
IPS620 series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications.

High current density due to double mesa technology SIPOS and Glass passivation technology used has reliable operation up to 125°C junction temperature. Low lgt parts available.

IPS620 series are suitable for general purpose applications, a high gate sensitivity is required.

MAIN FEATURES

Symbol	Value	Unit
IT(RMS)	20	Α
lT(AV)	12	Α
VDRM / VRRM	600	V
Vтм	≤ 1.6	V

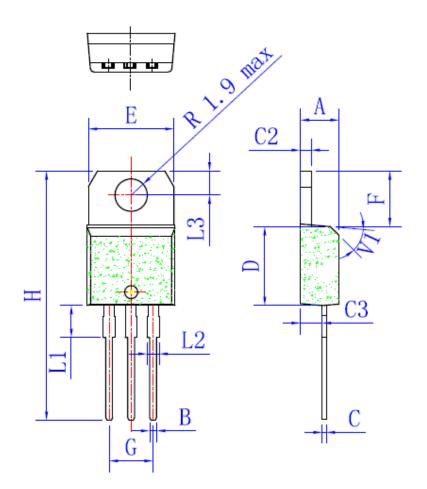
ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
RMS on–state current (Tc = 100 ℃, 180° conduction half sine wave)	IT(RMS)	20	Α
Average on–state current (Tc = 100 ℃, 180 conduction half sine wave)	IT(AV)	12	Α
Storage Junction Temperature Range Operating Junction Temperature Range	Tstg Tj	-40 to +150 -40 to +125	ပ
Repetitive Peak Off-state VoltageTj = 25 ℃Repetitive Peak Reverse VoltageTj = 25 ℃	VDRM VRRM	600 600	٧
Non Repetitive Peak Off-state Voltage $Tj = 25 ^{\circ}\mathbb{C}$ Non Repetitive Peak Reverse Voltage $Tj = 25 ^{\circ}\mathbb{C}$	VDSM VRSM	700 700	V
One cycle Non Repetitive surge current (Half Cycle, 50Hz)	Ітѕм	200	Α
I ² t Value for fusing (tp = 10ms, Half Cycle)	l²t	200	A²s
Critical rate of rise of turned – on current (IG = 2 X IGT, Tj = 125℃)	dl/dt	50	A/us
Peak gate current tp = 20us, Tj = 125℃	Ідм	5	Α
Average gate power dissipation Tj = 125℃	PG(AV)	1	W

ELECTRICAL CHARACTERISTICS (Tj = 25 °C unless otherwise specified)

Symbol	Test Condition		IPS620-xxB	Unit
Syllibol			30	- John
lgт	Required DC gate current to trigger at 25℃ at - 40℃ at 125℃	MAX	30 55 15	mA
VgT	Required DC voltage to trigger at 25 ℃ (anode supply = 6V, resistive load) at - 40 ℃ at 125 ℃	MAX	1.3 2.0 1.1	v
VGD	DC gate voltage not to trigger (Tj = 125℃, VDRM = rated value)	MAX	0.2	V
IL	IG = 1.2 IGT	MAX	70	mA
lн	Holding current	MAX	50	mA
dV/dt	VD = 67% VDRM gate open Tj = 125 ℃	MIN	300	V/us

STATIC CHARACTERISTICS


Symbol	Test Conditions		Value (MAX)	Unit
Vтм	Iтм = 30A, tp = 380uS	Tj = 25 ℃	1.6	V
IDRM/IRRM	VD = VDRM	Tj = 25℃	5	uA
	VR = VRRM	Tj = 125℃	2	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
Rth (j - c)	Junction to case	TO-220B	1.0	°C/W

PACKAGE MECHANICAL DATA

TO-220B

	Millimeters		
	Min	Тур	Max
Α	4.4		4.6
В	0.61		0.88
С	0.46		0.70
C2	1.23		1.32
C3	2.4		2.72
D	8.6		9.7
E	9.8		10.4
F	6.2		6.6
G	4.8		5.4
Н	28		29.8
L1		3.75	
L2	1.14		1.7
L3	2.65		2.95
٧		40°	

FIG.1: Maximum average power dissipation versus RMS on-state current

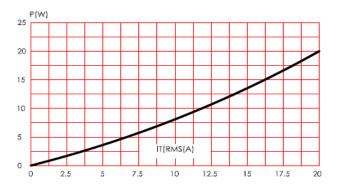


FIG.2: RMS on-state current versus case temperature.

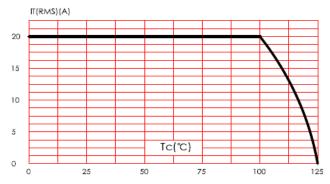


FIG.3: Relative variation of gate trigger current, holding current and latching current versus junction temperature.

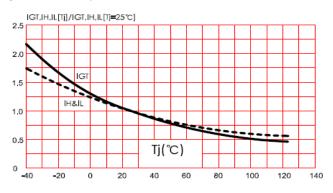


FIG.4: Surge peak on-state current versus number of cycles.

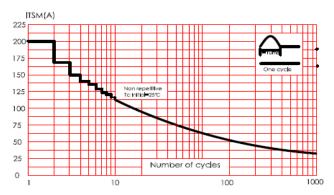


FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding value of I²t

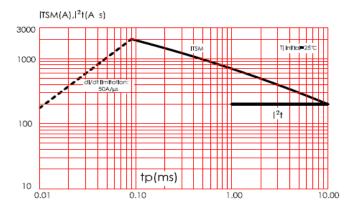
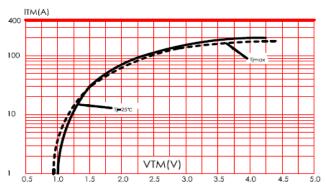



FIG.6: On-state characteristics (maximum values).

