SEMITOP® 2 ### **IGBT** Module ## SK60GAL123 SK60GAR123 **Preliminary Data** #### **Features** - · Compact design - · One screw mounting - Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB) - N-channel homogeneous silicon structure (NPT-Non punch-through IGBT) - High short circuit capability - V_{ce,sat} with positive coefficient Low tail current with low - Low tail current with low temperature dependence ## **Typical Applications** - Switching (not for linear use) - Inverter - Switched mode power supplies - UPS | Absolute Maximum Ratings $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified | | | | | | |---|---|---------------------------|------------------|-------|--| | Symbol | Conditions | | Values | Units | | | IGBT | • | | | • | | | V_{CES} | T _j = 25 °C | | 1200 | V | | | I _C | T _j = 125 °C | T _s = 25 °C | 58 | Α | | | | | T _s = 80 °C | 40 | Α | | | I _{CRM} | I _{CRM} = 2 x I _{Cnom} | | 100 | Α | | | V_{GES} | | | ± 20 | V | | | t _{psc} | V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V | T _j = 125 °C | 10 | μs | | | Inverse D | Piode | | | • | | | I _F | T _j = 150 °C | $T_s = 25 ^{\circ}C$ | 33 | Α | | | | | T _s = 80 °C | 23 | Α | | | I _{FRM} | I _{FRM} = 2 x I _{Fnom} | | | Α | | | I _{FSM} | t _p = 10 ms; half sine wave | T _j = 150 °C | 110 | Α | | | Freewhee | eling Diode | | | • | | | I _F | T _j = 150 °C | T _{case} = 25 °C | 57 | Α | | | | | T _{case} = 80 °C | 38 | Α | | | I _{FRM} | | | | Α | | | I _{FSM} | t _p = 10 ms; half sine wave | T _j = 150 °C | 550 | Α | | | Module | <u>.</u> | | | | | | I _{t(RMS)} | | | | Α | | | T_{vj} | | | -40 + 150 | °C | | | T _{stg} | | | -40 +125 | °C | | | V _{isol} | AC, 1 min. | | 2500 | V | | | Characteristics $T_s =$ | | 25 °C, unless otherwise specified | | | | | |------------------------------------|---|---|------|-----------|------|-----------| | Symbol | Conditions | | min. | typ. | max. | Units | | IGBT | | | | | | | | $V_{GE(th)}$ | $V_{GE} = V_{CE}$, $I_C = 2 \text{ mA}$ | | 4,5 | 5,5 | 6,5 | V | | I _{CES} | V _{GE} = 0 V, V _{CE} = V _{CES} | T _j = 25 °C | | | 0,3 | mA | | | | T _j = 125 °C | | | | mA | | I _{GES} | V _{CE} = 0 V, V _{GE} = 30 V | T _j = 25 °C | | | 300 | nA | | | | T _j = 125 °C | | | | nA | | V _{CE0} | | T _j = 25 °C | | 1,2 | | V | | | | T _j = 125 °C | | 1,2 | | V | | r _{CE} | V _{GE} = 15 V | T _j = 25°C | | 26 | | mΩ | | | | T _j = 125°C | | 38 | | $m\Omega$ | | V _{CE(sat)} | I _{Cnom} = 50 A, V _{GE} = 15 V | T _j = 25°C _{chiplev.} | | 2,5 | 3 | V | | | | $T_j = 125^{\circ}C_{chiplev.}$ | | 3,1 | 3,7 | V | | C _{ies} | | | | 3,3 | | nF | | C _{oes} | $V_{CE} = 25, V_{GE} = 0 V$ | f = 1 MHz | | 0,5 | | nF | | C _{res} | | | | 0,22 | | nF | | Q_G | V _{GE} =0 20 V | | | 285 | | nC | | t _{d(on)} | | | | 70 | | ns | | l t _r | $R_{Gon} = 22 \Omega$ | V _{CC} = 600V | | 90 | | ns | | E _{on} | D 00 0 | I _C = 50A | | 9,9 | | mJ | | ^t d(off) | $R_{Goff} = 22 \Omega$ | T _j = 125 °C | | 460
30 | | ns | | t _f
E _{off} | | V _{GE} =±15V | | 5,3 | | ns
mJ | | R _{th(j-s)} | per IGBT | | | <u> </u> | 0,6 | K/W | # SEMITOP® 2 #### **IGBT** Module ### SK60GAL123 SK60GAR123 **Preliminary Data** #### **Features** - · Compact design - · One screw mounting - Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB) - N-channel homogeneous silicon structure (NPT-Non punch-through IGBT) - High short circuit capability - V_{ce,sat} with positive coefficient - Low tail current with low temperature dependence ### **Typical Applications** - Switching (not for linear use) - Inverter - · Switched mode power supplies - UPS | Characteristics | | | | | | | | | |------------------|---|--|------|------|------|-------|--|--| | Symbol | Conditions | ĺ | min. | typ. | max. | Units | | | | Inverse Diode | | | | | | | | | | $V_F = V_{EC}$ | $I_{Fnom} = 10 \text{ A}; V_{GE} = 0 \text{ V}$ | | | 2 | 2,5 | V | | | | | | $T_j = 125 ^{\circ}C_{\text{chiplev.}}$ | | 1,8 | 2,3 | V | | | | V_{F0} | | T _j = 125 °C | | 1 | 1,2 | V | | | | r _F | | T _j = 125 °C | | 80 | | mΩ | | | | I _{RRM} | I _F = 10 A | T _j = 125 °C | | 12 | | Α | | | | Q_{rr} | di/dt = -300 A/µs | | | 1,8 | | μC | | | | E _{rr} | V _{CC} = 600V | | | 0,4 | | mJ | | | | $R_{th(j-s)D}$ | per diode | | | | 2,1 | K/W | | | | Freewhee | ling Diode | | | | | | | | | $V_F = V_{EC}$ | I_{Fnom} = 50 A; V_{GE} = 0 V | $T_j = 25 ^{\circ}C_{chiplev.}$ | | 1 | 2,5 | V | | | | | | $T_j = 125 ^{\circ}C_{\text{chiplev.}}$ | | 1,8 | | V | | | | V_{F0} | | T _j = 125 °C | | 1 | 1,2 | V | | | | r _F | | T _j = 125 °C | | 18 | 22 | V | | | | I _{RRM} | I _F = 50 A | T _i = 125 °C | | 40 | | Α | | | | Q_{rr} | di/dt = -800 A/µs | , | | 8 | | μC | | | | E _{rr} | V _R =600V | | | 2,3 | | mJ | | | | $R_{th(j-s)FD}$ | per diode | | | | 0,9 | K/W | | | | M _s | to heat sink M1 | | | | 2 | Nm | | | | w | | | | 21 | | g | | | This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX. This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.