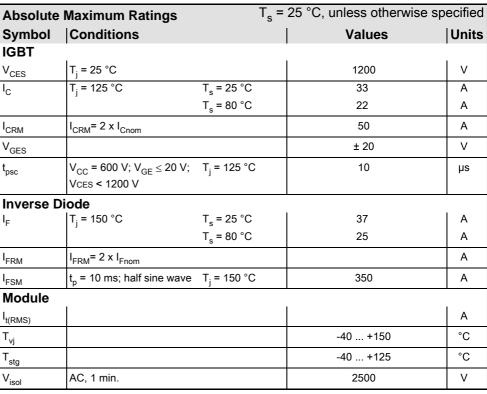
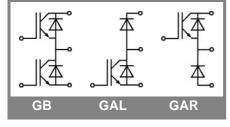


IGBT Module

SK30GB123 SK30GAL123 SK30GAR123


Preliminary Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Characteristics T _S =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 1 \text{ mA}$		4,5	5,5	6,5	V	
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,15	mA	
		T _j = 125 °C				mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			120	nA	
		T _j = 125 °C				nA	
V_{CE0}		T _j = 25 °C		1,2		V	
		T _j = 125 °C		1,2		V	
r_{CE}	V _{GE} = 15 V	T _j = 25°C		52		mΩ	
		T _j = 125°C		76		mΩ	
V _{CE(sat)}	I _{Cnom} = 25 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}	2	2,5	3	V	
		$T_j = 125^{\circ}C_{chiplev}$		3,1	3,7	V	
C _{ies}				1,65		nF	
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,25		nF	
C _{res}				0,11		nF	
$t_{d(on)}$				40		ns	
t _r	$R_{Gon} = 25 \Omega$	$V_{CC} = 600V$		45		ns	
E _{on}		I _C = 25A		3,5		mJ	
t _{d(off)}	$R_{Goff} = 25 \Omega$	T _j = 125 °C		300		ns	
t _f		V _{GE} =±15V		45		ns	
E _{off}				2,6		mJ	
$R_{th(j-s)}$	per IGBT				1	K/W	

SK30GB123

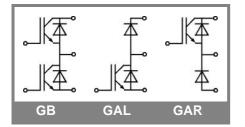
IGBT Module

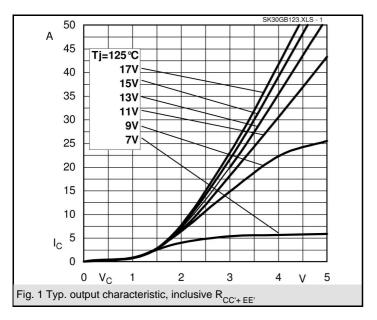
SK30GB123 SK30GAL123 SK30GAR123

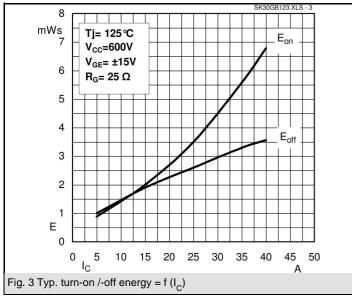
Preliminary Data

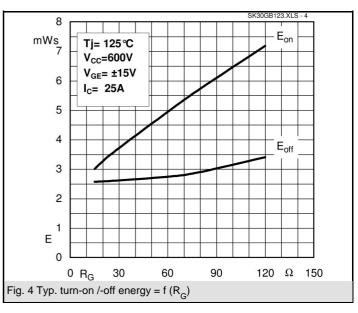
Features

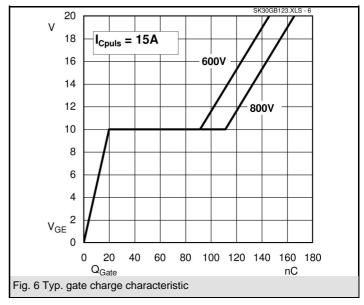
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non punch-through IGBT)
- · High short circuit capability
- Low tail current with low temperature dependence

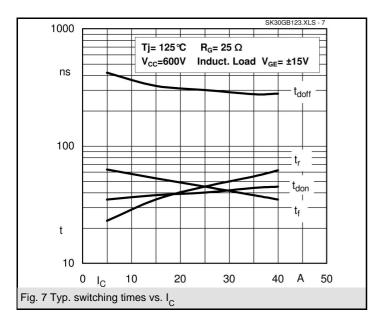

Typical Applications

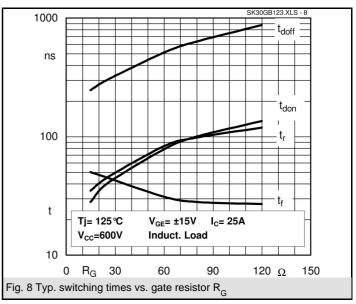

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

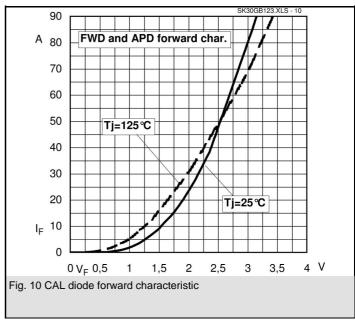

Characteristics									
Symbol	Conditions		min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 25 A; V_{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V			
		T _j = 125 °C _{chiplev} .		1,8	2,3	V			
V _{F0}		T _j = 125 °C		1	1,2	V			
r _F		T _j = 125 °C		32	44	mΩ			
I _{RRM}	I _F = 22 A	T _i = 125 °C		25		Α			
Q_{rr}	$di/dt = -500 A/\mu s$,		4,5		μC			
E _{rr}	V _{CC} = 600V			1		mJ			
R _{th(j-s)D}	per diode				1,2	K/W			
M_s	to heat sink M1				2	Nm			
w				19		g			

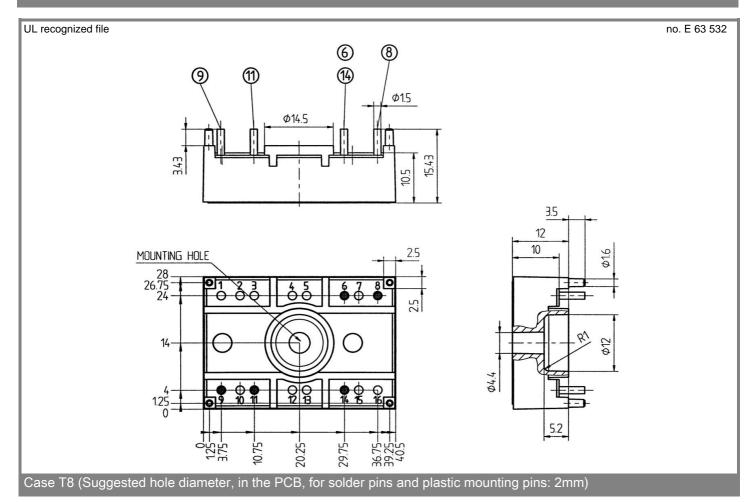

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

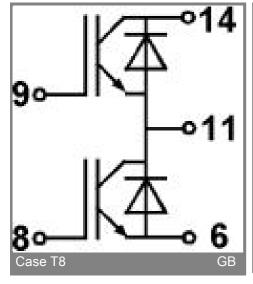

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.










SK30GB123

