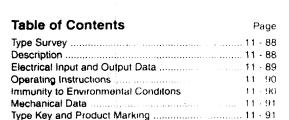
TOKO 150 W AC-DC Converters


MK-Family

Single output

- · Ultra compact, high power density
- · High efficiency up to 80%
- Overload and overvoltage protection
- · Highest grade components for highest reliability
- Surge protection
 - Lightning 4 KV
 - Strong electric fields 50 V/m
- Noise standards: Meets FCC Class B and VCCI, Class 2

Safety according to UL 478

Type Survey

Table 1: Type survey

Output cor	afiguration	Input voltage	Rated power		
V DC	A nom	range UminUmax	$P_{\text{o tot}}$ $T_{\text{A}} = 40^{\circ}\text{C}$		
5	30.0				
6	25.0	90132 V AC			
12	12.5	47440 Hz	150 W		
15	10.0	O r			
18	8.4	120175 V DC			
24	6.3	•			

Type designation

MK 150-05	
MK 150-06	
MK 150-12	
MK 150-15	
MK 150-18	
MK 150-24	

Description

Modules to application of new inductive technology the switching fequency of the MK 150 has been boosted to 250 kHz. The design allows for the use of smaller inductive components and filtering circuitry. The use of power MOSFET technology also reduces size and increases power density. For a new generation product or as a runing design change, a manufacturer can replace a conventional 100-watt supply with a 150-watt type MK 150. This permits the use of more power-intensive peripherals without mechanical design changes.

Key applications

The smaller-than-usual size of the MK 150 series makes them well suited to newer, smaller footprint personal computers as well as telecommunications equipment, instrumentation and control systems.

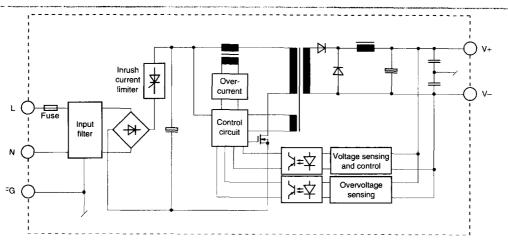


Fig. 1 Block diagram MK 150

Electrical Input and Output Data

General condition: $T_A = 25$ °C unless otherwise specified

Table 2: Input Data

Characteristics		MK 150	Unit
Ui	Rated input voltage	115	V AC
Input voltage range		90132	
		120175	V DC
f,	Line frequency	47440	Hz
l _{i leak}	Leakage current (max.) 115 V AC	C, 50 Hz 0.5	mA

General condition: $T_A = 25$ °C unless otherwise specified

Table 3: Output data

Characteristics			MK 150-05	MK150-06	MK150-12	MK150-15	MK150-18	MK150-24	Unit
U _{o nor}	Output voltage		5	6	12	15	18	24	٧
	Adjustable output i	range			±	10			%
U _{oL}	Overvoltage protect	ction	6.9	8.0	15.5	20.0	24.0	31.0	٧
l _o	Output current		30.0	25.0	12.5	10.0	8.4	6.3	Α
I _{o L}	Overcurrent protect	ction 1	105					%	
u _o	Ripple-noise	max.	120	120	120	150	180	200	mVp
Δυου	Line regulation		±3					%	
Δυοι	Load regulation	0100%			±	:3			
t _{or}	Rise time	max.	i		1.	50		1.000	ms
t _{o h}	Hold up time	min.			2	20			
η	Efficiency 2	typ.	78	78	80	80	82	82	%

¹ Operate at 105% of rated current, CC method, automatic reset

² At rated input and output

Operating Instructions

Derating of Output Power

The output power derating depends on the structure of the power supply. The derating characteristics are shown in fig. 2.

Output Voltage Adjustment

The output voltage adjustment range (V_{ADJ} at the front panel) is $\pm 10\%$ of $U_{0\ nom}$. The actual output power should not ecxeed the spedified maximum output power.

Overcurrent Protection

When the output current exceeds 105% of the rated current the overcurrent protection circuit operates (see fig. 3). The output will recover automatically as soon as the overload condition is removed. The overload condition should remain as short as possible.

Overvoltage Protection

When there is an overvoltage condition at the output, the internal latch circuit will operate and the output will be cut off. In this instance, turn off the input. At least 90 seconds should be allowed as recovery time.

Inrush Current

A thyristor is built-in to protect against excessive inrush current. Appropriate selection of the AC input switch is recommended. Repeating switching cycles should be avoided i.e. permit at least two minutes recovery time.

Insulation and Dielectric Strength Test

Preshipment tests have been applied at the factory and further testes are not necessary.

Series Operation

Two power supplies, PS-1 and PS-2 for example, may be operated in series connection as shown in fig. 4a and 4b.

Parallel Operation

Do not connect the power supplies for parallel operation.

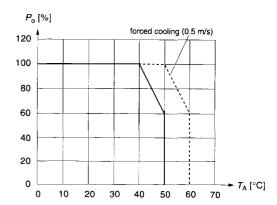


Fig. 2
Output power vs. ambient temperature

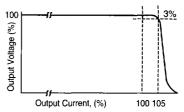


Fig. 3
Output voltage vs. output current

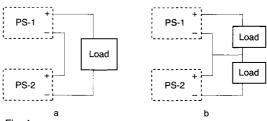


Fig. 4
Power supplies connected in series

Immunity to Environmental Conditions

Table 4: Temperature specifications

Characteristic			max	Unit
T _A	Operating ambient temperature range without derating	0	40	∘c
T _A Operating ambient temperature range with derating (see fig. 3)			60	
Ts	Storage temperature range	-20	75	

Table 5: Humidity

Test		Parameters	
Ca	Humidity	Relative humidity:	3085%
	(no dew condensation)		Unit operating/storage

Table 6: Isolation

Test	Input to output	Input to frame	Output to frame	
Dielectric strength test 1	1500 V AC, 1 minute	1500 V AC, 1 minute leakage current <10 mA.	-	
Insulation resistance 1	_		>100 MΩ at 500 V DC	

¹ At normal temperature and humidity

Table 7: MTBF

Ratings at specified Ambient temperature	MK 150 40°C	Unit
мтвғ	103'000	h

Mechanical Data

Dimensions in mm. Tolerances ±1 mm unless otherwise indicated.

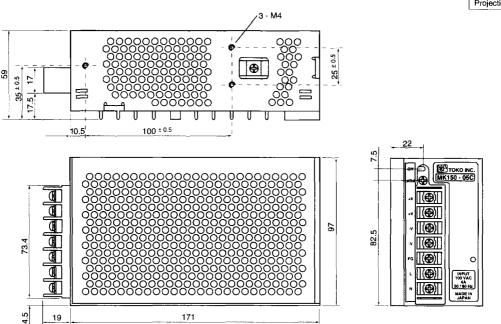


Fig. 5
MK 150: For vertical installation only. Maximum length of M4 mounting screws inside the power supply 6 mm.

Type Key and Product Marking

Type Key	MK 150 - 12
FamilyMK	
Blank	
Nominal output power [W] 150	
Dash	
Nominal output voltage [V]5524	

Example: MK 150-12 = AC-DC converter providing 12 V/12.5 A, 150 W in a case with terminal strip

Product Marking

Label: Type designation, applicable safety approvals and recognition marks, specific type designation, input voltage range, nominal output voltage and current and pin allocation.