NC7WBD3125 TinyLogic® UHS 2-Bit Low Power Bus S ÷ D n 7 D

FAIRCHILD

SEMICONDUCTOR TM

NC7WBD3125 TinyLogic® UHS 2-Bit Low Power Bus Switch with Level Shifting

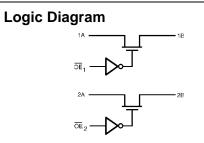
General Description

The NC7WBD3125 is a 2-bit ultra high-speed CMOS FET bus switch with enhanced level shifting circuitry and with TTL-compatible active LOW control inputs. The low On Resistance of the switch allows inputs to be connected to outputs with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 2-bit switch with independent bus enable (\overline{OE}) controls. When \overline{OE} is LOW, the switch is ON and Port A is connected to Port B. When \overline{OE} is HIGH, the switch is OPEN and a high-impedance state exists between the two ports. Reduced voltage drive to the gate of the FET switch permits nominal level shifting of 5V to 3V through the switch. Control inputs tolerate voltages up to 5.5V independent of V_{CC}.

Features

- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- \blacksquare Typical 3 Ω switch resistance at 5.0V V_{CC}, V_{IN} = 0V

May 2000


Revised January 2005

- Level shift facilitates 5V to 3.3V interfacing
- Minimal propagation delay through the switch
- Power down high impedance input/output
- Zero bounce in flow through mode
- TTL compatible active LOW control inputs
- Control inputs are overvoltage tolerant
- Bus switch replacement for x125 logic part

Ordering	Code [.]
Ordering	COUE.

		Package		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
NC7WBD3125K8X	MAB08A	WB5D	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Ree
NC7WBD3125L8X (Preliminary)	MAC08A	Т9	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Ree
Pb-Free package per JI	EDEC J-STD-	020B.		
			miconductor Corporation.	
MicroPak™ is a tradema	ark of Fairchild	d Semiconducte	or Corporation.	

NC7WBD3125

Pin Descriptions

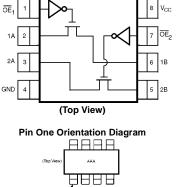
Function Table

H = HIGH Logic Level L = LOW Logic Level

Bus Enable Input (OE)

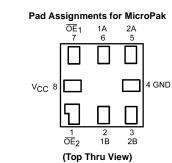
L

Н


Pin Name	Description
A	Bus A Switch I/O
В	Bus B Switch I/O
OE	Bus Enable Input

Function

B Connected to A


Disconnected

Connection Diagrams

AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pin One

Absolute Maximum Ratings(Note 1)

	-
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Switch Voltage (V _S)	-0.5V to +7.0V
DC Output Voltage (VIN) (Note 2)	-0.5V to +7.0V
DC Input Diode Current	
(I _{IK}) V _{IN} < 0V	–50 mA
DC Output (I _{OUT}) Current	128 mA
DC V _{CC} or Ground Current	
(I _{CC} /I _{GND})	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	+150°C
Lead Temperature (T _L)	
(Soldering, 10 Seconds)	+260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 3)

Supply Operating (V _{CC})	4.5V to 5.5V
Control Input Voltage (VIN)	0V to 5.5V
Switch Input Voltage (V _{IN})	0V to 5.5V
Switch Output Voltage (V _{OUT})	0V to 5.5V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
Control Input	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Thermal Resistance (θ_{JA})	250°C/W

NC7WBD3125

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused logic inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

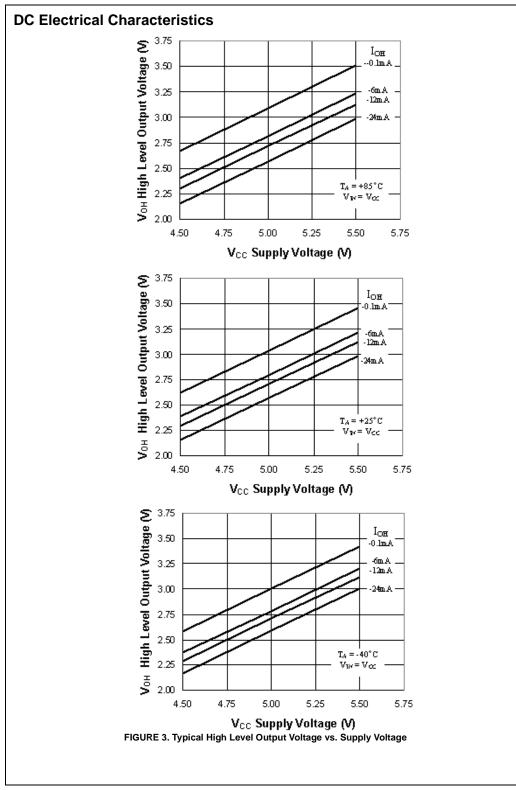
Symbol	Parameter	V _{CC}	Т	A = −40°C to +85°	С	Units	Conditions
Cymbol	i ulunicici	(V)	Min	Тур	Max	011113	Conditions
V _{IK}	Clamp Diode Voltage	4.5			-1.2	V	$I_{IN} = -18 \text{ mA}$
VIH	HIGH Level Input Voltage	4.5 to 5.5	2.0			V	
V _{IL}	LOW Level Input Voltage	4.5 to 5.5			0.8	V	
V _{OH}	HIGH Level Output Voltage	4.5 to 5.5		See Figure 3		V	$V_{IN} = V_{CC}$
I _{IN}	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
I _{OFF}	Power OFF Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance	4.5		3	7		$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$
	(Note 4)	4.5		3	7	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
		4.5		15	50	1	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
I _{CC}	Quiescent Supply Current	5.5					$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$
				1.1	1.5	mA	$OE_1 = OE_2 = GND$
					10	μΑ	$OE_1 = OE_2 = V_{CC}$
ΔI_{CC}	Increase in I _{CC} per Input	5.5		1	2.5	mA	$V_{IN} = 3.4V$, One \overline{OE} Input only,
	(Note 5)	5.5		I	2.0	mA	Other $\overline{OE} = V_{CC}$

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 5: Per TTL driven input (V $_{\rm IN}$ = 3.4V, control input only). A and B pins do not contribute to I $_{\rm CC}.$

NC7WBD3125

AC Electrical Characteristics

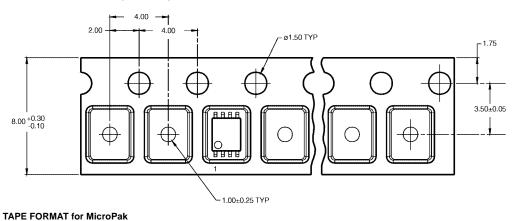

Symbol	Parameter	v _{cc}	$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $C_L = 50$ pF, RU = RD = 500Ω			Units	Conditions	Figure
		(V)	Min	Тур	Max	1		Number
t _{PHL} , t _{PLH}	Propagation Delay Bus-to-Bus (Note 6)	4.5 to 5.5			0.25	ns	V _I = OPEN	Figures 1, 2
t _{PZL} , t _{PZH}	Output Enable Time	4.5 to 5.5	1.0	3.5	5.8	ns	$V_I = 7V$ for t_{PZL} $V_I = 0V$ for t_{PZH}	Figures 1, 2
t _{PLZ} , t _{PHZ}	Output Disable Time	4.5 to 5.5	0.8	3.0	4.8	ns	$V_I = 7V$ for t_{PLZ} $V_I = 0V$ for t_{PHZ}	Figures 1, 2

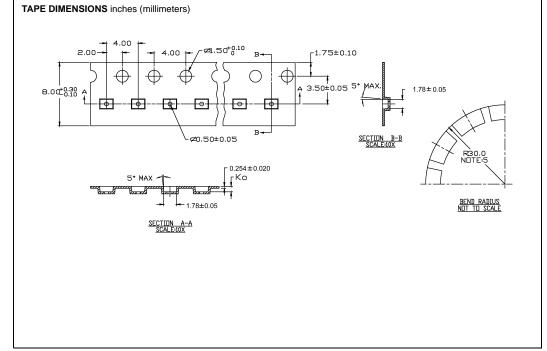
Note 6: This parameter is guaranteed. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance). The specified limit is calculated on this basis.

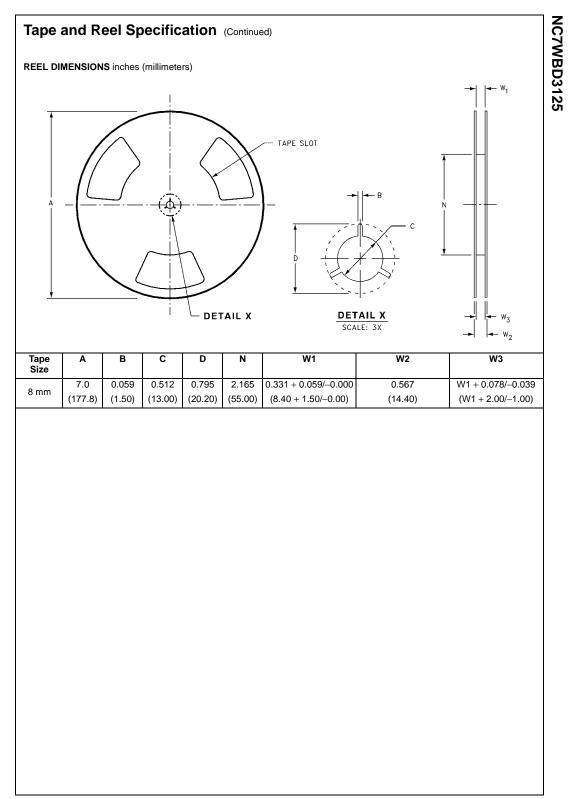
Capacitance

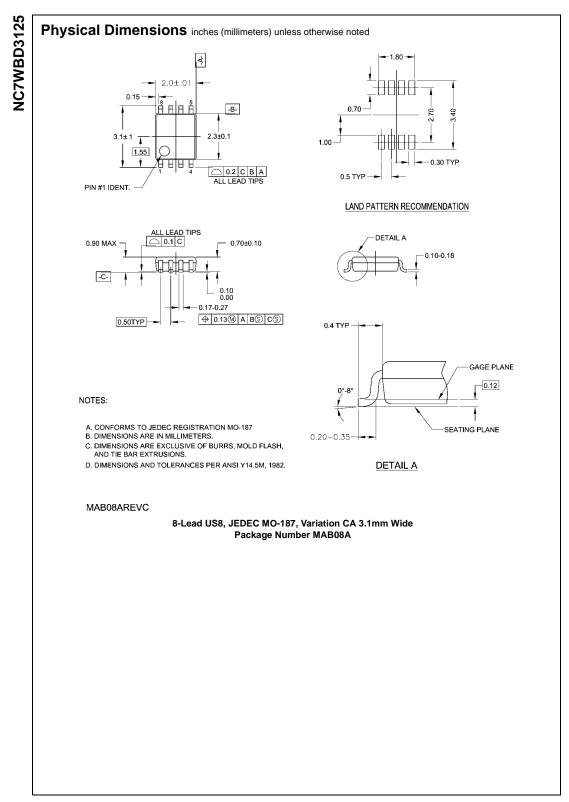
Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	2.5		pF	$V_{CC} = 0V$
C _{I/O} (OFF)	Port OFF Capacitance	6		pF	$V_{CC} = 5.0V = \overline{OE}$
C _{I/O} (ON)	Port ON Capacitance	12		pF	$V_{CC} = 5.0V, \overline{OE} = 0V$

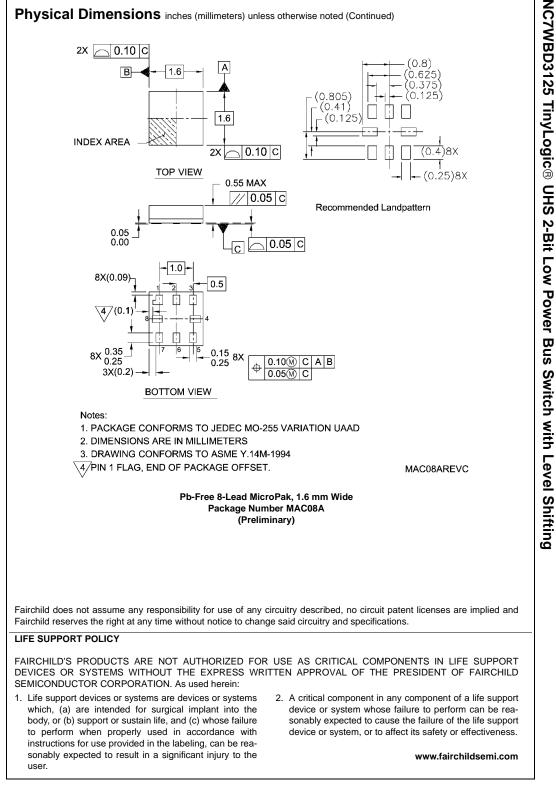
AC Loading and Waveforms VI RU From Output Under Test Input driven by 50Ω source terminated in 50Ω \mathbf{C}_{L} includes load and stray capacitance ₹rd Input PRR = 1.0 MHz; $t_W = 500 \text{ ns}$ = FIGURE 1. AC Test Circuit t,=2.5 nst_f = 2.5 ns t_f = 2.5 ns-- t_r = 2.5 ns - 3.0V 3.0V 90% 90% 10% 10% SWITCH 1.5\ .5V 1.57 1.5V INPUT 10% 09 10% 10% GND GND t_{PZL} **PI 7** t_{PLH} ^t₽HL -V_{OH} SWITCH OUTPUT .5V V_{OL}+0.3V 1.57 1.5V V_{OL} V_{OL} ^t₽ZH -- t_{PHZ} → V_{он} V_{0H}-0.3V 1.5V FIGURE 2. AC Waveforms


NC7WBD3125


Tape and Reel Specification


í.	TAPE FORMAT for U	JS8			
5	Package	Таре	Number	Cavity	Cover Tape
	Designator	Section	Cavities	Status	Status
5		Leader (Start End)	125 (typ)	Empty	Sealed
É	K8X	Carrier	250	Filled	Sealed
		Trailer (Hub End)	75 (typ)	Empty	Sealed


TAPE DIMENSIONS inches (millimeters)



Package	Таре	Number	Cavity	Cover Tape	
Designator Section		Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
L8X	Carrier	250	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

9