit
		>60 V	TNV-2 circuit	Earthed output circuit ²	Earthed SELV
			Double or reinforced insulated unearthed hazardous voltage secondary circuit 5	Input fuse ³ and output suppressor diodes ⁴	SELV circuit

¹ The front end output voltage should match the specified input voltage range of the DC-DC converter.

⁵ Has to be insulated from earth by double or reinforced insulation according to the relevant safety standard, based on the maximum output voltage from the front end.



Fig. 6
Schematic safety concept. Use fuse, suppressor diode
and earth connection as per table: Safety concept leading
to an SELV output circuit.

² The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950.

³ The installer shall provide an approved fuse (type with the lowest rating suitable for the application) in a non-earthed input conductor directly at the input of the DC-DC converter (see fig.: *Schematic safety concept*). For UL's purpose, the fuse needs to be UL-listed. See also *Input Fuse*.

⁴ Each suppressor diode should be dimensioned in such a way, that in the case of an insulation fault the diode is able to limit the output voltage to SELV (<60 V) until the input fuse blows (see fig.: *Schematic safety concept*).