

A Schlumberger Company

MIL-STD-883 July 1986 — Rev 1⁵

Description

The μ A760QB is a differential voltage comparator offering considerable speed improvement over the μ A710QB and operates from symmetric supplies of \pm 4.5 V to \pm 6.5 V. The μ A760QB can be used in high speed analog-to-digital conversion systems and as a zero crossing detector in disc file and tape amplifiers. The μ A760QB output features balanced rise and fall times for minimum skew and close matching between the complementary outputs. The outputs are TTL compatible with a minimum sink capability of two gate loads. 6

- Guaranteed High Speed
- Guaranteed Delay Matching On Both Outputs
- Complementary TTL Compatible Outputs
- High Sensitivity
- Standard Supply Voltages

μA760QB High Speed Differential Comparator

Aerospace and Defense Data Sheet Linear Products

Connection Diagram 8-Lead Can (Top View)

Lead 4 connected to case.

Connection Diagram 14-Lead DIP (Top View)

Order Information

 Part No.
 Case/ Finish
 Package Code Mil-M-38510, Appendix C

 μΑ760DMQB μΑ760HMQB
 CA
 D-1 (14-Lead DIP)

 κΑ760HMQB
 GC
 A-1 (8-Lead Can)

μ A760QB

Absolute Maximum Ratings

Storage Temperature Range -65°C to 175°C Operating Temperature Range -55°C to 125°C Lead Temperature (soldering, 60 s) Internal Power Dissipation 300°C

 Can
 330 mW

 DIP
 400 mW

 Supply Voltage
 ±8 V

 Peak Output Current
 10 mA

 Differential Input Voltage
 ±5 V

 Input Voltage¹⁰
 ±8 V

Processing: MIL-STD-883, Method 5004

Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,

Method 5005

Group A Electrical Tests Subgroups:

- 1. Static tests at 25°C
- 2. Static tests at 125°C
- 3. Static tests at -55°C
- 9. AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup 1

Notes

- 1. 100% Test and Group A
- 2. Group A
- 3. Periodic tests, Group C
- Guaranteed but not tested
- When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision.
- For more information on device function, refer to the Fairchild Linear Data Book Commercial Section.
- 7. Response time measured from the 50% point of a 30 mV $_{\rm p-p}$ 10 MHz sinusoidal input to the 50% point of the output.
- 8. Response time measured from the 50% point of a 2 V_{p-p} 10 MHz sinusoidal input to the 50% point of the output.
- Rating applies to ambient temperatures up to 125°C. Above 125°C ambient, derate linearly at 150°C/W for the Can and 120°C/W for the DIP
- 10. For supply voltages less than ± 8 V, the absolute maximum input voltage is equal to the supply voltage.

μ A760QB

 μA760QB Electrical Characteristics $\pm\,4.5~\text{V} \leqslant \text{V}_{CC} \leqslant \pm\,6.5~\text{V},$ unless otherwise specified.

Symbol	Characteristic	Condition	Min	Max	Unit	Note	Subgrp
V _{IO}	Input Offset Voltage	$R_S = 50 \Omega$		6.0	mV	1	1,2,3
I _{IO}	Input Offset Current			7.5	μΑ	1	1,2,3
I _{IB}	Input Bias Current			60	μΑ	1	1,2,3
V _{IR}	Input Voltage Range	V _{CC} = ± 6.5 V	± 4.0		V	1	1,2,3
V _{OH}	Output Voltage HIGH (either output)	$V_{CC} = \pm 5.0 \text{ V},$ 0 mA $\leq I_{OH} \leq 5.0 \text{ mA}$	2.4		٧	1	1,2,3
		$V_{CC} = \pm 4.5 \text{ V}, I_{OH} = 80 \mu A$	2.4		٧	1	1,2,3
V _{OL}	Output Voltage LOW (either output)	I _{OL} = 3.2 mA		0.4	٧	1	1,2,3
I+	Positive Supply Current	V _{CC} = ± 6.5 V		32	mA	1	1,2,3
1-	Negative Supply Current	V _{CC} = ± 6.5 V		16	mA	1	1,2,3
t _{PD}	Response Time ⁷			30	ns	2	9
t _{PD}	Response Time ⁸			25	ns	2	9
	Response Time Difference Between Outputs ⁷						
Δt_{PD}	$(t_{PD} \text{ of } + V_{11}) - (t_{PD} \text{ of } -V_{12})$			5.0	ns	2	9
Δt_{PD}	(t _{PD} of +V ₁₂) - (t _{PD} of -V ₁₁)			5.0	ns	2	9
Δt_{PD}	$(t_{PD} \text{ of } + V_{11}) - (t_{PD} \text{ of } + V_{12})$			7.5	ns	2	9
Δt_{PD}	(t _{PD} of -V ₁₁) - (t _{PD} of -V ₁₂)			7.5	ns	2	9

Primary Burn-In Circuit

Equivalent Circuit

