

PHOTOCOUPLER PS9611,PS9611L

HIGH NOISE REDUCTION, HIGH-SPEED 10 Mbps TOTEM POLE OUTPUT TYPE 8-PIN DIP PHOTOCOUPLER

-NEPOC Series-

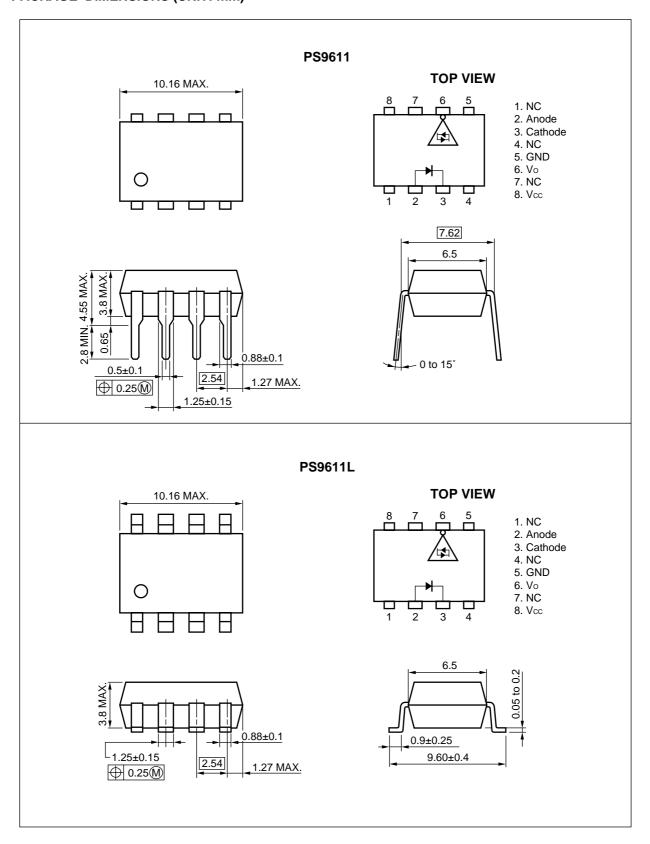
DESCRIPTION

The PS9611 and PS9611L are optically coupled high-speed, totem pole output isolators containing a GaAlAs LED on the input side and a photodiode and a signal processing circuit on the output side on one chip.

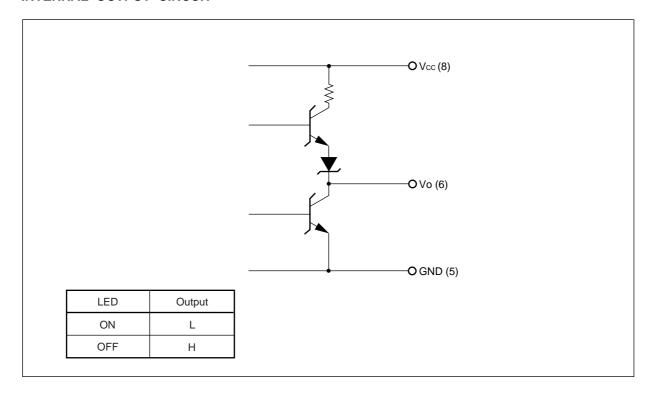
The PS9611 is in a plastic DIP (Dual In-line Package) and the PS9611L is lead bending type (Gull-wing) for surface mounting.

FEATURES

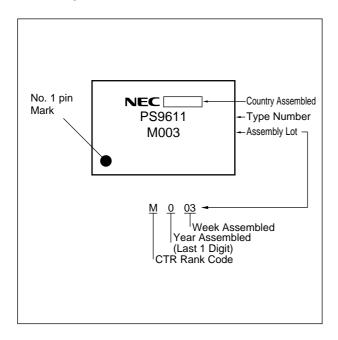
- High common mode transient immunity (CMH, CML = $\pm 10 \text{ kV/}\mu\text{s}$ TYP.)
- High-speed response (tphL = 30 ns TYP., tplH = 35 ns TYP.)
- Pulse width distortion (| tPHL tPLH | = 5 ns TYP.)
- · Totem pole output (No pull-up resistor required)
- Ordering number of tape product: PS9611L-E3, E4: 1 000 pcs/reel
- · Safety standards
 - UL approved: File No. E72422 (S)
 - VDE0884 approved (Option): No.91877


APPLICATIONS

- · Computer and peripheral manufactures
- Measurement equipment
- PDP


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.


PACKAGE DIMENSIONS (UNIT: mm)

INTERNAL OUTPUT CIRCUIT

MARKING EXAMPLE

ORDERING INFORMATION

Part Number	Package	Packing Style	Safety Standards Approval	Application Part Number*1
PS9611	8-pin DIP	Magazine case 50 pcs	Approved products	PS9611
PS9611L			other than VDE	PS9611L
PS9611L-E3		Embossed Tape 1 000 pcs/reel		
PS9611L-E4				
PS9611-V		Magazine case 50 pcs	VDE0884 approved	PS9611
PS9611L-V			(Option)	PS9611L
PS9611L-V-E3		Embossed Tape 1 000 pcs/reel		
PS9611L-V-E4				

^{*1} For the application of the Safety Standard, following part number should be used.

ABSOLUTE MAXIMUM RATINGS (TA = 25°C, unless otherwise specified)

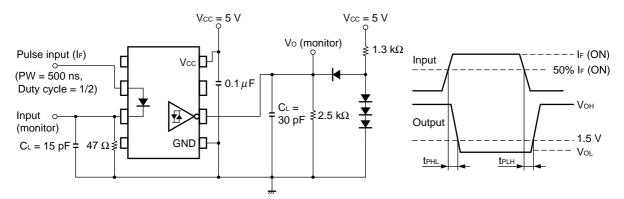
	Parameter Symb		Ratings	Unit
Diode	Forward Current	lF	30	mA
	Reverse Voltage	VR	3.0	V
Detector	Supply Voltage	Vcc	7	V
	Output Voltage	Vo	7	V
	High Level Output Current ^{*1}	Іон	-5	mA
	Low Level Output Current [™]	loL	25	mA
	Power Dissipation 1,2	Pc	150	mW
Isolation	Voltage ^{'3}	BV	3 750	Vr.m.s.
Operating	g Ambient Temperature	TA	-40 to +85	°C
Storage ⁻	Storage Temperature		-55 to +125	°C

^{*1} T_A = -40 to +85°C

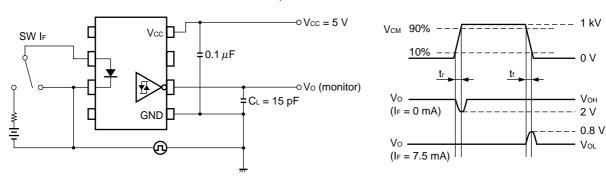
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
High Level Input Current	lғн	7.5		12.5	mA
Low Level Input Current	IFL	0		250	μΑ
Supply Voltage	Vcc	4.5	5.0	5.5	V
TTL (loads)	N			5	

^{*2} Applies to output pin Vo and power supply pin Vcc.


^{*3} AC voltage for 1 minute at $T_A = 25^{\circ}C$, RH = 60% between input and output.

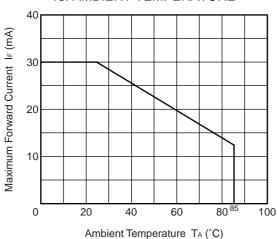
ELECTRICAL CHARACTERISTICS ($T_A = -40 \text{ to } +85^{\circ}\text{C}$, unless otherwise specified)


Parameter		Symbol	Conditions	MIN.	TYP.*1	MAX.	Unit
Diode	Forward Voltage	VF	IF = 10 mA, T _A = 25°C	1.4	1.65	1.9	٧
	Reverse Current	lR	$V_R = 3 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$			10	μΑ
	Terminal Capacitance	Ct	$V = 0 \text{ V}, f = 1 \text{ MHz}, T_A = 25^{\circ}\text{C}$		30		pF
Detector	High Level Output Current	Іон	$Vcc = Vo = 5.5 \text{ V}, \text{ If } = 250 \ \mu\text{A}$		1	200	μΑ
	High Level Output Voltage	Vон	$Vcc = 4.5 \text{ V}, \text{ If } = 250 \ \mu\text{A}, \text{ IoH} = -2$	mA 2.4	3.0		٧
	Low Level Output Voltage	Vol	$Vcc = 4.5 \text{ V}, I_F = 7 \text{ mA}, I_{OL} = 8 \text{ mA}$	4	0.38	0.6	V
	High Level Supply Current	Іссн	Vcc = 5.5 V, If = 0 mA		11	17	mA
	Low Level Supply Current	Iccl	Vcc = 5.5 V, I _F = 10 mA		12	18	mA
	High Level Output Short Circuit Current	Іоѕн	Vcc = 5.5 V, Vo = GND, I _F = 0 mA 10 ms or less	۸,	-26		mA
	Low Level Output Short Circuit Current	losL	Vcc = Vo = 5.5 V, I _F = 8 mA, 10 ms or less		34		mA
Coupled	Threshold Input Current	IFHL	Vcc = 5 V T _A = 25°C		2.7	5	mA
	$(H \rightarrow L)$					6	
	Threshold Input Current	IFLH	$Vcc = 5 V$ $T_A = 25^{\circ}C$	0.5			mA
	$(L \rightarrow H)$			0.35			
	Isolation Resistance	Rı-o	$V_{I-O} = 1 \text{ kVpc}, \text{ RH} = 40 \text{ to } 60\%,$ $T_A = 25^{\circ}\text{C}$	1011			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz, T _A = 25°C		0.9		pF
	Propagation Delay Time	t PHL	T _A = 25°C	15	30	65	ns
	$(H \rightarrow L)^{*2}$		Vcc = 5 V, I _F = 7.5 mA	10		85	1
	Propagation Delay Time	t pLH	T _A = 25°C	15	35	65	ns
	$(L \rightarrow H)^{^{*2}}$		Vcc = 5 V, I _F = 7.5 mA	10		85	
	Pulse Width Distortion (PWD) ²	tphl-tplh	Vcc = 5 V, I _F = 7.5 mA		5	35	ns
	Common Mode Transient Immunity at High Level Output ³	СМн	$V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ If} = 0 \text{ mA}, $ $V_{O \text{ (MIN.)}} = 2 \text{ V}, \text{ V}_{CM} = 100 \text{ V}$	1	10		kV/μs
	Common Mode Transient Immunity at Low Level Output ³	CML	Vcc = 5 V, T _A = 25°C, I _F = 7.5 mA Vo (MAX.) = 0.8 V, VcM = 100 V	, 1	10		kV/μs

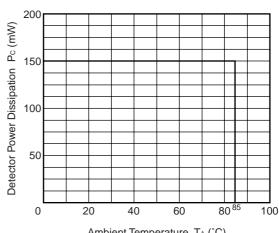
- *1 Typical values at T_A = 25°C
- *2 Test circuit for propagation delay time

CL includes probe and stray wiring capacitance.

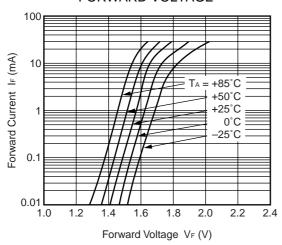
★ *3 Test circuit for common mode transient immunity


C∟ includes probe and stray wiring capacitance.

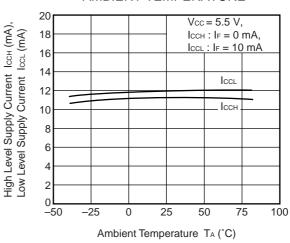
USAGE CAUTIONS


- 1. This product is weak for static electricity by designed with high-speed integrated circuit so protect against static electricity when handling.
- 2. By-pass capacitor of more than 0.1 μ F is used between Vcc and GND near device. Also, ensure that the distance between the leads of the photocoupler and capacitor is no more than 10 mm.

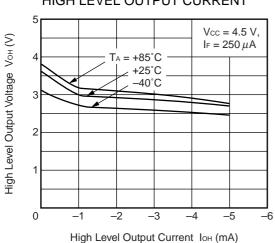
TYPICAL CHARACTERISTICS (TA = 25°C, unless otherwise specified)

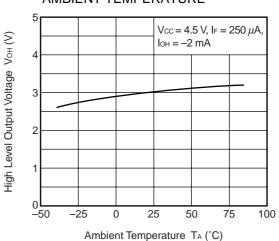


DETECTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE

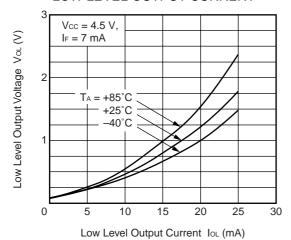


Ambient Temperature TA (°C)

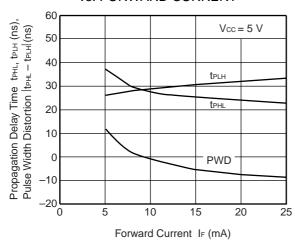

FORWARD CURRENT vs. FORWARD VOLTAGE


SUPPLY CURRENT vs. AMBIENT TEMPERATURE

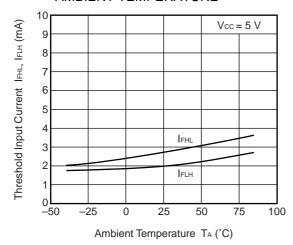
HIGH LEVEL OUTPUT VOLTAGE vs. HIGH LEVEL OUTPUT CURRENT



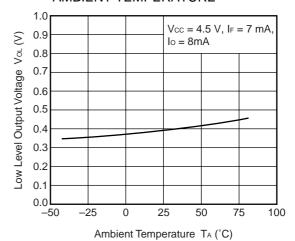
HIGH LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE



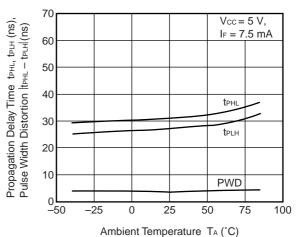
7


LOW LEVEL OUTPUT VOLTAGE vs. LOW LEVEL OUTPUT CURRENT

PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. FORWARD CURRENT



THRESHOLD INPUT CURRENT vs. AMBIENT TEMPERATURE



Remark The graphs indicate nominal characteristics.


LOW LEVEL OUTPUT VOLTAGE vs. AMBIENT TEMPERATURE

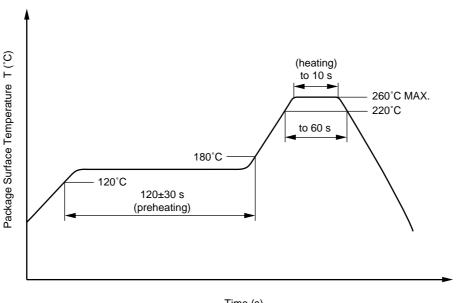
PROPAGATION DELAY TIME, PULSE WIDTH DISTORTION vs. AMBIENT TEMPERATURE

★ TAPING SPECIFICATIONS (UNIT: mm)

* RECOMMENDED SOLDERING CONDITIONS

(1) Infrared reflow soldering

Peak reflow temperature
 260°C or below (package surface temperature)


Time of peak reflow temperature
 Time of temperature higher than 220°C
 60 seconds or less

Time to preheat temperature from 120 to 180°C 120±30 s
 Number of reflows Three

Flux
 Rosin flux containing small amount of chlorine (The flux with a

maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

Time (s)

(2) Wave soldering

• Temperature 260°C or below (molten solder temperature)

• Time 10 seconds or less

• Preheating conditions 120°C or below (package surface temperature)

Number of times
 One (Allowed to be dipped in solder including plastic mold portion.)

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt% is recommended.)

(3) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

- The information in this document is current as of February, 2002. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
 third parties by or arising from the use of NEC semiconductor products listed in this document or any other
 liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
 patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
 agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
 risks of damage to property or injury (including death) to persons arising from defects in NEC
 semiconductor products, customers must incorporate sufficient safety measures in their design, such as
 redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:
 - "Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.
 - "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8F 00 4-0110

SAFETY INFORMATION ON THIS PRODUCT

(:aı	Iti	

GaAs Products

The product contains gallium arsenide, GaAs.

GaAs vapor and powder are hazardous to human health if inhaled or ingested.

- Do not destroy or burn the product.
- Do not cut or cleave off any part of the product.
- Do not crush or chemically dissolve the product.
- Do not put the product in the mouth.

Follow related laws and ordinances for disposal. The product should be excluded from general industrial waste or household garbage.

▶Business issue

NEC Compound Semiconductor Devices, Ltd.

5th Sales Group, Sales Division TEL: +81-3-3798-6372 FAX: +81-3-3798-6783 E-mail: salesinfo@csd-nec.com

NEC Compound Semiconductor Devices Hong Kong Limited

 Hong Kong Head Office
 TEL: +852-3107-7303
 FAX: +852-3107-7309

 Taipei Branch Office
 TEL: +886-2-8712-0478
 FAX: +886-2-2545-3859

 Korea Branch Office
 TEL: +82-2-528-0301
 FAX: +82-2-528-0302

NEC Electron Devices European Operations http://www.nec.de/

TEL: +49-211-6503-101 FAX: +49-211-6503-487

California Eastern Laboratories, Inc. http://www.cel.com/

TEL: +1-408-988-3500 FAX: +1-408-988-0279

▶ Technical issue

NEC Compound Semiconductor Devices, Ltd. http://www.csd-nec.com/

Sales Engineering Group, Sales Division

E-mail: techinfo@csd-nec.com FAX: +81-44-435-1918