Philips Semiconductors

Application note

|
XA benchmark versus the architectures

68000, 80C196, and 80C51

AN703

Author: Santanu Roy
BACKGROUND

A computer benchmark is a “program” that is used to determine
relative computer core performance by evaluating benchmark
execution time by that core. In the brainstorm on microcontrollers for
automotive applications, an assembler functional benchmark for
engine management, which is a typical example of embedded
high-end microcontrol, was created. This report gives worked out
routines of the functions if they were implemented in assembler
language of the compared controllers: Motorola 68000, Intel
80C196, Philips 80C552 and Philips XA. The total execution times of

BENCHMARK RESULTS AND CONCLUSIONS

Relative performance on a line

The table below presents the most important result of the assembler
benchmark evaluation. It pictures the relative performance of the
compared core instruction set on a scale where XA=1.0. Also
appended is the performance charts-execution and code density of
all the processors.

Total exec.times/core(us) for all routines (with *occurrences)

8] 5,942 1,560 1089.24 402.6
a program “engine cycle” (engine stroke) are calculated and the
required program code is estimated for each controller.
) . . . PERFORMANCE 8051 68000 80C196 XA
Evaluation of performance in a High Level Language (HLL) like C RATIO
would be preferable, but it is difficult to realize as “the best” 8051 1.0 381 5.45 14.7
compilers for all cores involved then should be used. i i i i
. . 68000 0.34 1.0 1.43 3.85
This document is generated based on the report number DPE88187.
It outlines code density and execution times of the XA, based on 80C196 0.18 0.7 1.0 2.7
most recent information. The execution times are given in terms of
both clock cycles and time units. Although XA can run at speed of XA 0.068 026 0.37 10
30 MHz @ 5.0 Volts, for sake of fairness, all cores are evaluated for
running at 16.00 MHz. This is reasonable for comparing the cores at
the same level of technology.
A separate section is included in this benchmark for “Bit
manipulation” function benchmark results only. This (bit-test) routine
is a stand alone one and should not be considered as a part of
engine managementroutine.
Table 1. XA instruction set execution times and bytes/function
XA
FUNCTION ocC* EXEC. TIME OCCURRENCE BYTES/FUNCTION
/FUNCT.(us) *TIME/FUNCT.
MPY 12 0.75 9 2
FDIV 4 3.94 15.8 18
ADD/SUB 50 0.38 19 4
CMP 24b 13 1.06 13.78 9
CAN 16b 40 0.563 22.52 5
INTPLIN 20 1.98 41.3 14
INTERR 10 6.1 61 41
BRANCH 10 153.1
XA totals 335.5 us
including 20% statistics 402.6 ps
vww.DataSheet4U.com
1996 Mar 01 1

Philips Semiconductors

Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51

AN703

Table 2. 68000 instruction set execution times and bytes/function

68000
FUNCTION oc* EXEC. TIME OCCURRENCE BYTES/FUNCTION
[FUNCT. (us) *TIME/FUNCT.
MPY 12 4.4 52.8 2
FDIV 4 13.4 53.6 16
ADD/SUB 50 2.75 137.5 12
CMP 24b 13 3.2 41.6 14
CAN 16b 40 27 108 14
INTPLIN 20 7.5 150 14
INTERR 10 21.9 219 92
BRANCH 10 537.5
68000 totals 1,300 ps
including 20% statistics 1,560 us
Table 3. 80C196 instruction set execution times and bytes/function
80C196
FUNCTION oc* EXEC. TIME OCCURRENCE BYTES/FUNCTION
/FUNCT. (us) *TIME/FUNCT.
MPY 12 1.75 21 3
FDIV 4 9.5 38 19
ADD/SUB 50 1.25 62.5 7
CMP 24b 13 4.25 55.2 14
CAN 16b 40 25 100 6
INTPLIN 20 6.4 128 18
INTERR 10 12.8 128 58
BRANCH 10 375
80C196 totals 907.7 ps
including 20% statistics 1,089.24 us
Table 4. 8051 instruction set execution times and bytes/function
8051
FUNCTION oc* EXEC. TIME OCCURRENCE BYTES/FUNCTION
IFUNCT. (us) *TIME/FUNCT.
MPY 12 375 450 58
FDIV 4 451.5 1806 96
ADD/SUB 50 75 375 19
CMP 24b 13 9.98 129.74 22
CAN 16b 40 9 360 14
INTPLIN 20 25.8 516 20
INTERR 10 315 315 70
BRANCH 10 1000
8051 totals 4,951.74 ps

including 20% statistics

1996 Mar 01

5,942 ps

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

Table 5. Total benchmark execution time results

MICROCONTROLLER EXECUTION TIME
CORE (ps)

XA 402.6

68000 1560

80C196 1089.24

8051 5942

As the total activity has to be completed in one machine stroke of 2
ms, the XA, and the 80C196 will be able to meet the application
requirements. The 80C552 originally was assumed to complete the
functions over more than one stroke.

Best efficiency is of the XA and the 80C196. The 80C196 includes
3-parameter instructions that reduce the instruction count per
function and it has JB/JBN instructions. It also uses half-word
(1-byte) codes for frequently used instructions.

The lower code efficiency of the 8051 instruction set can mainly be
explained by the “accumulator bottleneck” which is not present in
XA: most data has to be transported to and from the accumulator
be fore add/sub/cmp can be done, operations on words require 4
“MOV” instructions and 2 data execution instructions. The efficient
JB and JBN instructions compensate this for a great part.

BENCHMARK LIMITATIONS

Like all benchmarks, the automotive engine management assembler

functional benchmark has some weakness that limit validity of its

results.

1. Control in a special (automotive, engine) environment is
evaluated.

Occurrences of operation overheads are based on estimations.
Occurrences of functions are based on estimations.
Functions are implemented in assembler, not in a HLL like C.

Routines may contain assembler implementation errors.

o g ~ 0w D

All cores are evaluated at 16.0 MHz

Control in a special environment is evaluated
(automotive, engine)

The core performance evaluation is based on a single specialized
case. All benchmark implementations are fractions of the automotive
engine management PCB83C552 demonstration program.

It can be advocated that the automotive engine control task gives a
good example of a typical high demanding control environment,
where many >= 16 bit calculations have to be done.

1996 Mar 01 3

Occurrences of overheads are based on

estimations

The assembler functional benchmark is not a full implementation of
a program. Arbitrary choosing location for storage of parameters in
register file or (external) memory, for instance, has for some
instruction set a considerable effect on the total execution time.

For the different core parameter storage is chosen where possible
using the core facilities to have minimum access overhead.

Occurrences of functions based on estimations
Occurrences is estimated on basis of experience of the automotive
group. In a real implementation of an engine controller accents may
shift. As most functions already include some “instruction mix”, the
effect of changes in occurrences is limited.

Functions are implemented in assembler, not in a

HLL like C

Control programs for embedded systems get larger, have to provide
more facilities and have to be realized in shorter development times.
The only way to do this is to program in a HLL like C. Efficient
C-language program implementation requires different features from
microcontrollers than assembly programs. Results of this assembler
benchmark evaluation therefore have a restricted value for ranking
microcontroller performances for future HLL applications.

Benchmark ranking on basis of HLL like C requires good
C-compilers of all the devices involved are needed. The quality of
the C-compilers really has to be the best there is: HLL
benchmarking measures not only the micro characteristics, but even
more the compiler ability to use these qualities. As these are not
available for all the micros evaluated, all routines are worked out
only in assembly.

Routines may contain assembler implementation
errors

Assembler routine implementations are made after a short study of
the micro specifications and are not checked by assembling or
debugging in real hardware environment.

It can be rather safely said that a complete system setup and
program debug to correct errors would not lead to considerable
differences in performance results. Deviations in function
occurrences and overheads may have a more significant effect on
performance ratios.

All cores are evaluated at 16.0 MHz
A 16.0 MHz internal clock frequency seems a reasonable choice for
comparing the cores at the same level of technology.

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51

AN703

ASSEMBLER FUNCTIONAL BENCHMARK FOR

AUTOMOTIVE ENGINE MANAGEMENT

This benchmark is a functional benchmark: it is a collection of
functions to be executed in an automotive engine management
program. It would be preferable to implement the complete control
program in assembler and evaluate it in a real hardware
environment, but this is not practical as every implementation
requires many man-months to realize.

To implement the assembly functional benchmark for automotive
engine management correctly the “rules and details” described in
this section have to be followed carefully.

The assembler functional benchmark embraces all activity to be
completed in 1 program cycle that corresponds with 1 engine stroke
of 2 ms. The benchmark execution time will be calculated as the
sum of the products of functions and their occurrence rates in 1
calculation cycle.

Branches are evaluated separately as “branch penalties” have
considerable effect of program execution efficiency. Estimated
(branch count)*(average branch time) is added to the function
execution times.

The relative estimated overhead for statistics does not contribute to
the evaluation of speed performance ratios, but they have to be
considered when looking at the total execution time required /
engine stroke cycle. therefore the real total execution time is
multiplied with the statistics overhead factor (1.2*).

NO. FUNCTION DESCRIPTION OCCURRENCES
1 16x16 Multiply 12
2 Floating Point divide (16:16) 4
3 Add/Subtract (24) 50
4 Compare (24) 13
5 CAN cmp/mov 10*8 80
6 Linear Interpolation (8*8) 20
7 Interrupts 10
8 Program control branches 500
9 Statistics (20%) 1.2*

1996 Mar 01

FUNCTION PARAMETER ALLOCATION

Most functions are very short in exec. time, so that the function
parameter data access method has great effect on the total time.
Thus it is to be considered carefully.

Some core features a large register files (XA, 80C196) in which
variables can be stored, others with few registers (68000) have to
store all data in memory.

For the XA/80C196 processor, data stored in the lower part of
register file, or in SFRs for /O, can be accessed using “direct”
addressing, but table data, used, e.g., for 3 bye compare, is stored
in “external memory”.

The 68000 assume data in memory (or memory mapped 1/O) as not
enough data registers are available. All 68000 memory data has to
be accessed using long-absolute addressing: 68000 short
addresses are relative to memory address 0000 and are therefore
not useful.

For more complex functions 16*16 multiply, Floating point division
and interpolation, data is assumed to be already in registers.

16x16 Signed Multiply
Parameters are assumed to be in registers, and the 32-bit result
written into a register pair.

Divide (16:16) “floating point”

The floating point division is entered with parameters in registers:

a divisor, a dividend and an “exponent” that determines the position
of the fraction point in the result.

Floating point binary 16/16 division is a function that is normally not
included in HLL compilers as it requires separate algorithms for
exponent control and accuracy is limited. For assembler control
algorithms, floating point division can be quite efficient as it is much
faster than normal “real” number calculations (where no “floating
point accelerator” hardware is available).

Compare 24-bit variables

Note that 24-bit compare is very efficient for “real” 16-bit and 8-bit)
controllers, but for automotive engine timers, 24-bit seems a good
solution.

Compare must give possibility to decide >, < or =. For 68000, and
80C196 instruction set LT, EQ and GT are included in the cc after
CMP.

CAN move and compares

For service of the CAN serial interface, it is estimated that 40*

(2 byte compares + branch) have to be done. Devices with 16-bit
bus assumes word access. An average branch is included in the
CAN compare function.

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51

AN703

Linear Interpolation (8*8)
The interpolation routine is entered with 3 register parameters:
1. Table position address

2. X fraction

3. Y fraction

The routine first interpolates using the X fraction the values of

F(x.x, y) between F(x,y)V(x+1, y) and of F(x.x, y+1) between
F(x, y+1) F(x+1, y+1). From F(x.x, y) and F(x.x, y+1) the value of
F(x.x, y.y) is interpolated using the fraction of y.

The table is organized as 16 linear arrays of 16 x-values, so that an
V(x,y) can be accessed with table origin address +x+16*y = “Table
Position Address”. In x-direction the interpolation can be done
between the “Table Position” value and next position (+1).
Interpolation in y-direction is done by looking at

“Table Position” + 16.

For linear interpolation time the 2-dimensional interpolation time and
byte count are divided by 3 to include some “overhead” into linear
interpolation.

Interrupts

The average interrupt routine overhead includes the following
stages:

a. Interrupt recognition and return

b. 1* (long) branch

C. 2 *jump (short) on bit

d. 1*call (long) and subroutine return
e. 2*set bit and 2 * clear bit

f. 5*POP and 5 * PUSH (or move multiple)
[free 5 registers for local use]

g. 1*mov #xxx, PST

Program Control Overheads

For a given algorithm, the Program Control Overheads consisting of
a number of decisions (branches) and subroutine calls is
independent of the instruction set used, except for cases where
functions can be replaced by complex instructions. The most

1996 Mar 01

important exception cases, MPY words and Floating Point Division
are handled in this benchmark separately.

Most 16-bit cores use more pipeline stages so that taken branches
add branch time penalty for these CPU'’s due to pipeline flush. This
effect can be found in the branch execution time tables.

More efficient data operations and pipeline penalty of the more
complex instruction set of 16-bit cores lead to considerable higher
relative time used for branch instructions.

To incorporate the influence of branches in the benchmark the
number of branches to be included must be estimated. For byte and
bit routines, branches occur more frequent. Average branch time of
25% may be a good guess. For the automotive engine management
benchmark that executes in approx. 5000/uS (on 8051) results in
+/- 1250 /uS or 625 branches. As a part of the branches already
taken account for in the compare functions the number of additional
program control branches is estimated 500 branches.

To estimate the average branch execution time, an estimated
relative occurrence of the branch types has to be made.

Table 6. Estimated relative occurrence of the
branch types

TYPE RELATIVE OéELSJ(leEQLIJELECE
Absolute Jumps AIMP/IMP 20% 100
Subroutine calls ACALL/JSR 20% 100
Jump on Becldce 40% 200
condition (rel)
Jump on bit (rel) JB/JBN 20% 100

Statistic Routine Overheads

Statistic routines are estimated as relative program overheads, only
to get an indication of the required total processing time in a real
engine management application. “Statistics” are mainly arithmetic
routines to determine table corrections. They use about 20% of the
total time.

wwwe.DataSheetdlU.com

Philips Semiconductors Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51 AN703

XA BENCHMARK RESULTS

The following analysis assumes worst case operation. At any point in time, only 2 bytes are available in the instruction Queue. An instruction
longer than 2 bytes requires additional code read cycle.

APPENDIX 1

XA Function Implementations
XA reference: XA User’s Manual 1994

16x16 Signed Multiply

Parameters are assumed to be in registers, and the 32-bit result written into a register pair. The MUL.w R,R is encoded in the XA instruction set
as a 2 byte instruction. The exact optimization for this instruction (such as skip over 1's and 0’s) has not been concluded at this point, and the
execution time may be data dependent and shorter than one outlined here.

The basic algorithm utilizes 2-bit Booth recoding. Instruction fetch and Decode time overlaps the execution of the preceding instruction (except
when following a taken branch), so it is ignored. The total execution time is either 11 or 12 clocks, including operand fetch and write back
(1 clock is dependent on critical path analysis).

Al.1: 16x16 Multiply

Bytes Clocks
MUL.w RO, R1 2 12 (0.75 pS)

Al.2: Floating Point 16x16 Divide:
The algorithm here follows the one outlined for the 80C196.

Arguments: R4 = Dividend (extend into R5 for 32 bits)
R6 = Divisor Mantissa
RO = Divisor Exponent

Bytes Clocks
FPDIV:
ADDS R6,#0 ; Add short format 2 3
BEQ L1 ; Check for DIVBYO 2 3 (not taken)

f

SGNXTD_AND_SHFT:

SEXT R5 ; Sign extend into R5 2 3
ASL R4, RO ; 13 position shifts 2 11
DIV: ;
DIV.d R4,R6 ; Divide 32x16 signed 2 21
BOV L1 ; Branch on Overflow 2 6 (taken)
RET ; Normal termination 2 8
L1: ;
MOVS R4, # -1 ; Overflow — Max Result 2 3 (not executed)
RET ; 2 8
18 63(3.94 uS)

Al1.3: Extended 32-bit subtract

; R5:R4 = Minuend
; R3:R2 = Subtrahend

SuB R4, R2 2 3
SUBB R5,R3 2 3
4 6 (0.38 pS)

wwwe.DataSheetdlU.com
1996 Mar 01 6

Philips Semiconductors Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51 AN703

Al.4: Compare 24-bit Variables
Only minimum execution time is considered here. An average branch is included after compare. The table data, used for 3 byte compare, is
stored in memory.

Bytes Clocks

CMP.b R1L, R2L ; direct addressing 2 4

BNE L1 ; average (6t/3nt) 2 4.5

CMP.w RO, mem2 ; 3 4
L1:

CMP.w RO, mem1 ; 3 4

Bxx LABEL1 , average 2 4.5
LABEL1:

;XX —=>GT or LT or EQ
9 17 (1.06 uS)

Al.5: CAN Move and Compare

Application:

For service of CAN (Controller Area Network) serial Interface it is estimated that 40* (2 byte compares + branch) have to be done.
One parameter is in register, the other in internal memory. Again, minimum execution times are considered.

Bytes Clocks

CMP RO, memO ; 3 4
Bxx LABEL ; average 2 4.5
5 9 (0.563 pS)

Al.6: Linear Interpolation

Arguments:
RO = Table Base (assumed < 400 Hex)
R2 = Fraction 1
R4 = Fraction 2
R6 = Result
Bytes Clocks
LIN_INT:
MOV R6, [RO+] ; 2 4
MOV R1, [RO] ; 2 3
SuUB R1, R6 ; 2 3
MULU.w R6, R2 ; 2 12
MOV.b R1H, R1L 2 3
MOVS.b R1L,#0 ; 2 3
ADD R6, R1 ; 2 3
ADD RO, #15 ; 2 3
MOV R1, [RO+] ; 2 4
MOV R5, [RO] ; 2 3
SuUB R5, R1 ; 2 3
MULU.w R5, R2 ; 2 12
MOV.b R1H, R1L ; 2 3
MOVS.b R1L,#0 ; 2 3
ADD R1, R5 ; 2 3
SuUB R1, R6 ; 2 3
MULU.w R1, R4 ; 2 12
MOV.b R1H, R1L ; 2 3
MOVS.b R1L,#0 ; 2 3
ADD R6, R1 ; 2 3
RET ; 2 6
42 95 (5.94 uS)
Linear Interpolation (2 dim. time / 3) = 14 bytes, 1.98 uSs

wwwe.DataSheetdlU.com
1996 Mar 01 7

Philips Semiconductors Application note

XA benchmark versus the architectures AN703
68000, 80C196, and 80C51

Al1.7: Interrupt Overhead

Note: Interrupt overhead, as defined in the benchmark, applies to performance calculations. It does not consider the interrupt latency
associated with completing the current instruction.

All transfers are to / from internal memory, all addresses are 16-bit long.

{

Saves 2 words on stack = 4 clks

Prefetching ISR = 3 clks

Overhead through Interrupt Controller = 3 clks (allow synch + avoid metastability)
i.e., total = 10 clks

}
Interrupt Accept/Return 0/2 10+8
JMP rell6 ;uncond. x 2 3x2 6x2
Bxx bit, rel8 ; Branch on bit test x 2 2x2 4.5x2
CALL rel16 ; Long Call (PZ assumed) 3 4
RET ; Subroutine return 2 6
SETB bit ; Set bit x 2 3x2 4x2
CLR bit ; Clear bit x 2 3x2 ax2
PUSH Rlist (5) ;' 5 PUSH Multiple 2 15
POP Rlist (5) ; 5 POP Multiple 2 12
MOV PSWL, #data8 ; imm. byte to PSWL 4 3
MOV PSWH, #data8 ; needs 2 for 8—bit sfr 4 3
; bus
41 98 (6.1 uSs)

Al1.8: Program Overhead

Branches are assumed taken 70% of the time, all addresses are external. Code is assumed a run-time trace, code size cannot be calculated;
based on the same approach taken for 80C196, code size is 1400 bytes.

JMP rell6 ; Long branch x 100 3x100 6 x 100
CALL rel16 ; Call x 100 (Page 0) 3x50 4 x50
RET ; Subroutine return x 100 2x100 6 x50
Bxx rel8 ; Condl. short branch x 100 2x200 4.5x 200
JB/JNBbit, rel8 ; Bit test & branch x 100 2x100 4.5x 100
1400 2,450
(153.1 pS)

A1.9: XATOTALS

XA
FUNCTION oc* EXEC. TIME OCCURRENCE BYTES/FUNCTION
/FUNCT. (us) *TIME/FUNCT.

MPY 12 0.75 9 2
FDIV 4 3.94 15.8 18
ADD/SUB 50 0.38 19
CMP 24b 13 1.06 13.78
CAN 16b 40 0.563 22.52
INTPLIN 20 5.94 118.8 42
INTERR 10 6.1 61 41
BRANCH 10 153.1

Conclusion:

An assumption is made that XA code is in first 64K (PZ) as the 80196 has a 64K address space only.

wwwe.DataSheetdlU.com

1996 Mar 01 8

Philips Semiconductors Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51 AN703

APPENDIX 2

8051 Function Implementations
8051 reference: Single chip 8-bit microcontrollers PCB83C552
Users manual 1988

A2.1: 80C51 Multiply 16 x16
The 80C51 core performs 8-bit multiply only. A 16x16 multiply has to be done by splitting X and Y into XH, XL and YH, YL so that:

P3..P0 = (XH*256+XL)*(YH*256+YL) =
XH*YH*65536+(XH*Y L+ XL*Y H)*256+XL*YL

Clocks Bytes
MPY:
MOV R1,XH 2 3
MoV R2,XL 2 3
MOV R3,YH 2 3
MOV R3,YL 2 3
MOV AR2 1 1 XL
MOV B,R4 1 3 ;YL
MUL AB 4 1
MOV PO,A 1 2 ; Lowest multiply result byte
MoV AR4 1 1 ;YL
MOV R4,B 2 3 ; XL*YL upper byte (*256)
MOV B,R1 2 3 i XH
MUL AB 4 1 ;XL*YL
ADD AR4 1 1
MOV R4,A 1 1 ;upper (XI¥YL)+lower(XH*YL) in R2
MOV AB 1 2
ADDC A#0 1 2
XCH AR2 1 1 ;XL upper (XH*YL) in R2
MOV B,R3 3 2 ;YH
MUL AB 4 1 ;XL*YH
ADD AR4 1 1
MOV P1,A 1 2
MOV AB 1 2
ADDC AR2 1 1
MoV R2,A 1 1
MOV AR3 1 1
MOV B,R1 2 3
MUL AB 4 1
ADD AR2 1 1
MOV P2,A 1 2
MOV AB 1 2
ADDC A#0 1 2
MOV P3,A 1 2
Total 50 58

50 clocks = 50*12 = 600 clocks (37.5 us @ 16.0 Mhz)
8051 MPY 16x16 (MPY Bytes) 50 clocks = 37.5 us / 58 bytes

wwwe.DataSheetdlU.com

1996 Mar 01 9

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

A2.2: 8051 Divide (16/16) “floating point”
Divide (R6, R7) (dividend) by (R4,R5) (divisor) with (RO) bits after the fraction point.

Alignment of MSBits of operand in R6.7 and R4.7 using RO as bit counter.

FDV:
INC
INC
MOV
MOV
CLR
CLR
MOV
JB
INZ
MOV
JZ
L1
MOV
RCL
MOV
MOV
RCL
MOV
INC
JNB
L2:
MOV
JB
L3:
MOV
RLC
MOV
MOV
RLC
MOV
DJINZ
AIMP
JNB
AIMP
L4:
MOV
RLC
MOV
MOV
RLC
MOV
JNC
MOV
MOV
SIMP
L5:
CLR
MOV

RLC
MOV
MOV
RLC
MOV
JNC
MOV

1996 Mar 01

Clocks Bytes
RO 1 1
RO 1 1
R3,#0 1 2
R2,#0 1 2
C 1 1
FO 1 2
AR4 1 1
ACC.7, L2 2 3
L1 2 2
AR5 1 1
LX 2 2
AR5 1 1
A 1 1
R5,A 1 1
AR4 1 1
A 1 1
R4,A 1 1
RO 1 1
ACC.7, L1 2 3
AR6 1 1
ACC.7, L6 2 3
AR7
A 1 1
R7,A 1 1
A,R6 1 1
A 1 1
R6,A 1 1
RO, $+4 2 2
LX 2=0 3
ACC.7,L3 2 3
L6 2 3
AR3
A 1 1
R3,A 1 1
AR2 1 1
A 1 1
R2,A 1 1
L5 2 2
R2,#0FFH 1 1
R3,#0FFH 1 1
LX 1 1
C 1 1
A R7 1 1
A 1 1
R7,A 1 1
ARG 1 1
A 1 1
R6,A 1 1
L5 1 1
Fo,C 1 2

10

wwwe.DataSheetdlU.com

Philips Semiconductors Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51 AN703

L6:
CLR C 1 1
MOV AR7 1 1
SuBB A R4 1 1
JNC L7 2 2
JNB FO,L8 2 3
CPL C 1 1
L7:
MOV R6,A 1 1
MOV A, R1 1 1
MOV R7,A 1 1
L8:
CPL C 1 1
DJINZz RO,L4 2 2
MOV AR3 1 1
ADD A#0 1 1
MOV R3,A 1 1
MOV AR2 1 1
ADD A#0 1 2
MOV R2,A 1 1
LX:
RET 2 1

Total 96 bytes 13 branch instructions (=35 bytes== 36%)

Timing : 3 divide cases : subtracts shifts total average
1. RO=0E, 8-hit/14 bit —> 15-8+2=9 8+2=9 32 subtracts 11
2. R0O=08, 12-bit/14 bit —> 8-4+4=8 4+4=8 17+11 shifts 6+4
3. R0=10, 11-bit/12 bit —> 16-5+4=15 5+5
17+4*9+6*10+(15.5+10*31.5)+8=451.5 clocks = 338.6 uSs

8051 UFDIV 16/16 (sub/sft) : 338.6 clocks = 451.5 us, 96 bytes.

A2.3: 8051 Add/Sub

Bytes Clocks
ADS:
CLR C 1 1
MOV A, X0 1 2
SUBB A YO 1 2
MOV Z0,A 1 2
MOV A X1 1 2
SUBB AY1l 1 2
MOV Z0,A 1 2
MOV AX2 1 2
SUBB A#O 1 2
MOV Z2,A 1 2
10 19

8051 ADD/SUB in reg file 10 clocks =7.5 ps, 19 bytes

8051 CMP enabling JZ JNZ JC JNC

The 8051 decisions made with branches are one of these three :

JC It 2 2

JC 2 2
Jz eq 2 2
JC 2 2
INZ gt 2 2

8051 compare decision branches take average : 10/3 clocks => 2.5 us

wwwe.DataSheetdlU.com
1996 Mar 01 1

Philips Semiconductors Application note

XA benchmark versus the architectures AN703
68000, 80C196, and 80C51

A2.4: 8051 CMP 3 byte compare

Bytes Clocks
CM3:
CLR C 1 1
MOV AX2 1 2
SUBB AY2 1 2
MOV RO,A 1 2
MOV A X1 1 2
SUBB AY1l 1 2
ORL RO,A 1 2
MOV A X2 1 2
SUBB AY2 1 2
Orl A,RO 1 2
Jcc XXXX 3.33 3.33
10 19

8051 CMP 3 byte data in reg file 13.3 clocks = 9.975 ps, 22.3 bytes

A2.5: 8051 2-byte CAN compares

Bytes Clocks
CAN:

MOV DPTR,aX1 2 3 ; one compare src in X-RAM
MOVX A, @DPTR 1 2
CJINE AY1l 1 2
MOV DPTR,aX2 1 2 ; one compare src in X-RAM
MOVX A,@DPTR 1 2
CINE AY2 2 3

12 14

8051 CAN CMP XRAM/Direct 9 ps, 14 bytes

wwwe.DataSheetdlU.com

1996 Mar 01 12

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

A2.6: 8051 2-dimensional interpolation

At the start registers are prepared
: position in table (x+16*y)

A
DPTR
RO
Result

INT:

GVAL:

INTP:

INT1:

INT2:

Total 2-dim. interpolation : 15+2*(8+24)+24=103 clocks = 77.25
8051 Linear interpolation : (2—dim. intp time /3) = 103/3 =25.75

: Start address of table (aligned at 256 byte boundary)
: y—fraction
: ACC registers used : ACC,R0,R1,R2,R4,R5,R6

: x—fraction R1

MOV DPL,A
ACALL GVAL
MOV R4,A
MOV A,DPL
ADD A#15
MOV DPL,A
ACALL GVAL
MOV REG6,R4
MOV B,R1
ACALL INTP
RET

MOVX A,@DPTR

MOV R6,A
INC DPL
MOVX A,@DPTR
MOV B,RO
CLR SF
CLR C
SUBB A,R6
JNC INT1
CPL A
INC A
SETB SF
MUL A,B
XCH A,B
CLR C
RRC A
XCH A,B
XCH A,B
CLR C
RRC A
XCH A,B
JB SF,INT2
ADDC A,R6
RET

XCH ARG
SUBB A,R6
RET

1996 Mar 01

Clocks Bytes

SN

PP PR PN

N
-

1
1
2

NP RNER LN

I I e

N

2
2
1

;POS XY

us, 59 bytes
ps, 20 bytes

13

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

A2.7:

interrupt
RETI
AJMP 2*
JB
ACALL
RET
SETB 2*
CLRB 2*
POP 5*
PUSH 5*
MOV 1*

2*

8051 Interrupt Overhead

Bytes
2

10
10
2

42

Clocks

2 (vector)

10
10

46

8051 Interrupt Overhead 42 clocks =31.5 us

A2.8: 8051 Program Overhead

TYPE OCCURRENCE | 8051 BYTES
LIMP/IMP 100 2 200 3 300
LCALL/JSR 100 2 200 3 300
Jcce/Bec 200 2 400 3 600
JB/JBN 100 2 200 3 300
total cylces 1000 1500
usec 750
A2.9: 8051 Totals
8051
FUNCTION ocC*
EXEC *OC
1. MPY 12 37.5 450
2. FDIV 4 338.6 1354.4
3. ADD/SUB 50 7.5 375
4. CMP 24b 13 9.98 129.74
5. CAN 16b 40 9 360
6. INTPLIN 20 25.8 516
7. INTERR 10 315 315
8. BRANCH 10 750
8051 totals 4250.14 ps
including 20% statistics 5,100.2 ps

1996 Mar 01

14

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

APPENDIX 3

68000 implementations
68000 reference: SC68000 microprocessor users manual
(Motorola copyright; Philips edition 12NC: 4822 873 30116)

A3.1: 68000 16x16 Multiply

The 68000 can use 1 <ea> with MUL and move a long word result.
MUL RO,R1 2 70

total: 4.375 us, 2bytes

A3.2: Floating point division 16:16
(RO) Accuracy, (R1)/(R2) R1result

Bytes Clocks

FDV:
EXT.| R1 2 4
TST R2 2 4
BEQ L1 2 10/8
ASL RO,R1 2 32
DIVU R2,R1 2 140
BVC L2 2 10/8
L1:
MOVI #-1,R1 2 4
L2:
RTS 2 16
total : 214 clocks or 13.375 us, 16 bytes
A3.3: Add/Sub
Bytes Clocks
ADDS:
MOV. ARO 6 20
ADD.I RO,C 6 48
total : 44 clocks or 2.75 us, 12 bytes
A3.4: Compares 24 (=32) bit
Bytes Clocks
CMPI:
MOV. X,RO 6 20
CMP.I Y,Rn 6 22

BLT/EQ/GT (av) 2 9
total : 51 clocks or 3.19 us, 14 bytes

A3.5: CAN move and compares (16-bit)

Bytes Clocks
CMPw:
MOV.w X,RO 6 16
CMP.w Y,Rn 6 18
BLT/EQ/GT (av) 2 9

total : 43 clocks or 2.69 us, 14 bytes

1996 Mar 01 15

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

A3.6: 2-dimensional interpolation
AO : table position, RO : fractionl, R1: fraction 2, R2:result, R3, R4

CMPw:
MOV.w
ADDQ.I
MOV.I
SUB.w
MULu
ASR.I
ADD.w
ADDL.I
MOV.w
ADDQ.I
MOV.w
SUB.w
MULu
ASR.I
ADD.w
SUB.w
MULu
ASR.|
ADD.w
RTS

(A0), R2
#1,A0
(A0), R3
R2,R3

RO,R3
#8,R3
R3,R2

#15,A0

(AO),R3
#1,A0

(A0),R4
R3,R4

RO,R4
#8,R4
R4,R3
R2,R3

R1,R3
#8,R3
R3,R2

Bytes

Clocks

total : 362 clocks or 22.62 us, 42 bytes
Linear interpolation is 2-dim. interpolation /3 :

1-dim. interpolation 7.54 s, 14 bytes

A3.7: 68000 Interrupt Overhead
Clocks Bytes

a. interrupt 44 4
RETI 20 2
b. JMP 2* 24 24
C. BTST+BNE 2* 60 16
d. BSR 18 4
RTS 16 2
e. BSET/BCLR 4* 96 24
f. MOVEM 2* n=5 64 12
g. MOVI #xx,CCR 8 4
350 92

68000 INTerrupt overhead 350 clocks = 21.87 ps, 92 bytes

wwwe.DataSheetdlU.com
1996 Mar 01 16

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

A3.8: 68000 Program Overhead
For the 68000, the JB/JBN branches have to be constructed :

Clocks Bytes

MOV.w ABS.I,Rn 12 6
ANDIL.w #bitmask,Rn 8 4
BEQ/BNE rel.address 10 2

total JB/JNB execution : 34 clocks, 12 bytes

Now the absolute (estimated) branch time can be calculated, taking the core difference in account.

TYPE OCCURRENCE 68000 BYTES
LIMP/IMP 100 12 1200 |6 600
LCALL/JSR 100 20 2000 |8 800
Jce/Bec 200 10 2000 |2 400
JB/JBN 100 34 3400 |12 1200
total cycles 8600 3000
usec 537.5

A3.9: 68000 Totals

68000
FUNCTION ocC*

EXEC *OC
1. MPY 12 4.4 52.8
2. FDIV 4 13.4 53.6
3. ADD/SUB 50 2.75 137.5
4. CMP 24b 13 3.2 41.6
5. CAN 16b 40 2.7 216
6. INTPLIN 20 7.5 150
7. INTERR 10 21.9 219
8. BRANCH 10 537.5

68000 totals : 1,300 ps

including 20% statistics : 1,560 us

1996 Mar 01 17

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

APPENDIX 4

80C196 function implementations

80C196 reference: Embedded controller handbook vol 11-16 bit

Copyright : Intel Corp.

A4.1: 80C196 Unsigned multiply P=X*Y (16x16)

Bytes
MUL RO,R1 3

total: 1.75 ps, 3 bytes

Clocks
28

A4.2: Floating point division 16:16

(RO) Accuracy, (R4)/(R8) R4 result

Bytes
FDV:

EXT R4 2

AND R8 #FFFF 4

JE L1 2

SHLL R4,R0O 3

DIVU R8,R4 3

JNV L2 2
L1:

LD R4 #FFFF 2
L2:

RET 1
total: 76 clocks or 9.5 ps, 19 bytes
A4.3: Add/Sub

Bytes
ADDS:
SuUB R5,R1,R3 3
SUBB R4,R0O,R2 4

total : 10 clocks or 1.25 s, 7 bytes

A4.4: 80C196 “3-byte compare”

Bytes
CMP Rn,Y1 5
BNE L1 2
CMP Rm,Y2 5
L1:
BLT/EQ/GT (av) 2

Clocks

4
5
8/4
20
24
4/8

11

Clocks

Clocks
9
4/8
9

4/8

Average total: 34 clocks or 4.25 us, 14 bytes

A4.5: CAN move and compares (16-bit)

Bytes
CMP Rx,Y 4
BLT/EQ/GT (av) 2

total : 15 clocks or 2.5 ps, 6 bytes

1996 Mar 01

Clocks
9
6

18

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

A4.6: 80C196 2-dimensional interpolation using in-line linear interpolations
RO : table position, R2=fraction1, R4=fraction2, R6=result, R8, R10

LD

LD
SuUB
MULU
SHRAL
ADD
ADD
LD

LD
SuUB
MULU
SHRAL
ADD
SuUB
MULU
SHRAL
ADD
RET

total : 153 clocks or 19.1 s, 53 bytes

R6,[ROJ+
R8,[ROJ+
R8,R6
R8,R2
R8#8
R6,R8
RO,#15
R8,[ROJ+
R6,[RO]
R10,RS
R10,R2
R10,#8
R8,R10
R8,R6
R8,R4
R8,#8
R6,R8

Linear interpolation is 2-dim. interpolation /3 :

1-dim. interpolation 6.4 s, 18 bytes

A4.7 80C196 Interrupt Overhead

Clocks

a. interrupt /RTE 27

b. LIMP 2* 14

c. JB 2*av.7 14

d. CALL/RTS 22
e. BSET/BCLR 4* 28

f. POP 5* 40

PUSH 5* 55

g. MOVI #xx,CCR 5

205

Bytes Clocks
3 6
3 5
3 4
3 14
3 15
3 4
4 6
3 6
3 5
3 4
3 14
3 15
3 4
3 4
3 14
3 15
3 4
1 14
Bytes
6
6
4
16
10
10
4
58

80C196 INTerrupt overhead 205 clocks =12.8 s, 58 bytes

1996 Mar 01

19

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

A4.8: 80C196 Program Overhead

TYPE OCCURRENCE | 68000 BYTES
LIMP 100 7 700 3 300
LCALL/RET 100 22 2200 |4 400
Jec/Bee 200 7 1400 |2 400
JB/IBN 100 7 700 3 300
total cycles 6000 1400
usec 375
80C196 totals 958.1 ps
including 20% statistics : 1150 ps
80C196
FUNCTION ocC*

EXEC *OC
1. MPY 12 1.75 21
2. FDIV 4 9.5 38
3. ADD/SUB 50 1.25 62.5
4. CMP 24b 13 4.25 55.2
5. CAN 16b 40 1.88 150.4
6. INTPLIN 20 6.4 128
7. INTERR 10 12.8 128
8. BRANCH 10 375

1996 Mar 01

20

wwwe.DataSheetdlU.com

Philips Semiconductors Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51 AN703

BIT MANIPULATION
Copy a bit from one location to another in memory. Complement the bit in the new location
Note: Assumed that memory is on-chip and directly addressed.

Bit “x” of memO0 needs to be copied to bit “y” of mem1.

XA
CLR C ; clear Carry 3 4
ORL C, /bitm ; compl. bit and save in C 3 4
MOV bitn, C ; move memO0.x —> meml.y 3 4
9 12
0.75 uS)
Intel 80C196
Note : States = clock (period)/ 2
Move complement of bit “m” to “n” in memory
R3 = memory byte having bit “m”
R4 = memory byte having bit “n”
RO = Used as bit-mask register
R1 = position of “m” in mem0
R2 = position of “n” in mem1
Bytes States
LD RO, 1 ; Load 1 in Reg
SHLB RO, R2 ; position of bit “n 16
;in R2
NOTB RO ; complement 2 4
JBC R3,bitm, L1 ; test bit “m” polarity 3 7 (av)
ANDB R4, RO ;reset“n”if ‘m” =0 4
L1:
ORB R4, RO ; set “m” otherwise 3 either/or
14 31(3.88 uS)
Motorola 68000
Bytes States
BTST bitm ; Test bit 2 4
BEQ L1 ; Branch if reset 2 6
BCLR bitn ; Test bit and clear (~m = 0) 2 4
L1: BFSET bitn ; Test bit and set (~m = 1) 2 either/or
8 14 (0.88 uSs)
8051 Bit-test
MOV C, bitm 2 12
CPL C 1 12
MOV bitn, C 2 24
5 48 (3.0 puS)

1996 Mar 01

21

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

XA CODE DENSITY RESULTS

Graph showing performance with respect to 68000, and 80C196 cores normalized with respect to XA. The 80C51 is included just for reference.

XA

68000

80C196

8051

MPY
FDIV
ADD/SUB
CMP 24b
CAN 16b
INTPLIN
INTERR

S e

1
0.89

1.6
2.8
0.33
2.24

15
1.06
1.75

1.6

1.2
0.43
1.41

1
5.33
25

15
0.33
1.71

3.0

2.5

68000

2.0

15

80C196

1.0

0.5 —

FDIV

ADD/SUB

CMP 24b

CAN 16b

INTPLIN

INTERR

SUO0599A

1996 Mar 01

22

wwwe.DataSheetdlU.com

Philips Semiconductors

Application note

XA benchmark versus the architectures
68000, 80C196, and 80C51

AN703

XA EXECUTION TIME RESULTS

Graph showing performance with respect to 68000, and 80C196 cores normalized with respect to XA. The 80C51 is included just for reference.

XA

68000

80C196

8051

MPY
FDIV
ADD/SUB
CMP 24b
CAN 16b
INTPLIN
INTERR

S e

5.87
3.4
7.2

3.02
4.8

1.26
3.6

2.33
241
3.3
4
4.44
1.08
2.1

50
86
19.74
9.41
15.98
434
5.16

80C196

MPY

ADD/SUB

CMP 24b

CAN 16b

INTPLIN

INTERR

SUO0600A

1996 Mar 01

23

wwwe.DataSheetdlU.com

Philips Semiconductors Application note

XA benchmark versus the architectures

68000, 80C196, and 80C51 AN703

BIT TEST BENCHMARK: CODE DENSITY NORMALIZED WITH XA (=1.0)

The 80C51 is shown here only for reference.

XA 68000 80C196 8051
Code Density 1 0.89 1.6 0.6

2.0

15

1.0

0.5

68000 80C196 80C51

SU00601

BIT TEST BENCHMARK: EXECUTION TIME NORMALIZED WITH XA (=1.0)
The 80C51 is shown here only for reference.

XA 68000 80C196 8051

Execution Time 1 1.2 5.2 4

XA 68000 80C196 80C51

SU00602

wwwe.DataSheetdlU.com
1996 Mar 01 24

