New Jersey Semi-Conductor Products, Inc. 20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6006 FAX: (973) 376-8960 3N211 3N212 3N213 TO-72 DUAL-GATE MOSFET VHF AMPLIFIER N-CHANNEL -- DEPLETION **MAXIMUM RATINGS** | Rating | Symbol | 3N211
3N212 | 3N213 | Unit | |---|--------------------------------------|----------------|----------|---------------| | Drain-Source Voltage | VDS | 27 | 35 | ∨dc | | Drain-Gate Voltage | V _{DG1}
V _{DG2} | 35
35 | 40
40 | ∨dc | | Drain Current | ID | 50 | | mAdc | | Gate Current | IG1
IG2 | ± 10
± 10 | | m Adc | | Total Device Dissipation @ T _A = 25°C
Derate above 25°C | PD | 360
2.4 | | mW
mW/°C | | Total Device Dissipation (a) T _C = 25°C
Derate above 25°C | PD | 1.2
8.0 | | Watt
mW/°C | | Lead Temperature, 1/16" From Seated
Surface for 10 seconds | TL | 300 | | °C | | Junction Temperature Range | Tj | - 65 to + 175 | | -C | | Storage Temperature Range | Tstg | - 65 to + 175 | | °C | ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.) | Characteristic | | Symbol | Min | Max | Unit | |---|--------------------|-------------------|----------------|----------------|--------------| | OFF CHARACTERISTICS | | | | | | | Drain-Source Breakdown Voltage (ID = 10 μ Adc, VG1S = VG2S = -4.0 Vdc) | 3N211,212
3N213 | V(BR)DSX | 25
30 | _ | Vdc | | instantaneous Drain-Source Breakdown Voltage)(1) (ID = 10 μ Adc, VG1S = VG2S = -4.0 Vdc) | 3N211,212
3N213 | V(BR)DSX | 27
35 | _ | Vdc | | Gate 1-Source Breakdown Voltage(2)
(Ig1 = ±10 mAdc, V _{G2S} = V _{DS} = 0) | . 11.6 | V(BR)G1SO | ± 6.0 | _ | Vdc | | Gate 2-Source Breakdown Voltage(2) (IG2 = ±10 mAdc, VG1S = VDS = 0) | | V(BR)G2SO | ± 6.0 | _ | Vdc | | Gate 1 Leakage Current
(VG1S = ±5.0 Vdc, VG2S = VDS = 0)
(VG1S = -5.0 Vdc, VG2S = VDS = 0, TA = 150°C) | | ^I G1SS | | ± 10
10 | nAdc
μAdc | | Gate 2 Leakage Current
(VG2S = ±5.0 Vdc, VG1S = VDS = 0)
(VG2S = -5.0 Vdc, VG1S = VDS = 0, TA = 150°C) | | I _{G2SS} | | ± 10
10 | nAdc
μAdc | | Gate 1 to Source Cutoff Voltage (VDS =, 15 Vdc, VG2S = 4.0 Vdc, ID = 20 μ Adc) | 3N211,213
3N212 | VG1S(off) | - 0.5
- 0.5 | - 5.5
- 4.0 | ∨dc | | Gate 2 to Source Cutoff Voltage
(V _{DS} = 15 Vdc, V _{G1S} = 0, I _D = 20 μAdc) | 3N211
3N212,213 | VG2S(off) | - 0.2
- 0.2 | - 2.5
- 4.0 | Vdc | | ON CHARACTERISTICS | | - | | | | | Zero-Gate-Voltage Drain Current(3)
(VDS = 15 Vdc, VG1S = 0, VG2S = 4.0 Vdc) | | DSS | 6.0 | 40 | mAdc | | SMALL-SIGNAL CHARACTERISTICS | | | | | | | Forward Transfer Admittance(4) (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, V_{G1S} = 0, f = 1.0 kHz) | 3N211,212
3N213 | Yfs | 17
15 | 40
35 | mmhos | | Reverse Transfer Capacitance (VDS = 15 Vdc, V_{G2S} = 4.0 Vdc, I_D = 10 mAdc, f = 1.0 MHz) | | C _{rss} | 0.005 | 0.05 | pF | | FUNCTIONAL CHARACTERISTICS | | - | **** | | | | Noise Figure
(VDD = 18 Vdc, VGG = 7.0 Vdc, f = 200 MHz)
(VDD = 24 Vdc, VGG = 6.0 Vdc, f = 45 MHz) | 3N211
3N211,13 | NF | _ | 3.5
4.0 | d₿ |