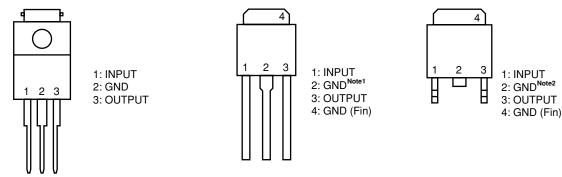
DATA SHEET

BIPOLAR ANALOG INTEGRATED CIRCUIT μ PC29Mxx Series

THREE TERMINAL LOW DROPOUT VOLTAGE REGULATOR

The μ PC29Mxx series of low dropout voltage three terminal positive regulators is constructed with PNP output transistor. The μ PC29Mxx series feature the ability to source 0.5 A of output current with a low dropout voltage of typically 0.5 V.


The power dissipation of the μ PC29Mxx series can be drastically reduced compared with the conventional three terminal positive voltage regulators that is constructed with NPN output transistor. Also, this series corresponds to the low voltage output (3.0 V, 3.3 V) which is not in the conventional low dropout regulators (μ PC24MxxA series).

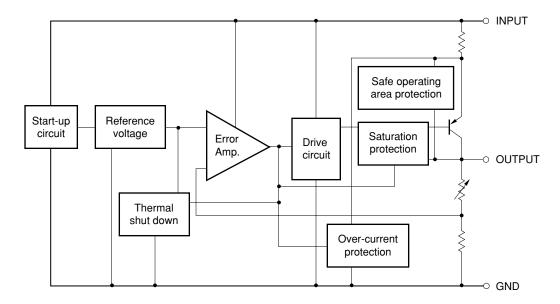
FEATURES

- Output current in excess of 0.5 A
- Low dropout voltage
 - $V_{DIF} = 0.5 V TYP. (Io = 0.5 A)$
- · On-chip over-current and thermal protection circuit
- · On-chip output transistor safe operating area protection circuit

<R> PIN CONFIGURATIONS (Marking Side)

μPC29MxxHF Series: Isolated TO-220 (MP-45G) μPC29MxxHB Series: SC-64 (MP-3) μPC29MxxT Series: SC-63 (MP-3Z)

Notes 1. No.2 pin and No.4 fin are common GND.


2. No.2 pin is cut. No.2 pin and No.4 fin are common GND.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

© NEC Electronics Corporation 1997, 2007

The mark <R> shows major revised points. The revised points can be easily searched by copying an "<R>" in the PDF file and specifying it in the "Find what." field.

BLOCK DIAGRAM

<R> ORDERING INFORMATION

Part Number	Package	Output Voltage	Marking
μ PC29M03HF	Isolated TO-220 (MP-45G)	3.0 V	29M03
μPC29M03HB	SC-64 (MP-3)	3.0 V	29M03
μPC29M03T	SC-63 (MP-3Z)	3.0 V	29M03
μPC29M33HF	Isolated TO-220 (MP-45G)	3.3 V	29M33
μPC29M33HB	SC-64 (MP-3)	3.3 V	29M33
μPC29M33T	SC-63 (MP-3Z)	3.3 V	29M33
μPC29M05HF	Isolated TO-220 (MP-45G)	5.0 V	29M05
μPC29M05HB	SC-64 (MP-3)	5.0 V	29M05
μPC29M05T	SC-63 (MP-3Z)	5.0 V	29M05
μPC29M06HF	Isolated TO-220 (MP-45G)	6.0 V	29M06
μPC29M06HB	SC-64 (MP-3)	6.0 V	29M06
μPC29M06T	SC-63 (MP-3Z)	6.0 V	29M06
μPC29M07HF	Isolated TO-220 (MP-45G)	7.0 V	29M07
μPC29M07HB	SC-64 (MP-3)	7.0 V	29M07
μPC29M07T	SC-63 (MP-3Z)	7.0 V	29M07
μPC29M08HF	Isolated TO-220 (MP-45G)	8.0 V	29M08
μPC29M08HB	SC-64 (MP-3)	8.0 V	29M08
μPC29M08T	SC-63 (MP-3Z)	8.0 V	29M08
μPC29M09HF	Isolated TO-220 (MP-45G)	9.0 V	29M09
μPC29M09HB	SC-64 (MP-3)	9.0 V	29M09
μPC29M09T	SC-63 (MP-3Z)	9.0 V	29M09
μPC29M10HF	Isolated TO-220 (MP-45G)	10.0 V	29M10
μPC29M10HB	SC-64 (MP-3)	10.0 V	29M10
μPC29M10T	SC-63 (MP-3Z)	10.0 V	29M10
µPC29M12HF	Isolated TO-220 (MP-45G)	12.0 V	29M12
μPC29M12HB	SC-64 (MP-3)	12.0 V	29M12
μPC29M12T	SC-63 (MP-3Z)	12.0 V	29M12

Remark Tape-packaged products have the symbol -E1, or -E2 suffixed to the part number. Pb-free products have

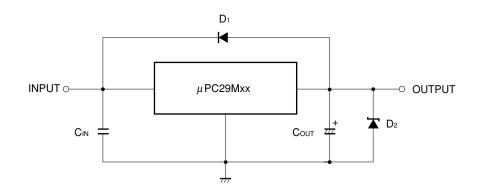
the symbol -AZ, or -AY suffixed to the part number. Refer to the following table for details.

Part Number Note1	Package	Packege Type
μPC29MxxHF	Isolated TO-220 (MP-45G)	Packed in envelop
µPC29MxxHF-AZ Note2	Isolated TO-220 (MP-45G)	Packed in envelop
μPC29MxxHB	SC-64 (MP-3)	Packed in envelop
µPC29MxxHB-AZ Note2	SC-64 (MP-3)	Packed in envelop
μPC29MxxHB-AY Note3	SC-64 (MP-3)	Packed in envelop
μPC29MxxT-E1	SC-63 (MP-3Z)	16 mm wide embossed taping
		Pin 1 on draw-out side
		 2000 pcs/reel
µPC29MxxT-E1-AZ Note2	SC-63 (MP-3Z)	• 16 mm wide embossed taping
		Pin 1 on draw-out side
		 2000 pcs/reel
µPC29MxxT-E1-AY Note3	SC-63 (MP-3Z)	• 16 mm wide embossed taping
		Pin 1 on draw-out side
		 2000 pcs/reel
μPC29MxxT-E2	SC-63 (MP-3Z)	• 16 mm wide embossed taping
		Pin 1 at take-up side
		 2000 pcs/reel
µPC29MxxT-E2-AZ Note2	SC-63 (MP-3Z)	• 16 mm wide embossed taping
		Pin 1 at take-up side
		 2000 pcs/reel
µPC29MxxT-E2-AY Note3	SC-63 (MP-3Z)	16 mm wide embossed taping
		Pin 1 at take-up side
		• 2000 pcs/reel

Notes 1. xx stands for symbols that indicate the output voltage.

2. Pb-free (This product does not contain Pb in the external electrode.)

3. Pb-free (This product does not contain Pb in the external electrode, Sn100% plating.)


ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, Unless otherwise specified.)

Parameter	Cumbol	Ra	Unit		
Farameter	Symbol	μPC29MxxHF	μPC29MxxHB, μPC29MxxT	Unit	
Input Voltage	Vin	2	0	V	
Internal Power Dissipation (Tc = 25° C) Note	Р⊤	15	15 10		
Operating Ambient Temperature	Та	—30 t	-30 to +85		
Operating Junction Temperature	TJ	–30 tc	o +150	°C	
Storage Temperature	Tstg	–55 to	o +150	°C	
Thermal Resistance (Junction to Case)	Rth (J-C)	7 12.5		°C/W	
Thermal Resistance (Junction to Ambient)	Rth (J-A)	65	65 125		

Note Internally limited. When the operating junction temperature rises above 150°C, the internal circuit shuts down the output voltage.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

TYPICAL CONNECTION

- CIN : 0.1 μF or higher. Be sure to connect CIN to prevent parasitic oscillation. Set this value according to the length of the line between the regulator and the INPUT pin. Use of a film capacitor or other capacitor with first-rate voltage and temperature characteristics is recommended. If using a laminated ceramic capacitor, it is necessary to ensure that CIN is 0.1 μF or higher for the voltage and temperature range to be used.
- Cout : $47 \ \mu$ F or higher. Be sure to connect Cout to prevent oscillation and improve excessive load regulation. Place C_{IN} and Cout as close as possible to the IC pins (within 1 to 2 cm). Also, use an electrolytic capacitor with low impedance characteristics if considering use at sub-zero temperatures.
- D1 : If the OUTPUT pin has a higher voltage than the INPUT pin, connect a diode.
- D₂ : If the OUTPUT pin has a lower voltage than the GND pin, connect a Schottky barrier diode.

Caution Make sure that no voltage is applied to the OUTPUT pin from external.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Type Number	MIN.	TYP.	MAX.	Unit
Input Voltage	VIN	μPC29M03	4		16	
		μPC29M33	4.3		16	
		μPC29M05	6		16	
		μPC29M06	7		16	
		μPC29M07	8		16	V
		μPC29M08	9		18	
		μPC29M09	10		18	
		μPC29M10	11		18	
		μPC29M12	13		18	
Output Current	lo	all	0		0.5	А
Operating Ambient Temperature	Та	all	-30		+85	°C
Operating Junction Temperature	TJ	all	-30		+125	°C

ELECTRICAL CHARACTERISTICS

μ PC29M03 (T_J = 25°C, V_{IN} = 5 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

		0 1111				
Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		2.88	3.0	3.12	
		$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq T_J \leq 125^\circ C, \; 4.0 \; V \leq V_{IN} \leq 16 \; V, \\ 0 \; A \leq I_O \leq 350 \; mA \end{array}$	2.85		3.15	v
		$0^{\circ}C \leq T_{\text{J}} \leq 125^{\circ}C, \ 0 \ A \leq I_{\text{O}} \leq 0.5 \ A$				
Line Regulation	REGIN	$4.0~V \leq V_{IN} \leq 16~V$		7	30	mV
Load Regulation	REG∟	$0 \text{ A} \le \text{lo} \le 0.5 \text{ A}$		8	30	mV
Quiescent Current	Ibias	Io = 0 A		1.8	4.0	
		lo = 0.5 A		17	30	mA
Startup Quiescent Current	BIAS (s)	VIN = 2.95 V, Io = 0 A		7	30	
		$V_{IN} = 2.95 V$, $I_0 = 0.5 A$			80	mA
Quiescent Current Change	Δlbias	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ 4.0 \ V \leq V_{IN} \leq 16 \ V$		3.2	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		51		μV r.m.s.
Ripple Rejection	R∙R	$f = 120 \text{ Hz}, 4.0 \text{ V} \le \text{V}_{\text{IN}} \le 16 \text{ V}$	48	64		dB
Dropout Voltage	VDIF	$0^\circ C \leq T_J \leq 125^\circ C, \text{ lo} = 0.5 \text{ A}$		0.5	1.0	V
Short Circuit Current	IO short	VIN = 4.5 V	0.65	1.0	1.5	
		VIN = 16 V		0.6		A
Peak Output Current	IO peak	V _{IN} = 4.5 V	0.7	1.0	1.5	— A
		VIN = 16 V	0.6	0.9	1.5	
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ Io = 5 \ mA$		-0.3		mV/°C

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		3.17	3.3	3.43	
		$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq T_J \leq 125^\circ C, \ 4.3 \ V \leq V_{IN} \leq 16 \ V, \\ 0 \ A \leq I_O \leq 350 \ mA \end{array}$	3.14		3.46	V
		$0^{\circ}C \leq T_{\text{J}} \leq 125^{\circ}C, \ 0 \ A \leq I_{\text{O}} \leq 0.5 \ A$				
Line Regulation	REGIN	$4.3~V \le V_{\text{IN}} \le 16~V$		8	33	mV
Load Regulation	REG∟	$0 \text{ A} \leq \text{lo} \leq 0.5 \text{ A}$		10	33	mV
Quiescent Current	Ibias	lo = 0 A		1.8	4.0	
		lo = 0.5 A		15	30	mA
Startup Quiescent Current	IBIAS (s)	VIN = 3.1 V, lo = 0 A		9	30	
		VIN = 3.1 V, lo = 0.5 A			80	80 mA
Quiescent Current Change	ΔI_BIAS	$0^{\circ}C \leq T_{J} \leq 125^{\circ}C, \ 4.3 \ V \leq V_{\text{IN}} \leq 16 \ V$		2.9	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		56		μV r.m.s.
Ripple Rejection	R∙R	f = 120 Hz, 4.3 V \leq VIN \leq 16 V	48	64		dB
Dropout Voltage	VDIF	$0^{\circ}C \le T_J \le 125^{\circ}C$, lo = 0.5 A		0.5	1.0	V
Short Circuit Current	IO short	VIN = 4.5 V	0.7	1.1	1.5	- A
		VIN = 16 V		0.6		A
Peak Output Current	IO peak	VIN = 4.5 V	0.7	1.2	1.5	Α
		V _{IN} = 16 V	0.6	1.0	1.5	
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ Io = 5 \ mA$		-0.4		mV/°C

μ PC29M33 (T_J = 25°C, V_{IN} = 5 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		4.8	5.0	5.2	
		$\label{eq:constraint} \begin{split} 0^\circ C &\leq T_J \leq 125^\circ C, \ 6 \ V \leq V_{IN} \leq 16 \ V, \\ 0 \ A \leq I_0 \leq 350 \ mA \end{split}$	4.75		5.25	v
		$0^{\circ}C \leq T_{\text{J}} \leq 125^{\circ}C, \ 0 \ A \leq I_{\text{O}} \leq 0.5 \ A$				
Line Regulation	REGIN	$6 V \le V_{IN} \le 16 V$		26	50	mV
Load Regulation	REG∟	$0 \text{ A} \le \text{Io} \le 0.5 \text{ A}$		17	50	mV
Quiescent Current	Ibias	lo = 0 A		1.9	4.0	- mA
		lo = 0.5 A		16	30	
Startup Quiescent Current	IBIAS (s)	V _{IN} = 4.5 V, lo = 0 A		10	30	
		V _{IN} = 4.5 V, lo = 0.5 A			80	- mA
Quiescent Current Change	ΔI_BIAS	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ 6 \ V \leq V_{IN} \leq 16 \ V$		2.4	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		87		μVr.m.s.
Ripple Rejection	R∙R	$f = 120 \text{ Hz}, 6 \text{ V} \le \text{V}_{IN} \le 16 \text{ V}$	46	60		dB
Dropout Voltage	VDIF	$0^{\circ}C \leq T_J \leq 125^{\circ}C$, $I_0 = 0.5 \text{ A}$		0.5	1.0	V
Short Circuit Current	IO short	V _{IN} = 6.5 V	0.65	1.1	1.5	
		V _{IN} = 16 V		0.6		A
Peak Output Current	IO peak	V _{IN} = 6.5 V	0.7	1.2	1.5	
		V _{IN} = 16 V	0.6	1.1	1.5	- A
Temperature Coefficient of Output Voltage	$\Delta Vo/\Delta T$	$0^\circ C \leq T_J \leq 125^\circ C, \ I_O = 5 \ mA$		0.7		mV/°C

μ PC29M05 (T_J = 25°C, V_{IN} = 8 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		5.76	6.0	6.24	
		$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq T_J \leq 125^\circ C, \ 7 \ V \leq V_{IN} \leq 16 \ V, \\ 0 \ A \leq I_0 \leq 350 \ mA \end{array}$	5.70		6.30	V
		$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ 0 \ A \leq I_0 \leq 0.5 \ A$				
Line Regulation	REGIN	$7 \text{ V} \leq V_{IN} \leq 16 \text{ V}$		30	60	mV
Load Regulation	REG∟	$0 \text{ A} \le \text{lo} \le 0.5 \text{ A}$		30	60	mV
Quiescent Current	Ibias	Io = 0 A		2.0	4.0	
		lo = 0.5 A		16	30	mA
Startup Quiescent Current	BIAS (s)	VIN = 5.5 V, Io = 0 A		10	30	
		VIN = 5.5 V, Io = 0.5 A			80	mA
Quiescent Current Change	ΔI_BIAS	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ 7 \ V \leq V_{IN} \leq 16 \ V$		2.5	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		126		$\mu V_{r.m.s.}$
Ripple Rejection	R∙R	$f = 120 \text{ Hz}, 7 \text{ V} \le \text{V}_{\text{IN}} \le 16 \text{ V}$	42	58		dB
Dropout Voltage	VDIF	$0^{\circ}C \leq T_J \leq 125^{\circ}C$, lo = 0.5 A		0.5	1.0	V
Short Circuit Current	IO short	VIN = 7.5 V	0.7	1.1	1.5	
		V _{IN} = 16 V		0.6		A
Peak Output Current	IO peak	V _{IN} = 7.5 V	0.7	1.1	1.5	A
		V _{IN} = 16 V	0.6	1.1	1.5	
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ Io = 5 \ mA$		0.44		mV/°C

μ PC29M06 (T_J = 25°C, V_{IN} = 9 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		6.72	7.0	7.28	
		$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq T_J \leq 125^\circ C, \ 8 \ V \leq V_{IN} \leq 16 \ V, \\ 0 \ A \leq I_0 \leq 350 \ mA \end{array}$	6.65		7.35	V
		$0^{\circ}C \le T_J \le 125^{\circ}C, 0 A \le I_0 \le 0.5 A$				
Line Regulation	REGIN	$8 \text{ V} \leq \text{V}_{\text{IN}} \leq 16 \text{ V}$		35	70	mV
Load Regulation	REG∟	$0 \text{ A} \le \text{lo} \le 0.5 \text{ A}$		35	70	mV
Quiescent Current	Ibias	lo = 0 A		2.0	4.0	mA
		lo = 0.5 A		16	30	
Startup Quiescent Current	IBIAS (s)	VIN = 6.5 V, Io = 0 A		10	30	
		VIN = 6.5 V, lo = 0.5 A			80	- mA
Quiescent Current Change	ΔI_BIAS	$0^{\circ}C \leq T_{\text{J}} \leq 125^{\circ}C, \ 8 \ V \leq V_{\text{IN}} \leq 16 \ V$		2.6	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		147		$\mu V_{r.m.s.}$
Ripple Rejection	R∙R	$f = 120 \text{ Hz}, 8 \text{ V} \le \text{V}_{IN} \le 16 \text{ V}$	40	56		dB
Dropout Voltage	VDIF	$0^{\circ}C \leq T_J \leq 125^{\circ}C$, lo = 0.5 A		0.5	1.0	V
Short Circuit Current	IO short	VIN = 8.5 V	0.7	1.1	1.5	
		VIN = 16 V		0.6		A
Peak Output Current	IO peak	VIN = 8.5 V	0.7	1.2	1.5	
		V _{IN} = 16 V	0.6	1.1	1.5	A
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ Io = 5 \ mA$		0.7		mV/°C

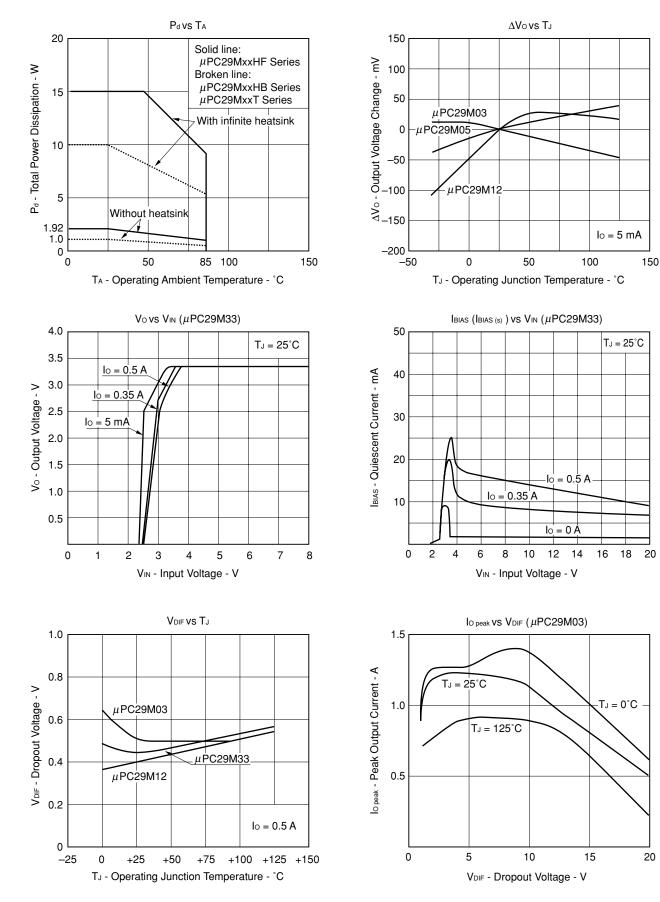
μ PC29M07 (T_J = 25°C, V_{IN} = 10 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

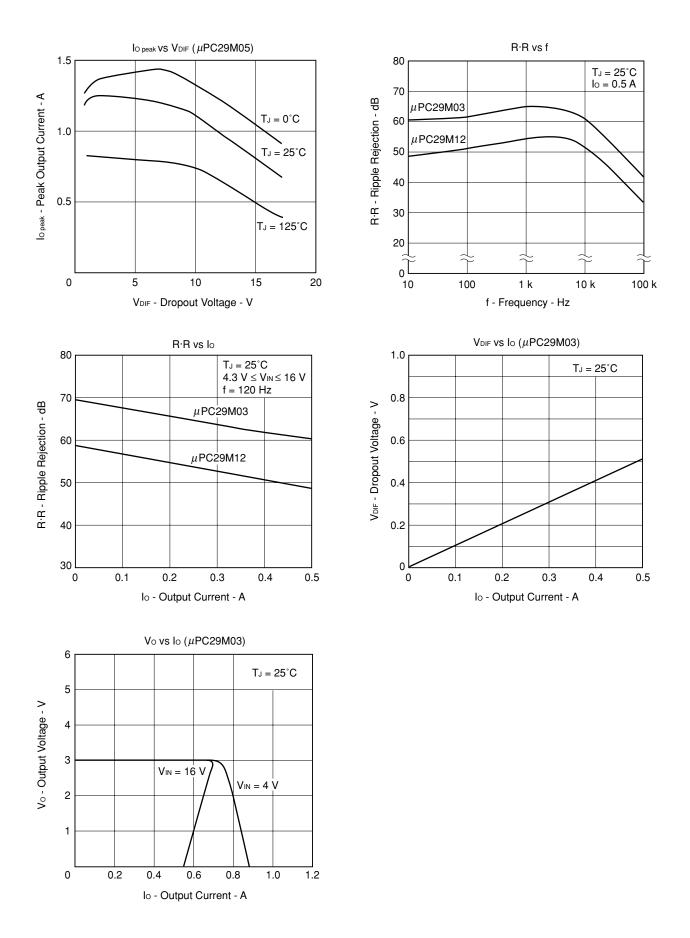
Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		7.68	8.0	8.32	
		$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq T_J \leq 125^\circ C, \ 9 \ V \leq V_{IN} \leq 18 \ V, \\ 0 \ A \leq I_O \leq 350 \ mA \end{array}$	7.6		8.4	V
		$0^{\circ}C \leq T_{\text{J}} \leq 125^{\circ}C, \ 0 \ A \leq I_{\text{O}} \leq 0.5 \ A$				
Line Regulation	REGIN	$9~V \le V_{IN} \le 18~V$		40	80	mV
Load Regulation	REG∟	$0 \text{ A} \le I_0 \le 0.5 \text{ A}$		40	80	mV
Quiescent Current	Ibias	lo = 0 A		2.0	4.0	- mA
		lo = 0.5 A		15	30	
Startup Quiescent Current	IBIAS (s)	VIN = 7.5 V, Io = 0 A		10	30	
		$V_{IN} = 7.5 V, I_{O} = 0.5 A$			80	mA
Quiescent Current Change	ΔI_BIAS	$0^\circ C \leq T_J \leq 125^\circ C, \ 9 \ V \leq V_{IN} \leq 18 \ V$		3.0	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		150		$\mu V_{r.m.s.}$
Ripple Rejection	R∙R	$f = 120 \text{ Hz}, 9 \text{ V} \le \text{V}_{IN} \le 18 \text{ V}$	42	58		dB
Dropout Voltage	VDIF	$0^{\circ}C \leq T_J \leq 125^{\circ}C$, $I_0 = 0.5 \text{ A}$		0.5	1.0	V
Short Circuit Current	IO short	Vin = 9.5 V		1.0		
		V _{IN} = 18 V		0.55		A
Peak Output Current	IO peak	V _{IN} = 9.5 V	0.7	1.2	1.5	- A
		V _{IN} = 18 V	0.6	1.1	1.5	
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^\circ C \leq T_J \leq 125^\circ C, \ Io=5 \ mA$		0.7		mV/°C

μ PC29M08 (T_J = 25°C, V_{IN} = 11 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		8.64	9.0	9.36	
		$\label{eq:constraint} \begin{split} 0^\circ C &\leq T_J \leq 125^\circ C, \ 10 \ V \leq V_{IN} \leq 18 \ V, \\ 0 \ A \leq I_O \leq 350 \ mA \end{split}$	8.55		9.45	v
		$0^{\circ}C \leq T_{\text{J}} \leq 125^{\circ}C, \ 0 \ A \leq I_{\text{O}} \leq 0.5 \ A$				
Line Regulation	REGIN	$10 V \le V_{IN} \le 18 V$		45	90	mV
Load Regulation	REG∟	$0 \text{ A} \leq \text{lo} \leq 0.5 \text{ A}$		45	90	mV
Quiescent Current	Ibias	lo = 0 A		2.0	4.0	
		lo = 0.5 A		15	30	- mA
Startup Quiescent Current	BIAS (s)	VIN = 8.5 V, Io = 0 A		10	30	
		VIN = 8.5 V, Io = 0.5 A			80	- mA
Quiescent Current Change	ΔI_BIAS	$0^\circ C \leq T_J \leq 125^\circ C, \ 10 \ V \leq V_{IN} \leq 18 \ V$			20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		170		μVr.m.s.
Ripple Rejection	R∙R	f = 120 Hz, 10 V \leq VIN \leq 18 V	41	57		dB
Dropout Voltage	VDIF	$0^{\circ}C \leq T_J \leq 125^{\circ}C$, $I_0 = 0.5 \text{ A}$		0.5	1.0	V
Short Circuit Current	IO short	V _{IN} = 10.5 V		1.0		
		V _{IN} = 18 V		0.55		A
Peak Output Current	IO peak	V _{IN} = 10.5 V	0.7	1.2	1.5	
		Vin = 18 V	0.6	1.1	1.5	- A
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^\circ C \leq T_J \leq 125^\circ C, \ I_O = 5 \ mA$		0.8		mV/°C

μ PC29M09 (T_J = 25°C, V_{IN} = 12 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

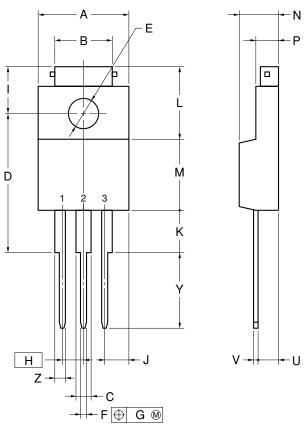

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		9.6	10.0	10.4	
		$\label{eq:constraint} \begin{array}{l} 0^\circ C \leq T_J \leq 125^\circ C, \ 11 \ V \leq V_{IN} \leq 18 \ V, \\ 0 \ A \leq I_O \leq 350 \ mA \end{array}$	9.5		10.5	v
		$0^{\circ}C \leq T_{\text{J}} \leq 125^{\circ}C, \ 0 \ A \leq I_{\text{O}} \leq 0.5 \ A$				
Line Regulation	REGIN	$11 \ V \le V_{IN} \le 18 \ V$		34	100	mV
Load Regulation	REG∟	$0 \text{ A} \le I_0 \le 0.5 \text{ A}$		10	100	mV
Quiescent Current	IBIAS	lo = 0 A		2.1	4.0	- mA
		lo = 0.5 A		16	30	IIIA
Startup Quiescent Current	IBIAS (s)	VIN = 9.5 V, Io = 0 A		10	30	
		$V_{IN} = 9.5 V, I_{O} = 0.5 A$			80	- mA
Quiescent Current Change	ΔI_BIAS	$0^\circ C \leq T_J \leq 125^\circ C, \ 11\ V \leq V_{IN} \leq 18\ V$		1.9	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		180		$\mu V_{r.m.s.}$
Ripple Rejection	R∙R	$f = 120 \text{ Hz}, 11 \text{ V} \le \text{V}_{\text{IN}} \le 18 \text{ V}$	40	53		dB
Dropout Voltage	VDIF	$0^{\circ}C \leq T_J \leq 125^{\circ}C$, $I_0 = 0.5 \text{ A}$		0.5	1.0	V
Short Circuit Current	IO short	VIN = 11.5 V		0.9		•
		VIN = 18 V		0.5		A
Peak Output Current	IO peak	VIN = 11.5 V	0.7	1.2	1.5	A
		V _{IN} = 18 V	0.6	1.2	1.5	
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^\circ C \le T_J \le 125^\circ C, \ I_O = 5 \ mA$		0.9		mV/°C


μ PC29M10 (T_J = 25°C, V_{IN} = 13 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

Parameters	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Output Voltage	Vo		11.52	12	12.48	
		$\label{eq:constraint} \begin{split} 0^\circ C &\leq T_J \leq 125^\circ C, \ 13 \ V \leq V_{IN} \leq 18 \ V, \\ 0 \ A \leq I_0 \leq 350 \ mA \end{split}$	11.4		12.6	V
		$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ 0 \ A \leq I_0 \leq 0.5 \ A$				
Line Regulation	REGIN	$13~V \le V_{IN} \le 18~V$		25	120	mV
Load Regulation	REG∟	$0 \text{ A} \le \text{lo} \le 0.5 \text{ A}$		13	120	mV
Quiescent Current	Ibias	lo = 0 A		2.1	4.0	
		lo = 0.5 A		14	30	- mA
Startup Quiescent Current	IBIAS (s)	VIN = 11.5 V, Io = 0 A		10	30	
		VIN = 11.5 V, Io = 0.5 A			80	- mA
Quiescent Current Change	ΔI_BIAS	$0^{\circ}C \leq T_{J} \leq 125^{\circ}C, \ 13 \ V \leq V_{IN} \leq 18 \ V$		1.7	20	mA
Output Noise Voltage	Vn	10 Hz ≤ f ≤ 100 kHz		210		$\mu V_{r.m.s.}$
Ripple Rejection	R∙R	f = 120 Hz, 13 V \leq VIN \leq 18 V	40	53		dB
Dropout Voltage	VDIF	$0^{\circ}C \leq T_J \leq 125^{\circ}C$, $I_0 = 0.5 \text{ A}$		0.5	1.0	V
Short Circuit Current	IO short	VIN = 14 V		0.7		
		Vin = 18 V		0.5		- A
Peak Output Current	IO peak	VIN = 14 V	0.7	1.2	1.5	
	V _{IN} = 18 V 0.6 1.1	1.5	- A			
Temperature Coefficient of Output Voltage	ΔVο/ΔΤ	$0^{\circ}C \leq T_J \leq 125^{\circ}C, \ Io = 5 \ mA$		1.2		mV/°C

μ PC29M12 (T_J = 25°C, V_{IN} = 15 V, Io = 350 mA, C_{IN} = 0.22 μ F, Cout = 47 μ F, unless otherwise specified.)

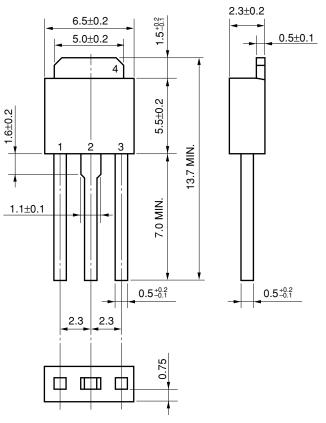
TYPICAL CHARACTERISTICS



PACKAGE DRAWINGS

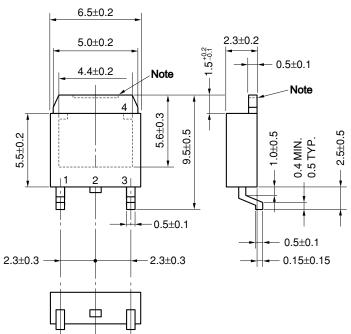
 μ PC29MxxHF Series

3PIN PLASTIC SIP (MP-45G)


NOTE

Each lead centerline is located within 0.25 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	10.0±0.2
В	7.0±0.2
С	1.50±0.2
D	17.0±0.3
E	φ3.3±0.2
F	0.75±0.10
G	0.25
Н	2.54 (T.P.)
I	5.0±0.3
J	2.46±0.2
K	5.0±0.2
L	8.5±0.2
М	8.5±0.2
Ν	4.5±0.2
Р	2.8±0.2
U	2.4±0.5
V	0.65±0.10
Y	8.9±0.7
Z	1.30±0.2
	P3HF-254B-4


μ PC29MxxHB Series

SC-64 (MP-3) (Unit: mm)

 μ PC29MxxT Series

Note The depth of notch at the top of the fin is from 0 to 0.2 mm.

<R> RECOMMENDED SOLDERING CONDITIONS

When soldering this product, it is highly recommended to observe the conditions as shown below. If other soldering processes are used, or if the soldering is performed under different condition, please make sure to consult with our sales offices.

For more details, refer to the **Semiconductor Device Mount Manual** (http://www.necel.com/pkg/en/mount/index.html)

Surface mount devices

•		-
Process	Process Conditions	
Infrared ray reflow	Peak temperature: 235°C or below (Package surface temperature), Reflow time: 30 seconds or less (at 210°C or higher), Maximum number of reflow processes: 3 times or less.	IR35-00-3
VPS	Peak temperature: 215°C or below (Package surface temperature), Reflow time: 40 seconds or less (at 200°C or higher), Maximum number of reflow processes: 3 times or less.	VP15-00-3
Partial heating method	Pin temperature: 350°C or below, Heat time: 3 seconds or less (Per each side of the device).	P350

μPC29MxxT Series: SC-63 (MP-3Z)

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

Remark Flux: Rosin-based flux sith low chlorine content (chlorine 0.2 Wt% or below) is recommended.

μPC29MxxT-AZ Series Note1, μPC29MxxT-AY Series Note2: SC-63 (MP-3Z)

Process	Conditions	Symbol	
Infrared ray reflow	Peak temperature: 260°C or below (Package surface temperature), Reflow time: 60 seconds or less (at 220°C or higher), Maximum number of reflow processes: 3 times or less.	IR60-00-3	
Partial heating method	Pin temperature: 350°C or below, Heat time: 3 seconds or less (Per each side of the device).		

Notes 1. Pb-free (This product does not contain Pb in the external electrode.)

2. Pb-free (This product does not contain Pb in the external electrode, Sn100% plating.)

Caution Apply only one kind of soldering condition to a device, except for "partial heating method", or the device will be damaged by heat stress.

Remark Flux: Rosin-based flux sith low chlorine content (chlorine 0.2 Wt% or below) is recommended.

Through-hole devices

μ PC29MxxHF Series, μ PC29MxxHF-AZ Series ^{Note1}: Isolated TO-220 (MP-45G) μ PC29MxxHB Series, μ PC29MxxHB-AZ Series ^{Note1}, μ PC29MxxHB-AY Series ^{Note2}: SC-64 (MP-3)

Process	Conditions	Symbol
Wave soldering (only to leads)	Solder temperature: 260°C or below, Flow time: 10 seconds or less.	WS60-00-1
Partial heating method	Pin temperature: 350°C or below, Heat time: 3 seconds or less (Per each pin).	P350

Notes 1. Pb-free (This product does not contain Pb in the external electrode.)

2. Pb-free (This product does not contain Pb in the external electrode, Sn100% plating.)

Caution For through-hole device, the wave soldering process must be applied only to leads, and make sure that the package body does not get jet soldered.

CAUTION ON USE

When using the μ PC29Mxx series at the input voltage which is lower than in the recommended operating condition, the high quiescent current flows through devices because the transistor of the output paragraph is saturated (Refer to "IBIAS (IBIAS (s)) **vs** VIN **curves in TYPICAL CHARACTERISTICS**"). The μ PC29Mxx series have saturation protection circuits, but they sometimes need about 80 mA current. Therefore the power supply on the input needs the enough current capacity to pass this quiescent current when the devices startup.

<R> REFERENCE DOCUMENTS

USER'S MANUAL USAGE OF THREE TERMINAL REGULATORS	Document No.G12702E
REVIEW OF QUALITY AND RELIABILITY HANDBOOK	Document No.C12769E
INFORMATION VOLTAGE REGULATOR OF SMD	Document No.G11872E
SEMICONDUCTOR DEVICE MOUNT MANUAL	http://www.necel.com/pkg/en/mount/index.html

- The information in this document is current as of September, 2007. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).