

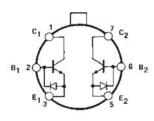
Low Noise, Matched Dual Monolithic Transistor

MAT12

Preliminary Technical Data

Very Low Voltage Noise: 1nV/√Hz max @ 100Hz

Low offset voltage (V_{OS}): 50 μ V max


Excellent Log Conformance: $r_{BE} = 0.3 \Omega$ Low Offset Voltage Drift: 0.1 μ V/°C max High Gain Bandwidth Product: 200MHz

FEATURES

High Gain (h_{FE}):

500 min at $I_C = 1mA$ 300 min at $I_C = 1\mu A$

PIN CONFIGURATION

Note: Substrate is connected to case on TO-78 package. Substrate is normally connected to the most negative circuit potential, but can be floated

GENERAL DESCRIPTION

The design of the MAT12 series of NPN dual monolithic transistors is optimized for very low noise, low drift and low r_{BE} . Exceptional characteristics of the MAT12 include offset voltage of 50 μ V max and high current gain (hFE) which is maintained over a wide range of collector current. Device performance is specified over the full temperature range as well as at 25°C.

Input protection diodes are provided across the emitter-base junctions to prevent degradation of the device characteristics due to reverse-biased emitter current. The substrate is clamped to the most negative emitter by the parasitic isolation junction created by the protection diodes. This results in complete isolation between the transistors.

The MAT12 is ideal for applications where low noise is a priority. The MAT12 can be used as an input stage to make an amplifier with noise voltage of less than 1.0 nV/ \sqrt{Hz} at 100 Hz. Other applications, such as log/antilog circuits, may use the excellent logging conformity of the MAT12. Typical bulk resistance is only 0.3 Ω to 0.4 Ω . The MAT12 electrical characteristics approach those of an ideal transistor when operated over a collector current range of 1µA to 10 mA.

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS; $V_{CB} = 15V$

 V_{CB} = 15 V, I_O = 10µA, T_A = 25°C, unless otherwise specified.

Table 1.

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Current Cain	L	1 1 m ((n e t e 1)	500	605		
Current Gain	h _{FE}	$I_c = 1 \text{mA} \text{ (note 1)}$	500	605		
		-25°C≤T _A ≤+85°C	325	500		
		$I_{c} = 100 \mu A$	500	590		
		-25°C≤T _A ≤+85°C I _C = 10μA	275 400	550		
		-25°C≤T _A ≤+85°C	225	330		
		$I_c = 1\mu A$	300	485		
		-25°C≤T _A ≤+85°C	200	-65		
Current Gain Match	Δh_{FE}	$10\mu A \le I_C \le 1mA$ (note 2)		0.5	2	%
Noise Voltage Density	еN	$I_{c} = 1 \text{ mA}, V_{CB} = 0 \text{ (note 3)}$				
		f ₀ = 10Hz		1.6	2	nV/√Hz
		f ₀ = 100Hz		0.9	1	nV/√Hz
		f _o = 1kHz		0.85	1	nV/√Hz
		f _o = 10kHz		0.85	1	nV/√Hz
Offset Voltage	Vos	$V_{CB} = 0, 1\mu A \le I_C \le 1mA$		10	50	μV
		-25°C≤T _A ≤+85°C			70	uV
Offset Voltage Change vs. V_{CB}	$\Delta V_{OS} / \Delta V_{CB}$	$0 \le V_{CB} \le V_{MAX}$ (note 4)		10	25	μV
		$1\mu A \le I_C \le 1mA$ (note 5)				
Offset Voltage Change vs. I_C	ΔVos/ΔIc	$1\mu A \le I_C \le 1mA$ (note 5), $V_{CB}=0$		5	25	μV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	-25°C≤T _A ≤+85°C		0.08	0.3	μV/ ∘C
		-25°C≤T _A ≤+85°C, V _{os}		0.03	0.3	μV/ °C
		trimmed to zero				P
Breakdown Voltage	BV _{CEO}		40			V
Gain-Bandwidth Product	fī	$I_{C} = 100 \text{mA}, V_{CE} = 10 \text{V}$		200		MHz
Collector-Base Leakage Current	Ісво	V _{CB} =V _{MAX}		25	200	pА
		-25°C≤T₄≤+85°C		2		nA
Collector-Collector Leakage Current	lcc	V _{CC} =V _{MAX} (notes 6,7)		35	200	рА
······································		-25°C≤T _A ≤+85°C		3		nA
Collector-Emitter Leakage Current	Ices	V _{BE} =0 (notes 6,7)		35	200	pА
		-25°C≤T _A ≤+85°C		3		nA

Preliminary Technical Data

MAT12

Input Bias Current	IB	$I_{C} = 10 \mu A$		25	nA
		-25°C≤T _A ≤+85°C		45	nA
Input Offset Current	los	lc = 10μΑ		0.6	nA
input onset current	IOS	-25°C≤T₄≤+85°C		8	nA
Input Offset Current Drift	Δlos/ΔT	Ic=10μA (note 6)			
		-25°C≤T _A ≤+85°C	40	90	pA/ºC
Offset Current Change vs. V _{CB}	ΔΙος/Δνα	$0 \leq V_{CR} \leq V_{MAX}$ (note 4)	30	70	pA/V
	2103/2108			70	p
Collector Saturation Voltage	V _{CE(SAT)}	$I_{C} = 1 \text{mA}, I_{B} = 100 \mu \text{A}$	0.0	5 0.1	V
Output Capacitance	Сов	V _{CB} =15V, I _E =0	23		pF
Bulk Resistance	r _{BE}	10µA≤Ic≤10mA (note6)	0.3	0.5	Ω
Collector-Collector Capacitance	Ccc	$V_{CC} = 0$	35		pF

Notes:

- 1. Current gain is guaranteed with Collector-Base Voltage (V_{CB}) swept from 0 to V_{MAX} at the indicated collector currents.
- 2. Current Gain Match (Δh_{FE}) defined as: $\Delta h_{FE} = (100(\Delta I_B)(h_{FE min})/I_C)$
- 3. Noise Voltage Density is guaranteed, but not 100% tested
- 4. This is the maximum change in V_{OS} as V_{CB} is swept from 0V to 40V.
- 5. Measured at $l_{c}{=}10\mu A$ and guaranteed by design over the specified range of l_{c}
- 6. Guaranteed by Design
- 7. I_{CC} and I_{CES} are verified by measurement of I_{CBO}

ABSOLUTE MAXIMUM RATINGS

Table 2.

1.010 2.	
Parameter	Rating
Collector-Base Voltage (BV _{CBO})	40 V
Collector-Emitter Voltage (BV _{CEO})	40V
Collector-Collector Voltage (BVcc)	40V
Emitter-Emitter Voltage (BV _{EE})	40V
Collector Current (Ic)	20 mA
Emitter Current (I _E)	20 mA
Storage Temperature Range H Packages	–65°C to +150°C
Operating Temperature Range	–25°C to +85°C
Junction Temperature Range RM, CP Packages	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹ Differential input voltage is limited to 5 V or the supply voltage, whichever is less.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

Package Type	θ _{JA}	ον	Unit
TO-78 (H)	TBD	TBD	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

©2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR09044-0-4/10(PrA)

Rev. PrA | Page 4 of 4