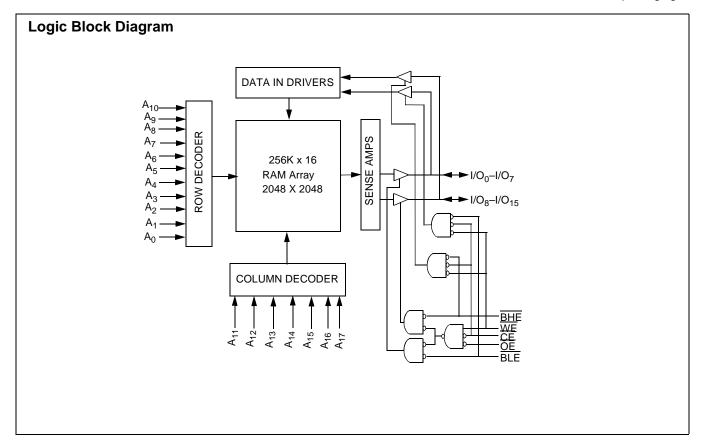


256K x 16 Static RAM

Features

- High Speed
 - -55 ns and 70 ns availability
- · Low voltage range:
 - CY62146CV18: 1.65V-1.95V
- Pin Compatible w/ CY62146V18/BV18
- Ultra-low active power
 - Typical Active Current: 0.5 mA @ f = 1 MHz
 - Typical Active Current: 2 mA @ f = f_{max} (70 ns speed)
- · Low standby power
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

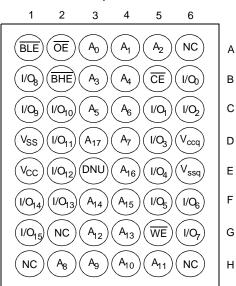

The CY62146CV18 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has

an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE} HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins (I/O₀ through I/O₇), is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{17}).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The CY62146CV18 is available in 48-ball FBGA packaging.



MoBL, MoBL2, and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Pin Configuration^[1, 2]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential-0.2V to +2.4V

DC Voltage Applied to Outputs in High Z State ^[3]	–0.2V to V _{CC} + 0.2V
DC Input Voltage ^[3]	
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{cc}
CY62146CV18	Industrial	−40°C to +85°C	1.65V to 1.95V

Product Portfolio

					Power Dissipation (Indus				trial)	
						Operat	ing (I _{CC})		Standby	(I _{SB2})
	V _{CC} Range				f = 1	f = 1 MHz f =		f = f _{max}		
Product	V _{CC(min)}	V _{CC(typ)} ^[4]	V _{CC(max)}	Speed	Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
CY62146CV18	1.65V	1.80V	1.95V	55 ns	0.5 mA	3 mA	2.5 mA	7 mA	1 μΑ	10 μΑ
				70 ns	0.5 mA	3 mA	2 mA	6 mA		

- NC pins are not connected to the die. E3 (DNU) can be left as NC or V_{SS} to ensure proper application. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns.
- Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25^{\circ}C$.

Electrical Characteristics Over the Operating Range

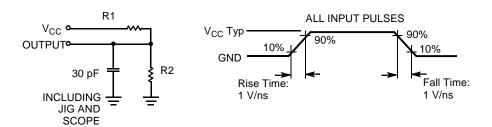
				CY6	2146CV	18-55	CY	62146CV	18-70	
Parameter	Description	Test Cond	Test Conditions		Typ. ^[4]	Max.	Min.	Typ. ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	V _{CC} = 1.65V	1.4			1.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 1.65V$			0.2			0.2	V
V _{IH}	Input HIGH Voltage			1.4		V _{CC} + 0.2V	1.4		V _{CC} + 0.2V	V
V _{IL}	Input LOW Voltage			-0.2		0.4	-0.2		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$	$GND \le V_1 \le V_{CC}$			+1	-1		+1	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ \text{abled} \end{array}$	GND \leq V _O \leq V _{CC} , Output Disabled			+1	-1		+1	μА
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 1.95V$		2.5	7		2	6	mA
Icc	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		0.5	3		0.5	3	mA
I _{SB1}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\label{eq:center_constraints} \begin{split} \overline{CE} &\geq V_{CC} - 0.2V, \\ V_{IN} &\geq V_{CC} - 0.2V, V_{IN} \leq 0.2V \\ f &= f_{MAX} \underbrace{(Address\ and\ Data\ Only)}_{KE}, \\ f &= 0\ (OE,\ WE,\ BHE,\ and\ BLE) \end{split}$			1	10		1	10	μА
I _{SB2}	Automatic CE Power-Down Cur- rent— CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V$ or $f = 0, V_{\text{CC}} = 1.95V$								

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance

Description	Test Conditions	Symbol	BGA	Unit
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		$\Theta_{\sf JC}$	16	°C/W

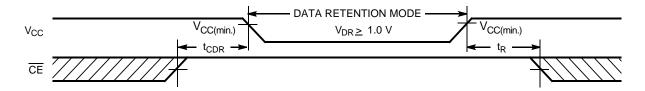

Note:

Document #: 38-05010 Rev. *B Page 3 of 12

^{5.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT


	RTH	
OUTPUT•—		• ∨

Parameters	1.8V	UNIT
R1	13500	Ohms
R2	10800	Ohms
R _{TH}	6000	Ohms
V _{TH}	0.80	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ. ^[4]	Max.	Unit
V _{DR}	V _{CC} for Data Retention		1.0		1.95	V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}}{CE} = 1.0V$ $\frac{V_{CC}}{CE} \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$		1	8	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		t _{RC}			ns

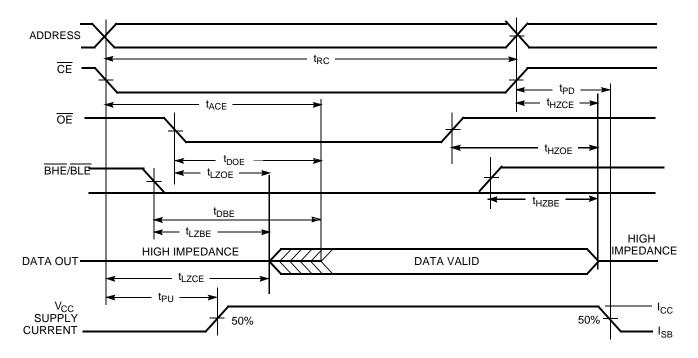
Data Retention Waveform

Note

6. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

Switching Characteristics Over the Operating Range^[7]

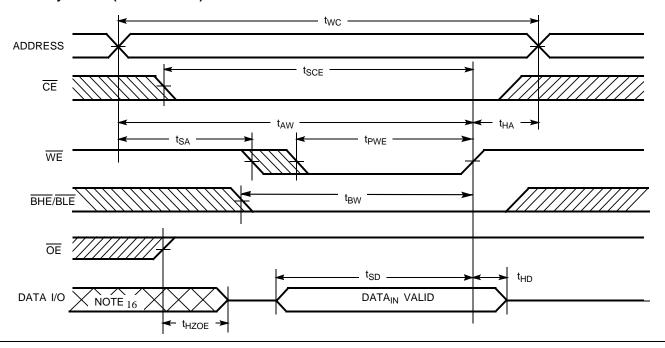
		55	i ns	70) ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	•		•	•		
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[8, 9]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[8]	5		10		ns
t _{HZCE}	CE HIGH to High Z ^[8, 9]		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		25		35	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[8]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to High Z ^[8, 9]		20		25	ns
WRITE CYCLE	10]					
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	40		60		ns
t _{AW}	Address Set-Up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE/BHE LOW to Write End	40		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]		15		25	ns
t _{LZWE}	WE HIGH to Low Z ^[8]	5		10		ns


Test conditions assume signal transition time of 3ns or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZCE}, t_{HZDE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, and t_{HZWE} for any given device.
 t_{HZOE}, t_{HZCE}, t_{HZBE} and t_{HZWE} transitions are measured when the outputs enter a high inpedance state.
 The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write the write.

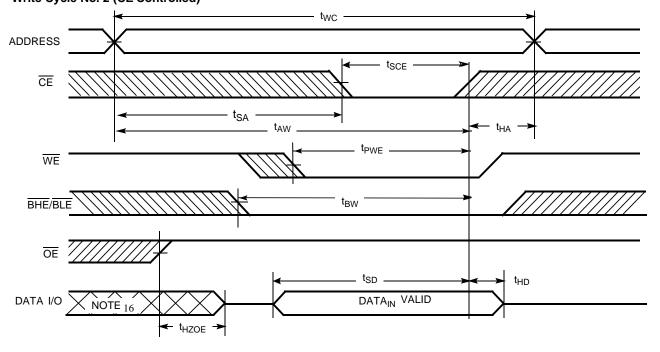
Switching Waveforms

Read Cycle No. 1(Address Transition Controlled) $^{[11,\ 12]}$ t_{RC} **ADDRESS** $t_{\mathsf{A}\mathsf{A}}$ t_{OHA} DATA OUT PREVIOUS DATA VALID DATA VALID

Read Cycle No. 2 (OE Controlled) [12, 13]



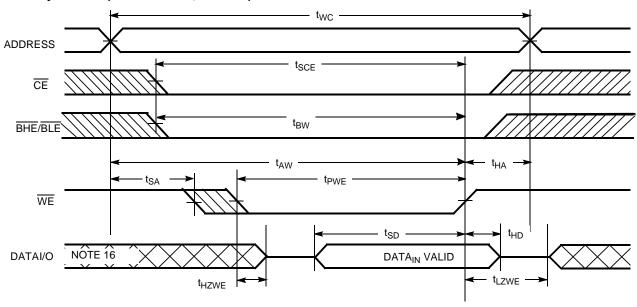
- Device is continuously selected. OE, CE = V_{IL}, BHE and/or BLE = V_{IL}.
 WE is HIGH for read cycle.
 Address valid prior to or coincident with CE, BHE, BLE, transition LOW.



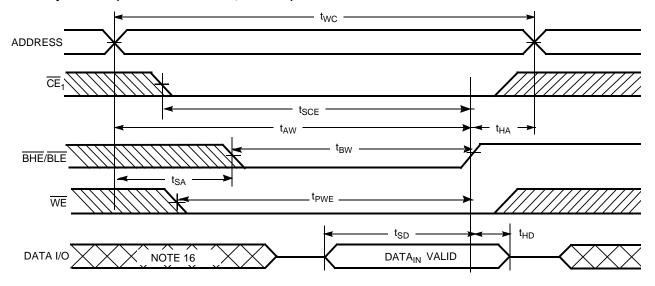
Switching Waveforms

Write Cycle No. 1(WE Controlled)^[10, 14, 15]

Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled) [10, 14, 15]

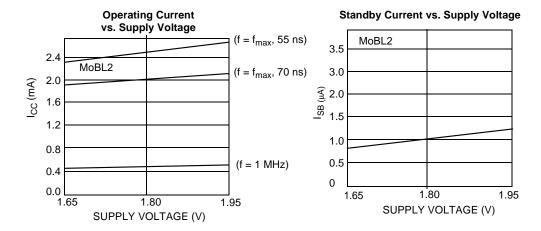


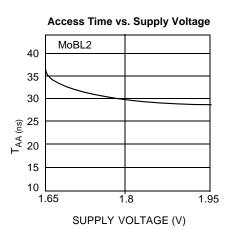
- 14. Data I/O is high impedance if OE = V_{IH}.
 15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 16. During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms

Write Cycle No. 3 (WE Controlled, OE LOW)[15]


Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[15]



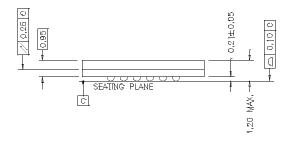
Typical DC and AC Characteristics

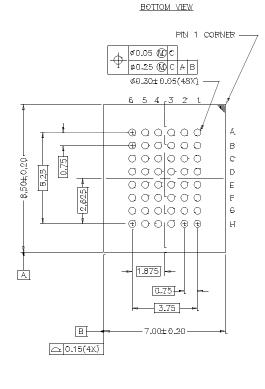
(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.)

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); Write I/O ₀ –I/O ₇ in High Z		Active (I _{CC})

Document #: 38-05010 Rev. *B

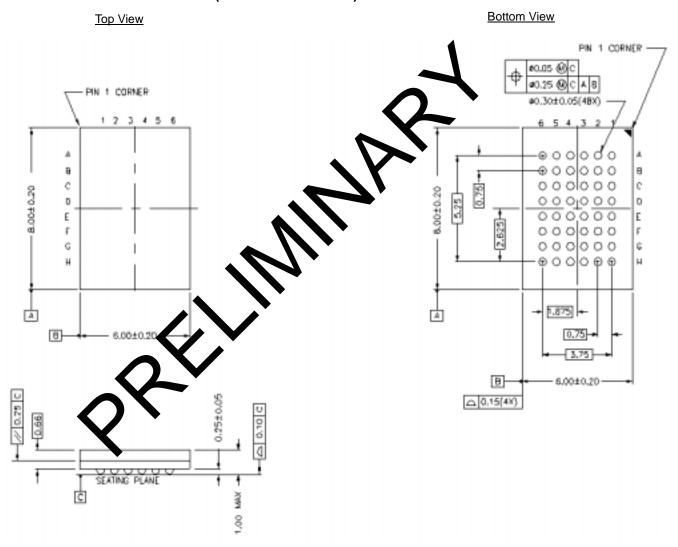

Ordering Information^[17]


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146CV18LL-70BAI	BA48B	48-Ball Fine Pitch BGA (7mm x 8.5mm x 1.2mm)	Industrial
	CY62146CV18LL-70BVI	BV48A	48-Ball Fine Pitch BGA (6mm x 8mm x 1mm)	
55	CY62146CV18LL-55BAI	BA48B	48-Ball Fine Pitch BGA (7mm x 8.5mm x 1.2mm)	
	CY62146CV18LL-55BVI	BV48A	48-Ball Fine Pitch BGA (6mm x 8mm x 1mm)	

Package Diagrams

48-Ball (7 mm x 8.5 mm x 1.2 mm) Fine Pitch BGA BA48B

TOP VIEW


51-85106-B

^{17.} Gray Shading represents preliminary information.

Package Diagrams (continued)

48-Ball (6 mm x 8 mm x 1 mm) Fine Pitch BGA BV48A

Document Title: CY62146CV18 MoBL2™, 256K x 16 Static RAM Document Number: 38-05072				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	107265	09/15001	SZV	Change from Spec number: 38-01046 to 38-05072
*A	107702	06/15/01	MGN	Deactivated spec.
*B	111468	11/02/01	MGN	Die Rev (R5 to R7), Change part number from CY62146BV18 to CY62146CV18

Document #: 38-05010 Rev. *B