|                                                                             |                                                                    |                                                    |                |                                      |                             |                      |              | ı   | REVISI        | IONS         |            |            |                     |                             |                   |                     |                      |             | -       |             |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------|--------------------------------------|-----------------------------|----------------------|--------------|-----|---------------|--------------|------------|------------|---------------------|-----------------------------|-------------------|---------------------|----------------------|-------------|---------|-------------|
| LTR                                                                         |                                                                    |                                                    |                |                                      | С                           | DESCR                | RIPTIO       | N   | a .           |              |            |            | DA                  | ATE (Y                      | 'R-MO-[           | DA)                 |                      | APPF        | ROVED   | )           |
| G                                                                           | Cha                                                                | nges                                               | IAW J          | NOR 5                                | 5962-                       | -R081-               | -95.         |     |               |              |            |            | 95-1                | 03-01                       |                   |                     | к.                   | Cotto       | ngim    | -           |
| Н                                                                           | Add<br>cha                                                         | ed de                                              | vice<br>to t   | type<br>able                         | es 11<br>I. F               | thro<br>Redrew       | ough<br>went | 13. | Made<br>docum | e tecl       | hnica      | ıl         |                     | 08-27                       |                   |                     |                      |             | ngim    |             |
|                                                                             |                                                                    |                                                    |                |                                      |                             |                      |              |     |               |              |            |            |                     |                             |                   |                     |                      |             |         |             |
|                                                                             |                                                                    |                                                    |                |                                      |                             |                      |              |     |               |              |            |            |                     |                             |                   |                     |                      |             |         |             |
| REV<br>SHEET                                                                |                                                                    |                                                    | 1              |                                      |                             |                      |              |     |               |              |            |            |                     |                             |                   |                     |                      |             |         |             |
|                                                                             | Н                                                                  | Н                                                  | H              |                                      |                             |                      |              |     |               |              |            |            |                     |                             |                   |                     |                      |             |         |             |
| SHEET                                                                       | H 15                                                               | H<br>16                                            | H<br>17        |                                      |                             |                      |              |     |               |              |            |            |                     |                             |                   |                     |                      |             |         |             |
| SHEET REV SHEET REV STAT                                                    | 15<br>US                                                           |                                                    |                | RE                                   | V                           |                      | Н            | Н   | Н             | Н            | Н          | Н          | Н                   | Н                           | Н                 | Н                   | Н                    | Н           | H       | F           |
| SHEET                                                                       | 15<br>US                                                           |                                                    |                |                                      | V                           |                      | H 1          | H 2 | H 3           | H 4          | H 5        | H 6        | H 7                 | H<br>8                      | H 9               | H<br>10             | H<br>11              | H<br>12     | H<br>13 | H           |
| SHEET REV SHEET REV STATI DF SHEET                                          | 15<br>US<br>'S                                                     | 16                                                 |                | SHI                                  |                             |                      | <del> </del> |     | 1             | <del> </del> | 5          | 6<br>DEFEI | 7<br>NSE S          | 8<br>UPPL                   | 9<br><b>Y CEI</b> | 10                  | 11<br>COLU           | 12<br>MBUS  | 13      | <del></del> |
| SHEET REV SHEET REV STATI DF SHEET PMIC N/A STA                             | US<br>S<br>NDA<br>OCIR                                             | RD<br>CUI                                          | 17             | SHI<br>PREI<br>Steve                 | PARED<br>Dunca              | an                   | 1            |     | 1             | <del> </del> | 5          | 6<br>DEFEI | 7<br>NSE S          | 8<br>UPPL                   | 9<br><b>Y CEI</b> | 10                  | 11<br>COLU           | 12<br>MBUS  | 13      | <del></del> |
| SHEET REV SHEET REV STATION SHEET PMIC N/A STA MICRO DR THIS DRAW FOR       | NDA<br>OCIR<br>AWIN                                                | RD<br>CUI'<br>IG<br>VAILABI                        | 17<br><b>T</b> | SHI<br>PREI<br>Steve<br>CHEO<br>Dona | PARED DUNCE CKED I          | BY<br>Osbome         | 1            |     | 1             | 4<br>MICI    | 5<br>ROCIF | 6<br>DEFEI | 7<br>NSE S<br>COLUM | 8<br>UPPL<br>MBUS<br>RID, L | 9 Y CEI , OHIO    | 10<br>NTER<br>O 432 | 11<br>COLU<br>16-500 | 12<br>MBU\$ | 13      | <del></del> |
| SHEET REV SHEET REV STATION STATE PMIC N/A STATE MICRO DR THIS DRAW FOR DEF | US<br>S<br>NDA<br>OCIR<br>AWIN<br>VING IS A<br>PARTMEN<br>ENCIES C | RD<br>CUI'<br>IG<br>VAILABI<br>ALL<br>TS<br>DF THE | 17<br><b>T</b> | SHI<br>PREI<br>Steve<br>CHEC<br>Dona | PARED Dunca CKED I ald R. C | BY Osbome BY Heckmar | 1            | 2   | 1             | 4<br>MICI    | 5<br>ROCIF | 6 DEFEI    | 7<br>NSE S<br>COLUM | 8<br>UPPL<br>MBUS<br>RID, L | 9 Y CEI , OHIO    | 10<br>NTER<br>O 432 | 11<br>COLU<br>16-500 | 12<br>MBU\$ | 13      | <del></del> |

DESC FORM 2233

<u>DISTRIBUTION STATEMENT A.</u> Approved for public release; distribution is unlimited.

5962-E265-97

SHEET

OF

17

#### 1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for class H hybrid microcircuits to be processed in accordance with MIL-PRF-38534.
  - 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:



1.2.1 Device type(s). The device type(s) shall identify the circuit function as follows:

|             |                |                                                 | Accuracy    |
|-------------|----------------|-------------------------------------------------|-------------|
| Device type | Generic number | Circuit function                                | (± 1.0 LSB) |
| 01          | SDC14565-114   | 11.8 V. 400 Hz. R/D converter                   | 2.0 minutes |
| 02          | SDC14565-115   | 11.8 V. 400 Hz, R/D converter                   | 1.0 minute  |
| 03          | SDC14565-616   | 11.8 V, 400 Hz, 80 Hz bandwidth, R/D converter  | 2.0 minutes |
| 04          | SDC14566-115   | 11.8 V, 400 Hz, trimmed velocity, R/D converter | 1.0 minute  |
| 05          | SDC14565-618   | 7.0 V, 400 Hz, 80 Hz bandwidth, R/D converter   | 2.0 minutes |
| 06          | HRD1066-341H/2 | 11.8 V, 400 Hz, R/D converter                   | 2.0 minutes |
| 07          | HRD1066-341V/2 | 11.8 V, 400 Hz, R/D converter                   | 1.0 minute  |
| 08          | HRD1066-C782/2 | 11.8 V, 400 Hz, 80 Hz bandwidth, R/D converter  | 2.0 minutes |
| 09          | SDC14565-602   | 11.8 V, 2.4 kHz, R/D converter                  | 1.0 minute  |
| 10          | SDC14565-603   | 11.8 V, 2.4 kHz, R/D converter                  | 2.0 minutes |
| 11          | SDC14565-112   | 11.8 V, 400 Hz, R/D converter                   | 4.0 minutes |
| 12          | SDC14566-112   | 11.8 V, 400 Hz, trimmed velocity, R/D converter | 4.0 minutes |
| 13          | SDC14566-114   | 11.8 V, 400 Hz, trimmed velocity, R/D converter | 2.0 minutes |

A ----

1.2.2 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

| Outline letter | Descriptive designator | <u>Terminals</u> | Package style |
|----------------|------------------------|------------------|---------------|
| x              | See figure 1           | 36               | Dual-in-line  |
| Υ              | See figure 1           | 36               | Flat package  |
| Z              | See figure 1           | 36               | Dual-in-line  |

1.2.3 Lead finish. The lead finish shall be as specified in MIL-PRF-38534. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                     | 5962-89908 |
|-------------------------------------------------------------|------------------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br>H | SHEET 2    |

DESC FORM 2234 APR 97

9004708 0030331 622 📟

| DEFENSE SUPPLY CENTER COLUMBUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                                                               |                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------|
| STANDARD<br>MICROCIRCUIT DRAWING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                                          |                                                                               | 5962-89908                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SIZE                                       |                                                                               |                                                |
| 1/ Stresses above the absolute maximum rating may cause permitted levels may degrade performance and affect reliability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | anent damage to t                          | he device. Extended opera                                                     | ition at the maximum                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                               |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                               |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                               |                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                               |                                                |
| 2.2 <u>Order of precedence</u> . In the event of a conflict between this drawing shall take precedence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | the text of this drav                      | ving and the references cite                                                  | ed herein, the text of                         |
| (Copies of the specification and standards required by manufaction obtained from the contracting activity or as directed by the contractions are also as a second contraction of the specification and standards required by manufactions of the specification and standards required by the contraction of the specification and standards required by the contraction of the specification and standards required by the specification of the specification and standards required by the specification of the specification and standards required by the specification of the specificati | racting activity.)                         |                                                                               |                                                |
| MIL-STD-883 - Test Methods and Procedures for Mic MIL-STD-1835 - Microcircuit Case Outlines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                                                               |                                                |
| MILITARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                                               |                                                |
| STANDARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                                                               |                                                |
| MIL-PRF-38534 - Hybrid Microcircuits, General Speci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fication for.                              |                                                                               |                                                |
| PERFORMANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                                               |                                                |
| SPECIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                                                                               |                                                |
| 2.1 <u>Government specification and standards</u> . Unless otherwis listed in that issue of the Department of Defense Index of Specifical drawing to the extent specified herein.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | se specified, the fol<br>ions and Standard | lowing specification and sta<br>s specified in the solicitation               | andards of the issue<br>n, form a part of this |
| 2. APPLICABLE DOCUMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                                                               |                                                |
| Logic supply voltage range (V <sub>DD</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | +4.5 V dc to +5.5 V dc<br>-55°C to +125°C                                     | 40                                             |
| Positive supply voltage range (V <sub>CC</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | +14.25 V dc to +15.75<br>-14.25 V dc to -15.75 V                              |                                                |
| 1.4 Recommended operating conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                                                               |                                                |
| Digital input voltage range Power dissipation, $T_C = +125^{\circ}C$ ( $P_D$ ) Storage temperature range Lead temperature (soldering, 10 seconds) Thermal resistance, junction-to-case ( $\theta_{JC}$ ) Thermal resistance, junction-to-ambient ( $\theta_{JA}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | 130 V rms -0.3 V dc to +7.0 V dc 720 mW -65°C to +150°C +300°C 8.0°C/W 20°C/W |                                                |
| Logic supply voltage (VDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | +7.0 V dc                                                                     |                                                |
| Positive supply voltage (V <sub>CC</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | +18 V dc                                                                      |                                                |
| Negative supply voltage (VEE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            | -18 V dc                                                                      |                                                |

- 3. REQUIREMENTS
- 3.1 Item requirements. The individual item requirements shall be in accordance with MIL-PRF-38534 and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38534 and herein.
  - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein and on figure 1.
  - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 2.
  - 3.2.3 Timing diagram(s). The timing diagram(s) shall be as specified on figure 3.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full specified operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38534. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in QML-38534 (see 6.6 herein).
- 3.6 <u>Manufacturer eligibility</u>. In addition to the general requirements of MIL-PRF-38534, the manufacturer of the part described herein shall maintain the electrical test data (variables format) from the initial quality conformance inspection group A lot sample, produced on the certified line, for each device type listed herein. The data should also include a summary of all parameters manually tested, and for those which, if any, are guaranteed. This data shall be maintained under document revision level control by the manufacturer and be made available to the preparing activity (DSSC-VA) upon request.
- 3.7 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in QML-38534 (see 6.6 herein). The certificate of compliance submitted to DSSC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38534 and the requirements herein.
- 3.8 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38534 shall be provided with each lot of microcircuits delivered to this drawing.

| STANDARD<br>MICROCIRCUIT DRAWING                            | SIZE<br><b>A</b> |                     | 5962-89908 |
|-------------------------------------------------------------|------------------|---------------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 |                  | REVISION LEVEL<br>H | SHEET 4    |

■ 9004708 0030333 4T5

|                            | . ,                    | TABLE I. Electrical performa                                                              | ance characte        | ristics.                                                |           | -         |             |
|----------------------------|------------------------|-------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------|-----------|-----------|-------------|
| Test                       | Symbol                 | Conditions 1/<br>$-55^{\circ}C \le T_{C} \le +125^{\circ}C$<br>unless otherwise specified | Group A<br>subgroups | Device<br>type                                          | Limi      | ts<br>I   | Unit        |
| Resolution control 2/      | RC                     | A = B = 0.8 V                                                                             | 7,8A,8B              | Ali                                                     | Min<br>10 | Max<br>10 | Bits        |
|                            |                        | A = 2.0 V, B = 0.8 V                                                                      | _                    |                                                         | 12        | 12        | _           |
|                            |                        | A = 0.8 V, B = 2.0 V                                                                      |                      |                                                         | 14        | 14        | <del></del> |
|                            |                        | A = B = 2.0 v                                                                             |                      |                                                         | 16        | 16        |             |
| Differential linearity     | DL                     | 3/                                                                                        |                      | All                                                     | -1.0      | +1.0      | LSB         |
| Accuracy repeatability     | AR                     | 3/                                                                                        |                      | All                                                     | -1.0      | +1.0      | LSB         |
| Output Accuracy            | AOUT                   | 4/                                                                                        | 4,5,6                | 01,03,<br>05,06,<br>08,10,                              | -7.0      | +7.0      | LSB         |
|                            |                        |                                                                                           |                      | 11,12                                                   | -12       | +12       |             |
|                            |                        |                                                                                           |                      | 02,04,<br>07,09                                         | -4.0      | +4.0      |             |
| Reference synthesizer      | RS                     | Reference phase shift between the converter signal and reference 3/ inputs                |                      | All                                                     | -45       | +45       | Degree      |
| Reference input impedence  | Z <sub>IN1</sub>       | Single ended 3/                                                                           |                      | 01,02,<br>03,04,<br>06,07,<br>08,09,<br>10,11,<br>12,13 | 100       |           | kΩ          |
|                            |                        |                                                                                           |                      | 05                                                      | 50        |           |             |
|                            |                        | Differential 3/                                                                           |                      | 01,02,<br>03,04,<br>06,07,<br>08,09,<br>10,11,<br>12,13 | 250       |           |             |
|                            |                        |                                                                                           |                      | 05                                                      | 100       |           |             |
| See footnotes at end of ta | able.                  |                                                                                           |                      |                                                         |           |           |             |
|                            | STANDARD<br>CIRCUIT DR | £                                                                                         | SIZE<br><b>A</b>     |                                                         |           |           | 5962-89908  |
| DEFENSE SUP                |                        | R COLUMBUS                                                                                |                      | REVISION                                                | ON LEVEL  |           | SHEET 5     |

| Test                                              | Symbol           | Conditions <u>1</u> /<br>-55°C ≤ T <sub>C</sub> ≤ +125°C                | Group A subgroups | Device<br>type                            | Limits |      | Unit |
|---------------------------------------------------|------------------|-------------------------------------------------------------------------|-------------------|-------------------------------------------|--------|------|------|
|                                                   |                  | unless otherwise specified                                              | J                 |                                           | Min    | Max  |      |
| Reference input common mode range                 | CMR <sub>1</sub> | 3/                                                                      |                   | All                                       | -210   | +210 | Vpk  |
| Signal input impedence                            | z <sub>IN2</sub> | Single ended 3/                                                         |                   | All                                       | 23     |      | kΩ   |
|                                                   |                  | Differential 3/                                                         |                   |                                           | 46     |      |      |
| Signal input common mode range                    | CMR <sub>2</sub> | 3/                                                                      |                   | 01,02,03,<br>04,05,09,<br>10,11,12,<br>13 | -60    | +60  | V.   |
|                                                   | ļ                |                                                                         |                   | 06,07,08                                  | -25    | +25  |      |
| Digital output low 2/<br>voltage                  | VOL              | I <sub>OL</sub> = -1.6 mA, out <u>put</u> bits<br>1 through 16, and BIT | 1,2,3             | All                                       |        | 0.4  | V    |
| Digital output high 2/ voltage                    | VOH              | I <sub>OH</sub> = -100 μA, ou <u>tput</u> bits<br>1 through 16, and BIT | 1,2,3             | Ali                                       | 2.8    |      | v    |
| Output leakage current (high impedence) 2/        | l <sub>Z</sub>   | Output bits 1 through 16                                                | 1,2,3             | All                                       | -30    | +30  | μΑ   |
| Digital output delay,<br>converter busy           | t <sub>CB</sub>  | Positive pulse, see figure 3                                            | 7,8A,8B           | 01,02,03,<br>04,05,09,<br>10,11,12,<br>13 | 0.4    | 1.0  | μs   |
|                                                   |                  |                                                                         |                   | 06,07,<br>08                              | 0.4    | 2.0  |      |
| Digital output error detection 2/ (built-in-test) | ВП               | Logic 0 indicates fault,<br>minimum error for bit<br>condition          | 7,8A,8B           | Ali                                       | 20     | 100  | LSB  |

See footnotes at end of table.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-89908 |
|----------------------------------|------------------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43216-5000        |                  | H              | 6          |

DESC FORM 2234 APR 97

**■** 9004708 0030335 278 **■** 

| Test                                      | Symbol | Conditions <u>1</u> /<br>-55°C ≤ T <sub>C</sub> ≤ +125°C                   | Group A<br>subgroups | Device<br>type                            | Limits |            | Unit           |
|-------------------------------------------|--------|----------------------------------------------------------------------------|----------------------|-------------------------------------------|--------|------------|----------------|
|                                           |        | unless otherwise specified                                                 |                      |                                           | Min    | Max        |                |
| Analog output error <u>4</u> /            | eOUT   | All analog 10-bit mode outputs loaded with a resistor of ≤ 10 kΩ to ground | 7,8A,8B              | 01,02,03,<br>04,05,09,<br>10,11,12,<br>13 | 42.5   | 57.5       | mV rms<br>/LSB |
|                                           |        |                                                                            | _                    | 06,07,<br>08                              | 35.0   | 65.0       |                |
|                                           |        | 12-bit mode                                                                |                      | 01,02,03,<br>04,05,09,<br>10,11,12,<br>13 | 21.25  | 28.75      |                |
|                                           |        |                                                                            | _                    | 06,07,<br>08                              | 17.0   | 33.0       | _              |
|                                           |        | 14-bit mode                                                                |                      | 01,02,03,<br>04,05,09,<br>10,11,12,<br>13 | 10.63  | 14.38      |                |
|                                           |        |                                                                            |                      | 06,07,<br>08                              | 8.7    | 16.3       |                |
| Analog output error - continued 4/        | еоит   | All analog outputs loaded with a ≤ 10 kΩ resistor ground 16-bit mode       | 7, 8A,8B             | 01,02,03,<br>04,05,09,<br>10,11,12,       | 5.31   | 7.19       | mV rms<br>/LSB |
|                                           |        |                                                                            |                      | 06,07,<br>08                              | 4.4    | 8.2        |                |
| Analog output offset voltage              | vos    | V <sub>OUT</sub> at zero speed 5/                                          | 4,5,6                | 01-08,11,<br>12,13                        |        | 40         | mV             |
|                                           |        |                                                                            |                      | 09                                        |        | 25         | _              |
|                                           |        |                                                                            |                      | 10                                        |        | 50         |                |
| Analog output positive linearity error 6/ | EUP    | 5/                                                                         | 4,5,6                | 01,02,03,<br>05,11                        |        | 2.0        | %              |
|                                           |        |                                                                            |                      | _09<br>_10                                |        | 1.0<br>3.0 |                |
|                                           |        |                                                                            |                      | 04,12,13                                  |        | 0.7        | _              |
|                                           |        |                                                                            | 4                    | 06,07,<br>08                              |        | 2.0        | _              |
|                                           |        |                                                                            | 5,6                  |                                           |        | 4.0        |                |

■ 9004708 0030336 104 ■

| Test                                      | Symbol          | Conditions 1/<br>-55°C ≤ T <sub>C</sub> ≤ +125°C<br>unless otherwise specified | Group A subgroups | Device<br>type                       | Limit | ts         | Unit      |
|-------------------------------------------|-----------------|--------------------------------------------------------------------------------|-------------------|--------------------------------------|-------|------------|-----------|
|                                           |                 | uniess otherwise specified                                                     |                   |                                      | Min   | Max        |           |
| Analog output negative linearity error 6/ | EUN             | 5/                                                                             | 4,5,6             | 01,02,<br>03.05.11                   |       | 2.0        | %         |
|                                           |                 |                                                                                |                   | 09                                   |       | 1.0        |           |
|                                           |                 |                                                                                |                   | 10<br>04,12,13                       |       | 3.0<br>0.7 |           |
|                                           |                 |                                                                                | 4                 | 06,07,<br>08                         |       | 2.0        |           |
|                                           |                 |                                                                                | 5,6               |                                      |       | 4.0        |           |
| Analog output reversal error              | EB              | Difference between positive and negative linearity                             | 4,5,6             | 01,02,<br>03,05,11                   |       | 2.0        | %         |
| one.                                      |                 | 5/                                                                             |                   | 09                                   |       | 1.0        | _         |
|                                           |                 |                                                                                |                   | 10<br>04,12,13                       |       | 3.0<br>0.7 |           |
|                                           |                 | 4 06,07, 08 3.0                                                                |                   |                                      |       |            |           |
|                                           |                 |                                                                                | 5,6               |                                      |       | 4.0        |           |
| Analog output scale factor                | SF              | Slope of the linearity line 5/ 7/                                              | 4,5,6             | 01-08,<br>11,12,13                   |       | 15         | <u></u> % |
|                                           |                 | A = B = 2.0 V dc                                                               |                   | 09<br>10                             |       | 1.0<br>3.0 |           |
| Digital input high<br>voltage             | ∨ <sub>IH</sub> | INH, EL, EM, S, A, B, and digital bits 1 through 16                            | 7,8A,8B           | All                                  | 2.4   |            | V         |
| Digital input low<br>voltage              | VIL             | while in CT mode                                                               | 7,8A,8B           | All                                  |       | 0.8        | v         |
| Inhibit (INH) voltage<br>2/               | VINH            | No digital angles change white INH is logic 0 and analog input is rotating     | 7,8A,8B           | All                                  |       | 0.8        | V         |
| Enable voltage 2/                         | ٧E              | EM controls out <u>pu</u> t bit 1 through 8 and EL controls                    | 7,8A,8B           | All                                  |       | 0.8        | V         |
| Disable voltage 2/<br>(high impedence)    | V <sub>D</sub>  | output bits 9 through 16                                                       | 7,8A,8B           | All                                  | 2.0   |            | V         |
| Set (S) voltage 2/                        | v <sub>S</sub>  | For use in CT mode                                                             | 7,8A,8B           | 01,02,<br>03,04,<br>05,09,<br>10,11, |       | 0.8        | V         |
| See footnotes at end of t                 | able.           | 1                                                                              | 1                 | 12,13                                |       | <u> </u>   | 1         |

DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43216-5000
DESC FORM2234

APR 97

9004708 0030337 040

Α

REVISION LEVEL

Н

5962-89908

8

SHEET

STANDARD

MICROCIRCUIT DRAWING

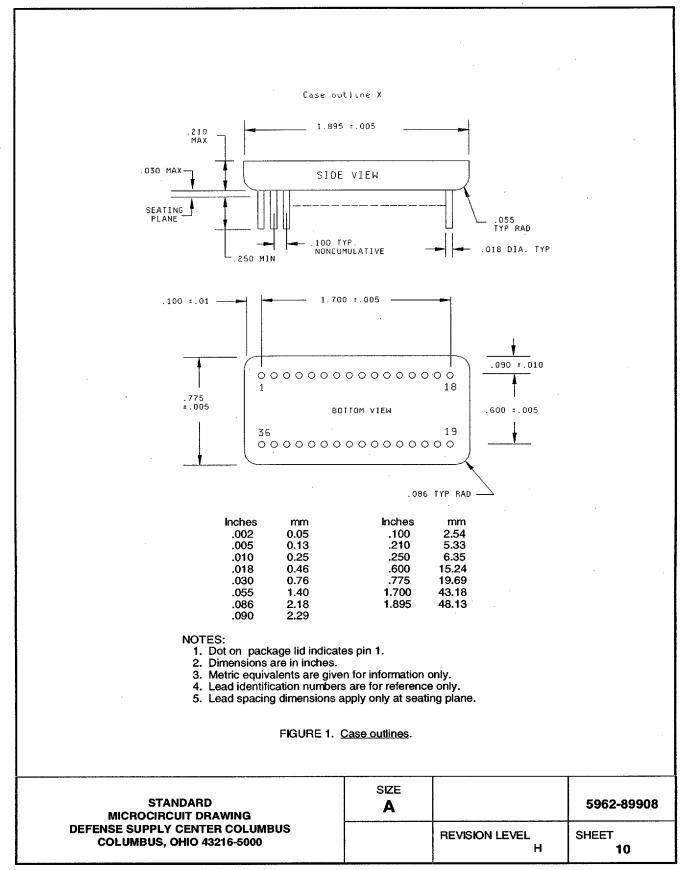
| Test                    | Symbol                     | Conditions <u>1</u> /<br>-55°C ≤ T <sub>C</sub> ≤ +125°C | Group A subgroups | Device<br>type            | Limits |     | Unit |
|-------------------------|----------------------------|----------------------------------------------------------|-------------------|---------------------------|--------|-----|------|
|                         | unless otherwise specified |                                                          |                   | Min                       | Max    |     |      |
| Positive supply current | lcc                        |                                                          | 1,2,3             | All                       |        | 25  | mA   |
| Negative supply current | EE                         |                                                          | 1,2,3             | All                       |        | -15 | mA   |
| Logic supply current    | I <sub>DD</sub>            |                                                          | 1,2,3             | Ali                       |        | 10  | mA   |
| Bandwidth               | BW                         |                                                          | 7,8A,8B           | 06,07,<br>09,10           | 38     | 70  | Hz   |
|                         |                            |                                                          |                   | 03,05,<br>08              | 56     | 104 |      |
|                         |                            | 16 bit and 14 bit modes                                  | _                 | 01,02,<br>04,11,<br>12,13 | 38     | 70  |      |
|                         |                            | 12 bit and 10 bit modes                                  |                   | 01,02,<br>04,11,<br>12,13 | 154    | 286 |      |

1/ Unless otherwise specified all tests are performed at nominal power supply voltages.

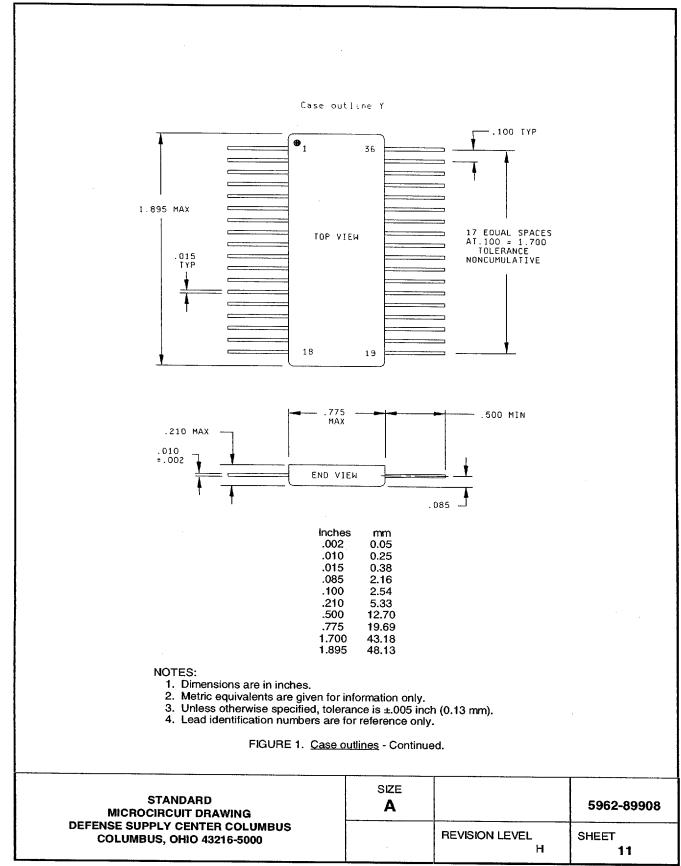
6/ Analog output linearity error is defined as the best straight line from zero speed, to either positive or negative direction as applicable, that yields the lowest peak error readings.

If For device types 01 through 08 and 11 through 13, velocity output scaling (16-bit mode) is 900°/second equals 10 volts. For device types 09 and 10, velosity output scaling (16-bit mode) is 120°/second equals 10 volts.

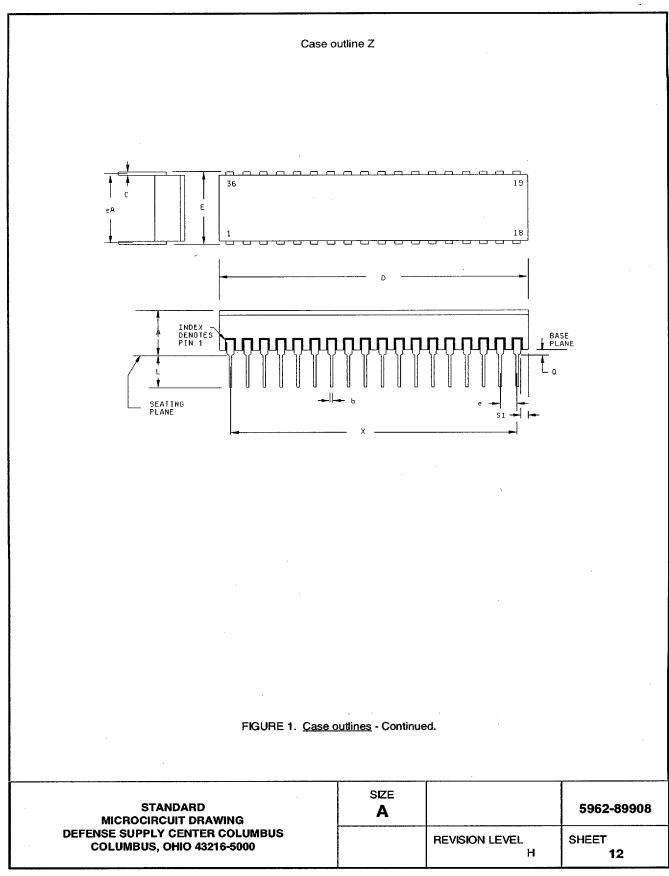
| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-89908 |
|----------------------------------|------------------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43216-5000        |                  | H              | 9          |


DESC FORM 2234 APR 97

9004708 0030338 T87


These parameters are tested on a go-no-go basis only or in conjunction with other measured parameters and are not directly testable.

<sup>3/</sup> Guaranteed by design, but not tested. Parameter shall be guaranteed to limits specified in table I for all lots not specifically tested.


<sup>4/</sup> Tested in 16-bit mode only. 10, 12, and 14-bit mode operations are guaranteed by design and are not tested. 5/ Tests are performed in 12-bit resolution with a full speed of 400 Hz. Velocity data is measured at multiples of full scale 3/4, 1/2, 1/4, and ±0 of the rated full speed.



# **9004708 0030339 913**



## 9004708 0030340 635



### Case outline Z - Continued

| Symbol | Millimeters |       | Inche     | ş     |
|--------|-------------|-------|-----------|-------|
|        | Min         | Max   | Min       | Max   |
| A      |             | 5.33  |           | 0.210 |
| b      | 0.41        | 0.51  | 0.016     | 0.020 |
| _с     | 0.41        | 0.51  | 0.016     | 0.020 |
| D      |             | 48.26 |           | 1.900 |
| _ е    | 2.54 B      | sc    | 0.100 BSC |       |
| E      |             | 20.32 |           | 0.800 |
| ед     | 15.11       | 15.37 | 0.595     | 0.605 |
| L      | 6.10        | 6.60  | 0.240     | 0.260 |
| _ Q    |             | 0.72  |           | 0.030 |
| S1     | 2.18        | 2.44  | 0.086     | 0.096 |
| x      | 43.18 BSC   |       | 1.700     | BSC   |

## NOTES:

- The U.S. government preferred system of measurement is the metric SI. This item was designed using inch-pound units of measurement. In case of problems involving conflicts between the metric and inch-pound units, the inch-pound units shall rule.
- Pin numbers are for reference only.
   Lead clusters to be located within ±0.005 inch (1.27 mm) of case center line.

FIGURE 1. Case outline(s) - Continued.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-89908 |
|----------------------------------|------------------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43216-5000        |                  | H              | 13         |

DESC FORM 2234

9004708 0030342 408

|                 | ·       |             | ,                                | 7 |                 |         | _                     |                                  |
|-----------------|---------|-------------|----------------------------------|---|-----------------|---------|-----------------------|----------------------------------|
| Device types    | All     | 01,02,04    | 01,02,<br>03,04,<br>05,09,<br>10 |   | Device types    | All     | 01,02,04              | 01,02,<br>03,04,<br>05,09,<br>10 |
| Case outlines   | Х       | Y           | Z                                |   | Case outlines   | Х       | Y                     | Z                                |
| Terminal number | Т       | erminal sym | bol                              |   | Terminal number | ٦       | erminal sym           | bol                              |
| 1               | S1(R)   |             |                                  |   | 19              | RH      |                       |                                  |
| 2               | S2(R)   |             |                                  |   | 20              | RL      |                       |                                  |
| 3               | S3(R)   |             |                                  |   | 21              | BIT-15  |                       |                                  |
| 4               | S4(R)   |             |                                  |   | 22              | BIT-16  | (LSB,16-BIT           | MODE)                            |
| 5               | BIT-1 ( | MSB)        |                                  |   | 23              | VEL     |                       |                                  |
| 6               | BIT-2   |             |                                  |   | 24              | СВ      |                       |                                  |
| 7               | вп-з    |             |                                  |   | 25              | EL      |                       |                                  |
| 8               | ВП-4    |             |                                  |   | 26              | EM      |                       |                                  |
| 9               | вп-5    |             |                                  |   | 27              | е       |                       |                                  |
| 10              | ВІТ-6   |             |                                  |   | 28              | +5 V oı | r (V <sub>DD</sub> )  |                                  |
| 11              | BIT-7   |             |                                  |   | 29              | GROU    | ND                    |                                  |
| 12              | ВП-8    |             |                                  |   | 30              | S or NO | C (see note)          |                                  |
| 13              | вп-9    |             |                                  |   | 31              | -15 V o | r (V <sub>EE</sub> )  |                                  |
| 14              | BIT-10( | LSB,10-BIT  | MODE)                            |   | 32              | +15 V ( | or (V <sub>CC</sub> ) |                                  |
| 15              | BIT-11  |             |                                  |   | 33              | INH     |                       |                                  |
| 16              | BIT-12( | LSB,12-BIT  | MODE)                            |   | 34              | BIT     |                       | ,                                |
| 17              | BIT-13  |             |                                  |   | 35              | А       |                       |                                  |
| 18              | BIT-14( | LSB,14-BIT  | MODE)                            |   | 36              | В       |                       | ī                                |

NOTE: Terminal number 30 is S for device types 01, 02, 03, 04, 05, 09 - 13; NC for device types 06, 07, and 08.

FIGURE 2. Terminal connections.

| STANDARD<br>MICROCIRCUIT DRAWING<br>DEFENSE SUPPLY CENTER COLUMBUS<br>COLUMBUS, OHIO 43216-5000 | SIZE<br><b>A</b> |                     | 5962-89908  |
|-------------------------------------------------------------------------------------------------|------------------|---------------------|-------------|
|                                                                                                 |                  | REVISION LEVEL<br>H | SHEET<br>14 |

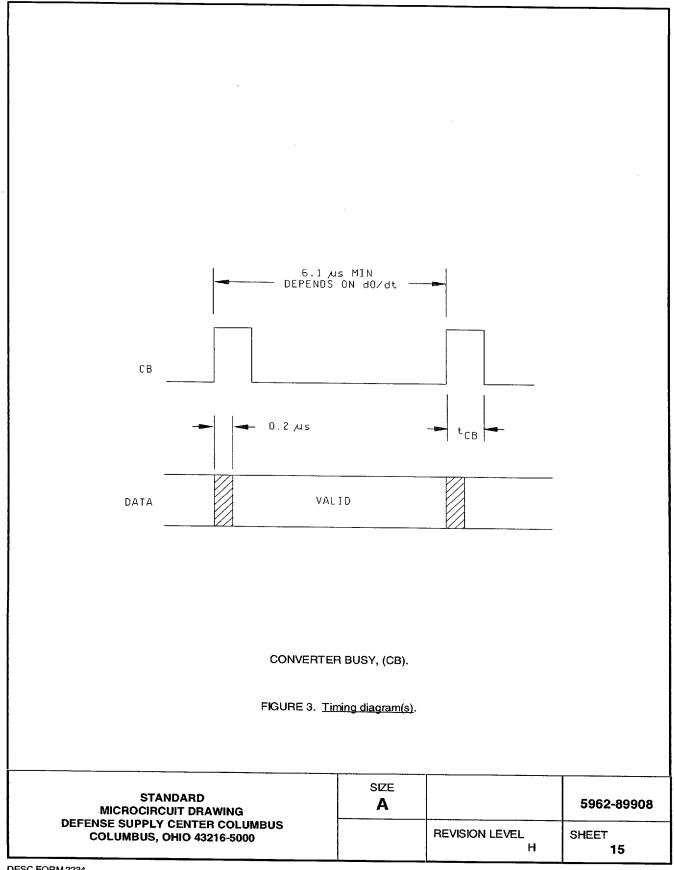



TABLE II. Electrical test requirements.

| MIL-PRF-38534 test requirements         | Subgroups<br>(in accordance with<br>MIL-PRF-38534, group<br>A test table) |
|-----------------------------------------|---------------------------------------------------------------------------|
| Interim electrical parameters           | 1,4,7                                                                     |
| Final electrical test parameters        | 1*,2,3,4,5,6,7,8A,8B                                                      |
| Group A test requirements               | 1,2,3,4,5,6,7,8A,8B                                                       |
| Group C end-point electrical parameters | 1,2,3,4,7                                                                 |

<sup>\*</sup> PDA applies to subgroup 1.

- 4. QUALITY ASSURANCE PROVISIONS
- 4.1 Sampling and inspection. Sampling and inspection procedures shall be in accordance with MIL-PRF-38534.
- 4.2 Screening. Screening shall be in accordance with MIL-PRF-38534. The following additional criteria shall apply:
  - a. Burn-in test, method 1015 of MIL-STD-883.
    - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
    - (2) T<sub>A</sub> as specified in accordance with table I of method 1015 of MIL-STD-883.
  - b. Interim and final electrical fest parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 Quality conformance inspection. Quality conformance inspection shall be in accordance with MIL-PRF-38534 and as specified herein.
  - 4.3.1 Group A inspection. Group A inspection shall be in accordance with MIL-PRF-38534 and as follows:
    - a. Tests shall be as specified in table II herein.
    - b. Subgroups 9, 10, and 11 shall be omitted.
  - 4.3.2 Group B inspection. Group B inspection shall be in accordance with MIL-PRF-38534.

| STANDARD<br>MICROCIRCUIT DRAWING | SIZE<br><b>A</b> |                | 5962-89908 |
|----------------------------------|------------------|----------------|------------|
| DEFENSE SUPPLY CENTER COLUMBUS   |                  | REVISION LEVEL | SHEET      |
| COLUMBUS, OHIO 43216-5000        |                  | H              | 16         |

**■ 9004708 0030345 117 ■** 

- 4.3.3 Group C inspection. Group C inspection shall be in accordance with MIL-PRF-38534 and as follows:
  - a. End-point electrical parameters shall be as specified in table II herein.
  - b. Steady-state life test, method 1005 of MIL-STD-883.
    - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to either DSCC-VA or the acquiring activity upon request. Also, the test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
    - (2) TA as specified in accordance with table I of method 1005 of MIL-STD-883.
    - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 4.3.4 Group D inspection. Group D inspection shall be in accordance with MIL-PRF-38534.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38534.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-973 using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0525.
- 6.5 Comments. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43216-5000, or telephone (614) 692-0512.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in QML-38534. Additional sources will be added to QML-38534 as they become available. The vendors listed in QML-38534 have agreed to this drawing and a certificate of compliance (see 3.7 herein) has been submitted to and accepted by DSCC-VA.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43216-5000 SIZE **A** 5962-89908

REVISION LEVEL SHEET H 17

DESC FORM 2234 APR 97

9004708 0030346 053

### STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN

DATE: 97-08-27

Approved sources of supply for SMD 5962-89908 are listed below for immediate acquisition only and shall be added to QML-38534 during the next revision. QML-38534 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This bulletin is superseded by the next dated revision of QML-38534.

| 1                    |            |                |
|----------------------|------------|----------------|
| Standard             | Vendor     | Vendor         |
| microcircuit drawing | CAGE       | similar        |
| PIN 1/               | number     | PIN <u>2</u> / |
| 5962-8990801XC       | 19645      | SDC-14565-114  |
| 5962-8990801XA       | 19645      | SDC-14565-144  |
| 5962-8990801YC       | 19645      | SDC-14565-629  |
| 5962-8990801ZC       | <u>3</u> / | SDC-14565-621  |
| 5962-8990802XC       | 19645      | SDC-14565-115  |
| 5962-8990802XA       | 19645      | SDC-14565-145  |
| 5962-8990802YC       | 19645      | SDC-14565-630  |
| 5962-8990802ZC       | <u>3</u> / | SDC-14565-622  |
| 5962-8990803XC       | 19645      | SDC-14565-616  |
| 5962-8990803ZC       | <u>3</u> / | SDC-14565-616  |
| 5962-8990804XC       | 19645      | SDC-14566-115  |
| 5962-8990804XA       | 19645      | SDC-14566-145  |
| 5962-8990804YC       | 19645      | SDC-14566-609  |
| 5962-8990804ZC       | <u>3</u> / | SDC-14566-611  |
| 5962-8990805XC       | 19645      | SDC-14565-618  |
| 5962-8990805ZC       | <u>3</u> / | SDC-14565-618  |
| 5962-8990806XX       | 3/         | HRD1066-341H/2 |
| 5962-8990806YX       | 3/         | HRD1066-341H/2 |
| 5962-8990807XX       | 3/         | HRD1066-341V/2 |
| 5962-8990807YX       | 3/         | HRD1066-341V/2 |
| 5962-8990808XX       | 3/         | HRD1066-C782/2 |
| 5962-8990808YX       | 3/         | HRD1066-C782/2 |

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for the part. If the lead finish desired is not listed contact the vendor to determine its availability.
- 2/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from a QML supplier.

1 of 2

# STANDARD MICROCIRCUIT DRAWING SOURCE APPROVAL BULLETIN - Continued.

DATE: 97-08-27

| Standard<br>microcircuit drawing<br>PIN 1/ | Vendor<br>CAGE<br>number | Vendor<br>similar<br>PIN 2/ |
|--------------------------------------------|--------------------------|-----------------------------|
| 5962-8990809XC                             | 19645                    | SDC-14565-602               |
| 5962-8990809ZC                             | 3/                       | SDC-14565-602               |
| 5962-8990810XC                             | 19645                    | SDC-14565-603               |
| 5962-8990810ZC                             | <u>3</u> /               | SDC-14565-603               |
| 5962-8990811XC                             | 19645                    | SDC-14565-112               |
| 5962-8990811XA                             | 19645                    | SDC-14565-142               |
| 5962-8990812XC                             | 19645                    | SDC-14566-112               |
| 5962-8990812XA                             | 19645                    | SDC-14566-142               |
| 5962-8990813XC                             | 19645                    | SDC-14566-114               |
| 5962-8990813XA                             | 19645                    | SDC-14566-144               |

Vendor CAGE \_\_number\_ Vendor name and address

19645

ILC Data Device Corporation 105 Wilbur Place

Bohemia, NY 11716-2482

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.

2 of 2

■ 9004708 0030348 926 ■