
1/25October 2001

AN1178
APPLICATION NOTE

80C32/PSD8XX Design Guide

CONTENTS

■ In-System Programming
and In-Application re-
Programming

– The IAP Problem

– A Common Solution

■ Physical Connections

■ Simple Design Example

– Memory Map

– PSDsoft Express Design
Entry

■ Enhanced Design Example

– Memory Map

– PSDsoft Express Design
Entry

■ Conclusion

■ References

■ Appendix A: Connecting to
a PSD813F with no Boot
Memory

EasyFLASH™ PSD8XX devices are members of a family of
Flash memory-based peripherals for use with embedded mi-
crocontrollers (MCUs). These programmable system devices
(PSDs) consist of memory, logic, and I/O. When coupled with
a low-cost 80C32 MCU, the PSD forms a complete embedded
Flash memory system that is 100% In-System Programmable
(ISP) and In-Application Programmable (IAP). There are many
features in the PSD silicon and in the PSDsoft Express devel-
opment software that make ISP easy, regardless of how much
experience you have with embedded design.

This document offers two designs using a PSD813F1 and an
Intel 80C32 MCU. Note that a variety of 8-bit MCU/MPUs can
be used in place of the Intel part. Although the specifics of this
document are based on the 80C32, this document can be used
as a guide for other MCU/MPU applications. The first design is
a simple system to get up and running quickly for basic appli-
cations or to check out your prototype 80C32 hardware. The
second design illustrates the use of enhanced features of PSD
In-System Programming as applied to the 80C32. You can start
with the first design and migrate to the second as your function-
al requirements grow. There are other members of the
PSD8XX family, including the PSD813F1/F3/F4/F5, the
PSD833F2/834F2, and the PSD835G2. See the selector guide
on the website for a comparison of the products. This applica-
tion note is applicable to all PSD8XX family members.

IN-SYSTEM PROGRAMMING AND IN-APPLICATION RE-
PROGRAMMING

Our industry uses the term In-System Programming (ISP) in a
general sense. ISP is applicable to programmable logic, as well
as programmable Non-Volatile Memory (NVM). However, an
additional term will be used in this document: In-Application
Programming (IAP). There are subtle yet significant differences
between ISP and IAP when microcontrollers are involved. ISP
of memory means that the MCU is off-line and not involved
while memory is being programmed. For IAP, the MCU partici-
pates in programming the memory, which is important for sys-
tems that must be online while updating firmware. Often, ISP is
well suited for manufacturing, while IAP is appropriate for field
updates. PSD8XX devices are capable of both ISP and IAP.

AN1178 - APPLICATION NOTE

2/25

Keep in mind that IAP can only program the memory sections of the PSD and not the configuration and
programmable logic portions. With ISP, the entire PSD can be erased or programmed.

The IAP Problem

Typically, a host computer downloads firmware into an embedded Flash memory system through a com-
munication channel that is controlled by the MCU. This channel is usually a UART, but any communication
channel that the 80C32 supports will do. The 80C32 must execute the code that controls the IAP process
from an independent memory array that is not being erased or programmed. Otherwise, boot code and
Flash memory programming algorithms (IAP loader code) will be unavailable to the 80C32. It is absolutely
necessary to use an alternate memory array (an independent memory that is not being programmed) to
store the IAP loader code.

A system designer must choose the type of alternate memory to store IAP loader code (ROM, SRAM,
FLASH, or EEPROM); each type has advantages and disadvantages. This alternate memory may reside
external to the MCU or on-chip. A top-level view of an embedded IAP flash system with external memory
is shown in Figure 1.

Figure 1. Embedded Flash System Capable of IAP (5 devices)

Another problem, which is specific to the 80C32 architecture, is related to the separate “Program” and “Da-
ta” address spaces. The 80C32 cannot write to Program space, but that is where the Flash memory re-
sides that holds 80C32 firmware. How can one program Flash memory in-system if the 80C32 cannot write
to program space?

A Common Solution

Without a PSD device, implementing IAP with the 80C32 can be difficult and time consuming. Philips’ ap-
plication note AN440 contains a RAM loader program (bootstrap loader). It shows how to load code into
an external RAM over a serial link after power-up and how to switch execution to that RAM to complete
the boot sequence. This can be a cumbersome and error prone exercise using re-locatable code in volatile
memory, which is difficult to debug, vulnerable to power outages, and not supported by all emulators. Ad-
ditionally, this method restricts the designer to using a UART to implement IAP.

To overcome the issue of Program versus Data space, a common practice is to combine the two address
spaces, which reduces the total address space of the 80C32 by 50%.

A Better, Integrated Solution

Figure 2 shows a two-chip solution using an EasyFLASH PSD813F. This system has ample main Flash
memory, a second alternate Flash memory to hold the IAP loader code and general data, and more
SRAM. All three of these memories can operate independently and concurrently; meaning the MCU can
operate from one memory while erasing/writing the other. This allows the MCU to continue normal oper-

AI03339B

Embedded System

System I/O

CPLD
80C32

Host
Computer

Communication
Channel

Main Flash Memory
128 KBytes

Alternate Memory
for ISP Loader Code

System SRAM
8 KBytes

3/25

AN1178 - APPLICATION NOTE

ation during IAP, which is crucial for some applications. This system also has programmable logic, ex-
panded I/O, and design security. The two chip solution is 100% programmable in the factory or in the field.

Figure 2. Embedded Flash System Capable of ISP (2 devices)

Note: 1. Other members of the PSD8XX family offer more Flash memory and more SRAM.
2. Only the PSD813F1 offers EEPROM, while the other members of the PSD8XX family offer secondary Flash memory.

By design, the IAP method described above requires MCU participation to exercise a communication
channel to implement a download to the main Flash memory. The PSD8XX also offers an alternative
method called In-System Programming (ISP) to program the PSD using a built-in IEEE 1149.1 JTAG in-
terface requiring no MCU participation. This means that a completely blank PSD can be soldered into
place and the entire chip can be programmed in-system in just a few seconds using ST’s FlashLINK™
JTAG cable and PSDsoft Express development software. No 80C32 firmware needs to be written. Just
plug in the FlashLINK cable to your PC’s parallel port and begin programming memory, logic, and config-
uration. This is a powerful feature of the PSD8XX that allows immediate development of application code
in your lab, smart manufacturing techniques, and easy field updates.

The FlashLINK™ cable and PSDsoft Express software are available in a kit from the website www.st.com/
psd.

AI03340B

Embedded System

System
I/O

JTAG

80C32

Host
Computer

Communication
Channel

128 KByte Flash
Optional 32 KByte
 EEPROM/Flash
Optional 2KByte SRAM
Programmable Logic
I/O

PSD813F

AN1178 - APPLICATION NOTE

4/25

Figure 3. Top Level Block Diagram of PSD813F

PHYSICAL CONNECTIONS

Connect your 80C32 to the PSD8XX as shown in Figure 4 (next page). The same connections can be
used for all of the members of the PSD8XX family except the PSD835G2, which has more I/O. The JTAG
programming channel, SRAM with battery backup, LCD module, and MCU I/O connections are all option-
al.

This example design is similar to ST’s DK900 Development kit, available for purchase on the web:
www.st.com/psd. There are 13 unused PSD I/O pins in this example. Unused pins should be pulled to Vcc
with a 100K resistor or tied to GND. See Application Note AN1153 for more information on the JTAG port.

AI03322B

JTAG Controller

CPLD
16

Output Macrocells
24

Input Macrocells

128 KByte
Flash

8 sectors

Decode
PLD

Optional 2 KByte
SRAM

Optional 32 KByte
EEPROM/Flash

4 sectors

Page
Reg

Power
Mngt

D
ev

ic
e

S
ec

ur
ity

M
C

U
C

on
tr

ol
M

C
U

A
dd

re
ss

 /
D

at
a

P
LD

 B
us

I/O
 B

us

I/O
 P

or
t A

I/O
 P

or
t B

I/O
 P

or
t C

I/O
 P

or
t D

MCU Address / Data / Control Bus
PSD813F

5/25

AN1178 - APPLICATION NOTE

Figure 4. Physical Connections, 80C32 and PSD813F

SIMPLE DESIGN EXAMPLE

The first design example outlines the steps required to get a 80C32 system up and running quickly. A con-
nection diagram, memory map, and the necessary design file for the PSDsoft Express software develop-
ment environment are provided. A PSD813F2 was used for this example. However, other members of the
EasyFLASH™ family may be used instead, with minor changes to the sample design file. See the selector
guide on the website for a comparison of the products.

Memory Map

For this simple design, we used a PSD813F2 with the following memories:

128 Kbyte main Flash memory, broken into eight 16 Kbyte segments denoted fsi (i = 1-8)

32 Kbyte secondary Flash memory, broken into four 8 Kbyte segments denoted csbootj (j = 1-4). (The
PSD813F1 has a boot EEPROM instead of Flash memory. Therefore, ees j (j = 1-4) would be used in place
of csboot j.)

2 Kbyte SRAM (rs0)

256 byte PSD813F configuration register (csiop).

Note: the PSD memory segments are defined in the “Chip Select Equations” screen in PSDsoft Express.
We’ll use the boot memory to hold the ISP boot loader code, 80C32 interrupt vectors, and common firm-
ware functions. For this example, we’ll execute from secondary Flash memory only and leave the main
Flash memory in Data Space. Let’s examine the sample memory map in Figure 5, below:

AI03341B

TDO

TSTAT

AD1

TMS

AD2

AD6

TERR\

AD3

AD0

AD7

AD4

TDI

AD5

TCK

RWLCD

MCUIO2
MCUIO3

RESET\

CSLCD

MCUIO1
MCUIO0

RSLCD

A14

A12

A15

A9

A13

WR\

AS

A8

A10
A11

PSEN\
RD\

U2

30
31
32
33
34
35
36
37

39
40
41
42
43
44
45

29
28
27
25
24
23
22
21

7
6
5
4
3
2
52
5146

20
19
18
17
14
13
12
11

47
50
49

10

9
848

ADIO0
ADIO1
ADIO2
ADIO3
ADIO4
ADIO5
ADIO6
ADIO7

ADIO8
ADIO9
ADIO10
ADIO11
ADIO12
ADIO13
ADIO14

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7ADIO15

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

CNTL0
CNTL1
CNTL2

PD0

PD1
PD2RESET

U1

EA

XTAL1

XTAL2

RST

INT0
INT1

T0
T1

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

A8
A9

A10
A11
A12
A13
A14
A15

RD
PSEN

ALE

TXD
RXD

WR

RESET

INT0\
INT1\

RESET\

DATA BUS

2 X 16 LCD
 MODULE

JTAG-ISP
CONNECTOR

RS
R/W

E

MCU I/O
SIGNALS

xx MHz

UART
PORT

SPARE I/O

RESET

CSLCD

AD7-AD0

AN1178 - APPLICATION NOTE

6/25

Figure 5. Memory Map, Simple 80C32/PSD813F design

Keep the following in mind about the sample memory map shown in Figure 5:

Yellow (shaded) indicates memory that is common to all pages.

It is broken up into two 64 Kbyte spaces: Program and Data Space.

The 32 Kbytes of the PSD813F boot memory is mapped to Program Space. (There are several references
to “boot” memory in this document, but the “boot” memory is simply a secondary memory that can be used
as boot memory or can serve any other purpose.)

The main Flash memory is mapped to Data Space so that the contents can be programmed.

All of main Flash memory is paged because of the limited address range of the 80C32.

The PSD Control Register and SRAM are located at the bottom of Data Space.

Note that placing the main Flash memory and secondary memory into Program Space or Data Space is
accomplished with the PSD VM Register. PSDsoft Express is used to define the initial value of the VM
Register when the system powers up or is reset. This initial value is stored in the fusemap that gets pro-
grammed into the PSD. At runtime, the VM register can be changed by writing to it with the MCU. This is
illustrated in the enhanced design of Section 4.

The boot memory holds the following vectors and code:

80C32 reset vector and initialization routines

80C32 interrupt vectors and service routines

I/O management

Since Figure 5 is a sample memory map, you may wish to change it. To do so, simply change the chip
select equations within the Design Assistant in PSDsoft Express. For example, if you have a PSD813F

0000

2000

FFFF

4000

FFFF

2800

8000

C000

0000

0300

0200

2000

0400

6000

8000

AI03342B

Not to
Scale

Boot
from
Here

Program Space Data Space

Unmapped
32 KBytes

CSBOOT3/EES3
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT2/EES2
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT1/EES1
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT0/EES0
Optional Boot Flash/EEPROM

8 KBytes

Unmapped
22 KBytes

FS0
Page 0
16 KByte

FS2
Page 1
16 KByte

FS1
Page 0
16 KByte

FS3
Page 1
16 KByte

FS4
Page 2
16 KByte

FS6
Page 3
16 KByte

FS5
Page 2
16 KByte

Unmapped

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

8xC51 RAM

FS7
Page 3
16 KByte

LCD Chip Select (CSLCD)
256 Bytes

7/25

AN1178 - APPLICATION NOTE

part that doesn’t contain the optional secondary memory, you will want to have the main Flash memory
located in Program Space. See Appendix A for a sample memory map for parts with no secondary boot
memory.

PSDsoft Express Design Entry

Highlights of design entry will be given here. Please refer to the PSDsoft Express User Manual for a thor-
ough coverage of all the features of PSDsoft Express. This section is meant to show you just the essentials
to get you going. Here are the steps:

Invoke PSDsoft Express and Open a New Project. Start PSDsoft Express.

Create a new project.

Select your project folder and name the project (in this example, name the project “Easy8051” in the folder
PSDsoft\my_project).

MCU and PSD Selection. When you click OK in the “New Project” window, the “MCU and PSD Selec-
tion” screen appears. When you see this screen, make the following selections:

Select an MCU manufacturer and part number. In this example, we’re using an Intel 8xC32. Notice how
the control signals are selected for you in this case.

Select the PSD8XX series for the PSD Family.

Select a PSD813F2 and use the 52-pin PLCC package (J package).

Based on the above selections, the “Bus Width”, “Bus Mode”, and “ALE/AS Active Level” will be set auto-
matically.

Set the main Flash memory to “Data Space Only” and the secondary Flash memory to “Program Space
Only”.

This is what the screen should look like after you’ve made the selections:

AN1178 - APPLICATION NOTE

8/25

Now you have your project established based on a PSD813F2 and an 80C32. However, there are many
other MCU/MPUs you could have chosen in place of the 80C32 and still have use of this document. Note
that this template will work in our DK900 development kit. Click OK and the “Design Parameters” window
will appear.

Design Parameters . Choose “Use example template selection” and click OK to be taken to the “MCU
Template Selection” screen.

9/25

AN1178 - APPLICATION NOTE

MCU Template Selection. For the simple design, we will use paging, but will not be swapping memory
locations. As such, you should pick “IAP, with memory paging” and click Generate to be taken to the “Pin
Definitions” screen. Again, this template matches the requirements of the DK900 development kit.

Pin Definitions. Your pin definitions should match the screen below and are setup according to the Phys-
ical Connections shown in Section 2. On this screen, you can add or update pin functionality as desired.
Click Next >> to be taken to the “Design Assistant” screen. Note: there are detailed instructions on how
to use this screen and other “Design Assistant” screens in the PSDsoft Express User Manual.

AN1178 - APPLICATION NOTE

10/25

Page Register Definition. Looking at the memory map in Figure 5, we see that wee will need four mem-
ory pages, so we need to define two Page Register bits (22 = 4). Since you selected the template previ-
ously, the “Page Register Definition” should match the one shown below. Later, you will see how the Page
Register can be used for general logic inputs to the PLD. Click Next >> when finished.

11/25

AN1178 - APPLICATION NOTE

Chip Select Equations. Use this screen to enter chip-select equations to match your memory map. The
chip select equations shown should match the memory map of Figure 5. Note the page number associa-
tion for the fs0-7 segment selects. Click Next >> when finished.

AN1178 - APPLICATION NOTE

12/25

I/O Logic and User Defined Node Equations. The “I/O Logic Equations” and “User Defined Node
Equations” screens are used to enter equations for the registered logic within the PSD. Since this docu-
ment focuses on issues related to ISP and IAP, registered logic equations are not covered. However, for
more information on entering registered logic equations, refer to the PSDsoft Express User Manual. Also,
see Application Note AN1356—Design Guide: PSDsoft Express, for a tutorial on implementing logic in the
CPLD.

Click Done and the software will check your design for errors (which there should be no errors using the
template). You should now see the “Design Flow” window:

Click on Additional PSD Settings in the “Design Flow” window and a dialog box will appear.

Additional PSD Settings. There are three functions that can be accomplished in this dialog box:

1. Setting the security bit—blocks all access to the contents of the PSD’s memories by means of JTAG or
a conventional programmer. That is, once the security bit is set, no programmer can read or copy the
configuration or memory contents of the PSD. The only way to erase the security bit is to completely
erase the PSD.

2. Specify the IEEE 1149.1 JTAG user code—allows you to enter a 32-bit code which can be used for var-
ious functions. Click on the “JTAG/ISP” tab for more details

3. Set the internal memories’ sector protections—allows the individual memory sectors within the PSD to
be write protected to prevent accidental data loss. The MCU/MPU cannot change these settings at run-
time; only a device programmer can alter these settings.

Click OK and you will see the Design Flow again. Next, we need to fit the design to silicon.

Fitting the Design to Silicon. To fit the design to silicon, click the Fit Design to Silicon box in the De-
sign Flow. PSDsoft Express will compile and synthesize the design and create part of the program data

13/25

AN1178 - APPLICATION NOTE

file (.obj) that will later be programmed into the PSD813F2 silicon. When this process is complete, a report
will pop up that shows the resulting pin assignments PSD usage. This is the fitter report, which you can
use to document your design. Since this design is based on a template, you should receive no errors dur-
ing the fitting process. However, if you create a project from scratch and receive a Fitter error, you should
check the PSDsoft Express User Manual for further instructions.

C Code Generation. You can take advantage of the provided low-level C code for accessing memory el-
ements within the PSD by clicking on the Generate C Code Specific to PSD box in the Design Flow win-
dow. To get the C functions and headers, specify the folder in which you want the ANSI C files to be
written. ANSI C code functions and headers are generated for you to paste into your 80C32 C compiler
environment in the folder you specify. Simply tailor the code to meet your system needs. See the PSDsoft
Express User Manual for details on the C code generation feature.

Merge MCU Firmware with PSD. Now that the fitting process is complete, PSDsoft Express has created
a fuse pattern that reflects the PSD configuration and logic of your design. PSDsoft Express places this
fuse information into a file (the .obj file). However this fuse pattern does not yet contain the 80C32 firm-
ware. The next step will accomplish this, producing an .obj file that contains the PSD configuration and the
80C32 firmware. This final .obj file is what gets programmed into the PSD. The same .obj file is appended
with MCU firmware in the next step below.

For this step, “Merge MCU Firmware with PSD”, you will input the firmware file(s) that contain absolute
addresses from your 80C32 compiler/linker in Intel Hex format. The Merger will map these file(s) into the
memory segments of the PSD according to the chip select equations that you entered in the Design As-
sistant. This mapping process translates the absolute system addresses that 80C32 uses into physical
internal PSD addresses that are used by a programmer to program the PSD. The address translation pro-
cess is transparent. All you need to do is enter the file(s) that were generated from your 80C32 linker into
the appropriate boxes and PSDsoft Express does the rest.

Go to the design flow window and click the Merge MCU Firmware with PSD box. You should see the
following warning as the utility starts:

For this example, you can ignore this warning and click “OK” because we are only placing 80C32 code
into Boot Flash memory segments csboot0 and csboot1, which are not paged. Here is an explanation of
the warning in case you use paging in future designs:

“PSDsoft Express attempts to populate all of the address range boxes for you, based on your chip select
equations. These are the absolute address ranges that PSDsoft Express will expect to see inside the
file(s) generated by your 80C32 linker. However, if PSDsoft Express sees that paging information is used
in your PSD memory segment equations, PSDsoft Express warns you it has filled in address ranges that

AN1178 - APPLICATION NOTE

14/25

may be ambiguous (overlapping or dependent on non-address signals, like page register bits) and it is up
to you to resolve them. How you resolve them is purely a function of your 80C32 compiler/linker and how
it handles paging. For example, some MCU linkers will generate a different file for each memory page of
firmware, and each of these files will contain MCU addresses that do not exceed 16 bits. Other linkers will
put all of the memory pages of firmware into a single file using MCU addresses greater than 16 bits to
represent multiple pages (extends 16-bit addresses with page bits). Either method requires you to type
the appropriate file name(s) and address ranges into the window based on how your particular 80C32 link-
er operates.”

After clicking OK, you should see this:

The far left column contains individual PSD memory segments. The next column shows the logic equa-
tions for selection of each memory segment (shown for reference only). In the middle are the address
ranges that were specified in the “Chip Select Equations” screen to create the memory map. PSDsoft Ex-
press filled in these address fields for you. PSDsoft Express expects to find these absolute MCU address-
es within your 80C32 linker file(s) when they are imported. On the right are boxes where you can type in
(or browse for) the name of the file(s) (including path) that indicates the location of your 80C32 linker files.
Notice that you can select Motorola S-Record or Intel Hex Record for the input type. Leave the “Mapping
Mode” set to “Direct”.

Now slide the scroll bar down until you see csboot0 and csboot1.

15/25

AN1178 - APPLICATION NOTE

Type in the name of the file from your 80C32 linker that contains the firmware that will boot up your system.
Click the Browse… button and go to the “Examples” directory and select “isp_8032.hex”. This file contains
very simple 80C32 code that configures your DK900 system hardware and performs rudimentary tasks to
check out your system. In this example, there are 16 Kbytes available in Boot Flash memory segments
csboot0 and csboot1, which is more than enough for this simple boot and test code. After your new hard-
ware is tested, you can add more code to the boot area for advanced tasks, such as implementing a down-
load to main Flash memory from a host computer, as shown in the enhanced design of the next section.

No file names are required for the main Flash memory regions (fs0-fs7) because we are only operating
out of secondary Flash memory for now.

Click OK, and the address translate process will produce the final programming data file (.obj) that can be
used to program the PSD.

Programming the PSD. The .obj file can be programmed into the PSD in one of three ways:

The FlashLINK™ JTAG cable, which connects to the PC parallel port.

The ST PSDpro device programmer, which also connects to the PC parallel port.

Third-party programmers, such as Stag and Needhams. See the website at www.st.com/psd for a list of
compatible third-party programmers.

First we’ll show you how to use the FlashLINK™ JTAG cable to program the PSD.

Programming with FlashLINK™. Connect the FlashLINK™ cable to your PC’s parallel port. Click the

AN1178 - APPLICATION NOTE

16/25

ST JTAG/ISP box in the Design Flow window. You will be prompted for the number of devices in the JTAG
chain on your circuit board. Make the appropriate selection and click OK. This document assumes only
one device is in the JTAG chain. If you have more than one device, refer to the PSDsoft Express User
Manual. For single device JTAG chains, the window will look similar to the following one:

To use this window, ensure that the correct programming data file and PSD device appear in Step 1. For
Step 2, select the desired operation, the regions of the PSD that the operation affects, and the number of
JTAG pins (4 or 6) to use on the circuit board. The template assumes all six pins will be used.

Before you perform the selected operation, click the Properties… button. This dialog box allows you to
do the following:

Set Port Pins: with this screen, you can set up the PSD’s I/O pins during JTAG operations. The default
(except for the JTAG pins) is Input, which is usually fine for most pins. (Note that the PSD will not respond
to any non-JTAG I/O.) However, sometimes it may be desirable to set a pin or pins to output during JTAG.
For example, if you have chip-select signal being generated from the PSD that selects a device that po-
tentially could drive signals on the JTAG lines (if you are multiplexing the pins), you would want that chip-
select to be inactive during the JTAG operation.

JTAG-ISP Attributes: this screen allows you to view the device name and Instruction Register length. This
information may be useful to other design programs.

User Code: basically, by clicking on the “User Code” tab, you are provided with a space to enter an IEEE
1149.1 User Code that will be compared to the value previously entered in the “Additional PSD Settings”
screen.

Once you are satisfied with your property settings, click OK to return to the “JTAG-ISP Operations” win-
dow. You can now perform the selected operation by clicking Execute.

Before you leave this screen, you may wish to save your JTAG configuration. This can be done in Step 3
by clicking on the Save button and specifying a file name. This file can be used next time by clicking the
Retrieve button.

Programming with PSDpro. Ensure that the PSDpro device programmer is connected to your PC’s par-
allel port. Click on the ST Conventional Programmers box in the Design Flow window. You will see this:

17/25

AN1178 - APPLICATION NOTE

If this is the first use of the PSDpro, click on the “Htest” icon to perform a test of the PSDpro and the PC
port. After testing, place a PSD813F2 into the socket of the PSDpro and click on the “Program” icon. (The
.obj file is automatically loaded when this process is invoked). The messaging of PSDsoft Express will in-
form you when programming is complete.

This window is also helpful even if you do not have a PSDpro programmer. You can use this window to
see where the Merge MCU Firmware utility of PSDsoft Express has placed the 80C32 firmware within
physical memory of the PSD. For this design example, you can click on the secondary Flash memory icon
in the tool bar. Notice the 80C32 reset vector at absolute MCU addresses 0000h and 0002h, translates to
PSD secondary Flash memory physical addresses 20000h and 20002h, respectively. To see how all of
your 80C32 absolute addresses translated into physical PSD memory addresses, click Report->Address
Translation. The start and stop addresses in the report are the absolute MCU system addresses that you
have specified. The addresses shown in square brackets are direct physical addresses used by a device
programmer to access the memory elements of the PSD in a linear fashion (a special device programming
mode that the MCU cannot access).

ENHANCED DESIGN EXAMPLE

This second design example builds upon the first to add enhanced features to this ISP/IAP capable sys-
tem. The physical connections between the 80C32 and PSD813F2 do not change, but the memory map
and chip select equations do. The focus of this enhanced design is to show how the memories of the
PSD813F2 can be used concurrently. This means swapping the boot code out of Program Space after the
initial boot sequence has completed. The boot code can then be updated if desired.

Memory Map

The boot sequence and memory swap is a four-step process, as shown in Figure 6 to Figure 9. The re-
quired changes in PSDsoft Express are explained after that (Section 4.2).

Memory Map Configuration at Boot-Up. Figure 6 (next page) shows how the memory map looks at
system power-on or at system reset. The “swap” bit is one of the eight internal PSD page register bits,
whose value is zero by default. The “swap” bit is an example of how the page register bits can be imple-
mented for uses other than memory paging. The VM Register controls which space (Program or Data) the

AN1178 - APPLICATION NOTE

18/25

PSD memories appear in and can be set prior to runtime using PSDsoft Express Configuration. The VM
register resides in the PSD and can be accessed at any time by the 80C32. (See the PSD8XX data
sheets.) Here’s what the 80C32 does upon power-up or reset:

Boot from Boot Flash memory csboot0 at address 0h

Perform a checksum of main Flash memory

Download main Flash memory from a host computer if needed and validate contents.

Figure 6. Memory Map, Enhanced Design at Boot-Up/ISP

Memory Map Configuration After Moving the Main Flash. The next step is to move the main Flash
memory from Data Space to Program Space. To do so, while executing out of the secondary Flash mem-
ory, write the value 06h to the VM register. You will now have the memory map shown in Figure 7.

0000

2000

FFFF

4000

FFFF

2800

8000

C000

0000

0300

0200

2000

0400

AI03346B

Not to
Scale

Boot
from
Here

Program Space Data Space

Unmapped
32 KBytes

CSBOOT1/EES1
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT0/EES0
Optional Boot Flash/EEPROM

8 KBytes

Unmapped
22 KBytes

FS0
Page 0
16 KByte

FS2
Page 1
16 KByte

FS1
Page 0
16 KByte

FS3
Page 1
16 KByte

FS4
Page 2
16 KByte

FS6
Page 3
16 KByte

FS5
Page 2
16 KByte

Unmapped

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

8xC51 RAM

swap = 0
unlock = 0

VM Register = 12h

E000

CSBOOT3/EES3
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT2/EES2
Optional Boot Flash/EEPROM

8 KBytes
C000

FS7
Page 3
16 KByte

LCD Chip Select (CSLCD)
256 Bytes

19/25

AN1178 - APPLICATION NOTE

Figure 7. Memory Map After Moving the Main Flash Memory to Program Space

Memory Map Configuration After Setting the “swap” bit. Next, we want to swap main and secondary
Flash memory and transfer execution to main Flash memory segment fs0. To do so, the “swap” bit must
be set to HI to re-map the Boot Flash memory segments csboot0/csboot1 out of the MCU boot area and
replace it with main Flash memory segment fs0, as shown in Figure 8. So that no program continuity is
lost, the instruction that sets the “swap” bit is executed from csboot0 and the next contiguous instruction
must be in fs0. For example, if the instruction that executes the swap is at location 1000h in csboot0, then
fs0 must contain the next instruction to be executed at location 1002h.

0000

2000

FFFF

4000

FFFF

2800

8000

C000

0000

0300

0200

2000

0400

AI03347B

Not to
Scale

Execute
from
Here

Program Space Data Space

Unmapped
54 KBytes

CSBOOT1/EES1
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT0/EES0
Optional Boot Flash/EEPROM

8 KBytes

Unmapped
16 KBytes

FS0
Page 0
16 KByte

FS2
Page 1
16 KByte

FS4
Page 2
16 KByte

FS6
Page 3
16 KByte

Unmapped

PSD Control Register (CSIOP)
256 Bytes

Optional SRAM (RS0)
2 KBytes

8xC51 RAM

swap = 0
unlock = 0

VM Register = 06h

E000

CSBOOT3/EES3
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT2/EES2
Optional Boot Flash/EEPROM

8 KBytes

LCD Chip Select (CSLCD)
256 Bytes

Boot Memory
temporarily overlaps

Flash segments FS1,
FS3, FS5 and FS7

AN1178 - APPLICATION NOTE

20/25

Figure 8. Memory Map After Setting the “swap” bit

Memory Map Configuration After Moving the Boot Flash Memory to Data Space. The final step is
to move the secondary Flash memory to Data Space so that it can be updated if desired. To move the
secondary Flash memory to Data Space, write 0Ch to the VM register. Once the VM register has been
written, you can program either half of the secondary Flash memory, depending on how the “unlock” bit is
set. Figure 9 shows the final state of the memory map.

0000

A000

FFFF

4000

FFFF

2800

8000

C000

0000

0300

0200

2000

0400

AI03348B

Not to
Scale

Execute
from
Here

Program Space Data Space

Unmapped
48 KBytes

CSBOOT1/EES1
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT0/EES0
Optional Boot Flash/EEPROM

8 KBytes

FS1
16 KBytes

(Flash Sector 1)

Unmapped

LCD Chip Select (CSLCD)
256 Bytes

Optional SRAM (RS0)
2 KBytes

8xC51 RAM

swap = 1
unlock = 0

VM Register = 06h

FS0
16 KBytes

(Flash Sector 0)

Swap

Boot Memory
temporarily overlaps

Flash segments
FS2, FS4 and FS6

Boot Memory
temporarily overlaps

Flash segments
FS3, FS5 and FS7

E000

CSBOOT3/EES3
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT2/EES2
Optional Boot Flash/EEPROM

8 KBytes

PSD Control Register (CSIOP)
256 Bytes

21/25

AN1178 - APPLICATION NOTE

Figure 9. Memory Map After Moving the Boot Flash Memory to Data Space

In this final configuration, the 80C32 has available:

32 Kbytes main Flash memory (fs0 and fs1) in the bottom of Program Space common to all pages

96 Kbytes main Flash memory in Program Space across three pages (8000h-FFFFh)

2 Kbytes of SRAM in addition to the SRAM that resides on the 80C32

16 Kbytes of secondary Flash memory for general data storage in Data Space (C000h-FFFFh)

16 Kbytes of secondary Flash memory for boot and ISP loader code in Data Space (8000h-FFFFh).

Each time this 80C32 system gets reset or goes through a power-on cycle, the PSD presents the memory
map of Figure 6 to the MCU, and the boot sequence is repeated.

PSDsoft Express Design Entry

The steps to implement the second design in PSDsoft Express are almost identical to those in the first
design. In fact, you can repeat the steps outlined in Sections 3.2.1 to 3.2.3, except you should give your
new project a different name. Then, when you are presented with the “MCU Template Selection” screen,
you should select “Advanced IAP, page & swap”.

Differences to note:

You will notice that in the “Page Register Definition” screen in the Design Assistant, there are two new
added bits: “swap” and “unlock”. These bits are used in the chip select equations to implement memory
swapping and control of which secondary memory section is made available in Data Space. Notice how

0000

A000

FFFF

4000

FFFF

2800

8000

C000

0000

0300

0200

2000

0400

AI03349B

Not to
Scale

Program Space Data Space

Unmapped
22 KBytes

CSBOOT1/EES1
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT0/EES0
Optional Boot Flash/EEPROM

8 KBytes

FS1
16 KBytes

(Flash Sector 1)

Not
Map-
ped

Page 0

FS3
Page 1
16 KByte

FS5
Page 2
16 KByte

Unmapped

LCD Chip Select (CSLCD)
256 Bytes

Optional SRAM (RS0)
2 KBytes

8xC51 RAM

swap = 1
unlock = 0 or 1

VM Register = 0Ch

FS0
16 KBytes

(Flash Sector 0)

E000

C000

CSBOOT3/EES3
Optional Boot Flash/EEPROM

8 KBytes

CSBOOT2/EES2
Optional Boot Flash/EEPROM

8 KBytes

8000

FS2
Page 1
16 KByte

FS4
Page 2
16 KByte

FS7
Page 3
16 KByte

FS6
Page 3
16 KByte

PSD Control Register (CSIOP)
256 Bytes

AN1178 - APPLICATION NOTE

22/25

these two bits are defined as logic inputs to the PLD instead of paging bits.

The chip selects will now match the situational memory maps outlined in Figure 6 to Figure 9. That is, the
memory map that is presented to the MCU varies dynamically based on the settings of the VM Register
and Page Register bits “swap” and “unlock”.

For more information on both the Page Register and VM Register, see the data sheets and the PSDsoft
Express User Manual.

When mapping the 80C32 firmware in the Address Translate utility of PSDsoft Express for this second
design example, you still do not need to specify any Hex file for the PSD main Flash memory area. You
only need to specify the 80C32 linker file(s) for the secondary Flash memory area (as in the first simple
design) because the 80C32 will execute code from secondary Flash memory and download to main Flash
memory.

CONCLUSION

These examples are just two of an endless number of ways to configure the EasyFLASH™ PSD for your
system. Concurrent memories with a built-in programmable decoder at the segment level offer excellent
flexibility. Also, as you have seen with the “swap” and “unlock” bits, the page register bits do not have to
be used just for paging through memory. The ability to expand your system does not require any physical
connection changes, as everything is configured internal to the PSD. And finally, the JTAG channel can
be used for ISP anytime, and anywhere, with no participation from the MCU. All of these features are
crosschecked under the PSDsoft Express development environment to minimize your effort to design a
Flash 80C32 system capable of ISP.

REFERENCES

PSD8XX Family Data Sheets for detailed PSD8XX information

PSDsoft Express User Manual for details on how to use the design software

Application Note AN1153—JTAG ISP Information: Flash PSD for detailed use of the JTAG port

APPENDIX A: CONNECTING TO A PSD813F WITH NO BOOT MEMORY

The following is a sample memory map for connecting to a PSD813F with no secondary memory (such as
the PSD813F3 or PSD813F5). This memory map assumes you have downloaded the main Flash memory
with the FlashLINK cable or you have booted from a separate PROM and have downloaded the Flash
memory using the MCU. In either case, you must change your design to account for the lack of secondary
memory.

23/25

AN1178 - APPLICATION NOTE

Figure 10. Memory Map for a PSD813F Device (with No Secondary Boot Memory)

0000

FFFF

4000

FFFF

4000

C000

0000

2000

0400

2900

2800

AI03350B

Not to
Scale

Program Space Data Space

FS1
16 KBytes

(Flash Sector 1)

FS3
Page 0
16 KByte

FS5
Page 1
16 KByte

FS7
Page 2
16 KByte

Not
Mapped
Page 3
16 KByte

Unmapped
5.75 KBytes

Optional SRAM (RS0)
2 KBytes

8xC51 RAM up to 1 KByte

FS0
16 KBytes

(Flash Sector 0)

8000

FS2
Page 0
16 KByte

FS4
Page 1
16 KByte

FS6
Page 2
16 KByte

Not
Mapped
Page 3
16 KByte

Unmapped
48 KBytes

PSD Control Register (CSIOP)
256 Bytes

Unmapped

AN1178 - APPLICATION NOTE

24/25

Table 1. Document Revision History

Date Rev. Description of Revision

Aug-2000 2.0 Document written in the WSI format

26-Oct-2001 3.0 Document converted to the ST format

25/25

AN1178 - APPLICATION NOTE

For current information on PSD products, please consult our pages on the world wide web:
www.st.com/psd

If you have any questions or suggestions concerning the matters raised in this document, please send
them to the following electronic mail addresses:

apps.psd@st.com (for application support)

ask.memory@st.com (for general enquiries)

Please remember to include your name, company, location, telephone number and fax number.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics

All other names are the property of their respective owners.

 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -

Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com

