


Silicon Tuning Diode

- High Q hyperabrupt tuning diode
- Designed for low tuning voltage operation for VCO's in mobile communications equipment
- High ratio at low reverse voltage

BBY53-02L BBY53-02V BBY53-02W BBY53-03W BBY53-03LRH BBY53

BBY53-05W

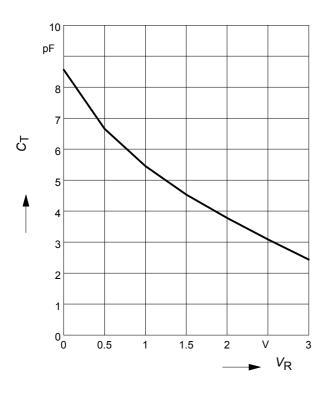
Туре	Package	Configuration	L _S (nH)	Marking
BBY53	SOT23	common cathode	2	S7s
BBY53-02L	TSLP-2-1	single, leadless	0.4	LL
BBY53-02V	SC79	single	0.6	L
BBY53-02W	SCD80	single	0.6	LL
BBY53-03LRH*	TSLP-3-7	single, leadless	0.4	L
BBY53-03W	SOD323	single	1.8	white/5
BBY53-05W	SOT323	common cathode	1.4	S7s

^{*} Preliminary

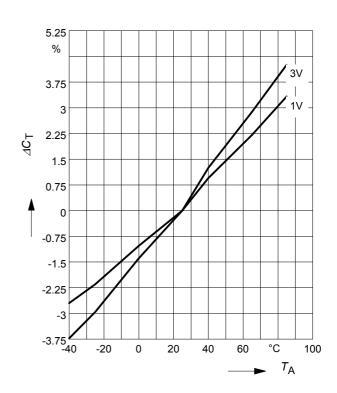
Maximum Ratings at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Diode reverse voltage	V_{R}	6	V
Forward current	I _F	20	mA
Operating temperature range	T_{op}	-55 125	°C
Storage temperature	$T_{\rm stg}$	-55 150	

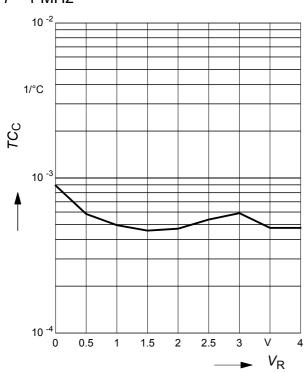
1 Jul-26-2004


Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Λ '					
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	•	•	•		
Reverse current	I_{R}				nA
V _R = 4 V		-	-	10	
$V_{\rm R}$ = 4 V, $T_{\rm A}$ = 85 °C		-	-	200	
AC Characteristics					
Diode capacitance	C _T				pF
$V_{R} = 1 \text{ V}, f = 1 \text{ MHz}$		4.8	5.3	5.8	
$V_{R} = 3 \text{ V}, f = 1 \text{ MHz}$		1.85	2.4	3.1	
Capacitance ratio	C _{T1} /C _{T3}	1.8	2.2	2.6	-
$V_{R} = 1 \text{ V}, V_{R} = 3 \text{ V}, f = 1 \text{ MHz}$					
Series resistance	r _S	_	0.47	-	Ω
$V_{R} = 1 \text{ V}, f = 1 \text{ GHz}$					


Diode capacitance $C_T = f(V_R)$

f = 1MHz


Capacitance change $\Delta C = f(T_A)$

f = 1 MHz

Temperature coefficient of the diode capacitance $TC_C = f(V_R)$

f = 1 MHz

3 Jul-26-2004

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München
© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.Infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.