

On-State Current Gate Trigger Current

0.8 Amp

< 200 µA

Off-State Voltage

 $200 \text{ V} \div 600 \text{ V}$

This series of Silicon Controlled Rectifiers uses a high performance PNPN technology.

This part is intended for general purpose applications where high gate sensitivity is required.

Absolute Maximum Ratings, according to IEC publication No. 134

SYMBOL	PARAMETER	CONDITIONS	Value	Unit
I _{T(RMS)}	On-state Current	180° Conduction Angle, T _c = 115 °C	0.8	Α
I _{T(AV)}	Average On-state Current	Half Cycle, Θ = 180 °, T_C = 115 °C	0.5	А
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 60 Hz	8	Α
I _{TSM}	Non-repetitive On-State Current	Half Cycle, 50 Hz	7	Α
l²t	Fusing Current	t _p = 10ms, Half Cycle	0.24	A ² s
I _{GM}	Peak Gate Current	20 μs max.	1	А
P _{GM}	Peak Gate Dissipation	20 μs max.	2	W
P _{G(AV)}	Gate Dissipation	20ms max.	0.1	W
T _i	Operating Temperature		(-40 to +125)	°C
T _{stg}	Storage Temperature		(-40 to +150)	°C
T _{sld}	Soldering Temperature	10s max.	260	°C

SYMBOL	PARAMETER	CONDITIONS	VOLTAGE			Unit
			В	D	М	
V_{DRM}	Repetitive Peak Off State	$R_{GK} = 1 \text{ k}\Omega$	200	400	600	V
V_{RRM}	Voltage					

Electrical Characteristics

SYMBOL	PARAMETER	CONDITIONS			SENSITIVITY					Uni
				01	02	03	04	18	11	
I _{GT}	Gate Trigger Current	$V_D=12V_{DC}$, $R_L=140\Omega.$ $T_j=$	= 25 °C MIN MAX	1 20	200		15 50	0.5 5	4 25	μΑ
V_{GT}	Gate Trigger Voltage	$V_D = 12V_{DC},R_L = 140\Omega,T_j =$	25 °C MAX		•		8.0			V
V _{GD}	Gate Non Trigger Voltage	$\begin{aligned} V_D &= V_{DRM}, R_L = 3.3 k \Omega R_{GK} = \\ T_j &= 125^{\circ}C \end{aligned}$	220 Ω MIN				0.1			V
V _{R GM}	Reverse Gate Voltage	$I_{RG} = 10\mu A$,	MIN				8			V
I _H	Holding Current	$I_T = 50 \text{ mA}, R_{GK} = 1 k \Omega T_j =$	25 °C MAX				5			mΑ
IL	Latching Current	$I_G=1~mA,~~R_{GK}=1~k\Omega$	MAX				6			mA
dV / dt	Critical Rate of Voltage Rise	$\begin{split} V_D &= 0.67 \times V_{DRM} , R_{GK} = 1 k\Omega \\ T_j &= 125 ^{\circ}C \end{split}$	D, MIN	80	75	20	15	80	75	V/µs
dI / dt	Critical Rate of Current Rise	$I_G = 2 \times I_{GT}$ $tr \le 100 \text{ ns, } f = 600$ $T_j = 125 \text{ °C}$) Hz, MIN				50			A/µs
V_{TM}	On-state Voltage	at $I_T = 1.6$ Amp, $tp = 380 \mu s$, T	j = 25 °C MAX			1	.95			V
V _{t 0}	Threshold Voltage	$T_j = 125$ °C	MAX			C	.95			V
r _d	Dynamic resistance	$T_j = 125$ °C	MAX			6	600			m Ω
I _{DRM} /I _{RRM}	Off-State Leakage Current	$ \begin{array}{c c} V_D = V_{DRM} , \; R_{GK} = 1 k \Omega & T_j = \\ V_R = V_{RRM} , & T_j = \end{array} $	125 °C MAX 25 °C MAX			1	00			μΑ μΑ
R _{th(j-c)}	Thermal Resistance Junction-Case for DC	for AC 360 ° conduction ang	le			8	30			°C/W
R _{th(j-a)}	Thermal Resistance Junction-Amb for DC	S = 1 cm ²				1	50			°C/W

PART NUMBER INFORMATION

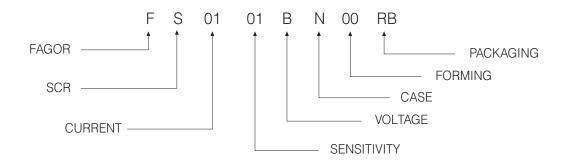


Fig. 1: Maximum average power dissipation versus average on-state current

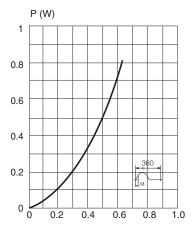


Fig. 3: Relative variation of thermal impedance junction to case versus pulse duration

Fig. 5: Relative variation of holding current versus gate-cathode resistance (typical values).

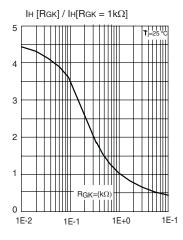


Fig. 2: Average and D.C. on-state current versus case temperature

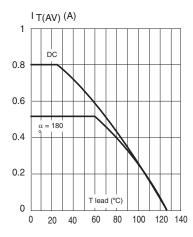


Fig. 4: Relative variation of gate trigger current, holding and latching current versus junction temperature

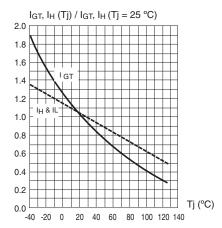


Fig. 6: Relative variation of dV/dt immunity versus gate-cathode resistance (typical values).

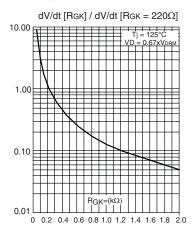


Fig. 7: Relative variation of dV/dt immunity versus gate-cathode resistance (typical values).

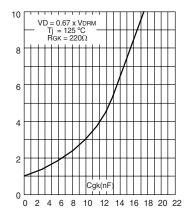


Fig. 9: Non repetitive surge peak on-state current for a sinusoidal pulse with width: tp < 10 ms, and corresponding value of I²t.

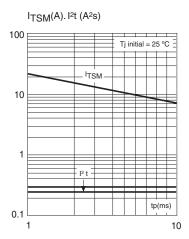
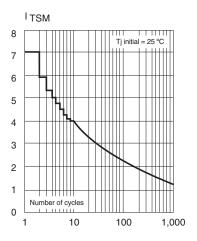
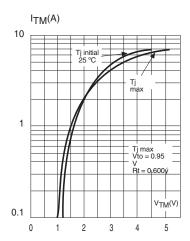
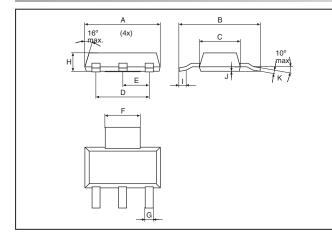
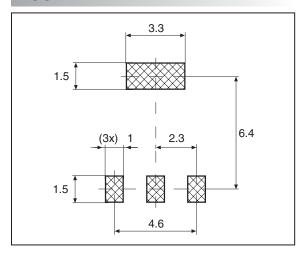


Fig. 8: Non repetitive surge peak on-state current versus number of cycles.


Fig. 10: On-state characteristics (maximum values)

PACKAGE MECHANICAL DATA


SOT223 (Plastic)

	DIMENSIONS					
REF.	Milimeters					
	Min.	Тур.	Max.			
Α	6.30	6.50	6.70			
В	6.70	7.00	7.30			
С	3.30	0 3.50 3.7				
D	-	4.60	-			
E	-		-			
F	2.95	3.00	3.15			
G	0.65	0.70	0.85			
Н	1.50	1.60	1.70			
I	0.50	0 0.60 0.70				
J	-	0.02	0.05			
K	0.25	0.30	0.35			

Weight: 0.11 g

FOOT PRINT

