G522-0291-00 MPCBUSIF/AD
3/97
REV. 0

PowerPC Microprocessor Family:

The Bus Interface for 32-Bit
Microprocessors

I= PowerpP @ MOTOROLA

© Motorola Inc. 1997. All rights reserved.
Portions hereof © International Business Machines Corp. 1991-1997. All rights reserved.

This document contains information on a new product under development by Motorola and IBM. Motorola and IBM reserve the right to change or
discontinue this product without notice. Information in this document is provided solely to enable system and software implementers to use PowerPC
microprocessors. There are no express or implied copyright or patent licenses granted hereunder by Motorola or IBM to design, modify the design of, or
fabricate circuits based on the information in this document.

The PowerPC microprocessor embodies the intellectual property of Motorola and of IBM. However, neither Motorola nor IBM assumes any responsibility
or liability as to any aspects of the performance, operation, or other attributes of the microprocessor as marketed by the other party or by any third party.
Neither Motorola nor IBM is to be considered an agent or representative of the other, and neither has assumed, created, or granted hereby any right or
authority to the other, or to any third party, to assume or create any express or implied obligations on its behalf. Information such as errata sheets and
data sheets, as well as sales terms and conditions such as prices, schedules, and support, for the product may vary as between parties selling the product.
Accordingly, customers wishing to learn more information about the products as marketed by a given party should contact that party.

Both Motorola and IBM reserve the right to modify this document and/or any of the products as described herein without further notice. NOTHING IN
THIS DOCUMENT, NOR IN ANY OF THE ERRATA SHEETS, DATA SHEETS, AND OTHER SUPPORTING DOCUMENTATION, SHALL BE
INTERPRETED AS THE CONVEYANCE BY MOTOROLA OR IBM OF AN EXPRESS WARRANTY OF ANY KIND OR IMPLIED WARRANTY,
REPRESENTATION, OR GUARANTEE REGARDING THE MERCHANTABILITY OR FITNESS OF THE PRODUCTS FOR ANY PARTICULAR
PURPOSE. Neither Motorola nor IBM assumes any liability or obligation for damages of any kind arising out of the application or use of these materials.
Any warranty or other obligations as to the products described herein shall be undertaken solely by the marketing party to the customer, under a separate
sale agreement between the marketing party and the customer. In the absence of such an agreement, no liability is assumed by Motorola, IBM, or the
marketing party for any damages, actual or otherwise.

“Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals,” must be validated for each customer
application by customer’s technical experts. Neither Motorola nor IBM convey any license under their respective intellectual property rights nor the rights
of others. Neither Motorola nor IBM makes any claim, warranty, or representation, express or implied, that the products described in this document are
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support
or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should
customer purchase or use the products for any such unintended or unauthorized application, customer shall indemnify and hold Motorola and IBM and
their respective officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney’s fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that Motorola or IBM was negligent regarding the design or manufacture of the part.

Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

IBM, the IBM logo, and IBM Microelectronics are trademarks of International Business Machines Corporation.
The PowerPC name, the PowerPC logotype, PowerPC 601, PowerPC 602, PowerPC 603, PowerPC 603e, PowerPC 604, PowerPC 604e, and
PowerPC 620 are trademarks of International Business Machines Corporation used by Motorola under license from International Business Machines
Corporation. International Business Machines Corporation is an Equal Opportunity/Affirmative Action Employer.

Overview

Signal Descriptions

Memory Access Protocol

Memory Coherency

System Status Signals

Additional Bus Configurations

Direct-Store Interface

System Considerations

Processor Summary

Processor Clocking Overview

Processor Upgrade Suggestions

L2 Considerations for the PowerPC 604 Processor

Coherency Action Tables

Glossary of Terms and Abbreviations

Index

— ~ ol D w N =

@
O

IND

— ~ ol D w N =

®
O

Z
o

Overview

Signal Descriptions

Memory Access Protocol

Memory Coherency

System Status Signals

Additional Bus Configurations

Direct-Store Interface

System Considerations

Processor Summary

Processor Clocking Overview

Processor Upgrade Suggestions

L2 Considerations for the PowerPC 604 Processor

Coherency Action Tables

Glossary of Terms and Abbreviations

Index

CONTENTS

Paragraph . Page
Num%erp Title Numbger
About This Document
AUIENCE ...ttt e e st XVi
L@ 0= 02 1 Lo o 1SS Xvi
SUQQEStEd REAINGccvi it Xvii
CONMVENTIONS ...ttt bbb b et bbb b et et XX
Acronyms and ADDIEVIBLIONScocveirriereirre e XXi
Chapter 1
Overview
11 PowerPC 60X MicCroproCessor INErfaCe......cuuvverererenenesesesie e 1-1
12 PowerPC System BIOCK Diagram........ccccoeeevireenensneseneseseeesesseseeseseesesseseenes 1-3
13 Processor BUS FEALUIESc.ei ettt 1-3
14 BUS INtErface SIgNalSccvevieieieieerestese ettt 1-4
Chapter 2
Signal Descriptions
21 Address Bus Arbitration SIgNalS.........cccoieueirrncinnineee e 2-2
211 BUS REQUESE (BR)—OULPULecvveeeeeeccescceeseeeess et ene s sse s snessenessensssnes 2-2
212 BUS GIant (BG)—INPULcoucveverececieveseestee e seseesses s ssesses s ssesses s 2-2
213 Address Bus BuSy (ABB)—OULPULc.evurvecveierresiesesesssssesessessssse s 2-3
2.1.4 Address Bus BUSY (ABB)—IMPUL..........cccurieeuireerieeeeseeeeeesteseeesesssseesssesssnsesns 2-4
2.2 Address Transfer Start SIgNalS.......ccvverererineresese e 2-4
221 Transfer Start (TS)—OULPULv.cvveevreerereerereeseesesssssessessesssssssssssssssssssssssssssssans 2-4
222 Transfer Start (TS)—INPUL.....c.cvuevececeeeeeeeeeeeeceesseesessesse s sessessessesse s sensessenens 2-5
223 Extended Address Transfer Start (XATS)—Output (Direct-Store)................. 2-5
224 Extended Address Transfer Start (XATS)—Input (Direct-Store)c......... 2-5
23 Address Transfer SIgNalS......ccooee ettt s 2-6
231 Address Bus (A[0-31])—Output (Memory Operations)cuuvrvrereseeneens 2-6
232 Address Bus (A[0-31])—Input (Memory Operations)c.ceeererereerereereenes 2-6
233 Address Bus (A[0-31])—Output (Direct-Store Operations)ccveeeereeree 2-6
234 Address Bus (A[0-31])—Input (Direct-Store Operations)ccoceeeveereereen 2-7
235 Address Bus Parity (AP[0=3])—OULPUL.........cccererererrrrerereneseeesieseseeneseeseenes 2-7
Contents iii

CONTENTS

Paragraph . Page

Num%erp Title Numb%r

236 Address Bus Parity (AP[O=3])—INPULccccereririreneneneniesesesie e see e seenees 2-7
237 Address Parity Error (APE)—OULPULc..ccoevereereieiessessssssssseesssssesens 2-8
24 Address Transfer Attribute SIgNalS.......cocvveeeveiesese e 2-8
24.1 Transfer Type (TT[0—4])—OULPULecerrereriereriesieseseese e see e see e seeseeseesees 2-8
242 Transfer Type (TT[O—4])—INPUL......cccriiiirrieire s 2-9
243 Transfer Burst (TBST)—OULPUL.......co.ereruirieerieerieerie s senae e 2-10
244 Transfer Burst (TBST)—INPULcc.ooereriirieresenesiesie e seens 2-10
245 Transfer Size (TSIZ[0-2])—OULPUL..........cerrmrrerirererieree e 2-10
246 Transfer Size (TSIZ[0-2])—INPULoovriieeieereeeresee e 2-11
24.7 Transfer Code (TCN)—OULPULecererrereereriesiesie e e see e see e seeseeseessesseseens 2-11
2.4.8 Cache INibit (CI—OUPULcovveerreieeeeicieiesees st see 2-15
2.4.9 WIrite-Through (WT)—OULPUL.........cecvreeereerereeceseseseeseeeestssesesse s sssesessanens 2-16
2.4.10 GlObEl (GBL)—OULPUL «....ooveverecreieresiesee et ssesses st seeees 2-16
2.4.11 Global (GBL)—INPULo.cvrviireeieiecrcieeieese e s ess s 2-16
24.12 Cache Set Element (CSEN)—OULPUL.......cccocerereriesese e 2-17
2.4.13 High-Priority Snoop Reguest (HP_SNP_REQ)—601 Onlycccceererurueuene. 2-17
25 Address Transfer Termination SIgNalS........oeevrrereirnneine e 2-17
251 Address Acknowledge (AACK)—INPUL..........ccooirrinniineeseereere e 2-17
252 Address Retry (ARTRY)—OULPUL.......c.coueuirirerierie ettt 2-18
253 Address Retry (ARTRY)—INPULc.ccvriieriirirerie s 2-19
254 Shared (SHD)—OULPUL.........ccrveerereereieseseeresesessesessssessesssssssssesssssesssssssnsesns 2-19
255 Shared (SHD)—INPUL ...covvriveiececieeet ettt st sss st snsneas 2-19
2.6 Data Bus Arbitration SIgNalS........cooeerrrieinineisneee e 2-20
26.1 Data Bus Grant (DBG)—INPUL...........coeueeueeeereeeeieetessesse e eessessessesaesessessessnes 2-20
26.2 Data Bus Write Only (DBWO)—INPULcccovvieiininiiienese e siesieseeseeneens 2-21
2.6.3 Data Bus BUSY (DBB)—OULPULcoeverriercierseseesesessessessssssssesss e 2-21
2.6.4 Data BUS BUSY (DBB)—INPULc.ovvvieeireceieeeeseeeesseeesseseseesseesssssesesssssneesans 2-22
2.7 Data Transfer SIgNalS ..o see s 2-22
271 Data Bus (DH[0-31], DL[0-31])—OULPULc.covrrmrreeirerirreree s seseenenees 2-22
272 Data Bus (DH[0-31], DL[0=31])—INPUL......cccerrurrerrrieerirrereenerereneeseeeseeneas 2-23
2.7.3 Data Bus Parity (DP[0—7])—OULPULc.coereriereirerinieienererieee e 2-23
274 Data Bus Parity (DP[O—7])—INPUL........ccosrrrrrerrreeesieeseeseneseseeesseeseseenens 2-24
2.75 Data Parity Error (DPE)—OUIPUL.........cccvueveveceereetesseseeseeeessessessesessessessensenes 2-24
2.7.6 Data Bus Disable (DBDIS)—INPUL.........ccoerrieiiinerinieerereieee e 2-24
2.8 Data Transfer Termination SIgNalS........coeeerrreinnnieie e 2-25
281 Transfer ACKNOWIEAge (TA)—INPUL........cvueverceeereeeeeeeeeieeeestessesee s sesseneas 2-25
2.8.2 Data Retry (DRTRY)—INPUL.........coiiirrieiieririeiee s 2-25
2.8.3 Transfer Error Acknowledge (TEA)—INPUL..........c.coouererevererrerreressseseienns 2-26
29 SYStEM SLALUS SIGNAIS.....eeiiiieiieiecese ettt srennas 2-27
29.1 INEEFUPE (TNT)—INPUL ..ottt sns s ene s 2-27
2.9.2 System Management Interrupt (SMI)—INPULccoevereeeeerrerieieseeeinns 2-27
293 Machine Check Interrupt (MCP)—INpUL.........cccoviviieiiiiiiniene e 2-28
294 Checkstop Input (CKSTP_IN)—INPULccooierirenesesiesesiese e 2-28
iv PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

CONTENTS

Paragraph . Page
Num%erp Title Numb%r
295 Checkstop Output (CKSTP_OUT)—OULPUL........coueuieererieerererieieeserinieenenens 2-28
296 Hard Reset (HRESET)—INPULceiririieiereeee s 2-29
297 SOft RESEL (SRESET)—INPUE......veeieerieeie st 2-29
2.10 Processor State SIgNaIS.......coeuerierierieiere ettt nas 2-29
2101 Reservation (RSRV)—OULPUL..........eueirerieieireririeeee s e 2-29
2.10.2 External Cache Intervention (L2_INT)—INputccccovvivvvreniennneneseseen 2-30
2.10.3 Time Base Enable (TBEN)—INPUL.......cccoieririereniesesesesie e e see e see e 2-30
2104 TLBI Synchronization (TLBISYNC)—INPUL.........coevieirriereenerereenereieeees 2-30
211 Power Management SIgNalS.......ccececerenesese ettt nnas 2-31
2111 Quiescent Request (QUIESC_REQ)—OUPUL.........cerererieeenererieieererieieenenens 2-31
2112 System Quiesced (SYS_QUIESC)—INPULcovrerreerrieriirereree s 2-31
2113 Resume (RESUME)—INPUL.cooieiiriiireriricereres e e 2-31
2114 Quiescent Request (QREQ)—OULPUL........couvueueererieree st neens 2-32
2115 Quiescent Acknowledge (QACK)—INPULcorerieirrierie e 2-32
2116 Halted (HALTED)—OUEPULccoviueteeeerereeeeneresieeenesesieeeeseseeeeeseseseene e seeeens 2-32
2117 RUN (RUN)—INPUL. ...ttt e e e 2-32
21171 Going from Normal to Doze State (604€)ceveeerrerreinernierieneniereees 2-33
211.7.2 Going from DOze to Nap SEAte........coveuireeerieererererere e 2-33
211.7.3 Going from Nap t0 DOZE SEAE.......cevereririereresie e 2-34
212 Summary of Signal DIfferenCeS......c.ceevvvrrirei e 2-34
Chapter 3
Memory Access Protocol

31 BUS PrOtOCOLcociuiiiiiiiees ettt e bbb e 32
311 ArDItration SIGNalS......ccoiiiiiii - 34
312 Address Pipelining and Split-Bus TranSaCtions...........cueeeerriereeneniereeneneenens 35
32 AdAreSS BUS TENUIE ...ttt sttt seeseeae e e st se e seeneseeneas 3-6
321 Address BuS ArDItration..........ccooeerenninninee s 3-6
322 AAAreSS TIANSFEN ...c.vevceiireteeere e b e 3-8
3221 AdAresS BUS Paritycccouioeiiririieesieiesieesie et ses e 39
3222 Address Transfer Attribute SignalS........cccoevevenenenenesese e 39
32221 Transfer Type (TT[0-4]) SIgNalS.....cccceovieererri e 39
32222 Transfer Size (TSIZ[0-2]) SIgNAIS......coeirrreirrreee e 39
3223 Burst Ordering during Data Transfers ... see e 3-10
3224 Effect of Alignment in Data Transfers.......coevverviienesienesenee e 3-10
32241 Alignment of External Control INStruCtions..........overeerrenerereneniereenes 317
323 Address Transfer TEMINGLIONcoeveeirerrirne e 317
33 Data BUS TENUIE.......coiieieieeeeeee s 3-19
331 Data BUS ArDItrationccevieeerienerineee et 319
3311 Effect of ARTRY Assertion on Data Transfer and Arbitration on the

POWEIPC 604 PrOCESSONcviiviiviiiisiesiesiesie st sie st siesie et stesteseeseeseeseas 3-20

Contents \

CONTENTS

Paragraph . Page

Num%erp Title Numb%r

3.3.1.2 USING thE DBB SIGNA ...v.cevvevieeeeeies ettt sss st snssneneas 321
332 Data BUSWHTE ONIY ...ttt 322
333 (DT = R I = 141 = OO 3-22
334 Data Transfer TErMINGLONccvieiieerieneresie e 3-23
3341 Normal Single-Beat Terminationccccevvreeererereneseneseseeeeseeseseeeseenees 3-24
3.34.2 Data Transfer Termination Dueto aBUS EITOrccccoevireeieenienenieene 3-26
34 TiMING EXAMPIES.....cviieieieieieses ettt sttt 3-28

Chapter 4
Memory Coherency

4.1 Overview of Cache Implementations...........ccccvvvreinnnein s 4-1
411 PowerPC 601 Processor Cache OrganiZation............ccovveieienesesesesesenseenens 4-2
4.1.2 PowerPC 603 Processor Cache Organi Zation.........c..cuuvveveneneneneseeseesenseeses 4-3
413 PowerPC 603e Processor Cache ENhancements..........ccoevvevveeeneneseneneseenes 4-3
414 PowerPC 604 Processor Cache OrganiZation...........cccoeeeeereeeseeesieneseenessesennas 4-4
4.15 PowerPC 604e Processor Cache ENhancements...........oveveeveenenenenencseenes 4-5
4.2 Cache COhErenCY OVEIVIBWccviveeiieeriieriiseeee e saese e ssenessesennas 4-5
43 Memory Coherency—MES] ProtoColcccoeeierrenne e 4-6
4.4 CONEFENCY TIMING veviviiesiesiesie e se e s se e se e ste sttt stestestesae st b seestestestenaeneenes 4-9
45 (@00]31c 1= g Ton VA = o]0 oo U TSR 4-9
451 PowerPC 603 Processor Iwar x/stwex. Implementation...........ovevevvniereennes 4-11
45.2 Cache Set Element SIgNalS......cccvieieierenenesesiese s 4-11
453 AJAresS REITY SOUICESccveuviieerieisiineeesiesesieessesessesessssaesessesessessssessnsessesens 4-11
4.6 Memory Coherency Actions—PowerPC 60x Processor-Initiated Operations...4-12
46.1 Cache Control INSLIUCLIONS.......c.coiieerieerieerie e e 4-12
4.6.2 TLB Invalidate Entry INStruction ProCeSSING.......cc.cuvererineresenesiesesnsnneens 4-14
46.2.1 TLBIE BUS OPErGHON ..o.cvveviereierie st 4-14
4.7 Descriptions of Bus Transactions and Snoop RESPONSEScccvvvrereiernsnneens 4-14
4.7.1 General Comments 0N 60X SNOOPING.....vevereereereriereresiesieseseessessessessessessenes 4-14
4.7.2 (1= g1 2] o To: 2SS 4-15
473 FIUSN BIOCK. ...ttt ettt s e 4-15
4.7.4 Write with Flush, Write with FIush AtOMIC.........cccviiiiieiienre e 4-15
475 QT To O 4-15
476 WIE WIth KTt 4-16
477 Read, REEA ALOMIC.....cviiiirieiereresietee ettt e e 4-16
4.7.8 Read with Intent to Modify (RWITM)c.ooviiiiinei s 4-16
479 TLB INVAITEEE. ...eceeeeeeeeeeeieee ettt et st 4-16
4.7.10 SYNC bbb bbb bbb 4-17
4711 LI =35 1L PSS 4-17
4.7.12 e USRS 4-17
4.7.13 TCBI ettt bbb bbb bbb 4-18
Vi PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

CONTENTS

Paragraph . Page
Num%erp Title Numb%r
4.7.14 Read with No Intent to Cache (RWNITC).....cccoriinrneinnrece s 4-18
4.7.15 XFERDATA L.ttt bbb bbb 4-18
4.8 External WIM Bit SEINGS.cccvereirreirnere e 4-19
4.9 Direct-Memory Access and Memory CONEIrENCY.......ccuvvrerereresesesesessessenees 4-19
4.10 Overview of Implementation DifferenCes.........coveevvierreneieseie e 4-19
Chapter 5
System Status Signals

51 OVEIVIBIV ...ttt ettt b et b e bbbt b et e e b e s eae s bene b ne e 51
5.2 RESELS ...ttt b b b bbb 5-2
521 Hard Reset and POWEr-On RESEL.........ccoevieereresesee e 5-3
5211 Hard RESEt SEHINGS.covieeeeieee ettt 53
522 SOt RESEL ...ttt bbb b 5-5
5221 System Reset Exception (0X00100)cccvvererererreeerieesinneseeseseesesssseesesensens 5-5
5222 Soft Reset on the PowerPC 601 MiCroproCeSSOrcccieeereerereerereeseeerennens 5-6
5223 Soft Reset on the PowerPC 603 MiCrOprOCESSONccvvivereereereereeseeseeseesenseens 5-7
5224 Soft Reset on the PowerPC 604 MiCroproCESSONccvivererrerereereereseeesennens 5-7
53 Machine Check and ChECKSIOPSc.ccveeiririrreriirreee s s 5-7
531 Checkstop State (MSRIME] = 0)covieiueiiineririeeneresieiene st 5-7
5.3.2 Machine Check Exception (0X00200)..........cccvrrerrereeereereseneseenessesesseseesessenees 5-8
5321 Machine Check Exception (0x00200)—

POWEIPC 601 PrOCESSONceiviiviieiiiesresie st 59
5322 Checkstop State (M SR[ME] = 0)—PowerPC 601 Processorcou.... 5-10
53221 Checkstop Sources and Enables Register—HIDO.ccocoeveenriereene, 5-10
5323 Machine Check Exception—PowerPC 603 ProCessor.........ouvvvvvvieeneenen 5-12
5324 Checkstop State (M SR[ME] = 0)—PowerPC 603 Processorccu.... 5-13
5325 Machine Check Exception—PowerPC 604 ProCeSSOr.........couereerereereeens 5-13
53251 Machine Check Exception Enabled (MSRIME] = 1) ...ccccvvvvvvvvinnennnn. 5-14
5.3.25.2 Checkstop State (MSR[ME] = 0)....ueuiriririerirererieiee e 5-14
5.4 External Interrupt Exception (0X00500)ceveeererrereerermnrerenesesrereesesseressenens 5-14
54.1 External Interrupt—PowerPC 601 ProCeSSOr........cccvveverieriesresieseseesieseesennes 5-15
54.2 External Interrupt—PowerPC 603 ProCESSONcccvvirierierieriesenesiessesensenses 5-16
55 System Management Interrupt Exception (0X01400)cccovveeenerenrereneneriereens 5-16

Chapter 6
Additional Bus Configurations

6.1 NO-DRTRY Mode (603 @and B04€).........ccoererueurrererierienerieiee et sesienens 6-1
6.1.1 No-DRTRY Mode in POWerPC 604€ PrOCESSOYcccvrveveveeeeererieeeecserensnans 6-2
6.2 Data Streaming Mode (604)c.eoueuereeeriererierenie et e sseseenas 6-3
6.2.1 Data Vaid Window in the Data Streaming Mode.........cccoevvvnenennnennnnnenns 6-3
Contents vii

CONTENTS

Paragraph . Page
Num%erp Title Numb%r
6.2.2 Data Valid Window in the Data Streaming Mode...........cccccvevvininnieninnnnnnnnen 6-3
6.2.3 Design Practices for Data Streaming MOdecccvveevereeeneeeseesenesesese e 6-4
6.3 32-Bit Data BUSMOAE (603)coueeruerereeieeesieesienesee s s s 6-4
6.4 Reduced-Pinout Mode (B03)ccuvviiiiiiniiniiniesiesie e see s sse e seeseeseas 6-6
Chapter 7
Direct-Store Interface

7.1 Direct-Store Transaction Protocol Details..........ccocveevrerieeseresienesesee e seenens 7-2
7.11 PECKEL O ...ttt et et bbb e 7-3
7.12 PECKEL 1 ...ttt bbb b bbb 7-4
7.13 [/O REPIY OPEratioNS......cvcveviereietierisietie sttt 7-4
7.2 DireCt-Store OPEratioNS.........coviveeeriereeeerieie e se e seeeeseeaeseee e se b seeeeseeneseeneas 7-6
7.3 S (0] (oY @] o= = o] 0 TP 7-7
7.4 (0720 N @] 1= = 1 o] RS 7-7
7.5 Direct-Store Operation TiMING........coeereereierenererere e seeneseeneas 7-8
7.6 Memory-Forced Direct-Store Interface

(PowerPC 601 Processor ONlY)vievvevriereseneseseeseseesenesiesesseseeseseesessenenes 7-9

Chapter 8
System Considerations

8.1 F N 4 o] 1o TSSO 81
8.2 Using the Data Bus Write-Only MeChaniSM........ccccvvvennninennnnseseseseeseesennens 81
8.3 AACK GENETAIONcoeecvcviieeecte et be bbb sa bt es st s s enssae b 8-4
84 SYNC vs. TLBSYNC and SyStem DESIGN......ccovreruerenererieienererieeeeseseseesesesesessenes 8-4
8.5 PUIT-UP RESISLOIS.viiviiecie ettt sttt sttt 8-5
8.6 Features for Improved Bus Performance..........cocoeeevneinenneinenneee s 85
8.7 IEEE 1149.1-Compliant INterface.........ocoovieeiieereeeree e 85
8.7.1 IEEE 1149.1 Interface DESCIiPLiON.......ccccvviviviiieie s seas 8-5
8.8 Iwar X/StWCX. CONSIAEIALIONS.........cererirreeierisierie st 8-6
881 Coherency PartiCipationcoueeieerrieriennieeeses et 8-6
8811 Noncacheahle RESEIVALIONS..........cccvirririee e 8-6
8.8.1.2 Cacheahle RESEIVALIONS.......c..oveeiriririeeireririet e 8-7
8813 Read Snooping REQUIFEIMENTS ..o 8-7
8.8.14 Write-Back Reservation-Canceling SNOOPS......ccuuvverereneneniesesesesenseenes 87
8.8.15 Write-Through Reservation-Canceling SNO0PSvevevveeerererieneseereeeneenns 8-8
8.8.1.6 Noncanceling BUS OPErations..........c.uueveenrnreeinenserie s sessenesees 8-8
8.8.2 Filtering Options for RESEIVALIONScccviiviiiiiiie i 8-8
8.8.2.1 Minimal ReServation SUPPOITcc.cuvviiiiniii s s 8-8
8822 Improved Reservation SNOOPINGcvovrrereirrrereenessesee e 89
Viii PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

CONTENTS

Paragraph . Page
Number Title Number
8.8.2.3 Iwar x/stwex. Address-Only Operation........cc.cuceverereseseseseseseseeseesennes 8-10
8.8.24 Software IMPlICALIONSc.cceovieieireee e 8-10

Appendix A

Processor Summary
Appendix B
Processor Clocking Overview

B.1 PowerPC 601 Microprocessor ClOCKINGcvcvererereriesiesesesesesiesieseseeseeseeseens B-1
B.2 PowerPC 603 and PowerPC 604 Microprocessor Clocking........cuecvvvrenennnenns B-2

Appendix C

Processor Upgrade Suggestions

C1l PowerPC 601 Processor Upgrade to B0Xccoevreeereeerienesirneseeseneeseeeseeesenenes C-1
C.2 PowerPC 603 Processor Upgrade to 604 OF 60Xcccererereseseseeseseseseseens C-1
C3 PowerPC 604 Processor Upgrade to 60Xccovverereniereseseseseseseseesesseseens C-3

Appendix D

L2 Considerations for the PowerPC 604 Processor

D.1 UNfiltered SNOOPINGveviveerieeriereee s e e e eee e sesee e seeneseenenes D-2
D.2 Keeping aCopy Of LL TagScouirrerirerieesienesie s sesie s s D-2
D.21 Requirements for Saving State INformation.........cccvevvveninennninninnnsennneens D-3
D.2.2 Operations Required for Processor Bus Operations.............ococevrveeenererieveens D-3
D.23 Forwarding System Bus Operations to the Processorccoccevvreereeeriencns D-4
D.3 Maintaining L1 State and TagSccocevererenenesiesiesiesiesieseeseeseesseseessessesseseesseseens D-4
D.3.1 Requirements for Saving State INformation..........ccoeevvevvereniensieneseseeresenens D-5
D.3.2 Operations Required for Processor Bus Operations............ccccvvevesesesnsennn D-5
D.3.3 Forwarding System Bus Operations to the ProCessor.........cocvvvvvnennnennninns D-6
D.4 SIMPIE LL INCIUSION ...ttt s aene s D-6
D41 Requirements for Saving State INformation............cooeeeerneeenneeecnneees D-6
D.4.2 Operations Required for Processor Bus Operations..........cocuvvvvvvnennsnnennens D-6
D.4.3 Forwarding System Bus Operations to the ProCESSOrccuvvvrvreeeereenrinnns D-7
D.5 = = o 0 1 1 o S D-7
D.5.1 Requirements for Saving State INformation...........cucvvvveiieninninninsiennsnnnnenns D-7
D.5.2 Operations Required for Processor Bus Operations..........cocuvvvenenenesenennens D-8
D.5.3 Forwarding System Bus Operations to the Processorcocuevvreereeernncns D-8
Contents ix

CONTENTS

Paragraph . Page
Num%erp Title Numb%r
Appendix E
Coherency Action Tables
E.l (o7 @ o< = o0 TP E-2
E.2 SLOPE OPEIELIONSc.vveeeetet sttt bbb e E-5
E.3 LWARX OPEIELIONS......ceeuereeueieeuesieerieaeseesesaeseeseseeeseesessesessesaesessenesseessesessessenes E-8
E.4 STWECX OPEIELIONS.....ceiveieeriiiiisiisiesiesiesiesiesiessessessessessessessessessessessessessessessessenes E-11
E.5 DCBT OPEAliONS.eveueieeerieestirenteseesesiesessesessesessessesessesessessssessesessesessesessesseses E-17
E.6 DCBTST OPEIaliONSc.ccoeiveertieeeeereeesieesierestesesseseeseseeessesesseseenessenessesesseseenes E-20
E.7 DCBZ OPEIaliONS......cceiviiiiiiisieriesiisiesie e siesie e ste et st stesse e ssessessessessessessessesss E-21
E.8 DCBST OPEratiONS......ceiveerieertiseeresieestesessesessessssessesessesessessssessesessesessesessesseses E-23
E.9 DCBF OPEIaliONS......c.crvereriirereretsesier et nnenese s E-27
E.10 DCBI OPEIaLiONS.eiveiviiieiieiie it sie sttt st sse e sressesresseseesseseas E-31
E.11 ICBI OPEIAliONS.....ccviiveeiiieerieestiseeeeseeesteestesessesessessesesseessesssseseesessesessesessessnses E-34
E.12 SYNC OPEIALIONS......cveirerieriiiresiereeesesie et E-36
E.13 S]SO @] o = ¢ o] o TSR E-37
E.14 TLBIE OPEralioNScooveieieieieieeiee ettt st sttt sae sttt neas E-37
E.15 TLBSYNC OPEratiONScvvvieriererieresreree s sesss s neness s E-37
E.16 SNOOP-Kill OPEr@tioNS.......cciiieiieiesesiesese s E-38
E.17 SNOOP-READ OPEIaliONS......eiviivirieriesiesie sttt es E-39
E.18 Snoop-Read-AtomMIC OPEIELiONS........covvveeiererrerie et E-40
E.19 SNOOP-RWITM OPEratioNSccceveiieriesiesesiesiesiesiesiesiessesse e sse e sse e ssessesseseenes E-41
E.20 SNOoP-RWITM-ALOMIC OPEratioNS........coererierieriesiesiesiesiesieseesieseeseeseeseeseeseenes E-41
E.21 SNOOP-FIUSN OPEIaLiONS......ccuieiereeieriereee e E-42
E.22 SNOOP-ClEaN OPEratiONS.......cceiieriesiesiesese e se e se ettt e s E-42
E.23 Snoop-Write-wWith-FIUSh OperationsS ..o see s E-43
E.24 Snoop-Write-with-Kill Operations...........cocveinrneinnnieie s E-44
E.25 Snoop-Write-with-Flush-Atomic Operations...........ccocvvveverienesiesesieseseseeseens E-45
E.26 Snoop-TLB-Invalidate OperationS.........cccuvererenenenesesesese e sie e seeseeseeseenes E-46
E.27 SNOOP-SY NC OPErGHONS ...ttt E-46
E.28 SNOOP-EIEIO OPEratiONS.......ccveoeriiiriirerte sttt sesee e e s sseseenas E-46
E.29 SNOOP-TLBSY NC OPEratioNS........ccceverieresenieniesiesiesiesiesiesessessessesseseessessessenes E-47
E.30 SNOOP-ICBI OPEr@lioNS.......ccciveeriereriereriesieseseeesiesessesessesesseseeseseesesseessesessessess E-47
E.31 SNOOP-RWNITC OPEratioNSc.cvieriirereerieie et seeeeseenas E-48
Glossary of Terms and Abbreviations
Index
X PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

ILLUSTRATIONS

Figure . Page

Nl?mber Title Numbger

1-1 Typical System Diagram with Processor BUS..........c.cvuvviininnninnnniennnesesennens 1-3
1-2 ProCessor BUS SIgNaAIS.c.eoeieririireeesieeseesiesestesesseseesesesessesessssessessesessenessesenss 1-4
31 Timing Diagram Legend...........ccocouerrireeieee e et s 32
32 Overlapping Tenures on the Processor Bus for a Single-Beat Transfer 33
3-3 Address Bus Arbitration Showing Qualified Bus Grant..........cccceevvrevveeeninnnns 3-6
34 Address Bus Arbitration Showing Bus Parking............ccceevveionneiennneeinennns 3-7
35 AdAressS BUS TraNSFErc.iveiiieerieiriereeie ettt et s 3-8
3-6 Snooped Address Cycle With ARTRYccoveiinneiinneee e 3-18
37 Data BUS ArDItIation...........ceiueeriiiriireee et e s 3-19
3-8 Qualified DBG Generation FOIIOWING ARTRYc.ccoveveurerereereeeeessetesseseseesenns 3-21
39 Normal Single-Beat Read Terminationccoccvvereinnnieinnneree e 3-24
3-10 Normal Single-Beat Write TErMINatioN..........cccoeererererieesererieeseesesie e seenens 3-24
311 NOrmal BUrst TranSaCiON.cccoveiiruirerieriet ettt 3-25
3-12 Termination WIth DRTRYcoooiueiiiiicecteeeceecte et sse s eae s 3-25
3-13 Read Burst with TA Wait States and DRTRYcccviucuneeeueeeeeeeeeeseeesesessenans 3-26
314 Fastest Single-Beat REAAS..........ccoeviviiieeriesiesese et 3-28
3-15 Fastest SINGIE-BEat WITLES.........ovveiririeieiset ettt 3-29
3-16 Single-Beat Reads Showing Data-Delay Controls.........ccoeevenrenenesenenieen 3-30
317 Single-Beat Writes Showing Data Delay Controls.........cccovvvvnenenenenenennenns 331
3-18 Burst Transfers with Data Delay COntrolS..........cuovvrevreesenesnneseneneseeeseenens 3-32
3-19 Use of Transfer Error Acknowledge (TEA)c.oeeeveeeveeeeveieeveeeveeeeve e 3-33
4-1 PowerPC 601 Processor Cache Organi Zationcoeeereseseseseeseseseessesseseenes 4-2
4-2 PowerPC 603 Processor Cache Organization..............coveeeerniereenenereeseseneees 4-3
4-3 PowerPC 604 Processor Cache OrganiZation.............cocveeereneeesesiesienesieseseseenes 4-4
4-4 PowerPC 604e Processor Cache Organizationccocevevenenenenesieseseseesenes 4-5
4-5 MESI SEBEESvceieietceeresiet ettt bbb bbb 4-7
4-6 MESI Cache Coherency Protocol (601/604)—State Diagram (WIM = 001)......4-8
4-7 MEI Cache Coherency Protocol (603)—State Diagram (WIM =001) 4-10
4-8 Effective Address BitSin BUS AQAIESS..........oeueiirieieinninieeesesieiee e 4-17
5-1 HIDO—Checkstop Sources and Enables Register (601)cocoeveerrrerecenennns 5-10
6-1 Data Transfer in Data Streaming MOGE.........cceveveveresesesesesesie e 6-3
6-2 32-Bit DataBus Transfer (Eight-Beat BUISt)cccccovveeerenenineneseee e 6-5
6-3 32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY)coveivvnciineniene 6-6
7-1 Direct-Store Interface ProtoCol TENUIES.........cceereerieeriereriereee e 7-2
7-2 Direct-Store Operation—RPacket O..........cocvvevenininiresese e 7-3
7-3 Direct-Store Operation—Packet L.........ccovieinrneinnneie s 7-4
Illustrations Xi

ILLUSTRATIONS

Figure . Page

Nl?mber Title Numb%r

7-4 1/O REPIY OPEraLiON.....cueeeeeeeieieiete ettt sttt sttt ee st e s 7-4
7-5 Direct-Store Interface Load Access EXample........ccccoeevvvnrinenseinseneseneeeseenns 7-8
7-6 Direct-Store Interface Store ACCess EXaMPIE........ccvvrrerinirnerineneneeesesnereees 7-9
81 Data Bus Write Only TranSaCtioN........c.ccoevevieresesesesesesie e e see e see e sse e e 82
B-1 PowerPC 601 Processor ClOCKINGcouiveeeriirinireenseesees s e seeesieeseneseeseenes B-1
B-2 PowerPC 603 and PowerPC 604 Processor Clock Generation.............cccceeeveneeee. B-2
C-1 PowerPC 603 to PowerPC 604 Processor Upgrade Option..........ccocevevvvvenenenne C-2
D-1 L2 Cache Controller OrganiZation............cueerereresesesesesieseseesseseeseesseseesseseens D-1

Xii

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

TABLES

Table . Page
Number Title Numbger
i Acronyms and Abbreviated TErMIS........cccvvrirenenienesesese e XXi
1-1 60X SIgNaAl GrOUPINGS ..vevevenerieereiseeeestesesiesessenessesessesesseseesessesessesessesensessesessnnens 1-5
1-2 Use and Reference for BUS SIGNalS.......c..ooeereereeenienneneee e 1-5
2-1 Transfer Encoding for PowerPC 601, 603, 604 ProCessors........ouuvvereresensenns 2-9
2-2 Data TranSfer SIZE.......cuiiiieeeeererieee e 2-11
2-3 Transfer Code Signal Encoding for PowerPC 601 Processor..........cvovvvereene. 2-12
2-4 Transfer Code Signal Encoding for the PowerPC 603 Processor...........ccov.... 2-12
2-5 Transfer Code Signal Encoding for PowerPC 604 Processor..........covveeeevneene. 2-13
2-6 Data Bus Lane ASSIQNMENES.........cvrererrerirererrerie s 2-23
2-7 DP[0—7] Signal ASSIQNMENTS......ccccierierierieriesieseesieseesee e seeseeseessessessessessessesseses 2-23
2-8 Processor Bus Signal DifferenCesS........couveverereneniesie e 2-34
31 Number of Bus Arbitration SIgNalS ... 34
32 Processor Read BUrst OFAENNG......cc.ecuererierenesiesesiese e seeseeseessessessessesseseessees 3-10
33 Aligned Data Transfers for 64-Bit DalaBUSc.ccccuvvrininenenesnsesesnsennens 311
34 Aligned Data Transfers for 32-Bit DataBuUS.........cccoveinrneirnenecc s 312
35 Misaligned Data Transfers for the PowerPC 601 Processor.........cccccovveereenene. 313
3-6 Misaligned Data Transfers for PowerPC 603/ 604 Processors........cc.cuuevveereene 314
3-7 Misaligned Data Transfers for 603 in 32-Bit MOdE..........ccccceevreeerenereerenienenne. 3-16
4-1 MES| State DEfiNitioNS.......ccciveeeriiriririee e 4-6
4-2 CSE[0—1] SIgNalS.....ucueereririeiiniririeieie et 4-11
4-3 Memory Coherency Actions on Load Operations........coecvvevreeerenerenerenennes 4-12
4-4 Memory Coherency Actions on Store Operations.........cccceeeeereseseseseseseens 4-12
4-5 PowerPC 601 and 604 Processor Bus Operations Initiated by Cache

CONtrol INSEFUCHIONS ...ttt seeneseenen 4-13
4-6 PowerPC 603 Bus Operations Initiated by Cache Control Instructions........... 4-13
4-7 Differencesin Implementation of Bus Operations..........cvevverenenesenesnnennns 4-20
51 Resets, Interrupts, and THeir SOUICESccviveerireeesee e e seeeseeees 51
52 Processor Bus Signal Differences.........ccooeoierrenne e 52
53 Hard RESEL SEHINGS.veveieeeieieiee ettt sttt sttt e 5-3
5-4 PowerPC 604e Processor Modes Configurable during HRESETccccouee.. 5-5
55 System Reset Exception—Register SEttingS ... 5-6
5-6 Machine Check Exception—Register SEttings.ccovvrreinrererinenneree s 5-9
5-7 HIDO—Checkstop Sources and Enables Register (601)c.ccoeverereererenenne. 5-11
5-8 Machine Check ENable BitS..........ccciiiriinininieirieseseer s 5-13
5-9 External Interrupt—Register SEttiNGS.......cccvveevverrennirere e 5-15
5-10 System Management Interrupt—Register Settings.........ccocvoeeeverrennieicieieens 5-16
Tables Xiii

TABLES

Table . Page

Number Title Number

7-1 Address BitSfor PaCket O..........ccvieeerienrienenesiee e e see e seenes 7-3
7-2 Address Bitsfor [/O Reply Operations............ccoeveeererererenesenesienesienesiesesee e 7-5
7-3 Direct-Store BUS OPEratioNS..........coueierieriesiesiesiesiesieseessessessessessessessessessessessessens 7-6
7-4 Extended Address Transfer Code Definitions...........covevreinnnierinenneeeneneenes 7-6
81 IEEE Interface Signal DeSCIPtiONS...........covieererere e 8-5
82 Transfer Type Settings for Iwar x/stwex. Address-Only Operation 8-10
A-1 Bus and Memory Coherency Behavior SUMMarycccceevceevvenereneesninseenens A-1
D-1 Operations Required for Processor BuS Operations..........ccovereeenereereeneneenns D-5
E-1 Guide to ADDIeVIaLiONS.ccoirririee e e E-1
E-2 Coherency Actions—L 0ad OPErationS........ccocveerereereerieseseneseseseseseeseeeseenens E-2
E-3 Coherency Actions—Store OPErationS..........cvovvrrerererenreree s seseeresees E-5
E-4 Coherency Actions—LWARX Operations.........ccoovvviereniennsiesesnsesnsnsessesees E-8
E-5 Coherency Actions—STWCX OPEratioNS.........covvrerieresesieseseseseseseseseens E-11
E-6 Coherency Actions—DCBT OpPErationsS..........ccovvererrerinererrereeressereesessereesenens E-17
E-7 Coherency Actions—DCBTST Operations........cccvovvvieiieniesesiesnseseseseseens E-20
E-8 Coherency Actions—DCBZ OpErationsS...........ccocevererenenenenesiesiesessessesseneens E-22
E-9 Coherency Actions—DCBST OPErations.........ccuvuereirerenrerinenesereesesereesenens E-23
E-10 Coherency Actions—DCBF Operations..........ccccvvvvvieiesinsiesesiesesesesesennens E-27
E-11 Coherency Action—DCBI OpErationS.........ccucuvererenesesesiesesesieseseeseesseseens E-31
E-12 Coherency ActionS—ICBI OPErationS.........coeeirreereeineresrerenesesereeseseseesesens E-34
E-13 Coherency Actions—SY NC OpErationsS..........cccevereriesesesesesesesessessesseneens E-36
E-14 Coherency Actions—EIEIO Operations.......c..cuvuiirenisisiesiesesesnseseseseseens E-37
E-15 Coherency Actions—TLBIE OPErations...........cccuveeinrnieinennierie s E-37
E-16 Coherency Actions—TLBSYNC Operations...........ccocvvvveriesesiesesiesesesinneens E-37
E-17 Coherency Actions—Snoop-Kill Operations...........ccoevvvvenienenienesesesieseneens E-38
E-18 Coherency Actions—Snoop-Read OPerationscovvrerreeenerenierenesesereenenens E-39
E-19 Coherency Actions—Snoop-Read Atomic Operations..........ccoceevererereiereeens E-40
E-20 Coherency Actions—Snoop-RWITM Operations..........ccocverenienienienesieninnnens E-41
E-21 Coherency Actions—Snoop-RWITM Atomic Operations..........c.cceeevreeerennns E-41
E-22 Coherency Actions—Snoop-Flush Operations..........cccoeevieeerenrense e e E-42
E-23 Coherency Actions—SNo0oP-ClEaN.........cccvviiiiiniiiisese e E-42
E-24 Coherency Actions—Snoop-Write-with-Flush Operations...........ccoceevveevrnnnns E-43
E-25 Coherency Actions—Snoop-Write-with-Kill Operations............ccovevvereecrennns E-44
E-26 Coherency Actions—Snoop-Write-with-Flush-Atomic Operations................. E-45
E-27 Coherency Actions—Snoop-TLB-Invalidate Operations............c.cuvevreivrennnns E-46
E-28 Coherency Actions—Snoop-SYNC Operations..........covreeenerenrerereresereienennns E-46
E-29 Coherency Actions—Snoop-EIEIO OperationsS..........ccoovvivvvnenienieniesiesinsinnnnns E-46
E-30 Coherency Actions—Snoop-TLBSYNC Operations.........c.cvveverereseseseneens E-47
E-31 Coherency Actions—Snoop-1CBI Operations............ccovrreerrnerisenenereeenenens E-47
E-32 Coherency Actions—Snoop-RWNITC Operations...........ccuevvvieneneseseninnenns E-48
Xiv PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

About This Document

The primary objective of thisdocument isto provide adetailed functional description of the
60x bus interface, asimplemented on the PowerPC 601™, PowerPC 603™, and PowerPC
604™ family of PowerPC™ microprocessors. This document is intended to help system
and chip set developers by providing a centralized reference source to identify the bus
interface presented by the 60x family of PowerPC microprocessors. This document should
be used in conjunction with the individual microprocessors user's manuals, hardware
specifications, and the Power PC Microprocessor Family: The Programming Environments
(referred to as The Programming Environments Manual).

The 60x bus is the communication channel for the first generation of PowerPC
microprocessors. This bus description documents the current operations and system
implementation information for the following PowerPC processors:

» PowerPC 601 processor. The 601 isthe first PowerPC processor and is designed for
desktop, server, and workstation implementations and is designed to support
implementation in multiprocessing systems.

» PowerPC 603 processors. References to the 603 include the PowerPC 603e™
processors unless otherwi se specified. The 603 family of processorsisoptimized for
implementation in low-power systems, and includes bus support for power
management, but provides less support for multiprocessing than either the 601 or
604 families of processors.

» PowerPC 604 processors. References to the 604 include the PowerPC 604e™
processors unless specified otherwise. The 604 family of processorsis designed for
implementation in desktop, workstation, and server systems and provides extensive
support both for multiprocessing and for power management.

Although this book can be used as a general guide for the PowerPC 602™ processor, and
for some other 32-bit PowerPC processors, it does not include descriptions of operations
unique to that processor.

All of these processors support 32-bit addressing, and provide separate address and data
buses. All provide 64-bit data buses, and some allow the option of configuring the data bus
towork in an optional 32-bit mode.

About This Document XV

The 60x bus allows processors to access or otherwise communicate with other resources
that may share the bus, including system memory, secondary caches, 1/0 devices, bus
arbiters, and other devices. By and large, the 60x bus implementation is consistent among
the 601, 603, and 604; however, because the PowerPC architecture supports a broad range
of system implementations, each processor offers unique features.

Primary goals of thisbook are to provide the reader with an understanding of the operations
of the basic signals that are common to and required by all 60x processors as well as a
familiarity with those signals that are not common to all parts or required for basic
operation that can maximize the performance of a system implementation. To aid in this
understanding, this document focuses on the following bus rel ationships among current 60x
M Croprocessors:

* Genera bus characteristics
» Common bus characteristics
« Differences between current implementations

This document specifically describes the communication signals and protocols used by the
601, 603, and 604, and does not describe the power, test, and clock signals. For that
information, refer to the particular 60x microprocessor user’s manual.

In this document, the terms ‘601’, ‘603, ‘603€' ‘604’ ‘604€’, and ‘60x bus' are used as
abbreviations for ‘PowerPC 601 microprocessor’, ‘PowerPC 603 microprocessor’,
PowerPC 603e microprocessor’, ‘PowerPC 604 microprocessor’, PowerPC 604e
microprocessor’, and ‘ PowerPC 60x microprocessor businterface’, respectively. Theterms
‘processor bus interface’ and ‘interface’ are anal ogous with the 60x bus.

To locate any published errata or updates for this document, refer to the world-wide web at
http://www.mot.com/powerpc/ or at http://www.chips.ibm.com/products/ppc.

Audience

This document is intended for system and processor hardware developers who are
developing products that incorporate or interface with the 60x microprocessors. It can also
benefit software developers who work with products that use these microprocessors.

Organization
Following is a summary and brief description of the major sections of this manual:

e Chapter 1, “Overview,” isuseful for readers wanting ageneral understanding of the
features and functions of the PowerPC processor interface. It defines various
operational subsets of these features and functions.

e Chapter 2, “Signal Descriptions,” describes each processor input and output signal
and gives timing considerations.

XVi PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

» Chapter 3, “Memory Access Protocol,” describes the operation of the processor
interface for memory operations.

e Chapter 4, “Memory Coherency,” describes bus features and protocols for
maintaining coherency in uniprocessor and multiprocessor systems.

» Chapter 5, “ System Status Signals,” describes the operation of the interrupt,
checkstop, and reset signals. It also includes a brief overview of the asynchronous
exceptions, with particular attention given to the differences in how the 60x
processors implement those exceptions.

» Chapter 6, “Additiona Bus Configurations,” describes some aternate modes
available for the bus.

» Chapter 7, “Direct-Store Interface, ” describesthe optional direct-storeinterfacefor
synchronous I/O.

e Chapter 8, " System Considerations,” givesuseful information for designing systems
that use the processor bus.

e Appendix A, “Processor Summary,” summarizes the processor objectives and a
table comparing processor behavior.

» Appendix B, “Processor Clocking Overview,” describes the clocking for the 601,
603, and 604.

* Appendix C, “Processor Upgrade Suggestions,” describes considerations for
systems designed to allow a processor upgrade.

e Appendix D, “L2 Considerations for the PowerPC 604 Processor,” gives useful
information for those implementing an L2 cache on a system with a 604.

» Appendix E, “Coherency Action Tables,” provides a comprehensive table of

coherency actions that are generated in response to various bus operationsin
different contexts such asWIM bit settings, cache state, and bus states.

Suggested Reading

This section lists additional reading that provides background for the information in this
manual aswell as general information about the PowerPC architecture.

General Information

The following documentation provides useful information about the PowerPC architecture
and computer architecture in general:

» Thefollowing booksare avail able from the M organ-K aufmann Publishers, 340 Pine
Street, Sixth Floor, San Francisco, CA 94104; Tel. (800) 745-7323 (U.S.A.), (415)
392-2665 (International); internet address: mkp@mkp.com.

— The Power PC Architecture: A Specification for a New Family of RISC
Processors, Second Edition, by International Business Machines, Inc.

Updates to the architecture specification are accessible via the world-wide web
at http://www.austin.ibm.com/tech/ppc-chg.html.

About This Document XVi

— PowerPC Microprocessor Common Hardware Reference Platform: A System
Architecture, by Apple Computer, Inc., International Business Machines, Inc.,
and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple
Computer, Inc.

— Computer Architecture; A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson

Inside Macintosh: Power PC System Software, Addison-Wesley Publishing
Company, One Jacob Way, Reading, MA, 01867; Tel. (800) 282-2732 (U.S.A.),
(800) 637-0029 (Canada), (716) 871-6555 (International)

PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books
Worldwide, Inc., 919 East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404;
Tel. (800) 434-3422 (U.S.A.), (415) 655-3022 (International)

PowerPC Documentation
The PowerPC documentation is organized in the following types of documents:

User’'s manuals—These books provide details about individual PowerPC
implementations and are intended to be used in conjunction with The Programming
Environments Manual. These include the following:

— PowerPC 601™ RISC Microprocessor User’s Manual: MPC601UM/AD
(Motorola order #) and 52G7484/(MPR601UMU-02) (IBM order #)

— PowerPC 602™ RISC Microprocessor User’s Manual: MPC602UM/AD
(Motorola order #) and MPR602UM-01 (IBM order #)

— PowerPC 603e™ RISC Microprocessor User’s Manual with Supplement for
PowerPC 603 Microprocessor:
MPC603EUM/AD (Motorola order #) and MPR603EUM-01 (IBM order #)

— PowerPC 604™ RISC Microprocessor User’s Manual:
MPC604UM/AD (Motorola order #) and MPR604UMU-01 (IBM order #)

Programming environments manuals—These books provide information about
resources defined by the PowerPC architecture that are common to PowerPC
processors. There are two versions, one that describes the functionality of the
combined 32- and 64-bit architecture models and one that describes only the 32-bit
model.

— PowerPC Microprocessor Family: The Programming Environments, Rev 1:
MPCFPE/AD (Motorolaorder #) and G522-0290-00 (IBM order #)

— PowerPC Microprocessor Family: The Programming Environments for 32-Bit
Microprocessors, Rev. 1, MPCFPE32B/AD (Moatorola order #)

Implementation Variances Relative to Rev. 1 of The Programming Environments
Manual is available viathe world-wide web at http://www.mot.com/powerpc/ or at
http://www.chi ps.ibm.com/products/ppc.

Xviii

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

» Addenda/errata to user’'s manuals—Because some processors have follow-on parts
an addendum is provided that describes the additional features and changesto
functionality of the follow-on part. These addenda are intended for use with the
corresponding user’s manuals. These include the following:

— Addendum to Power PC 603e RISC Microprocessor User’s Manual: PowerPC
603e Microprocessor Supplement and User’s Manual Errata:
MPC603EUMAD/AD (Motorola order #) and SA14-2034-00 (IBM order #)

— Addendum to Power PC 604 RISC Microprocessor User’s Manual: Power PC
604e™ Microprocessor Supplement and User’s Manual Errata:
MPC604UMAD/AD (Motorola order #) and SA14-2056-01 (IBM order #)

» Hardware specifications—Hardware specifications provide specific data regarding
bus timing, signal behavior, and AC, DC, and thermal characteristics, aswell as
other design considerations for each PowerPC implementation. These include the
following:

— PowerPC 601 RISC Microprocessor Hardware Specifications:
MPC601EC/D (Motorola order #) and MPR601HSU-03 (IBM order #)

— PowerPC 602 RISC Microprocessor Hardware Specifications:
MPC602EC/D (Motorola order #) and SC229897-00 (IBM order #)

— PowerPC 603 RISC Microprocessor Hardware Specifications:
MPCG603EC/D (Motorola order #) and G522-0289-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID6-603e Hardware
Soecifications:
MPC603EEC/D (Motorolaorder #) and G522-0268-00 (IBM order #)

— PowerPC 603e RISC Microprocessor Family: PID7V-603e Hardware
Soecifications:
MPC603E7VEC/D (Motorolaorder #) and G522-0267-00 (IBM order #)

— PowerPC 604 RISC Microprocessor Hardware Specifications:
MPC604EC/D (Motorola order #) and MPR604HSU-02 (IBM order #)

— PowerPC 604e RISC Microprocessor Family: PID9V-604e Hardware
Soecifications:
MPCG604EQVEC/D (Motorola order #) and SA14-2054-00 (IBM order #)

e Technical Summaries—Each PowerPC implementation has atechnical summary
that provides an overview of itsfeatures. This document isroughly the equivalent to
the overview (Chapter 1) of an implementation’s user’s manual. Technical
summaries are available for the 601, 602, 603, 603e, 604, and 604¢e as well as the
following:

— PowerPC 620™ RISC Microprocessor Technical Summary: MPC620/D
(Motorola order #) and SA14-2069-01 (IBM order #)

About This Document Xix

» PowerPC Microprocessor Family: The Programmer’s Reference Guideisaconcise
reference that includes the register summary, memory control model, exception
vectors, and the PowerPC instruction set.

MPCPRG/D (Motorola order #) and MPRPPCPRG-01 (IBM order #)

» PowerPC Microprocessor Family: The Programmer’s Pocket Reference Guide:
Thisfoldout card provides an overview of the PowerPC registers, instructions, and
exceptions for 32-bit implementations.

MPCPRGREF/D (Motorola order #) and SA14-2093-00 (IBM order #)

» Application notes—These short documents contain useful information about
specific design issues useful to programmers and engineers working with PowerPC
processors.

« Documentation for support chips—These include the following:

— MPC105 PCI Bridge/Memory Controller User’s Manual:
MPC105UM/AD (Motorolaorder #)

— MPC106 PCI Bridge/Memory Controller User’s Manual:
MPC106UM/AD (Motorolaorder #)

Additional literature on PowerPC implementations is being released as new processors
become available. For a current list of PowerPC documentation, refer to the world-wide
web at http://www.mot.com/powerpc/ or at http://www.chips.ibm.com/products/ppc.

Conventions
This document uses the following notational conventions:

ACTIVE_HIGH Names for signals that are active high are shown in uppercase text
without an overbar.

ACTIVE_LOW A bar over asignal name indicates that the signal is active low—for
example, ARTRY (addressretry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signals that are not active low, such as
AP[0-3] (address bus parity signals) and TT[0-4] (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

SYS (or SYS) This prefix is used to distinguish signals coming from the system bus
from one on the 60x processor that otherwise have the same name.

mnemonics I nstruction mnemonics are shown in lowercase bold.

OPERATIONS Address-only bus operations that are named for the instructions that
generate them areidentified in uppercase letters, for example, ICBI,
SYNC, TLBSYNC, and EIEIO operations.

italics Italics indicate variable command parameters, for example, beetr x
0x0 Prefix to denote hexadecimal number
0b0 Prefix to denote binary number

XX PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

rA,rB

rA|0

rD

frA, frB, frC
frD
REG[FIELD]

n

Acronyms and Abbreviations

Instruction syntax used to identify a source GPR
The contents of a specified GPR or the value 0
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR

Abbreviations or acronymsfor registers are shown in uppercase text.
Specific bits, fields, or ranges appear in brackets. For example,
MSR[LE] refersto the little-endian mode enable bit in the machine

state register.

In certain contexts, such asasignal encoding, thisindicatesadon’t

care.

Used to express an undefined numerical value.

Tablei contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms

Term Meaning
ALU Arithmetic logic unit
ASR Address space register
BAT Block address translation
BIST Built-in self test
BIU Bus interface unit
BUID Bus unit ID
COP Common on-chip processor
CR Condition register
CTR Count register
DABR Data address breakpoint register
DAR Data address register
DBAT Data BAT
DEC Decrementer (register)
DSISR Register used for determining the source of a DSI exception
DTLB Data translation look-aside buffer
EA Effective address
EAR External access register
ECC Error checking and correction

About This Document

XXi

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
ETP Extended transfer protocol
EX Exclusive state (includes shared, S, and exclusive unmodified, E)
FIFO First-in, first-out
FPR Floating-point register
FPSCR Floating-point status and control register
FPU Floating-point unit
GPR General-purpose register
HIDn Hardware implementation-dependent register
IABR Instruction address breakpoint register
IBAT Instruction BAT
IEEE Institute of Electrical and Electronics Engineers
ITLB Instruction translation look-aside buffer
JTAG Joint Test Action Group
L2 Secondary cache
LR Link register
LRS Ilwarx reservation set
LRU Least recently used
LSB Least-significant byte
Isb Least-significant bit
MESI Modified/exclusive/shared/invalid—cache coherency protocol
MMCRn Monitor mode control register n
MMU Memory management unit
MSB Most-significant byte
msb Most-significant bit
MSR Machine state register
NaN Not a number
No-op No operation
OEA Operating environment architecture
PID Processor identification tag
PLL Phase-locked loop
PMCn Performance monitor control (register) n
PMI Performance monitor interrupt

XXii PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table i. Acronyms and Abbreviated Terms (Continued)

Term Meaning
PTE Page table entry
PTEG Page table entry group
PVR Processor version register
RdA Read atomic
RISC Reduced instruction set computing/computer
RTL Register transfer language
RWITM Read with intent to modify
RWITMA Read with intent to modify atomic
SBR Single-beat read
SBRA Single-beat read atomic
SBW Single-beat write
SDR1 Register that specifies the page table base address for virtual-to-physical address translation
SLB Segment lookaside buffer
SPR Special-purpose register
SPRGn Registers available for general purposes
SR Segment register
SRRO (Machine status) save/restore register 0
SRR1 (Machine status) save/restore register 1
TAP Test access port controller
B Time base register
TLB Translation lookaside buffer
UISA User instruction set architecture
VEA Virtual environment architecture
WWF Write with flush
WWFA Write with flush atomic
WWK Write with kil
XATC Extended address transfer code
XER Register used for indicating conditions such as carries and overflows for integer operations

About This Document

xXiii

XXiv PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Chapter 1
Overview

This chapter gives an overview of the businterface common to the 60x microprocessors. It
describes the operation and features of this interface, lists all the microprocessor signals,
shows differences between the three microprocessorsin the use and number of signals, and
defines various operational subsets of signals, and in particular identifies those that are
required for any system.

This bus description documents the current operations and system implementation
information for the following PowerPC™ processors:

» PowerPC 601™ processor. The 601 is the first PowerPC processor and is designed
for desktop, server, and workstation implementations and is designed to support
implementation in multiprocessing systems.

e PowerPC 603™ processors. References to the 603 include the PowerPC 603e™
processors unless otherwise specified. The 603 family for processorsis optimized
for implementation in low-power systems, and includes bus support for power
management, but provides less support for multiprocessing than either the 601 or
604 families of processors.

* PowerPC 604™ processors. References to the 604 include the PowerPC 604e™
processors unless otherwise specified. The 604 family of processorsis designed for
implementation in desktop, workstation, and server systems and provides extensive
support both for multiprocessing and for power management.

Although thisbook can be used asageneral guide for the PowerPC 602™ processor, it does
not include descriptions of the specific operations that are unique to that processor.

1.1 PowerPC 60x Microprocessor Interface

The 601, 603, and 604 support a range of systems, including low-power and notebook
machines, low-cost desktop personal computers, high-performance workstations, and
multiprocessor server systems. To meet those needs, the interface to these processors was
defined with a minimum set of functions and 32-bit or 64-bit data bus modes, as well as
optional performance and function enhancement signals and modes.

Chapter 1. Overview 1-1

The 60x bus definition is based on the Motorola 88110 bus definition. This interface runs
synchronous to the system clock. Inputs are sampled at and outputs are driven from the
rising edge of the system clock. This processor bus provides two transfer protocols:

» Thebasic transfer protocol is used to access norma memory segments. This
protocol supportstransfer of any number of 32- or 64-bit continuous byteswithin an
aligned double word to any addressin the 32-bit address range. It also supports the
use of burst transfers and multiple-beat transfers that transfer up to 64 bits of data
during each beat.

« Direct-store operations (el sewherereferred to as extended transfer protocol, or ETP)
useadlightly different protocol for accessing the direct-store segments asdefined in
the PowerPC architecture. This protocol provides an extended address, support for
split transactions, and a positive reply for each transaction. The synchronous nature
of this protocol limitsits performance compared to the basic protocol, but provides
for enhanced error recovery. Thisfunctionality is now considered optiona to the
PowerPC architecture and is not supported in al PowerPC processors, for example
in second generation processorsin the 603 family.

The PowerPC architecture includes the following:
« An address space shared by al processing elementsin the system

* A weakly-ordered memory model that all ows processorsto improve performance by
reordering loads and stores

* A set of explicit cache management and translation lookaside buffer (TLB)
management instructions that can be broadcast by the processor to allow software
control of cachesin asingle- or multiple-processor environment

* Instructions for synchronizing operations between different processors

Each processor has a separate address and data bus. In the basic transfer protocol, these
separate buses may be used to implement coupled address and data tenures typical of low-
end personal computers, or they may be used to implement advanced features such as
address pipelining, which allows a new bus transaction to begin before the current
transaction has finished, and split-bus transactions, which allows the address bus and data
bus to have separate masters at the same time.

The processor bus supports full write-back cache coherency, bus snooping, transaction
retry, and snoop copy-back operations, although it should be noted that each processor may
not implement all such features and that some processors may implement such featuresin
amore sophisticated manner.

The bus defines signals that support access from multiple masters, including other
processors and devices, with arbitration provided by the system implementation.

1-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

1.2 PowerPC System Block Diagram

Figure 1-1 shows the processor bus in a typica system design. The bus provides a
communications layer between one or more PowerPC processors, the memory controller,
the system-provided arbiter, a bridge to an expansion bus for system 1/O, and optionally a
high-speed 1/0 adaptor such as a graphics adaptor. The processor component may have an
external cache. This bus supports cache implementations that are in-line or lookaside and
that are write-through or write-back.

- — —n
| Processor | Processor Memory
| and Cache | ‘ ‘ ‘ ‘ ‘ and Cache Controller | p» Memory
\ \
L — R
A A A
- y y y p Processor
A A A Bus
N A y Y
| Graphics | System Bridge to
| Adaptor ‘ Arbiter Expansion | p System l/O
| ‘ Bus
L - — — 4

Figure 1-1. Typical System Diagram with Processor Bus

1.3 Processor Bus Features

The processor bus provides high performance and adaptability to various system
environments. Features of this bus include the following:

» Bus operation greater than 66 MHz with 601, 603, and 604

« Maintenance of coherency for external cache

» Support for split transactions

» Support for pipelined bus transactions

e Support for address-only bus transactions used primarily for cache control

» Support for multiprocessor configurations

» Optiona performance enhancements

Note that not al processorsin the 60x family may support al available features.

Chapter 1. Overview 1-3

1.4 Bus Interface Signals

Figure 1-2 shows the PowerPC processor view of al signals. Signals that are part of the
basic set are shown as solid lines. Those that are optional and provide enhanced functions
or performance are shown as dashed lines.

* BR ¢ 0BG
Address Bus BG DBWO Data Bus
Arbitration > < Arbitration
ABB BB
- P f——MMMMM P
Address . TS } DH[0-31], DL[0-31]
Transfer Start ' XATS DP[0-7]
— DPE Data Transfer
* A[0-31] I —
- P
Address AP[0-3] <DBDIS—
- P —
Transfer
APE TA]
— DRTRY Data Transfer
<« 4 > < Termination
_ TEA
TBST I —
- P —
TSI1Z[0-2] INT]
. e — f————————————
Address | g—C0 | lSM__
Transfer cl MCP
. f———————
Attribute | ~®———
- la@CKSTPIN | System Status
GBL CKSTP_OUT »
< CSEn - HRESET
HP_SNP_REQ ; < SRESET
[AACK RSRV]
Address | ————— —————®>| —————»
Transfer | g ARTRY o] N b cessor
Termination SHD TBEN State
- -
— TLBISYNC
(Processor Specific)]
— | Power
(Processor Specific) Management
| =
vCcC ~

Figure 1-2. Processor Bus Signals

1-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

The signal groupingsin Figure 1-2 are described in Table 1-1.

Table 1-1. 60x Signal Groupings

Signal Group

Functionality

Address bus arbitration

Used to arbitrate for the address bus

Address transfer start

Indicate that the bus master has begun a transaction on the address bus

Address transfer

Used to transfer the address and to ensure the integrity of the transfer

Address transfer attribute

Provide information about the type of transfer

Address transfer termination

Indicate the end of the address phase or the need to repeat the address phase

Data bus arbitration

Used to arbitrate for the data bus mastership

Data transfer

Used to transfer the data and ensure the integrity of the transfer

Data transfer termination

Indicate the end of a data transfer or that the data phase should be repeated

System status

Indicate interrupts and system resets

Processor state

Used to manage the processor state

Power management

Provide a means for a processor and system to cooperate in power management
operations. The specific signals for each processor are identified in Table 1-2.

The evolution of the processors and the target market for the processors dictated that some
of these signals are not supported on some processors, have different pin counts, or may
operate differently on some processors. Those differences are described in Section 2.12,
“Summary of Signal Differences”

Table 1-2 briefly describes each signal function and provides a reference to the detailed
description of the signal state meanings and timing considerations in Chapter 2, “Signal
Descriptions.”

Table 1-2. Use and Reference for Bus Signals

Application
Signal (e} Function Section
Basic [L2 | MP | Opt.
Address Bus Arbitration Signals
Bus request (BR) v | Requests mastership of the bus v 2.1.1
Bus grant (BG) v Indicates bus ownership if properly qualified v 2.1.2
Address bus busy (ABB) | V| V | Indicates whether the address bus is busy v [2.13
214
Address Transfer Start Signals

Transfer start (TS) v | V| Indicates that the master has begun a v 221
transaction to memory 2.2.2

Extended transfer start v | V| Indicates that the master has begun a v [2.23
(XATS) transaction to a direct-store address 224

Chapter 1. Overview 1-5

Table 1-2.

Use and Reference for Bus Signhals (Continued)

Application
Signal 110 Function Section
Basic L2 | MP | Opt.
Address Transfer Signals
Address bus (A[0-31]) v | v | Indicates the real address of the bus transaction| v 2.3.1-
2.34
Address parity (AP[0-3]) |V |V | Gives odd parity for each address byte v [2.35
2.3.6
Address parity error (APE) Vv [Indicates detection of address bus parity error v [237
Address Transfer Attribute Signals
Transfer type (TT[0-4]) v | V| Indicates the type of transfer in progress v 2.4.1
24.2
Transfer burst (TBST) v | V| Indicates that a burst transfer is in progress v 2.4.3
244
Transfer size (TSIZ[0-2]) |V |V |Indicates the size in bytes of transfer in progress| v 245
246
Transfer code (TCn) Vv | Gives information about the transaction for v 247
external cache operations
Cache inhibit (CI) Vv | Indicates whether a transfer can be cached v 2.4.8
Write-through (WT) Vv | Indicates whether a transaction is write-through v 2.4.9
Global (GBL) v | V| Indicates that a transaction is global and that v 2.4.10
data coherence is required 2.4.11
Cache set element V | Represents the cache replacement set element v o [2.4.12
(CSEn)) of the current transaction
High-priority snoop v 601 only: Used to indicate when the reserved v [2.4.13
request (HP_SNP_REQ) position in the write queue is needed for a push
operation resulting from a snoop hit
Address Transfer Termination Signals
Address acknowledgment |V Indicates that the address portion of a v 251
(AACK) transaction is complete
Address retry (ARTRY) V| V | Asserted when the address tenure must be v 252
retried 253
Shared (SHD) Vv | V| As an output, indicates the master hit a shared v 25.4
cache block. As an input, indicates the incoming 255
cache block should be marked shared (S)
Data Bus Arbitration Signals
Data bus grant (DBG) v Indicates the master may, with proper v [26.1
qualification, assume ownership of the data bus
Data bus write only v Indicates an outstanding write may precede a v 262
(DBWO) pipeline read
1-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 1-2. Use and Reference for Bus Signals (Continued)

Application
Signal (0] Function Section
Basic L2 | MP | Opt.
Data bus busy (DBB) Vv [Indicates the data bus is busy v [2.6.4
Data Transfer Signals
Data bus V [Represents the data being transferred v 271
(DH[0-31];DL[0-31]) 2.7.2
Data bus parity (DP[0-7]) v | Represents odd parity for the data bytes v 273
2.7.4
Data parity error (DPE) V | Forces processor to put data bus in high- v 275
impedance state during a write data tenure;
other processor operations are unaffected.
Data bus disable (DBDIS) Indicates to the processor that a write v 276
transaction should be stopped
Data Transfer Termination Signals
Transfer acknowledge (TA) Indicates that a single-beat data transfer v 281
completed successfully
Data retry (DRTRY) Invalidates read data sent to processor with TA v [2.8.2
in the previous cycle. On hard reset, is used to
configure some alternate modes.
Transfer error Indicates that a bus error occurred v 2.8.3
acknowledgment (TEA)
System Status Signals
Interrupt (INT) Indicates an external interrupt to the processor v 29.1
System management Indicates a system management interrupt to the v [2.9.2
interrupt (SMI) processor
Machine check (MCP) Indicates a machine check exception v 1293
Checkstop input Indicates the processor must stop operation v [29.4
(CKSTP_IN) (checkstop)
Checkstop output Vv [Indicates the processor has detected a v [2.95
(CKSTP_OUT) checkstop condition
Hard reset (HRESET) Initiates a hard reset exception v 2.9.6
Soft reset (SRESET) Initiates a soft reset exception v [29.7
Processor State Signals
Reservation (RSRV) Vv [Indicates that a reservation generated by a v 2.10.1
Ilwarx instruction exists in the processor
External cache Indicates intervention from other bus masters v 2.10.2
intervention (L2_INT)
Time base enable (TBEN) Indicates the time base should continue clocking v [2.10.3
Chapter 1. Overview 1-7

Table 1-2. Use and Reference for Bus Signhals (Continued)

Application
Signal 110 Function Section
Basic L2 | MP | Opt.

TLBI synchronization v 603: Indicates execution should stop after a v 12104
(TLBISYNC) tlbsync instruction

Power Management Signals

Quiescent request v [601: Indicates the 601 is ready to enter a soft v o[211.1

(QUIESC_REQ) stop state

System quiesced v 601: Indicates to the 601 that the system is v o[2.11.2

(SYS_QUIESC) ready for the soft stop state

Resume (RESUME) v 601: Indicates to resume normal processing v [2.113

Quiescent request v [603: Requests all bus activity requiring v o [2.11.4

(QREQ) snooping to pause

Quiescent acknowledge v 603: Indicates all bus activity that requires v o [2.115

(QACK) snooping has paused

Halted (HALTED) v [604: Indicates the 604 has entered a low-power v o [2.11.6
state

Run (RUN) v 604: Indicates to keep snooping in low-power v o|211.7

state

The four columns under the heading, ‘application’ in Table 1-2 are described as follows:

Basic operations—Signalsin the column labeled * Basic’ in Table 1-2 arerequired to
build asimple, uniprocessor system with one bus, no external cache, and no support
for bus pipelining. Within this set of signals, TT4 is optional and, as shown in
Table 3-1, is used to identify additional transactions that can be snooped.

L2 cache support—Signalsin the ‘L2’ column in Table 1-2 are required to support
an external cache. For example, TC[0-2] are necessary to indicate the type of
transaction. However, some of these signals are optional for some system designs.
For instance, awrite-through external cache would not need the WT signal, or a
cache that responds only to burst operations would not need the CI signal.

Multiprocessor support—The signals GBL, SHD, and BG, listed in the ‘MP’
column, support memory coherency for systems with masters other than the
processor including multiprocessor systems. Chapter 4, “Memory Coherency,”
provides detailed information on memory coherency. The BG signal would be used
to assign the busin systemsin which the busis shared by multiple devices, in which
case the GBL signal would be interconnected between all devices to ensure cache
coherency. Optionally the GBL and SHD signals could be connected to a bridge for
snooping. The bridge would set it to a known state.

1-8

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

» Enhanced operation—The signalsin the ‘optional’ column (labeled ‘ Opt.’) provide
additional functions and performance enhancements, including the following:

— Address bus arbitration—The ABB signal is optional because it can be derived
from other signalsif all masters refrain from taking the address bus from the
beginning of TS through the end of AACK.

— Parity signals—Address and data parity signals, AP[0-3], APE, DP[0-7], and
DPE, are optional. Low-end and low-cost systems, for example some personal
computers, may not check or generate parity on either addresses or data. Higher-
cost systems may generate parity for only data. High-end systems may generate
parity for both addresses and data and may use the processor-generated
indications of parity errorsto control other system components.

— Address pipeline—Separate data bus arbitration and granting signals allow
independent operation of address and data bustenures. The DBWO signal allows
the processor to run a data bus tenure for an outstanding write address even if a
read address is pipelined before it.

— Dataretry—The DRTRY signal is used to support speculative forwarding of
data.

— Interrupts—Some processors have an additional system management interruptin
addition to the hardware interrupt defined by the PowerPC architecture. This
interrupt is signaled by asserting the SMI signal.

— Soft reset—The soft reset signal, SRESET, is used to initiate a soft reset, atype
of system reset that is not defined by the PowerPC architecture but implemented
on most PowerPC processors.

— Power management—Some processors support the use of the QUIESC_REQ),
SYS QUIESC, RESUME, QREQ, QACK, RUN, and HALTED signalsto
control power consumption allowing power to be removed from certain portions
of the processor when not in use.

— 603 address trandlation—Because the 603 is optimized for low-power,
uniprocessor systems, hardware support is not provided for table search
operations.

— Extended transfer start—The XATS signal supports the direct-store accesses.
Chapter 7, “Direct-Store Interface,” describes the direct-store interface and the
effect this protocol has on TT[0-4], TBST, TSIZ[0-2], and A[0-31].

Chapter 1. Overview 1-9

1-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Chapter 2
Signal Descriptions

This chapter describes the external signals used by the PowerPC 601, PowerPC 603, and
PowerPC 604 processors, identifying both the set of signals that are common to all 60x
processors as well as indicating characteristics of individual processor implementations. It
contains a concise description of individual signals, showing behavior when the signal is
asserted and negated and when the signa is an input and an output. Note that the
descriptions in this chapter are intended to provide a quick summary of signal functions.
Subsequent chapters describe the operation of many of these signalsin greater detail, both
with respect to how individual signals function and how groups of signalsinteract.

NOTE

A bar over asignal name indicates that the signal is active low—for
example, ARTRY (addressretry) and TS (transfer start). Active-low
signals are referred to as asserted (active) when they are low and
negated when they are high. Signalsthat are not active low, such as
AP[0-3] (address bus parity signals) and TT[0-4] (transfer type
signals) are referred to as asserted when they are high and negated
when they are low.

The clock, power, and test signals are not described in this document. Refer to the user’s
manual for the particular processor for this information.

The bus signal descriptions in this chapter are grouped by the categories shown in
Figure 1-2. The section names in this chapter correspond to those groups as defined in
Section 1.4, “BusInterface Signals.” The sections describe state and timing descriptionsfor
each signal and indicate if a signal is an input or an output with respect to a PowerPC
processor. If asignal is both, the output characteristics are described first. The description
is from the perspective of the processor; no attempt is made to describe these signals as an
arbiter, slave, or target would see them.

The differences between how signals are implemented on different processors is
summarized in Section 2.12, “ Summary of Signal Differences”

Chapter 2. Signal Descriptions 2-1

2.1 Address Bus Arbitration Signals

To access the address bus, a device must request and gain bus mastership. Bus arbitration
signals are a collection of input and output signals bus devices use to request the address
bus, recognize when the request is granted, and indicate to other devices when mastership
is granted. For detailed descriptions and timing diagrams that show how these signals
interact, see Section 3.2.1, “Address Bus Arbitration.”

2.1.1 Bus Request (BR)—Output
Following are state and timing descriptions for the bus request (BR) as an output signal.

State M eaning

Timing Comments

Asserted—A deviceisrequesting address bus mastership. BR can be
asserted for one or more cyclesand then deasserted dueto aninternal
cancellation of the bus request (for example, dueto the loss of a
memory reservation).

Negated—No device is requesting the address bus. The device may
have no bus operation pending, it may be parked, or the ARTRY
input was asserted on the previous bus clock cycle.

Assertion—A bustransaction is needed and the device does not have
aqualified bus grant. This may occur even if the maximum (two for
the 601and 603, three for the 604) possible pipeline accesses have
occurred. For the 603, BR is asserted for one cycle during execution
of adcbz or of aload instruction that hits in the touch load buffer.

Negation—Occursfor at least one bus clock cycle after an accepted,
qualified bus grant (see BG and ABB), even if another transactionis
pending. It isalso negated for at least one cycle after the assertion of
ARTRY, unless that processor caused the assertion of ARTRY to
perform a cache block push for that snoop operation.

2.1.2 Bus Grant (BG)—Input
Following are state and timing descriptions for the bus grant (BG) as an input signal.

State Meaning

Asserted—The device may, with the proper qualification, assume
mastership of the address bus. A qualified bus grant occursin agiven
cycle when the following conditions are met:

o BGisasserted.

» No address cycleisin progress (as marked by ABB or the TS-
through-AACK interval).

« ARTRY isnegated and was negated on the previous cycle (not
considered on 601).

The assertion of BR is not required for the qualified bus grant (for
example, the parked case).

2-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Timing Comments

Note that the 601 recognizes a qualified bus grant on the cycle after
AACK evenif ARTRY is asserted aslong asthe 601 is asserting
ARTRY and has exclusive ownership of the data associated with the
snoop that caused the ARTRY. The ABB and ARTRY signals are
driven by the bus master. If the processor is parked, BR need not be
asserted for the qualified bus grant.

Negated—The device is not the next potential address bus master.

Assertion—May occur at any time to indicate the deviceisfree to
use the address bus. After the processor gains bus mastership, it does
not check for aqualified bus grant again until the cyclein which the
address bus tenure compl etes (assuming it has another transaction to
run). The processor does not accept aBG in the cycles between the
assertion of any TS or XATS through to the assertion of AACK.

Negation—May occur at any time to indicate the device cannot use
the bus. However, the device still assumes mastership on the bus
clock cycle BG is negated because, in the previous cycle, BG
indicated to the device that it could take mastership (if qualified).

2.1.3 Address Bus Busy (ABB)—Output
Following are state and timing descriptions for address bus busy (ABB) asan output signal.

State Meaning

Timing Comments

Asserted—The device is the address bus master.

Negated—Thedeviceisnot using the address bus. If ABB isnegated
in the bus clock cycle after a qualified bus grant, the device did not
accept mastership, even if BR was asserted. This can occur if a
potential transaction is aborted internally before it started.

Assertion—Occurs on the bus clock cycle after a qualified bus grant
that is accepted by the device (see Negated).

Negation—Occurs for afraction of the bus clock cycle after AACK
isasserted. If ABB is negated in the bus clock cycle after aqualified
BG, the device did not accept mastership, even if BR was asserted.

High Impedance—Occurs during afractional portion of the bus
cyclein which ABB is negated. ABB is guaranteed by design to be
high impedance by the end of the cycle in which it is negated. For
specific information, see the particular processor’s user’s manual.

Chapter 2. Signal Descriptions 2-3

2.1.4 Address Bus Busy (ABB)—Input
Following are state and timing descriptions for ABB as an input signal.

State M eaning Asserted—The address bus is being used by another master, which
effectively keeps the device from assuming address bus ownership,
regardless of the BG input. The processor will not take the address
bus for the sequence of cycles beginning with TS and ending with
AACK, which effectively makesABB optional if other bus masters
respond in the same way as the processor.

Negated—The address busis not owned by another bus device and
is available when accompanied by a qualified bus grant.

Timing Comments Assertion—May occur when the other devices must be prevented
from using the address bus (and the processor is not currently
asserting ABB).

Negation—May occur whenever the master can use the address bus.

2.2 Address Transfer Start Signals

Address transfer start signals are input and output signals that indicate that an address bus
transfer has begun. The transfer start (TS) signal identifies the operation as a memory
transaction; extended address transfer start (XATYS) identifies the transaction as a direct-
store operation. For detailed information about how TS and XATS interact with other
signals, refer to Section 3.2.2, “Address Transfer,” and Chapter 7, “ Direct-Store I nterface,”
respectively.

2.2.1 Transfer Start (TS)—Output
Following are state and timing descriptions for transfer start (TS) as an output signal.

State Meaning Asserted—The master has begun a memory bus transaction and the
address bus and transfer attribute signals are valid. When asserted
with the appropriate TT[0-4] signals, it is also an implied data bus
request for amemory transaction (unless TS output is an address-
only operation).

Negated—Has no special meaning. However, TSis negated
throughout an entire direct-store address tenure.

Timing Comments Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after TS is asserted.

High Impedance—(601 and 603) Occurs one bus clock cycle after
TSis negated, which is coincident with the negation of ABB.

High Impedance—(604) Occurs one bus clock cycle after the
negation of TS. For the 604, the TS negation is only one bus cycle
long, regardless of the TS-to-AACK delay.

2-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

2.2.2 Transfer Start (TS)—Input
Following are state and timing descriptions for TS as an input signal.

State M eaning

Timing Comments

Asserted—Another master began a bus transaction and the address
bus and transfer attribute signals are valid for snooping (see GBL).

Negated—No bus transaction is occurring.

Assertion—May occur any time outside the address tenure window:
either the interval that includes the cycle of aprevious TS assertion
through the cycle after AACK or the cyclesin which ABB isasserted
for a previous address tenure, whichever is greater.

Negation—Must occur one bus clock cycle after TS is asserted.

2.2.3 Extended Address Transfer Start (XATS)—Output (Direct-Store)
Following are state and timing descriptions for extended address transfer start (XATS) as

an output signal.
State Meaning

Timing Comments

Asserted—The master began a direct-store operation and the first
address cycleisvalid. When asserted with the appropriate extended
address transfer code (XATC) signals, it is also an implied data bus
request for certain direct-store operations (unless it is an address-
only operation).

Negated—Has no special meaning; however, XAT S remains negated
throughout an entire memory address tenure.

Assertion—Coincides with the assertion of ABB.
Negation—Occurs one bus clock cycle after the assertion of XATS.

High Impedance—(601 and 603) Occurs one bus clock cycle after
the negation of XATS, which coincides with the negation of ABB.

High Impedance—(604) Occurs one bus clock cycle after the
negation of XATS. For the 604, X AT S negationisonly onebuscycle
long, regardless of the XATSto-AACK delay.

2.2.4 Extended Address Transfer Start (XATS)—Input (Direct-Store)
Following are state and timing descriptions for XATS as an input signal.

State Meaning

Timing Comments

Asserted—The master must check for a direct-store operation reply.
Negated—There is no need to check for a direct-store reply.

Assertion—May occur at any time outside of the cycles that define
the window of an address tenure. This window is marked by either
the interval that includes the cycle of a previous XATS assertion
through the cycle after AACK or by the cyclesin whichABB is
asserted for a previous address tenure, whichever is greater.

Negation—Must occur one bus clock cycle after XATS is asserted.

Chapter 2. Signal Descriptions 2-5

2.3 Address Transfer Signals

The address transfer signals are used to transmit the address and to generate and monitor
parity for the address transfer. For detailed descriptions of how these signals interact, see
Section 3.2.2, “Address Transfer.”

2.3.1 Address Bus (A[0-31])—Output (Memory Operations)

Following are state and timing descriptions for the address bus (A[0-31]) as output signals
during memory operations.

State M eaning Asserted/Negated—Representsthe physical address of the datato be
transferred. On burst transfers, the address bus presents the double-
word—aligned address (quad-word—aligned for the 601) with the
critical data that missed the cache on aread operation, or the first
double word of the cache clock on awrite operation. Note that the
address output during burst operations is not incremented.

Timing Comments Assertion/Negation—Occurs on the bus clock cycle after aqualified
bus grant (coincides with assertion of ABB and TS).

High Impedance—Occurs one bus clock cycle after AACK is
asserted.

2.3.2 Address Bus (A[0-31])—Input (Memory Operations)

Following are state and timing descriptions for A[0-31] as input signals for memory
operations.

State Meaning Asserted/Negated—Carries the address of a snoop operation.

Timing Comments Assertion/Negation—Must occur on the same bus clock cycle asthe
assertion of TS; is sampled by the processor only on this cycle.

2.3.3 Address Bus (A[0-31])—Output (Direct-Store Operations)

Following are state and timing descriptions for A[0— 31] as output signals for direct-store
operations.

State Meaning Asserted/Negated—For direct-store operations from this device, the
address tenure consists of two packets (each requiring a bus cycle).
For packet 0, these signals convey control and tag information. For
packet 1, they represent the physical address of the data to be
transferred. For reply operations to other devices, the address bus
carries control, status, and tag information.

Timing Comments Assertion/Negation—An address tenure consists of two beats. The
first occurs on the bus clock cycle after aqualified bus grant,
coinciding with XATS. The address bus makes a transition to the
second beat on the next bus clock cycle.

High Impedance—Occurs the bus clock cycle after AACK is
asserted.

2-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

2.3.4 Address Bus (A[0-31])—Input (Direct-Store Operations)

Following are state and timing descriptions for A[0-31] as input signals for direct-store
operations.

State M eaning Asserted/Negated—When the processor receiving A[0-31] signalsis
not the master, it snoops (and checks address parity) on only thefirst
address beat of all direct-store operations for 1/O reply operations
whose receiver tags match the processor identification (PID) tag. See
Section 7.1, “Direct-Store Transaction Protocol Details.”

Timing Comments Assertion/Negation—Thefirst beat of the /O transfer addresstenure
coincideswith XATS, with the second address beat on the next cycle.

2.3.5 Address Bus Parity (AP[0-3])—Output

Following are state and timing descriptions for the address bus parity signals (AP[0-3]) as
output signals.

State Meaning Asserted/Negated—Represents one bit of odd parity for each of four
address bus bytes. Odd parity means an odd number of bits,
including the parity bit, are driven high. Signal assignments are as
follows:

AP0 A[0-7]
APl A[8-15]

AP2 A[16-23]
AP3 A[24-31]

For more information, see Section 3.2.2.1, “Address Bus Parity.”
Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

2.3.6 Address Bus Parity (AP[0-3])—Input
Following are state and timing descriptions for AP[0-3] asinput signals.

State Meaning Asserted/Negated—Represents one bit of odd parity for each of four
address bus bytes for snooping and direct-store operations.
Depending on MSR[ME] and various HIDO bits, detecting even
parity either causes the processor to enter the checkstop state or take
amachine check exception. If address parity check isenabledin
HIDO, detection of even parity unconditionally causesacheckstopin
the 601. (See the APE signal description.)

Timing Comments Assertion/Negation—The same as A[0-31].

Chapter 2. Signal Descriptions 2-7

2.3.7 Address Parity Error (APE)—Output

Following are state and timing descriptionsfor the address parity error (APE) output signal.
Note that APE is an open-drain type output and requires an external pull-up resistor to
assure proper deassertion.

State M eaning Asserted—The processor detected incorrect address bus parity on a
snoop for atransaction type it recognizes and can respond to, such as
the first address beat of a direct-store operation. The 603 does not
assert APE if address parity checking is disabled.

Negated—The processor did not detect even address bus parity.

Timing Comments Assertion—Occurs the second bus clock cycle after TS or XATS is
asserted.

High Impedance—Occurs the third bus clock cycle after TS or
XATS s asserted.

2.4 Address Transfer Attribute Signals

Thetransfer attribute signalsfurther characterize the transfer—indicating such things asthe
transfer size, whether it is aread or write, and whether it is aburst or single-beat transfer.
For a detailed description of how these signals interact, see Section 3.2.2, “Address
Transfer.” Some signalsthat function oneway for memory operations may work differently
for direct-store accesses; see Chapter 7, “Direct-Store Interface.”

2.4.1 Transfer Type (TT[0-4])—Output

Following are state and timing descriptionsfor the transfer type signals (TT[0-4]) as output
signals.

State Meaning Asserted/Negated—Table 2-1 defines the transactions identified by
the TT[0-4] signals. Thetable gives the type of transaction the type
of datatransferred, the source or cause of the transfer, and the
processors that support these transaction types as master or when
snooping. Some codes in this table are reserved. Notice that the
encoding has been chosen to simplify decoding. For example, TT1is
generaly zero for writes and one for reads or TT3 is generally zero
for an address-only operation.

For afull description of coherency actions, see Appendix E,
“Coherency Action Tables.”

For direct-store operations, these signals are part of the extended
address transfer code (XATC) along with TSIZn and TBST:

XATC(0-7) = TT(0-3)|[TBST||TSIZ(0-2).
TT4 isdriven negated as an output on the 601.
Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

2-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

2.4.2 Transfer Type (TT[0-4])—Input
Following are state and timing descriptions for TT[0—4] asinput signals.

State M eaning

Asserted/Negated—Table 2-1 defines the transactions identified by

TT[0-4]. For afull description of coherency actions, see
Appendix E, “Coherency Action Tables.”

For direct-store operations, TT[0-3] form part of the XATC and are
snooped if XATS s asserted.

Timing Comments Assertion/Negation—The same as A[0-31].

Table 2-1. Transfer Encoding for PowerPC 601, 603, 604 Processors

Bus Master Transactions

Processor Support

TT
[0-4]) "
Transaction Transfer Source Initiator Snooper
00000 | Clean block Address only dcbst 601, 604 601, 604
00100 | Flush block Address only dcbf 601, 604 601, 604
01000 |SYNC Address only sync 601, 604 601, 604
01100 |Kill block Address only Store hit on shared block or 601/603/604 | 601/603/604
dcbz, dcbi, or a 601 icbi
10000 |Ordered I/O operation Address only eieio 604 —
10100 |External control word write | Single-beat write | ecowx 601/603/604 | —
11000 | TLB invalidate Address only tlbie 601/604 601/604
11100 | External control word read | Single-beat read | eciwx 601/603/604 | —
00001 |Iwarx reservation set Address only Iwarx cache hit at execution 604 —
00101 |Reserved — — — —
01001 |TLB synchronize Address only tibsync 604 604
01101 |Invalidate instruction Address only icbi 604 604
cache copy
00010 |Write-with-flush Single-beat Caching-inhibited or write- 601/603/604 | 601/603/604
write or burst through store
00110 | Write-with-kill Burst Snoop writeback, dcbf, dcbst, |601/603/604 | 601/603/604
or castout hit modified data
01010 |Read Single-beat Cacheable load miss 601/603/604 | 601/603/604
read or burst (601/604), cacheable instruction
miss or cache-inhibited load
01110 |Read-with-intent-to-modify | Burst Load miss (603) or store miss | 601/603/604 | 601/603/604
10010 |Write-with-flush-atomic Single-beat write | stwcx. 601/603/604 | 601/603/604
10110 |Reserved — — — —
11010 | Read-atomic Single-beat lwarx 601/603/604 | 601/603/604
read or burst
Chapter 2. Signal Descriptions 2-9

Table 2-1. Transfer Encoding for PowerPC 601, 603, 604 Processors (Continued)

T Bus Master Transactions Processor Support
[0-4] . L
Transaction Transfer Source Initiator Snooper

11110 |Read-with-intent-to- Burst stwcx. miss with valid 601/603/604 | 601/603/604
modify-atomic reservation

00X11 |Reserved — — — —

01011 | Read-with-no-intent-to- Single-beat Snooped only — 603/604
cache read or burst

01111 |Reserved — — — —

1XXX1 | Reserved for customer — — — —

2.4.3 Transfer Burst (TBST)—Output
Following are state and timing descriptions for transfer burst (TBST) as an output signal.
State Meaning Asserted—A burst transfer isin progress.

Negated—A burst transfer is not in progress.

Also, part of extended address transfer code (XATC); see
Section 2.4.1, “Transfer Type (TT[0-4])—Output.”

For external control instructions (eciwx/ecowx), TBST outputs
EAR[28], which is part of the resource ID (TBST|[TSIZ[0-2]).

Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

2.4.4 Transfer Burst (TBST)—Input
Following are state and timing descriptions for TBST as an input signal .

State M eaning Asserted—For direct-store operations, TBST forms part of the
XATC; see Section 2.4.2, “ Transfer Type (TT[0-4])—Input.”

Negated—A burst transfer is not in progress.
Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

2.4.5 Transfer Size (TSIZ[0-2])—Output

Following are state and timing descriptionsfor the transfer size signals TSIZ[0-2] as output
signals.

State Meaning Asserted/Negated—For memory accesses, these signalswith TBST
indicate the datatransfer size for the current bus operation, as shown
in Table 2-2. This table shows transfer sizes indicated by
combinations of TBST and TSIZ[0-2]. Notethat one combinationis
defined for system use. This combination could be generated by
systems but would not be output from a PowerPC processor.

2-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

For direct-store operations, these signals form part of the extended
address transfer code (XATC); see the description in Section 2.4.1,
“Transfer Type (TT[0-4])—Output.”

The external control instructions, eciwx/ecowx, use these signalsto
output EAR[29-31], to form the resource ID (TBST|[TSIZ[0-2]).

Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

Table 2-2. Data Transfer Size

TBST TSIZ[0-2] Transfer Size
Asserted 000 Reserved
Asserted 001 Burst (16 bytes) reserved for system use
Asserted 010 Burst (32 bytes)
Asserted 011 Reserved (64-byte bursts)
Asserted 1xx Reserved
Negated 000 8 bytes
Negated 001 1 byte
Negated 010 2 bytes
Negated 011 3 bytes
Negated 100 4 bytes
Negated 101 5 bytes
Negated 110 6 bytes
Negated 111 7 bytes

2.4.6 Transfer Size (TSIZ[0-2])—Input
Following are state and timing descriptions for TSIZ[0-2] as input signals.

State Meaning Asserted/Negated—For direct-store operations, TSIZ[0-2] are part
of the XATC; see Section 2.4.2, “ Transfer Type (TT[0-4])—Input.”

Timing Comments Assertion/Negation—The same as A[0-31].

2.4.7 Transfer Code (TCn)—Output

The transfer code (TCn) consists of three output signals on the 604 (TC[0-2]) and two
output signals for the 601 and 603 (TC[0-1]). These signals provide information about the
current transaction that may be useful for implementing externa caches. Following are
state and timing descriptions for TCn.

State Meaning Asserted/Negated—Represents aspecial encoding for thetransfer in
progress and gives supplemental information for certain transaction
types. See Table 2-3, Table 2-4, and Table 2-5.

Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

Chapter 2. Signal Descriptions 2-11

Table 2-3 shows the transfer code definitions for the 601.

Table 2-3. Transfer Code Signal Encoding for PowerPC 601 Processor

Signal State Definition

TCO |Asserted Read: Bus operation is an instruction fetch.

Write: Operation is invalidating the cache line in the 601.

Kill block (address only): Operation is invalidating the cache block in the 601.

Deasserted | Read: Bus operation is not an instruction fetch.

Write: Operation is not invalidating the cache line in the 601.

Kill block (address only): Operation is not invalidating the cache block in the 601.

TC1 |Asserted The next access is likely to be on the same page; a sector has been loaded and a low-priority
load of the adjacent sector is queued.

Deasserted | The next access isn't likely to be on the next page; no load to the adjacent sector is queued.

Table 2-4 shows the transfer code meanings for the 603.

Table 2-4. Transfer Code Signal Encoding for the PowerPC 603 Processor

TC[0-1] Read Write
00 Data transaction Any write
01 Touch load —
10 Instruction fetch —
11 Reserved —

2-12 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 2-5 shows transfer code options for the 604 and gives the transaction type, the
encoding of the WT and TC[0-2] signals, and the type of cycle.

Table 2-5. Transfer Code Signal Encoding for PowerPC 604 Processor

== From | == ’
BR . TS after Final
Transfer wrtt e Asserted write- ARTRYd | Cache Comments
Type [0-2] 2,3 Back 4 5
' Snoop State
Buffer
Write 1 100 |[Never Always | Don't care]| | Cache copy-back
with kil xx0 [No Yes Yes M, E, S, | To distinguish between cache copy-back, block
| clean (dcbst), or block flush (dcbf), this transaction
must be ARTRYd. This transaction eventually
returns (before anything but another snoop push
directly from the data cache) indicating another
WT/TC code combination.

100 |[No Yes No | Block flush (dcbf)

000 ([No Yes No M, E, | |Block clean (dcbst)—The dcbst instruction
changes the cache state to E when the modified
block is put in the copy-back buffer. Before the low-
priority write-back buffer entry completes its
address tenure, the cache state can be changed to
M by a store or to | by a dcbi or a cache miss.

010 |Yes No Don't care|S, | Snoop push® directly from data cache (read or read-
atomic)—The read or read-atomic snoop changes
the data cache state to S when the modified block is
placed in the snoop-push buffer. Before the buffer
completes its address tenure, the cache can be
changed to | by a dcbi or cache miss.

Chapter 2. Signal Descriptions 2-13

Table 2-5. Transfer Code Signal Encoding for PowerPC 604 Processor (Continued)

From | — ;
: TS after | Final

Transfer| | TC | asserted | W' | ARTRYd | cache Comments
Type [0-21{"727 Back 4 5

: Buffer Snoop State

2
Pyl

Write 0 010 (Yes Yes Don't care|[Sor | Snoop push® from write-back buffer (read or read-
with kill atomic)—The data cache has a shared copy if the
buffer held a block clean (dcbst) transaction. If it
held a block flush (dcbf) or cache write-back
transaction, the cache has no valid copy after the
transaction. To know if the processor kept a shared
copy or invalidated this block, this transaction must
be ARTRYd. If it originated from the write-back
buffers and no new snoops occur, the transaction
returns as the next TS and indicates a DCBF,
DCBST, or write-back WT/TC code. If it returns as a
snoop push read, it came from the data cache.

100 |[Yes No Don'’t care Snoop push® directly from data cache (RWITM,
RWITM-atomic, flush, write w/flush, write w/flush-

atomic, or kill)

100 |Yes Yes Don’t care

Snoop push® from write-back buffers (RWITM,
RWITM-atomic, flush, write w/flush-atomic, write
w/flush, write wikill, or kill)

000 |Yes No Don't care|M, E, I | Snoop push® from data cache (clean or RWNITC)—
The clean or RWNITC snoop changes the data
cache state to E when the modified block is put in
the snoop-push buffer. Before the buffer completes
its address tenure, the cache state can be changed
to M by a store or to | by either a dcbi instruction or
cache miss.

000 |Yes Yes Don't care|M, E, I | Snoop push® from write-back buffers (clean or
(dcbst | RWNITC)—If this snoop hit on a block-flush (dcbf)
in buffer)| or a cache write-back in the write-back buffers, the
| (cache | cache does not have a valid copy of this address
write- after this transaction. If this snoop hits a block-store
back or |(dcbst) in the write-back buffers, the processor can
dcbf in |keep an exclusive copy of the cache block.

buffer)

Kill block

100 |Never No Don't care

x

Kill block deallocate (dcbi)

1 000 M Kill block and allocate no castout required (dcbz)

1 001 Kill block and allocate castout required (dcbz)

1 000 Kill block; write to block marked S

2-14 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 2-5. Transfer Code Signal Encoding for PowerPC 604 Processor (Continued)

=5 From | == .
BR - TS after Final
Transfer wrtt Tc Asserted Write- ARTRYd | Cache Comments
Type [0-2] 2,3 Back 4 5
' Snoop State
Buffer
Read’” |W8 |0x0 |Never No Don't care|E, S Data read, no castout required—The cache state is
S if SHD was asserted to the processor for a read or
read-atomic transaction. If SHD was not asserted or
if the transaction was an RWITM or RWITM-atomic
transaction, the cache state is E.
W |O0x1 E,S Data read, castout required—The cache state is S if
SHD was asserted to the processor for a read or
read-atomic transaction. If SHD was not asserted,
or if the transaction was an RWITM or RWITM-
atomic transaction, the cache state is E.
W |1x0 Valid Instruction read
ICBI X 100 |[Never No Don't care| Invalid | Kill block deallocate (icbi®)
Notes:

1 The value in the WT column reflects the logic value seen on the signal.

2 The window for the assertion of BR is defined as the second cycle after AACK if ARTRY were asserted the
cycle after AACK.

3 The full condition for this column is “The BR corresponding to this transaction was asserted in the window
for the last snoop to this address.”

4 The full condition for this column is “This transaction is the first TS asserted by this processor after one or
more ARTRYd snoop transactions and the address of this transaction matches the address of at least one
of those ARTRYd snoop transactions.”

5 This column reflects the final MESI state in the processor of the line referenced by this transaction after the
transaction completes successfully without ARTRY.

6 This snoop push is guaranteed to push the most-recently modified data in the processor. No more snoop
operations are required to ensure that this snoop has been fully processed by the processor.

7 Read in this case encompasses all of read or RWITM, normal or atomic.

8 W = write-through bit from translation
9 icbi is distinguished from kill block by assertion of TT4.

2.4.8 Cache Inhibit (CI)—Output
Following are state and timing descriptions for the cache inhibit (CI) output signal.

State Meaning Asserted—Generally indicates that a single-beat transfer will not be
cached, reflecting the setting of the | bit for the block or page that
contains the address of the current transaction.

Negated—Generally indicates that a burst transfer will alocate a
data cache block. Set negated for castouts and pushes.

Section 4.8, “External WIM Bit Settings,” describes exceptions to
the above.

Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

Chapter 2. Signal Descriptions 2-15

2.4.9 Write-Through (WT)—Output
Following are state and timing descriptions for the write-through (WT) output signal.

State M eaning Asserted—Generally indicatesthat asingle-beat transaction iswrite-
through, reflecting the value of the W bit for the block or page that
contains the address of the current transaction.

Negated—Generally indicates a transaction is not write-through.

Section 4.8, “External WIM Bit Settings,” describes exceptions to
the above.

Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

2.4.10 Global (GBL)—Output

Following are state and timing descriptionsfor global signal (GBL) asan output signal. For
the 604e, HIDQ[23] lets software control the behavior of GBL for instruction fetches
through the address-translation mechanism; refer to 604e user documentation.

State Meaning Asserted—Generally indicates that atransaction is global, reflecting
the setting of the M bit for the block or page that containsthe address
of the current transaction (except in the case of write-back
operations, which are nonglobal.)

Negated—Generally indicates that a transaction is not global. For
603 and 604, this signal is negated on instruction fetches.

For exceptions, see Section 4.8, “ External WIM Bit Settings.”
Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

2.4.11 Global (GBL)—Input
Following are state and timing descriptions for GBL asan input signal.

State Meaning Asserted—A transaction can be snooped; however, the processor
will not snoop reserved transaction types, bus operations associated
with the eieio, eciwx, or ecowx instructions, or address-only bus
transactions associated with an lwar x reservation set. Note that the
603 snoops the reservation address register for global and nonglobal
address transfers. This snooping is required for the 603's
implementation of the lwar x and stwcx. instructions, which require
snoops on castouts and snoop pushes (nonglobal). Snoops with
GBL = 1 do not affect the cache state.

Negated—A transaction is not snooped by the processor.
Timing Comments Assertion/Negation—The same as A[0-31].

2-16 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

2.4.12 Cache Set Element (CSEn)—Output

The number of cache set element signals on each processor depends upon the cache
associativity of that processor. There are three cache set element signals on the 601
(CSE[0-2]), one on the 603 (CSE), and two on the 603e, 604, and 604e (CSE[0-1]).
Following are state and timing descriptions for the CSEn signals. In some documentation
these signals are called cache set entry or cache set enable signals.

State M eaning Asserted/Negated—Represents the cache replacement set element
(also referred to asthe way or coherency class) for the current cache
transaction. Can be used with the address bus and the transfer
attribute signals to externally track the state of each cache block in
the processor. The CSEn signals are not meaningful during data
cache touch load operations on a 603.

Timing Comments Assertion/Negation/High Impedance—The same as A[0-31].

2.4.13 High-Priority Snoop Request (HP_SNP_REQ)-601 Only
Following are state and timing descriptions for the high-priority snoop request input signal
(HP_SNP_REQ) on the 601. This signal is enabled by setting HIDO[31].

State Meaning Asserted—The 601 may add an additional reserved queue position
to thelist of available queue positions for push transactions that are
aresult of asnoop hit.

Negated—The 601 will not make the reserved queue available for a
snoop hit push resulting from atransaction. Thisisthe normal mode.

Timing Comments Assertion/Negation—Must be valid throughout the address tenure.

2.5 Address Transfer Termination Signals

The address transfer termination signals indicate either that the address tenure has
completed successfully or must be repeated, and when it should be terminated.
Section 3.2.3, “Address Transfer Termination,” describes how these signals interact.

2.5.1 Address Acknowledge (AACK)—Input
Following are state and timing descriptions for the address acknowledge (AACK) as an
input signal.

State Meaning Asserted—The address phase of atransaction is complete. The
address bus goesto high-impedance state on the next busclock cycle.
The processor samplesARTRY on the busclock cycle after assertion
of AACK.

The 604 can sample ARTRY by the second cycle after TSis asserted.

Negated—During assertion of ABB, indicates the address bus and
transfer attribute signals must remain driven.

Chapter 2. Signal Descriptions 2-17

Timing Comments

Assertion—Can occur as soon as the bus clock cycle after TS or
XATS s asserted, but can be delayed to extend address access time,
for example, to support slow snooping devices.

Negation—Must occur one bus clock cycle after assertion of AACK.

2.5.2 Address Retry (ARTRY)—Output
Following are state and timing descriptions for addressretry (ARTRY) as an output signal.

State Meaning

Timing Comments

Asserted—The master detects a condition in which a snooped
addresstenure must beretried. If the processor must update memory
asaresult of the snoop that caused the retry, the processor assertsBR
during that snoop window, which is defined asthe second cycle after
AACK if ARTRY was asserted the cycle after AACK.

Also invalidates data in some cases; see Section 3.3.1.1, “Effect of
ARTRY Assertion on Data Transfer and Arbitration on the PowerPC
604 Processor.”

High Impedance—The master does not need the snooped address
tenure to be retried.

Assertion—Asserted the second bus cycle after the assertion of TSif
aretry isrequired. Thus, when aretry isrequired, thereisonly one
empty cycle between the assertions of TS and ARTRY.

Negation—Occursthe second bus cycle after the assertion of AACK.
Because ARTRY can be simultaneously driven by multiple devices,
it isdriven negated in the following ways:

601—Occurs the second bus cycle after the assertion of AACK.
SinceARTRY may be simultaneously driven by multiple devices, it
negates in a unique fashion. First the buffer goes to high impedance
for onebuscycle, thenitisdriven high for one 2XPCLK cyclebefore
returning to high impedance. This method of negation may be
disabled by setting HID0[29].

603—Occurs the second bus cycle after the assertion of AACK.
Since ARTRY may be simultaneously driven by multiple devices, it
negates in a unigque fashion. First the buffer goesto high impedance
for aminimum of one-half processor cycle (dependent on the clock
mode), then it isdriven negated for one bus cycle before returning to
high impedance. This method of negation can be disabled by setting
HIDO[7].

604—ARTRY becomes high impedance for at least one-half bus
cycle, thenis driven high for approximately one bus cycle. ARTRY
isthen guaranteed by design to become high impedance at the latest
by the start of third cycle after AACK. This method of negation can
be disabled by setting HIDQ[7].

2-18 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

2.5.3 Address Retry (ARTRY)—Input
Following are state and timing descriptions for ARTRY as an input signal.

State M eaning

Timing Comments

Asserted—For the address bus master, ARTRY indicates the device
must retry the preceding address tenure and immediately negate BR
(if asserted). If the associated data tenure has begun, the 603 and 604
also abort the data tenure immediately even if burst data has been
received. For devices that are not the address bus master, this input
indicates they should immediately negate BR for one busclock cycle
after the assertion of ARTRY by the snooping bus master to allow a
write-back operation.

Negated/High Impedance—The master need not retry the last
address tenure.

Assertion—M ay occur as soon asthe second cycle after TSor XATS
is asserted; must occur by the bus clock cycle immediately after the
assertion of AACK if an addressretry isrequired.

Negation—Must occur in the second cycle after AACK is asserted.

2.5.4 Shared (SHD)—Output
Following are state and timing descriptions for the shared (SHD) as an output signal.

State Meaning

Timing Comments

Asserted—If ARTRY isnegated, indicates that after thistransaction
completes successfully, the master will keep avalid shared copy of
the address or that a reservation exists on this address. If SHD and
ARTRY are asserted for a snooping master, the snoop hit modified
data that will be pushed as the master’s next address transaction.

Negated/High Impedance—After this addressis transferred, the
processor will not have avalid copy of the snooped address.

Assertion/Negation—Same asARTRY.
High Impedance—Same asARTRY.

Because it does not support the shared MESI state (S), the 603 does not implement SHD.

2.5.5 Shared (SHD)—Input
Following are state and timing descriptions for SHD as an input signal.

State Meaning

Timing Comments

Asserted—If ARTRY is not asserted, the master must allocate the
incoming cache block as shared (S) for a self-generated transaction.
Applies only to read and read atomic transactions.

Negated—If ARTRY is negated, the master can allocate the
incoming cache block as exclusive (E) for a self-generated read or
read-atomic transaction.

Assertion/Negation—The same asARTRY.

Because it does not support the shared (S) MESI state, the 603 does not implement SHD.

Chapter 2. Signal Descriptions 2-19

2.6 Data Bus Arbitration Signals

Like address bus arbitration signals, data bus arbitration signals maintain an orderly process
for determining data bus mastership. Note that there is no equivalent to the address bus
arbitration signal BR (bus request), because, except for address-only transactions, TS and
XATS imply data bus requests. For adetailed description on how these signalsinteract, see
Section 3.3.1, “Data Bus Arbitration.”

The DBWO signal lets the processor be configured dynamically to write data out of order
with respect to read data.

2.6.1 Data Bus Grant (DBG)—Input
Following are state and timing descriptions for the data bus grant (DBG) asaninput signal .

State Meaning

Timing Comments

Asserted—With proper qualification a device can become data bus
master. Note that in some cases, assertion of ARTRY invalidatesthe
data bus grant (see Section 3.3.1.1, “Effect of ARTRY Assertion on
Data Transfer and Arbitration on the PowerPC 604 Processor”). The
device achieves a qualified data bus grant when the following
conditions are met:

¢ Thedatabusis not bus busy (DBB is negated). (This condition
does not apply to the 604 (or 604€) in data streaming mode.)

« DRTRY isnegated. (This condition does not apply for a
processor using data streaming or no-DRTRY mode.)

* ARTRY isnegated if ARTRY applies to the associated address
tenure.

Negated—The master must hold off its data tenures.

Assertion—May occur any timeto indicate that the deviceisfreeto
assume data bus mastership. The processor can sample it asearly as
the cyclethat TS or XATS is asserted.

For the 604 in data streaming mode, DBG must be asserted for
exactly onecycle per databustenure, the cycle before the datatenure
isto begin. The system cannot assert DBG earlier or park DBG, or
assert it for consecutive cycles. The DBB signal does not participate
in determining aqualified databus grant. Therefore, the system must
assert DBG in away that prevents data tenure collisions from
different masters. Also, the system must assert DBG so data tenures
complete before providing another DBG. If aDBG is given early to
the 604 in data streaming mode, the processor drops the current data
tenure prematurely in the next cycle and begins any pending data
tenure.

2-20 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

The 604e has less restrictive timing requirements in data streaming
mode—DBG must be asserted no earlier than the cycle before 604€'s
datatenure isto begin only when another master currently owns the
data bus (that is, when DBB would normally be asserted for a data
tenure). If no other masters own the data bus (asserting DBB), the
604e allows the system to park DBG. DBB is till an output-only
signal in data streaming mode (that is, DBB does not participatein a
qualified data bus grant), requiring the system to use DBG to ensure
that different mastersdon't collide on datatenures. If the system tries
to stream back-to-back datatenures by asserting DBG with the final
TA of the first data tenure, the processor acceptsthe DBG as a
qualified data bus grant only if the current and next data tenures are
both burst reads. Other combinations cannot be streamed.

Negation—May occur at any time to indicate that the master cannot
assume control of the data bus.

2.6.2 Data Bus Write Only (DBWO)—Input
Following are state and timing descriptions for DBWO as an input signal.

State Meaning

Timing Comments

Asserted—The processor can run the data bus tenure for an
outstanding write address even if aread addressiis pipelined before
the write address. If write datais not available, the processor
performsthefirst pending read transfer. See Section 3.3.2, “DataBus
Write Only,” for detailed instructionsfor using DBWO. Notethat the
601 takes the bus only for a pending data bus write operation and not
for aread operation.

Negated—The processor runs address and data tenures in the same
order. Tying DBWO negated preserved address/data ordering.

Assertion—Must occur no later than aqualified DBG for a pending
write tenure. The DBWO signal is recognized by the processor only
on the clock cycles of aqualified data bus grant.

Negation—May occur any time after a qualified data bus grant and
before the next qualified data bus grant.

2.6.3 Data Bus Busy (DBB)—Output
Following are state and timing descriptions for data bus busy (DBB) as an output signal.

State M eaning

Asserted—The device is the data bus master. The processor always
assumes data bus mastership if it needs the data bus and is given a
qualified data bus grant (see DBG).

Negated—Thedeviceisnot using the data bus, unlessthe datatenure
is being extended by the assertion of DRTRY. Note that for the 604e
in no-DRTRY mode, DRTRY istied asserted and is ignored.

Chapter 2. Signal Descriptions 2-21

Timing Comments Assertion—Occursin the bus clock cycle after aqualified DBG.

Negation—Occursfor afractional busclock cycle after the assertion
of the final TA or within two cycles of the assertion of TEA.

High Impedance—Occurs during afractional portion of the bus
cyclein which DBB is negated. The DBB signal is designed to be
high impedance by the end of the cycle in which it is negated. For
specific information, see the appropriate user’s manual.

2.6.4 Data Bus Busy (DBB)—Input

Following are state and timing descriptions for DBB as an input signal. In data streaming
mode, DBB is only an output and is not part of a qualified data bus grant; see Chapter 6,
“Additional Bus Configurations.”

State M eaning Asserted—Another device isdata bus master. Note that DBB cannot
be used in systems that use read data streaming.

Negated—The device is not using the data bus. If the arbiter is
designed to assert DBG exactly one cycle before the next datatenure
starts, DBB is unnecessary and may be pulled high.

Timing Comments Assertion—M ust occur when the processor must be kept from using
the data bus.

Negation—May occur whenever the data busis available.

2.7 DataTransfer Signals

Like the address transfer signals, the data transfer signals are used to transmit data and to
generate and monitor parity for the data transfer. For a detailed description of how data
transfer signalsinteract, see Section 3.3.3, “Data Transfer.”

2.7.1 Data Bus (DH[0-31], DL[0-31])—Output
Following are state and timing descriptions for the DH and DL as output signals.

State Meaning Asserted/Negated—Represents the state of data during a data write.
The data bus has two halves—data bus high (DH) and data bus low
(DL). Table 2-6 shows data bus lane assignments. Direct-store
operations use DH exclusively (there are no 64-bit, direct-store
operations). Unselected byte lanes do not supply valid data.

Timing Comments Assertion/Negation—Initial beat coincides with DBB and, for
bursts, transitions on the bus clock cycle after each assertion of
TA.The data busis driven once for noncached transactions and four
times for processor cache transactions (bursts).

High Impedance—Occurs on the bus clock cycle after the final
assertion of TA.

2-22 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 2-6. Data Bus Lane Assignments

Data Bus Signals Byte Lane
DH[0-7] 0
DH[8-15] 1
DH[16-23] 2
DH[24-31] 3
DL[0-7] 4
DL[8-15] 5
DL[16-23] 6
DL[24-31] 7

2.7.2 Data Bus (DH[0-31], DL[0-31])—Input
Following are state and timing descriptions for DH and DL asinput signals.

State Meaning Asserted/Negated—Represents the state of data during a data read
transaction. The databushastwo halves, databushigh (DH) and data
buslow (DL). Table 2-6 shows byte lanes. Direct-store operations
use DH exclusively (there are no 64-bit direct-store operations).

Timing Comments Assertion/Negation—Datamust bevalid onthe samebusclock cycle
that TA is asserted.The data busis driven once for noncached
transactions and four times for processor cache transactions (bursts).

2.7.3 Data Bus Parity (DP[0-7])—Output
Following are state and timing descriptionsfor the data bus parity (DP[0-7]) output signals.

State M eaning Asserted/Negated—Represents odd parity for each of the eight bytes
of adatawrite transaction. Odd parity means that an odd number of
bits, including the parity bit, are driven high. Table 2-7 shows signa
assignments. All eight bits are driven with valid parity on all
bus write operations except direct-store operations for which only
DP[0-3] are driven with valid parity.

Timing Comments Assertion/Negation—The same as DL[0-31].
High Impedance—The same as DL [0-31].

Table 2-7. DP[0-7] Signal Assignments

Signal Name Signal Assignments
DPO DH[0-7]
DP1 DH[8-15]
DP2 DH[16-23]
DP3 DH[24-31]

Chapter 2. Signal Descriptions 2-23

Table 2-7. DP[0-7] Signal Assignments (Continued)

Signal Name Signal Assignments
DP4 DL[0-7]
DP5 DL[8-15]
DP6 DL[16-23]
DP7 DL[24-31]

2.7.4 Data Bus Parity (DP[0-7])—Input
Following are state and timing descriptions for DP[0-7] as input signals.

State M eaning

Asserted/Negated—Represents one bit of odd parity for each byte of
read data. Parity is checked on all data byte lanes during data read
operations, regardless of the size of the transfer. During direct-store
read operations, only the DP[0-3] signals (corresponding to byte
lanes DH[0-31]) are checked for odd parity. If data parity errors are
enabled, detected even parity causes a checkstop or amachine check
exception (and assertion of DPE) depending on the state of
MSR[ME]. For the 601, if data parity check is enabled in HIDO,
detection of even parity unconditionally causes a checkstop.

Timing Comments Assertion/Negation—The same as DLO-DL 31.

2.7.5 Data Parity Error (DPE)—Output

Following are state and timing descriptions for the data parity error (DPE) output signal.
DPE is an open-drain type output and requires a pull-up resistor for proper deassertion.

State Meaning

Timing Comments

Asserted—The processor detected incorrect data bus parity on
incoming read data.

Negated—Indicates correct data bus parity.

Assertion—Occurs on the second bus clock cycleafter TA isasserted
to the processor and is driven for one cycle.

2.7.6 Data Bus Disable (DBDIS)—Input

Following are the state meanings and timing comments for the data bus disable (DBDIYS)
input signal. This signal is not on the 601.

State Meaning

Asserted—For awrite transaction, the processor must rel ease the
data bus and DP[0-7] to high impedance in the next cycle. The data
tenure remains active, DBB remains driven, and the transfer
termination signals are still monitored by the processor. The DBDIS
signal isignored for read transactions.

Negated—The data bus should remain normally driven.

2-24 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Timing Comments Assertion/Negation—Should be driven one cycle before the databus
can be driven by the processor. May be asserted on any clock cycle
when the processor is driving, or will be driving, the data bus and
may remain asserted multiple cycles.

2.8 Data Transfer Termination Signals

Data termination signals are required after each data beat in a data transfer. Note that in a
single-beat transaction, the data termination signals also indicate the end of the tenure,
while in burst accesses, the data termination signals apply to individual beats and indicate
the end of the tenure only after the final data beat. For a detailed description of how these
signalsinteract, see Section 3.3.4, “ Data Transfer Termination.”

2.8.1 Transfer Acknowledge (TA)—Input
Following are state and timing descriptions for the transfer acknowledge (TA) input signal.

State Meaning Asserted—A single-beat data transfer or adata beat in aburst
transfer completed successfully (unless DRTRY is asserted on the
next bus clock cycle for reads). The TA signal must be asserted for
each data beat in a burst transaction.

Negated—Until TA is asserted, the master must continue driving the
datafor the current write or must wait to sample the data for reads.

Timing Comments Assertion—During a data tenure, which generally begins after a
qualified data bus grant and continues through the period defined by
DBB or DRTRY. Thisperiod is affected by theARTRY window. See
Section 3.3.1.1, “Effect of ARTRY Assertion on Data Transfer and
Arbitration on the PowerPC 604 Processor.” The system can
withhold asserting TA to indicate that the master should insert wait
states to extend a data tenure.

Negation—M ust occur after the bus clock cycle of thefinal (or only)
databeat of thetransfer. For aburst transfer, the system can assert TA
for one bus clock cycle and then negate it to advance the burst
transfer to the next beat and insert wait states during the next beat.

When the 603 is configured for 1:1 clock mode and is performing a
burst read into data cache, the 603 requires one wait state between

the assertion of TS and the first assertion of TA for that transaction.
If no-DRTRY modeis also selected, the 603 requirestwo wait states.

2.8.2 Data Retry (DRTRY)—Input
Following are state and timing descriptions for the dataretry (DRTRY) input signal.

State Meaning Asserted—The master must invalidate the data from the previous
read operation. DRTRY isignored for write transactions and is not
defined for direct-store transfers.

Chapter 2. Signal Descriptions 2-25

Timing Comments

Negated—Data presented with TA on the previous read operation is
valid. Thisis essentially alate TA to allow speculative forwarding of
data (with TA) during reads.

Assertion—Must occur during the bus clock cycleimmediately after
TA isasserted if aretry isrequired. The DRTRY signal can be held
asserted for multiple bus clock cycles. When it is negated, data must
have been valid on the previous clock with TA asserted.

Negation—Must occur during the bus clock cycle after avalid data
beat. Thismay occur several cyclesafter DBB isnegated, effectively
extending the data bus tenure.

Start-up—For 603 and 604e, DRTRY is sampled at the negation of
HRESET; if DRTRY isasserted, no-DRTRY modeis selected. If
DRTRY isnegated at start-up, DRTRY isenabled. If no-DRTRY or
data streaming mode is selected, DRTRY must be negated during
normal operation (after HRESET). Theno-DRTRY mode providesa
one-cyclefaster read and the data streaming eliminateswasted cycles
between data bursts. See Section 6.1, “No-DRTRY Mode (603 and
604¢€),” for adescription of no-DRTRY mode or Chapter 6,
“Additional Bus Configurations,” for adescription of datastreaming.

2.8.3 Transfer Error Acknowledge (TEA)—Input
Following are state and timing descriptions for the transfer error acknowledge (TEA) input

signal.
State Meaning

Asserted—A bus error occurred that causes a machine check
exception (or causes the processor to enter the checkstop state if the
machine check enable bit is cleared (MSR[ME] = 0)). For more
information, see Section 5.3, “Machine Check and Checkstops.”
Assertion terminates the current transaction; that is, assertion of TA
and DRTRY areignored. Asserting TEA causes the negation/high
impedance of DBB in the next clock cycle. However, data entering
the GPR or the cache are not invalidated.

If TEA is asserted during a direct-store transaction, the machine
check or checkstop action of the TEA is delayed and subsequent
direct-store transactions continue until al transfers from the direct-
store segment complete. The TEA signal must be asserted for every
direct-store data tenure including the last one. The processor takes a
machine check or a checkstop no sooner than the last direct-store
data tenure has been terminated by the assertion of TEA. A load or
store reply is not necessary after the last data tenure receives a TEA
assertion.

Negated—No bus error was detected.

2-26 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Timing Comments Assertion—May be asserted while DBB is asserted or during the
valid DRTRY window. In data streaming mode, the 604/604e does
not recognize TEA the cycle after TA during aread operation due to
the absence of aDRTRY assertion opportunity. TEA should be
asserted for one cycle only.

Negation—TEA must be negated no later than the negation of DBB
or the last DRTRY. The processor deasserts DBB within one bus
clock cycle after the assertion of TEA.

2.9 System Status Signals

Most system interrupt, checkstop, and reset signals are input signals that indicate when
exceptions are received, when checkstop conditions have occurred, and when the processor
must be reset. The processor generates CKSTP_OUT when it detects a checkstop
condition. For detailed descriptions, see Chapter 5, “ System Status Signals.”

2.9.1 Interrupt (INT)—Input
Following are state and timing descriptions for the interrupt (INT) input signal.

State Meaning Asserted—T he processor initiates an external interrupt if MSR[EE]
isset and INT remains asserted long enough; otherwise, the
processor ignores the interrupt.

Negated—Normal operation should proceed. See Section 5.4,
“External Interrupt Exception (0x00500).”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to theinput clocks. The INT input is level-sensitive.

Negation—Should not occur until exception is taken. For the 601,
this signal can be negated after at least three processor clock cycles.

2.9.2 System Management Interrupt (SMI)—Input

Following are state and timing descriptions for the system management interrupt (SMI)

input signal. Thisinterrupt supports power management and is not on the 601.

State Meaning Asserted—The processor initiates a system management interrupt
exception if MSR[EE] is set.

Negated—Normal operation should proceed. See Section 5.4,
“External Interrupt Exception (0x00500).”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. The SMI input is level-sensitive.

Negation—Should not occur until exception is taken.

Chapter 2. Signal Descriptions 2-27

2.9.3 Machine Check Interrupt (MCP)—Input

Following are state and timing descriptions for the machine check interrupt (MCP) input
signal. Thissignal is not on the 601.

State Meaning Asserted—The processor initiates a machine check interrupt
operation if MSR[ME] and HIDO[EMCP] are set; if MSR[ME] is
cleared and HIDO[EMCP] is set, the processor must terminate
operation by internally gating off all clocks and releasing all outputs
(except CKSTP_OUT) to the high-impedance state. If HIDO[EM CP]
is cleared, the processor ignores the interrupt condition. The MCP
signal must remain asserted for two bus clock cycles.

Negated—Normal operation should proceed.

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks. MCP is negative edge-sensitive.

Negation—May be negated two bus cycles after assertion.

2.9.4 Checkstop Input (CKSTP_IN)—Input
Following are state and timing descriptions for the checkstop input signal (CKSTP_IN).

State Meaning Asserted—The processor must terminate operation by internally
gating off all clocks and releasing all outputs except CKSTP_OUT
to high-impedance state. Once asserted, CKSTP_IN must remain
asserted until the system has been reset.

Negated—Normal operation should proceed. See Section 5.3,
“Machine Check and Checkstops.”

Timing Comments Assertion—May occur at any time and may be asserted
asynchronously to the input clocks.

For the 601, CKSTP_IN must be asserted at |east three PCLK_EN
clock cycles. Or it may be asserted synchronously meeting setup and
hold times (specified in the hardware specifications) and must be
asserted for at least two PCLK_EN clock cycles.

Negation—May occur any time after CKSTP_OUT is asserted.

2.9.5 Checkstop Output (CKSTP_OUT)—Output

Following are state and timing descriptions for checkstop output (CKSTP_OUT) as an
output signal. Notethat CKSTP_OUT isan open-drain type output and requires an external
pull-up resistor to assure proper deassertion.

State Meaning Asserted—The processor detected a checkstop condition and ceased
operation.

Negated—The processor is operating normally. See Section 5.3,
“Machine Check and Checkstops.”

2-28 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Timing Comments

Assertion—Can occur at any time asynchronously to input clocks.
Negation—Is negated upon assertion of HRESET.

2.9.6 Hard Reset (HRESET)—Input

The hard reset (HRESET) input signal must be used at power-on to properly reset the
processor. Thisinput has additional functionality in certain test modes. Following are state
and timing descriptions for HRESET.

State Meaning

Timing Comments

Asserted—I nitiatesahard reset operation when HRESET transitions
from asserted to negated. Causes areset exception as described in
Section 5.2.1.1, “Hard Reset Settings.” Output driversarereleased to
high impedance within five clocks (three clocksfor the 601) after the
assertion of HRESET.

Negated—Normal operation should proceed.

Assertion—Can occur at any time and can be asynchronous with the
processor input clock; must be held asserted for at least 255 (300 for
the 601) clock cycles.

Negation—Can occur after the minimum reset pulse width is met.

2.9.7 Soft Reset (SRESET)—Input

The soft reset (SRESET) input signal has additional functionality in certain test modes.
Following are state and timing descriptions for SRESET.

State Meaning

Timing Comments

Asserted—I nitiates processing for asoft reset exception asdescribed
in Section 5.2.2, “ Soft Reset.”

Negated—Normal operation should proceed.

Assertion—Can occur at any time and can be asynchronous with the
processor input clock. SRESET is negative edge-sensitive.

Negation—May occur any time after the minimum soft reset pulse
width of two (10 for the 601) bus cyclesis met.

2.10 Processor State Signals

The signals described in this section provide inputs for controlling the time base in the
processor, external cache access by the processor, and an output signal from the processor
to indicate that a memory reservation has been set.

2.10.1 Reservation (RSRV)—Output
Following are state and timing descriptions for the reservation (RSRV) output signal.

State Meaning

Asserted/Negated—Refl ects the state of the reservation coherency
bit used by the lwar x/stwcx. instructions. See Section 4.5.1,
“PowerPC 603 Processor Iwarx/stwex. Implementation.”

Chapter 2. Signal Descriptions 2-29

Timing Comments Assertion--Occurs synchronously one bus clock cycle after
execution of an Iwar x instruction that sets the internal reservation
condition. On 604 and 604e, RSRV is asserted as | ate as the fourth
cycle after AACK for aread-atomic operation if the lwarx
instruction requires a read-atomic operation.

Negation—Occurs synchronously one bus clock cycle after
execution of an stwex. instruction that clears the reservation or as
late asthe second bus cycle after TSisasserted for asnoop that clears
the reservation.

2.10.2 External Cache Intervention (L2_INT)—Input
Following are state and timing descriptions for the externa cache intervention (L2_INT)
input signal. This signal is not on the 601 or 603.
State Meaning Asserted—The current data transaction reguired intervention from
other bus devices.
Negated—The current data transaction did not require intervention.

Timing Comments Assertion/Negation—This signal is sampled by the processor
coincident with the first assertion of TA for agiven datatenure.

2.10.3 Time Base Enable (TBEN)—Input
The time base enable (TBEN) input signal is essentially a count enable for the time base.
Following are state and timing descriptions for TBEN. This signa is not on the 601.
State M eaning Asserted—The time base should continue clocking.

Negated—The time base should stop counting.

Timing Comments Assertion/Negation—May occur on any cycle and is synchronous
with the system clock.

2.10.4 TLBI Synchronization (TLBISYNC)—Input

Following are state and timing descriptions for the TLBI synchronization (TLBISYNC)
input signal. This signal is not on the 601 or 604.

State Meaning Asserted—I nstruction execution should stop after tIbsync executes.

Negated—I nstruction execution can resume after tihsync compl etes.
TLBISYNC issampled when HRESET negatesto select 32-bit data
bus mode; if TLBISYNC is negated, 32-bit mode is disabled. See
Section 6.3, “32-Bit Data Bus Mode (603).”

Timing Comments Assertion/Negation—May occur on any cycle.

2-30 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

2.11 Power Management Signals

Each processor has input and output signals defined to support low-power modes for the
processor and system. These signals are not the same between processors. The signals for
each processor are described in this section.

2.11.1 Quiescent Request (QUIESC_REQ)—Output

Following are state and timing descriptions for the quiescent request (QUIESC_REQ)

output signal, which the 601 uses to request the system to enter a soft-stop state.

State Meaning Asserted—The 601 is requesting a soft stop state for the system.
Negated—The 601 is not requesting a soft stop state.

Timing Comments Assertion/Negation—May occur at any time.

2.11.2 System Quiesced (SYS_QUIESC)—Input
Following are state and timing descriptions for the system quiesced (SYS_QUIESC) input
signal which the system usesto indicate to the 601 that it isready to enter the soft-stop state.
State Meaning Asserted—Enables soft stop in the 601.

Negated—T he soft-stop state is not enabled in the 601. Systemsthat
do not use SYS QUIESC should tieit low.

Timing Comments Assertion/Negation—Must meet setup and hold times described in
the Power PC 601 RISC Microprocessor Hardware Specifications.

2.11.3 Resume (RESUME)—Input

Following are state and timing descriptions for the RESUME input signal, which the
system uses to indicate to the 601 that it can resume normal operations.

State Meaning Asserted—The 601 can resume normal operations after a soft stop.

Negated—The 601 cannot resume normal operations if a soft stop
has occurred. Systems that do not use this signal should tieit low.

Timing Comments Assertion—Can occur any time. If asserted asynchronously to the
601 input clock, it must be asserted for at least three clock cycles. If
asserted synchronously, it must be asserted at |east two clock cycles.

Negation—Can occur after the minimum pulse width has been met.

Chapter 2. Signal Descriptions 2-31

2.11.4 Quiescent Request (QREQ)—Output
Following are state and timing descriptionsfor the quiescent request (QREQ) output signal,
which the 603 uses to request that the system enter quiescent state.

State Meaning Asserted—The 603 is requesting al bus activity normally required
to be snooped to terminate or to pause so the 603 may enter alow-
power (nap or seep) state. Once the 603 has entered this state it no
longer snoops bus activity.

Negated—The 603 is not requesting to enter the quiescent state.

Timing Comments Assertion—Can occur at any timeto indicate the request to enter the
quiescent state, during which the 603 keeps asserting QREQ.

Negation—Can occur whenever quiescent state is not requested.

2.11.5 Quiescent Acknowledge (QACK)—Input

Following are state and timing descriptions for the quiescent acknowledge (QACK) input,
which the system uses to indicate to the 603 that it is ready to enter alow-power state.

State M eaning Asserted—All bus activity that requires snooping has terminated or
paused so the 603 can enter alow-power state.

Negated—The 603 cannot enter alow-power state.

Timing Comments Assertion/Negation—May occur on any cycle after the assertion of
QREQ and must be held for aminimum of one bus clock cycle.

Start-up—QACK is sampled at the negation of HRESET to select
the reduced-pinout mode; if QACK is asserted at start-up, reduced-
pinout mode is disabled. See Section 6.4, “ Reduced-Pinout Mode
(603),” for a description of the reduced pinout mode.

2.11.6 Halted (HALTED)—Output

Following are state and timing descriptions for the HALTED output signal which the 604

uses to indicate to other system components that the processor has been halted.

State M eaning Asserted—The 604 entersidle state as aresult of the nap mode.
Dispatch and execution stops and the processor busisidle.
Negated—The processor is not in the idle state.

Timing Comments Assertion/Negation—Synchronous with the processor clock.

2.11.7 Run (RUN)—Input

Following are state and timing descriptions for the RUN input signal, which is used to
notify the 604 that snooping is required.

2-32 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

State Meaning Asserted—Forcesthe internal processor clocksto continue running,
evenif nap modeisactive, allowing bus snooping to occur. HALTED
is deasserted to indicate any bus activity and is reasserted to indicate
when the processor isidle and when RUN can be deasserted.

Negated—Internal processor clocks can stop running in nap mode.

Timing Comments Assertion—May occur at any time asynchronously to the input
clocks. The maximum latency between RUN being asserted and the
starting of the internal processor clocksis three bus clock cycles.

Negation—Can occur after the HALTED signal is asserted.

2.11.7.1 Going from Normal to Doze State (604e)

The only state transition allowed from the normal state is to doze state. This transition
requires system support. The system must assert RUN for at least 10 bus cycles before the
software power management sequence can begin. RUN does not affect 604e operation in
the normal state, but does affect operation during the transition from normal to doze state.
The software power management sequence is the following code:

sync

mtmsr

isync

branch to the sync instruction

The mtmsr instruction should modify the power management bit MSR[POW] only. All
other M SR values such as the external interrupt enable should be set up before the software
power management sequence is begun. When mtmsr is executed, the processor waits for
itsinternal stateto beidle and then assertsHALTED, at which point the processor isin doze
state. When entering doze state, the system must assert RUN for at least 10 bus cycles after
HALTED is asserted. When the processor is in doze state, HALTED is deasserted when a
snoop-triggered write-back isin progress. The system must keep RUN asserted whenever
HALTED is deasserted in doze mode due to a snoop write-back operation.

If the software power management sequence is initiated from the normal state with RUN
not asserted, the processor would attempt to go directly to nap state. This transition is not
supported and may cause the system to hang later when the processor leaves nap state.

2.11.7.2 Going from Doze to Nap State

For the processor to go from doze to nap state, the system must first ensure that the busis
idleand that HALTED isasserted for at least 10 bus cycles. The system should then deassert
RUN and continue to prevent bus grantsfor at least 10 additional bus cycles, at which point
the processor is in nap state and bus transactions can be resumed. The processor does not
snoop any subsequent bus transactions.

In going from doze to nap state, the 604e must see the busidle, which here means that the
604e cannot receive any TS or XATS assertions. The system can ensure this by negating
address bus grants to other bus devices.

Chapter 2. Signal Descriptions 2-33

2.11.7.3 Going from Nap to Doze State

For the processor to go from nap to doze state, the system should ensure the busisidle for
at least 10 bus cycles, assert RUN, and withhold bus grants for at least 10 additional bus
cycles. At this point the processor isin the doze state and all bus transactions are snooped.

2.12 Summary of Signal Differences

Table 2-8 lists each signal and describes any substantive differences between different
implementations. The clock, power, and test signals are not described in this document.
Refer to the user’s manual for the particular processor for this information.

Table 2-8. Processor Bus Signal Differences

Signal(s) Difference

Address Bus Arbitration Signals

Bus request (BR) As an output, assertion occurs when a bus transaction is needed and the device
does not have a qualified bus grant. This may occur even if the maximum (two for
the 601 and 603, three for the 604) possible pipeline accesses have occurred.
For the 603, BR is asserted for one cycle during the execution of dcbz or of a
load instruction that hit in the touch load buffer.

Bus grant (BG) The 601 recognizes a qualified bus grant on the cycle after AACK even if ARTRY
is asserted as long as the 601 is asserting ARTRY and has exclusive ownership
of the data associated with the snoop which caused the ARTRY.

Address bus busy (ABB) —

Address Transfer Start Signals

Transfer start (TS) Output—601 and 603—High Impedance occurs one bus clock cycle after TS is
negated which is coincident with the negation of ABB.

604—High Impedance occurs one bus clock cycle after the negation of TS. For
the 604, negation is only one bus cycle long, regardless of the TS-to-AACK delay.

Extended address transfer start Later generations of the 603 do not support direct-store operations.

(XATS) Output—601/603: High Impedance occurs one bus clock cycle after XATS is
negated which is coincident with the negation of ABB.

604: High Impedance occurs one bus clock cycle after negation of XATS.
Negation lasts only one bus cycle regardless of the XATS-to-AACK delay.

Address Transfer Signals

Address bus (A[0-31]) 603/604—For bursts, the address presented is double-word-aligned.
601—The address presented is quad-word—aligned.

Address parity (AP[0-3]) 601—If address parity check is enabled in the HIDO register, detection of even
parity unconditionally causes a checkstop.

Address parity error (APE) —

Address Transfer Attribute Signals

Transfer type (TT[0-4]) Exact meanings of TT[0—4] vary among processors. TT4 is output-only on the
601.

Transfer burst (TBST) —

2-34 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 2-8. Processor Bus Signal Differences (Continued)

Signal(s)

Difference

Transfer size (TSIZ[0-2])

Transfer code (TCn)

The 601 and 603 support only TC[0-1]. The 604 supports TC[0-2]. The exact
meanings of these signals vary from processor to processor.

Cache inhibited (CI)

Write through (WT)

Global (GBL)

Output—603/604: Negated on instruction fetches. 604e: HIDO[23] controls GBL
for instruction fetches through the address translation mechanism.

Input—The 603 must snoop the reservation address register for global and
nonglobal address transfers because lwarx/stwcx. require snoops on castouts
and snoop pushes (nonglobal). Snoops with GBL = 1 do not affect cache state.

Cache set element (CSEn)

The number of CSE signals corresponds to the cache structure.
601: CSE[0-2]; 603 (not the 603e): CSE; 603e/604: CSE[0-1]. CSE signals are
not meaningful during data cache touch load operations on a 603.

High-priority snoop request
(HP_SNP_REQ)

601 only

Address Transfer Termination Signals

Address acknowledge (AACK)

Input—The 604 supports sampling ARTRY as early as the second cycle after TS.

Address retry (ARTRY)

Negation timing is processor specific.

Shared (SHD)

The 603 does not support shared data.

Data Bus Arbitration Signals

Data bus grant (DBG)

Some conditions do not apply to the 604/604e for data streaming mode.

Data bus write only (DBWO)

Data bus busy (DBB)

Data Transfer Signals

Data bus (DH[0-31];DL[0-31])

Data bus parity (DP[0-7])

For the 601, if data parity check is enabled in the HIDO register, detection of even
parity unconditionally causes a checkstop in the 601.

Data parity error (DPE)

Data bus disable (DBDIS)

Signal defined after 601.

Data Transfer Termination Signals

Transfer acknowledge (TA)

Input/negation—When the 603 is configured for 1:1 clock mode and is performing
a burst read into data cache, the 603 requires one wait state between the
assertion of TS and the first assertion of TA for that transaction. If no-DRTRY
mode is also selected, the 603 requires two wait states.

Chapter 2. Signal Descriptions

2-35

Table 2-8. Processor Bus Signal Differences (Continued)

Signal(s)

Difference

Data retry (DRTRY)

Input/start-up—Used at power-on to select no-DRTRY mode for 603, data
streaming mode for 604, and data streaming mode or no-DRTRY mode for 604e.
For 603 and 604, DRTRY is sampled at the negation of HRESET; if DRTRY is
asserted, no-DRTRY mode is selected (603/604e). If DRTRY is negated at start-
up, DRTRY is enabled. If no-DRTRY or data streaming mode is selected, DRTRY
must be negated during normal operation (after HRESET). No-DRTRY mode
provides a one-cycle faster reads; data streaming allows consecutive bursts.

Transfer error acknowledge (TEA)

604—In data streaming mode, the 604 does not recognize TEA the cycle after TA
during a read operation due to the absence of a DRTRY assertion opportunity.
TEA should be asserted for one cycle only.

System Status Signals

Interrupt (INT)

601—INT may be negated after a minimum of three processor clock cycles.

System management interrupt
(SM)

Supports the system management interrupt not defined by the PowerPC
architecture; not implemented on the 601.

Machine check interrupt (MCP)

This signal is not defined for the 601.

Checkstop input (CKSTP_IN)

Early versions of the 603 identified this signal as CKSTP.

Checkstop output (CKSTP_OUT)

Early versions of the 603 identified this signal as CHECKSTOP.

Hard reset (HRESET)

After assertion, output drivers are released to high impedance within five clocks
(three clocks for the 601) after the assertion of HRESET.

Soft reset (SRESET)

Negation may occur any time after the minimum soft reset pulse width of 2 (10 for
the 601) bus cycles has been met.

Processor State Signals

Reservation (RSRV)

604/604e. RSRYV is asserted as late as the fourth cycle after AACK for a read-
atomic operation if the lwarx instruction requires a read-atomic operation.

External cache intervention
(L2_INT)

New feature on 604

Time base enable (TBEN)

Time base did not exist on 601.

TLBI synchronization (TLBISYNC)

Supports a 603-specific instruction; used at power-on to select 32-bit bus mode

Power Management Signals

Quiescent request
(QUIESC_REQ)

601 only

Quiescent request (QREQ)

603 only. This signal is used at power-on to select a reduced pin mode.

Halted (HALTED)

Power management for the 604

System quiesced (SYS_QUIESC)

601 only

Resume (RESUME)

604 only

Quiescent acknowledge (QACK)

603 only

Run (RUN)

604 only

2-36

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Chapter 3
Memory Access Protocol

Memory accesses can occur in single (1-8 bytes) and four-beat (32 bytes) burst data
transfers. System components can direct these accesses to the system memory hierarchy or
to 1/O devices as memory-mapped |I/O. The address and data buses are decoupled for
memory accesses to support pipelining and split transactions. The PowerPC 601 and 603
processors can pipeline as many as two transactions; the PowerPC 604 processor can
pipeline as many as three. These processors have limited support for out-of-order split
transactions.

Access to the system interface is granted through an externa arbiter that lets devices
compete for bus mastership. This mechanism is flexible, alowing the processor to be
integrated into systems that implement various fairness and bus-parking procedures to
reduce arbitration overhead.

The 601 and 604 provide multiprocessor support through coherency mechanisms that
provide snooping, external control of the on-chip cache and trandlation lookaside buffers
(TLBSs), and support for a secondary cache. Multiprocessor software support is provided
through the use of atomic memory operations.

Typically, memory accesses are weakly-ordered—sequences of operations, including
load/store string and load/store multiple instructions, do not necessarily complete in the
order they begin—maximizing the efficiency of the buswithout sacrificing coherency of the
data. The processors allow read operations to precede store operations (except where a
dependency exists). A processor can be signaled to perform a pending write ahead of
pending reads. The 604 performs snoop push operations ahead of all other bus operations.
Because the processor can dynamically optimize run-time ordering of load/store traffic,
overal performance isimproved.

The Synchronize (sync) or Enforce In-Order Execution of 1/O (eieio) instructions can be
used to enforce strong ordering.

The following sections describe how the processor interface operates, provide detailed
timing diagrams that illustrate how the signals interact, and include a collection of more
general timing diagrams of typical bus operations.

Chapter 3. Memory Access Protocol 3-1

Figure 3-1 isalegend of conventions used in the timing diagrams.

Bar over signal name indicates active low

ap0 Processor input (while processor is a bus master)

BR Processor output (while processor is a bus master)
ADDR+ Processor output (grouped: here, address plus attributes)

qgual BG Internal signal (inaccessible to the user but used to clarify operations)

Prerequisite dependency—event will occur on an undetermined,

) Compelling dependency—event will occur on the next clock cycle
(5 subsequent clock cycle

<:> Processor three-state output or input

- Processor nonsampled input
\ /~ Signal with sample point

! A sampled condition (dot on high or low state)
with multiple dependencies

Q

\ /
~ — —

Timing for a signal had it been asserted (it is not actually asserted)

Figure 3-1. Timing Diagram Legend

Signals on this interface are synchronous—all processor input signals are sampled and
output signals are driven on the rising edge of the bus clock cycle (see the processor
hardware specifications for exact timing information).

3.1 Bus Protocol

Figure 3-2 shows the memory access bus protocol for the 601, 603, and 604. Memory
accesses are divided into address and data tenures, each of which is comprised of three
phases—bus arbitration, transfer, and termination. Address and data tenures are
independent and, as indicated in Figure 3-2, can overlap due to the ability to start a data
tenure before the address tenure ends. The independence of these operations permits
address pipelining and split-bus transactions to be implemented at the system level. These

3-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

processors support one- and four-beat transfers. Figure 3-2 shows a data transfer that
consists of asingle-beat transfer of as many as 64 bits. Four-beat burst transfers of 32-byte
cache blocks are also supported, and on the 603, eight-beat bursts can be used to transfer
an eight-word cache block when the processor is operating in 32-bit data bus mode. Burst
operations require data transfer termination signals for each beat.

Address-only transactions are used to broadcast synchronizing and cache control
operations, especially in multiprocessor systems.

ADDRESS TENURE

N
/s I

ARBITRATION | TRANSFER TERMINATION

INDEPENDENT ADDRESS AND DATA

\ DATA TENURE
N\

— —
| ARBITRATION | SINGLE-BEAT TRANSFER | TERMINATION

Figure 3-2. Overlapping Tenures on the Processor Bus for a Single-Beat Transfer

Basic functions of the address and data tenures are as follows;
e Addresstenure

— Arbitration; During arbitration, address bus arbitration signals are used to gain
mastership of the address bus.

— Transfer: After mastership is obtained, the address bus master transfers the
address, transfer attributes, and parity information on the address bus. Address
signals and transfer attribute signals control the address transfer. Address parity
and address parity error signals ensure the integrity of the address transfer.

— Termination: After the addresstransfer, the system signal sthat the addresstenure
is complete or that it must be repeated.

« Datatenure
— Arbitration: To begin adatatenure, the master arbitrates for data bus mastership.

— Transfer: After mastership is obtained, the data bus master sasmples the data bus
for read operations or drivesthe databusfor write operations. Thedata parity and
data parity error signals ensure the integrity of the data transfer.

— Termination: Datatermination signals are required after each data beat in adata
transfer. In single-beat transactions, data termination signals also indicate the
end of the tenure, while in burst accesses, data termination signals apply to
individual beats and indicate the end of the tenure only after the final data beat.

Chapter 3. Memory Access Protocol 3-3

Processors can generate address-only bus operations during execution of certain
instructions (for example dcbz, sync, eieio, tibie, and Iwar x). Address-only operations are
given more support on processors intended for multiprocessor systems. The ability to retry
address tenures provides an efficient snooping protocol for maintaining coherency in
systems with multiple memory systems (including caches).

Although address and data transfers are separate, thereis no explicit tagging mechanism to
associate a data transfer with its address transfer. Addresses and data are generally
transferred in the same order. However, the data bus write only (DBWO) signa allows
writes to transfer ahead of reads. The designer of a multiple processor system can provide
any ordering, as long as each processor transfers its addresses and data in same order and
memory is kept coherent.

3.1.1 Arbitration Signals

Arbitration for both address and data bus mastership is performed by a central, external
arbiter and minimally by the arbitration signals shown in Section 2.1, “Address Bus
Arbitration Signals,” and Section 2.6, “Data Bus Arbitration Signals” Most arbiter
implementations require additional signals to coordinate bus master/dlave/snooping
activities. Note that address bus busy (ABB) and data bus busy (DBB) are bidirectional
signals. They are processor inputs unless it is master of one or both buses; they must be
connected high through pull-up resistors so that they remain negated when no devices have
control of the buses. Table 3-1 shows the bus arbitration signals.

Table 3-1. Number of Bus Arbitration Signals

Signal 110 Signal Connection Requirements

BR Output | One per master

BG Input One per master

ABB Both Common among masters

DBG Input One per master

DBWO | Input One per processor

DBB Both Common among masters (one per master if data streaming is used across multiple masters)

Address bus arbitration signals are described as follows:
» BR (bus request)—Assertion indicates that a device wants address bus mastership.

» BG (bus grant)—Assertion indicates the device can, with the proper qualification,
take mastership of the address bus. See Section 2.1.2, “Bus Grant (BG)—Input.”

» ABB (address bus busy)—A ssertion identifies the address bus master.

3-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Data bus arbitration signals are described as follows:

» DBG (data bus grant)—Indicates that the device can, with the proper qualification,
take data bus mastership. See Section 2.6.1, “ Data Bus Grant (DBG)—Input.”

« DBWO (data bus write only)—Assertion indicates that the processor may perform
the data bus tenure for an outstanding write address even if aread addressis
pipelined before the write address.

» DBB (data bus busy)—Assertion indicates that the device is data bus master.
Processors assume data bus mastership if they need the data bus and are given a
qualified data bus grant.

Note that when the 604 uses data streaming, DBB works only as an output and is driven in
the same manner asbefore. If 604 systems use data streaming across multiple devices, DBB
must not be common among processors to avoid contention problems when one processor
negates DBB while another assertsiit.

3.1.2 Address Pipelining and Split-Bus Transactions

This protocol provides independent address and data bus capability to support pipelined
and split-bustransaction system organizations. Pipelining allowsthe address tenure of abus
transaction to begin before the data tenure of the previous transaction finishes. Split-bus
transactions alow other bus activity to occur (either from the same or from different
devices) between the address and data tenures of a transaction.

Although it does not inherently reduce memory latency, address pipelining and split-bus
transactions can greatly improve bus/memory throughput, and are especialy effective in
multiprocessor implementations where bus bandwidth is an important measurement of
system performance.

The design of the external arbiter affects pipelining by regulating address bus grant (BG),
databus grant (DBG), and address acknowledge (AACK) signals. For example, aone-level
pipeline is enabled by asserting AACK to the current address bus master and granting
address bus mastership to the next requesting device before the current data bus tenure
completes. For example, a two-level pipeline lets two additional address tenures occur
before the current data bus tenure completes.

The 604 can pipelineitstransactionsto adepth of two levels (intraprocessor pipelining) and
the 601 and 603 can pipeline transactions to a depth of one level. The bus protocol does not
limit the levels of pipelining between multiple devices (interprocessor pipelining); the
external arbiter controls pipeline depth and synchronization between masters and slaves.

In a pipelined implementation, data bus tenures stay in strict order with respect to address
tenures except when DBWO is used to move write data tenures ahead of read data tenures.
However, externa hardware can further decoupl e the address and data buses, allowing data
tenures to occur out of order with respect to address tenures. This requires some form of

Chapter 3. Memory Access Protocol 3-5

system tag to associate an out-of-order data transaction with its address transaction (not
defined for this processor interface). Each processor’s bus requests and data bus grants can
be used to implement tags to support interprocessor, out-of-order transactions.

3.2 Address Bus Tenure

This section describes the three phases of the address tenure—address bus arbitration,
address transfer, and address termination.

3.2.1 Address Bus Arbitration

When a device needs bus access but does not have a qualified bus grant, it asserts BR until
the bus is available and the device is granted mastership. The externa arbiter must grant
master-elect status to the potential master by asserting BG. The device requesting the bus
determines that the bus is available as a qualified bus grant; refer to Section 2.1.2, “Bus
Grant (BG)—Input.” The processor assumes address bus mastership and assertsABB when
it receives aqualified bus grant as shown in Figure 3-3.

| -1 | 0 | 1
Logical Bus Clock | |

need_bus

o

SR:,
===k

L1

qualified BG

ABB

IR
Figure 3-3. Address Bus Arbitration Showing Qualified Bus Grant

External arbiters must alow only one device at atime to be address bus master. In systems
in which no other device can be a master, BG can be grounded (always asserted) to
continually grant address bus mastership to the processor.

3-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Figure 3-4 shows bus parking; a qualified bus grant exists on the clock edge following a
need bus condition eliminating the two bus clock cycles required for arbitration. The
processor negates ABB for at least one bus clock cycle after AACK isasserted, eveniif it is
parked and another transaction is pending. Typically, the most recent bus master remains
parked; however, system designers can choose other schemes, such as providing
unrequested bus grants in situations where it is easy to correctly predict the next device
requesting bus mastership.

qualified BG

ABB 7
Figure 3-4. Address Bus Arbitration Showing Bus Parking

When the processor receives a qualified bus grant, it assumes address bus mastership by
asserting ABB and negating the BR output signal. Meanwhile, the processor drives the
requested address onto the address bus and asserts TS to indicate the start of a new
transaction. To avoid the bus hogging these processors, aways assert ABB and TS
simultaneously and negate ABB the clock cycle following assertion of AACK; however, the
processors accommodate systems in which ABB is asserted early or removed late.

When designing external bus arbitration logic, note that the processor may assert BR
without using the bus after it receivesthe qualified bus grant. For example, if the 604 snoops
an access that cancels the reservation associated with a queued
read-with-intent-to-modify-atomic (RWITMA) operation and for which it has asserted BR,
when the 604 is granted the bus, it no longer needs to perform the RWITMA operation;
therefore, the 604 does not assert ABB and does not use the bus for the read operation.

The 604 asserts BR for at least one clock cycle in these instances.

Chapter 3. Memory Access Protocol 3-7

3.2.2 Address Transfer

During an address transfer, the physical address and transfer attributes pass from the bus
master to the slave device(s). Snooping logic may monitor the transfer to enforce cache
coherency. The signal groups used in address transfers include the following:

» Addresstransfer start signal—Transfer start (TS). See Section 2.2, “Address
Transfer Start Signals.”

» Addresstransfer signals—Address bus (A[0-31]), address parity (AP[0-3]), and
address parity error (APE); see Section 2.3, “Address Transfer Signals”

e Addresstransfer attribute signals—Transfer type (TT[0-4]), transfer burst (TBST),
transfer size (TSIZ[0-2)]), transfer code (TCn), cache inhibit (Cl), write-through
(WT), global (GBL), and cache set element (CSEN); see Section 2.4, “Address
Transfer Attribute Signals.”

Figure 3-5 shows the timing for all of these signals. Except for TS and APE, address
transfer and address transfer attribute signal timing is identical. These signals are
represented by the line labeled ‘ADDR+'. Asserting TS indicates the master has begun an
address transfer and that the address and transfer attributes are valid (within the context of
a synchronous bus). These processors always assert TS coincident with ABB. As an input
to the processors from other system masters, TS need not coincide with assertion of ABB,
but can be asserted after it is asserted; these processors track this scenario correctly.

| 0 | 1 | 2 | 3 | 4 I
| | | | |
qualified BG
= L O
TS)
r q >
m (@
71O
ADDR<+ »
C_< (<
/ \ P
aack / N
o ar
artry C‘/Z/ X

Figure 3-5. Address Bus Transfer

The addressistransferred in bus clock cycles 1 and 2 (arbitration occursin clock cycle 0).
TSisasserted in clock cycle 1 and then negated. Address and attribute signals are driven
valid coincident with the asserting of TS and held until the address transfer ends. The
processor assertsABB during the transfer. AACK is asserted to the processor the cycle after
assertion of TS (shown by the dependency line). Thisis the shortest duration of an address
transfer; it can be extended by a slave delaying assertion of AACK.

3-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

3.2.2.1 Address Bus Parity

The 60x processors always generate one bit of correct odd-byte parity for each of the four
bytes of address when avalid addressis on the bus. The cal culated values are placed on the
AP[0-3] outputs when the processor is address bus master. If the processor is not the
master, TS and GBL are asserted together, the transaction type is one the processor snoops,
and the cal culated val ues are compared with inputs AP[0-3]. If address bus parity checking
isenabled (refer to the HID description for each processor), a parity error causes amachine
check (checkstop on the 601) if MSR[ME] is set or checkstop if it is cleared. If address bus
parity checking is disabled, no action istaken. In either case, APE is asserted if even parity
is detected. The 603 does not assert APE if address parity checking is disabled.

3.2.2.2 Address Transfer Attribute Signals

The address transfer attribute signals, TT[0-4], TBST, TSIZ[0-2], and TCn, are fully
described in Section 2.4, “Address Transfer Attribute Signals,” and are summarized below.

3.2.2.2.1 Transfer Type (TT[0-4]) Signals

Snooping logic should fully decode the transfer type signals if GBL is asserted. Slave
devices can sometimes use individual transfer type signals without fully decoding the
group. Table 2-1 describes encodings for the transfer type signals.

3.2.2.2.2 Transfer Size (TSIZ[0-2]) Signals

TheTSIZ[0-2] signalsindicatethe size of the requested datatransfer as shownin Table 2-2.
These signals can be used with TBST and A[29-31] to determine which portion of the data
bus has valid data for a write transaction or which portion of the bus should contain valid
datafor aread transaction. In general, processors do not produce 5-, 6-, or 7-byte transfers.
The 601 allows unaligned floating-point operations to produce 5-, 6-, or 7-byte transfers,
but use of thisfeature is discouraged.

The PowerPC architecture allows storage combining, but it is not supported in the 601 and
603. The 604 combines only stores to adjacent aigned words resulting from a
cache-inhibited store multiple word (stmw) instruction. These combined words are
presented to the bus as anormal double-word storein memory order. Storage combining of
other sizes (for example, three adjacent half words to make a 6-byte transfer) are not
implemented.

Coherency size is defined as 32 bytes (one cache block). Data transfers that cross a
32-byte-dligned boundary must present a new address to the bus at that boundary (for
coherency consideration) or must operate as noncoherent datawith respect to the processor.

Chapter 3. Memory Access Protocol 3-9

3.2.2.3 Burst Ordering during Data Transfers

During burst data transfer operations for these processors, 32 bytes of data (one cache
block) are transferred to or from the processor cache in a specific order. Burst transfers are
always presented by the processor with a double-word—aligned address (in other words
A[29-31] is 0b000). For burst reads, these processors request the critical double word. A
memory controller must transfer this word first, followed by those words in increasing
memory addresses, and wrapping around to the beginning of the cache block as required.
Table 3-2 describes burst read orderings. For burst writes, processors present the first
address of the block (A[27-31] is 0b00000).

Table 3-2. Processor Read Burst Ordering

Processor Starting Address:
Data Transfer

A[27-28] =00 | A[27-28] =01 | A[27-28] =10 | A[27-28] =11
First data beat DWO DwW1 DW2 DW3
Second data beat Dw1 DwW2 DW3 DWO
Third data beat DW2 DwW3 DWO Dw1
Fourth data beat DW3 DWO DwW1 DW2

Note: A[29-31] are always 0b00O for burst transfers by the processor.

3.2.2.4 Effect of Alignment in Data Transfers

This section describes the various combinations of transfer size, address, and byte lanes
used by these processors. Also shown is the difference in behavior of PowerPC processors
with an 8-byte data bus and the 603 with a4-byte data bus mode. Aligned transfers are those
whose address is an integer multiple of the data's size. For example, a 4-byte transfer has
an address of Obx...xx00. The PowerPC architecture allows flexibility to handle alignment
errors either in hardware or software (a program exception). See the user’'s manual for each
processor. Table 3-3 lists aligned transfers (shown by an A) generated by a PowerPC
processor with a 64-bit data bus. For example, 1-byte datais always aligned. The table also
shows byte lanes used for a 4-byte word transfer, and that only two addresses are aligned.

3-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 3-3. Aligned Data Transfers for 64-Bit Data Bus

Data Bus Byte Lane(s)
Transfer Size TSIZ[0-2] | A[29-31]

2 3 4 5

Byte 001 000 — — — —
001 001 — — — —

001 010 A — — —

001 011 — A — —

001 100 — — A —

001 101 — — — A

001 110 — — — —

001 111 — — — —

Half word 010 000 — — — —
010 010 A A — —

010 100 — — A A

010 110 — — — —

Word 100 000 A A — —
100 100 — — A

Double word 000 000 A A A

Notes: A: Byte lane used

—: Byte lane not used

Chapter 3. Memory Access Protocol

3-11

Table 3-4 lists aligned transfers that can occur on the bus and are generated by a 603 in
32-bit data bus mode. Note that the two aligned word transfers are always transferred on
byte lanes 0-3 and that a double-word transfer takes two beats.

Table 3-4. Aligned Data Transfers for 32-Bit Data Bus

Tresl?zsefer Re_g:ir:sfdeius [-[)S_IZZ] A[29-31] Data Bus Byte Lane(s)

0 1 2 3 4 5 6 7

Byte One access 001 000 A — — — X X X X
One access 001 001 — A — — X X X X

One access 001 010 — — A — X X X X

One access 001 011 — — — A X X X X

One access 001 100 A — — — X X X X

One access 001 101 — A — — X X X X

One access 001 110 — — A — X X X X

One access 001 111 — — — A X X X X

Half word One access 010 000 A A — — X X X X
One access 010 010 — — A A X X X X

One access 010 100 A A — — X X X X

One access 010 110 — — A A X X X X

Word One access 100 000 A A A A X X X X
One access 100 100 A A A A X X X X

Double word First access 000 000 A A A A X X X X
Second access 000 000 A A A A X X X X

Notes: A: Byte lane used
X: Byte lane not used in 32-bit mode
—: Byte lane not used

The processors support misaligned memory operations to varying degrees, however, it is
strongly recommended that software attempt to align code and data where possible. In
particular, load/store multiple and load/store string instructions that generate misaligned
accesses can greatly affect performance. Misaligned memory transfers address memory
that is not aligned to the size of the data being transferred (such as, aword read of an odd
byte address, Obx...x1). Although most of these operations hit in the primary cache (or
generate burst memory operationsif they miss), the processor interface supports misaligned
transfers. There are three approaches for handling these transfers depending upon the
processor and the data bus width.

3-12 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

The 601 transfers misaligned data in one or two bus cycles, as shown in Table 3-5.
Misaligned data that does not cross a double-word boundary is transferred in a single
access. Those that cross a double-word boundary take two accesses. Misaligned
double-word floating-point |oads and stores are outside the architecture and are not shown
in this table even though they are supported by the 601.

Table 3-5. Misaligned Data Transfers for the PowerPC 601 Processor

Tr"’sl?zsger Re_gz::?eius — AZ8-31] Data Bus Byte Lanes
0 1 2 3 4 5 6 7
Two bytes | One access 010 001 — A A — — — — —
One access 010 011 — — — A A — — —
One access 010 101 — — — — — A A —
First access 001 111 — — — — — — — A
Second access 001 000 A — — — — — — —
Three One access 011 000 A A A — — — — —
bytes
One access 011 001 — A — — — —
One access 011 010 — — A A — — —
One access 011 011 — — — A A A — —
One access 011 100 — — — — A A —
One access 011 101 — — — — — A A
First access 010 110 — — — — — — A
Second access 001 000 A — — — — — — —
First access 001 111 — — — — — — — A
Second access 010 000 A A — — — — — —
Four One access 100 001 — A A — — —
oytes One access 100 010 — — A A A — —
One access 100 011 — — — A A A A —
First access 011 101 — — — — — A A A
Second access 001 000 A — — — — — — —
First access 010 110 — — — — — — A A
Second access 010 000 A A — — — — — —
First access 001 111 — — — — — — — A
Second access 011 000 A A A — — — — —

Notes: A: Byte lane used; —:Byte lane not used

Chapter 3. Memory Access Protocol 3-13

The 603 and 604 transfer misaligned dataiin one or two bus accesses, as shownin Table 3-6.
As long as the misaligned transfer does not cross a word boundary, these processors can
transfer the data for the misaligned address in one access. The two-byte transfer at address
0Obx...x001 is such a case. An attempt to address misaligned data that crosses a word
boundary requires two bus transfers to access the data.

Table 3-6. Misaligned Data Transfers for PowerPC 603/ 604 Processors

Trasr;ier Reﬁ;ir:s?e?sus Tsizi0-2] | Alzea1] Data Bus Byte Lanes
0 1 2 3 4 5 6 7
Two One access 010 001 — A A — — — — —
bytes First access 001 011 — —_ — A — — — _
Second access 001 100 — —_ — — A — — _
One access 010 101 — — — — — A A —
First access 001 111 e el e e e e A
Second access 001 000 A — — — — — — —
Three One access 011 000 A A A — — — — —
oytes One access 011 001 — A — — — —
First access 010 010 — — A — — — —
Second access 001 100 — — — — A — — _
First access 001 011 — — — A — — — —
Second access 010 100 — — — — — —
One access 011 100 — — — — A A —
One access 011 101 — — — — — A A
First access 010 110 — — — — — — A
Second access 001 000 A — — — — — — _
First access 001 111 e el e e e e A
Second access 010 000 A A — — — — — —

Notes: A: Byte lane used; —:Byte lane not used

3-14 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 3-6. Misaligned Data Transfers for PowerPC 603/ 604 Processors (Continued)

Trags(ier Reﬁ::’;deius rsizioz) | Afe-ay Data Bus Byte Lanes
0 1 2 3 4 5 6 7
Four First access 011 001 — A A A — — — —
bytes
Second access 001 100 — — — — A — — _
First access 010 010 — — A A — — — —
Second access 010 100 — — — — A A — —
First access 001 011 — — — A — — — _
Second access 011 100 — — — — A A A —
First access 011 101 — — — — — A A A
Second access 001 000 A — — — — — — _
First access 010 110 — — — — — — A A
Second access 010 000 A A — — — — — —
First access 001 111 e e e e e e A
Second access 011 000 A A A — — — — —

Notes: A: Byte lane used; —:Byte lane not used

In 32-bit data bus mode, the 603 transfers misaligned data in one or two bus cycles using
only byte lanes 0—3, as shown in Table 3-7. If the attempted transfer does not cross aword
boundary, the processor can transfer the data for the misaligned address in one access. The
two-byte transfer at address Obx...x001 is such a case. Accessing data that crosses a word
boundary, such as atwo-byte transfer at address Obx...x011, takes two bus transfers.

Chapter 3. Memory Access Protocol 3-15

Table 3-7. Misaligned Data Transfers for 603 in 32-Bit Mode

Trg?;efer Re_g;:sgeius — AZ9-31] Data Bus Byte Lanes
0 1 2 3 4 5 6 7
Two One access 010 001 — A A — X X X X
bytes
First access 001 011 — — — A X X X X
Second access 001 100 A — — — X X X X
One access 010 101 — A A — X X X X
First access 001 111 — — — A X X X X
Second access 001 000 A — — — X X X X
Three One access 011 000 A A A — X X X X
bytes
One access 011 001 — X X X X
First access 010 010 — — X X X X
Second access 001 100 A — — — X X X X
First access 001 011 — — — A X X X X
Second access 010 100 A A — — X X X X
One access 011 100 A A — X X X X
One access 011 101 — A X X X X
First access 010 110 — — A A X X X X
Second access 001 000 A — — — X X X X
First access 001 111 — — — A X X X X
Second access 010 000 A A — — X X X X
Four First access 011 001 — A A A X X X X
bytes
Second access 001 100 A — — — X X X X
First access 010 010 — — A A X X X X
Second access 010 100 A A — — X X X X
First access 001 011 — — — A X X X X
Second access 011 100 A A A — X X X X
First access 011 101 — A A A X X X X
Second access 001 000 A — — — X X X X
First access 010 110 — — A A X X X X
Second access 010 000 A A — — X X X X
First access 001 111 — — — A X X X X
Second access 011 000 A A A — X X X X

Notes: A: Byte lane used; X: Byte lane not used in 32-bit mode; —: Byte lane not used in transfer

3-16 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

3.2.2.4.1 Alignment of External Control Instructions

The eciwx and ecowx instructions always transfer four bytes of data. However, if the eciwx
or ecowx addresses data that crosses a double-word boundary on the 601 or any word
boundary on the 603 or 604, the processor generates two bus operations, each transferring
fewer than four bytes.

For the first bus operation, bits A[29-31] equals EA[29-31] of the instruction, (Ob101,
0b110, or Ob111 for the 601 or Obx01, Obx10, or Obx11 for the 603 or 604). The size
associated with the first bus operation is 3, 2, or 1 bytes, respectively. For the second bus
operation, the system must determine how many bytes were transferred on the first bus
operation to determine the size of the second operation. Address bitsA[29-31] equal 0b000
and the operation transfers 1, 2, or 3 bytes, respectively. For both operations, TBST and
TSIZ[0-2] are redefined to specify the resource ID (RID), copied from EAR[28-31]. For
eciwx/ecowx operations, the state of EAR[28] is presented by the TBST signal without
inversion (if EAR[28] = 1, TBST is asserted).

Furthermore, the two bus operations associated with such a misaligned external control
instruction are not atomic. That is, the processor can initiate other types of memory
operations between the two transfers. Also, the two bus operations associated with a
misaligned ecowx can be interrupted by an eciwx bus operation, and vice versa. The
processor guarantees that the two operations associated with a misaligned ecowx cannot be
interrupted by another ecowx operation; and likewise for eciwx.

Because a misaligned external control address is considered a programming error, the
system may choose to assert TEA or otherwise cause an exception when a misaligned
external control bus operation occurs.

3.2.3 Address Transfer Termination

An address tenure is terminated when completed with the assertion of AACK. The
processor does not terminate the address transfer until the AACK input is asserted;
therefore, the system can extend the address transfer phase by delaying assertion of AACK.
The AACK signal can be asserted as early as the bus clock cycle following TS (see
Figure 3-5), for a minimum address tenure of two bus cycles. Note that AACK must be
asserted for only one bus clock cycle.

The address transfer can be terminated with the requirement to retry if ARTRY is asserted
any time during the address tenure and through the cycle following AACK. If an address
retry isrequired, the ARTRY response is asserted by a bus snooping device as early as the
second cycle after TSis asserted. Once asserted, ARTRY must remain asserted through the
cycle after the assertion of AACK. The assertion of ARTRY during the cycle after the
assertion of AACK is called a qualified ARTRY. Assertion of ARTRY during the address
tenureisreferred to asan early ARTRY.

If the bus master recognizes an ARTRY and the datatenure has begun, it terminates the data
tenure immediately even if data has been received. If the assertion of ARTRY is received

Chapter 3. Memory Access Protocol 3-17

up to or on the bus cycle following the first (or only) assertion of TA for the datatenure, the
processor ignores the first data beat; if it is a load operation, it does not forward data
internally to the cache and execution units. If the 604 isin fast-L 2 mode, TA should not be
asserted prior to the valid ARTRY cycle. If ARTRY is asserted after the first (or only)
assertion of TA, improper operation of the bus interface may result.

As a bus master, the processor responds to an assertion of ARTRY by aborting the bus
transaction and re-requesting the bus. The assertion causes both the address and data
tenures to be rerun. After recognizing an assertion of ARTRY and aborting a transaction,
the processor may not run the same transaction the next timeit is granted the bus.

As a snooping device, the processor asserts ARTRY for a snooped transaction that hits
modified data in the data cache that must be written back to memory, or if the snooped
transaction could not be serviced. As shown in Figure 3-6, ARTRY is asserted for one bus
clock cycle, three-stated for half of the next bus clock cycle, driven high till the following
bus cycle, and finally three-stated. Section 2.5.2, “Address Retry (ARTRY)—Output,”
describes ARTRY timing for different processors.

1 1 2 /38 | 4 | 5 | 6 7 1 8 |

E :\
ARTRY N

qual BG

>
o]
o]

L~ S /

Figure 3-6. Snooped Address Cycle with ARTRY

The snoop push window occurs two cycles after the assertion of AACK. Coherency
protocol providesthat only one device can get asnoop hit due to modified datafor any given
addresstenure. If ARTRY is asserted during the cycle after the assertion of AACK, theniin
the following cycle, no processor asserts BR unless a snoop hit requires it to do a push. To
guarantee that a snoop push gets an immediate opportunity to obtain the address bus, the
external arbiter must grant the bus to the snooping device next.

3-18 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

A processor with a snoop hit that requires a push uses the window to request the address
bus. After it gains the address bus, it uses the address and data tenures only to perform a
push. In some cases, a processor may have a queued snoop push and receive asnoop hit that
requires another push. The processor can use the window to perform the queued push and
not queue the second push. If the processor is parked in the cycle after AACK, a processor
with a snoop does not generate a fast push; instead, it acts asif it were not parked.

The SHD signal can also be asserted either coincident with ARTRY or aloneto indicate that
another bus device has a copy of the requested data and that the requesting device should
mark its corresponding cache block as shared (S).

3.3 Data Bus Tenure

This section describes the data bus arbitration, transfer, and termination phases, which are
nearly identical to address tenure phases.

3.3.1 Data Bus Arbitration

Data bus arbitration uses the data arbitration signal group—DBG, DBWO, and DBB.
Additionally, the combination of TS and TT[0-4] provides information about the data bus
request to external logic. Asserting TS is an implied data bus request; the arbiter must
qualify TS with the transfer type (TT[0-4]) encodings to determine if the current address
transfer is an address-only operation (see Table 2-1). If the data bus is needed, the arbiter
grants data bus mastership by asserting DBG to the processor. As with the address bus
arbitration phase, the processor must qualify DBG before assuming bus mastership, as
described in Section 2.6.1, “Data Bus Grant (DBG)—Input.” As shown in Figure 3-7, the
processor asserts DBB on the bus clock cycle after recognition of aqualified data bus grant.

| 0 | 1 | 2 | 3 [
| | 1
]
T /
abg 7
dbg
| —_* <
_ pJ
b / > /
_ $
drtry (_X <

lw]
os]
w

qual DBG (f\/ d
d»

Figure 3-7. Data Bus Arbitration

Chapter 3. Memory Access Protocol 3-19

When a data tenure overlaps its associated address tenure, a qualified ARTRY assertion
coincident with aDBG signal does not result in data bus mastership (DBB is not asserted).
Because the processor can pipeline outstanding data tenures when a new address tenureis
retried, the processor becomes data bus master to compl ete the previous transaction.

3.3.1.1 Effect of ARTRY Assertion on Data Transfer and Arbitration
on the PowerPC 604 Processor

The system designer must define the beginning of the window in which the snoop response
isvalid and ensure that datais not transferred until one cycle before that window, or until
the same cycle as the beginning of that window in fast-L2 mode. The processors support a
snoop response window as early astwo cycles after assertion of TS. In fast-L2 mode, data
cannot be transferred earlier than the first cycle of the assertion of ARTRY.

Asserting ARTRY can invalidate a previous or current data transfer and terminate the data
cycle, invalidate a qualified data bus grant, or cancel a future data transfer. The possible
scenarios are described as follows:

 If dataistransferred (via assertion of TA) two or more cycles before the beginning
of the snoop window in the normal mode, or one or more cycles before the beginning
of the snoop window in data streaming mode, then dataistransferred too early to be
cancelled by ARTRY. Therefore, systemsin whichARTRY can be asserted must not
attempt data transfers (assert TA) before this cycle.

« If dataistransferred in the cycle before the beginning of the snoop response window,
asserting ARTRY invalidates the data transfer in a similar fashion to assertion of
DRTRY except that the datatenureis aborted rather than extended. If datastreaming
mode is active, data cannot be transferred in this cycle.

+ If dataistransferred in thefirst cycle of the snoop response window, asserting
ARTRY invalidatesthe datatransfer. Thisislike deasserting TA except that the data
tenure is aborted instead of continued.

 |f DBG hasnot been asserted, asserting ARTRY effectively negatestheimplied data
bus request associated with the address transfer, and the processor does not expect a
transfer. The system must not assert DBG for thistransfer if any other processor data
transfers are pending.

« If ARTRY isasserted during a data transfer, it is terminated after the first cycle of
ARTRY assertion. Therefore, a burst transfer can be cut short.

» Asserting ARTRY inthe same cycle asits corresponding DBG disqualifiesthe data
bus grant in that cycle so the 604 cannot start a data transaction on the following
cycle regardless of whether other data transactions are queued. However, on the
cycle after the ARTRY assertion, the 604 responds to a qualified data bus grant if it
has queued data transactions. Figure 3-8 shows awrite address tenure that receives
an ARTRY snoop response in the same cycle the system asserts DBWO and DBG
(cycle 6) to grant the write data tenure before a previously-requested read data
tenure. Following the ARTRY assertion, the qualified DBG assertion to the
processor in cycle 7 is accepted for the read data tenure.

3-20 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

SystemClock [L L[L] [[A I
Master 1 Master 1
TS - READ WRITE
T\ \ /
AACK
. / \ /
ARTRY \ T
Masterl DBG :)
DBWO /\ ; /
ARTRY, kills
QDBG for WRITE —\
qualified DBG ~a
for READ
Internal Data
Bus Request J \
BB \ for READ

Figure 3-8. Qualified DBG Generation Following ARTRY

3.3.1.2 Using the DBB Signal

The DBB signal should be connected between potential masters if data tenure scheduling
is left to them. Optionaly, the memory system can schedule data tenures directly with
DBG. However, the system can ignore DBB if it is not used as the final data bus allocation
control between data bus masters and if the memory system can track the start and end of
the data tenure.

If DBB is not used to signal the end of a data tenure, DBG is asserted only to the next bus
master on the cycle before the next bus master may actually begin its data tenure, rather
than asserting it earlier (usually during another master’s data tenure) and allowing DBB
negation to be the final gating signal for a qualified data bus grant.

If the 604 is in data streaming mode, DBB is an output-only signal and is not sampled by
the processor. Even if DBB is ignored in the system, the processor always recognizes its
own assertion of DBB (except in data streaming mode) and requires one cycle after data
tenure completion to negate its own DBB before recognizing a qualified data bus grant for
the next data tenure.

If DBB isnot required, it must be connected to a pull-up resistor on the processor to ensure
proper operation. If the multiple 604s perform data streaming, each processor's DBB
should be connected to the memory arbiter.

Chapter 3. Memory Access Protocol 3-21

3.3.2 Data Bus Write Only

Because of address pipelining, a processor can queue up to three (two for the 601 and 603)
data tenures to perform when it receives a qualified DBG. Generally, data tenures should
be performed in the order their address tenures were performed. However, the processor
supports a limited out-of-order capability with the data bus write only (DBWO) input.
Using DBWO can avoid deadlocks that can occur in certain system designs. When
recognized on the clock of aqualified DBG, DBWO can direct the processor to perform the
next pending data write tenure even if a pending read tenure normally would have been
performed first. See Section 2.6.2, “ Data Bus Write Only (DBWO)—Input.”

The processor always accepts data bus mastership to perform a pending data tenure when
it recognizes a qualified DBG. If DBWO is asserted with a qualified DBG and no write
tenure is queued, the 603 and 604 still take mastership of the data bus to perform the next
pending read data tenure. If the processor has multiple queued writes, asserting DBWO
reorders the write operation whose address was sent first.

Generaly, DBWO should be used only to allow a copy-back operation (burst write) to
occur before a pending read operation. If DBWO is used for single-beat write operations,
it may negate the effect of the eieio instruction by allowing a write operation to precede a
program-scheduled read operation.

3.3.3 Data Transfer

Data transfer signals include DH[0-31], DL[0-31], DP[0-7], and DPE. The DH and DL
signals form a 64-bit data path for read and write operations. The processor transfers data
in either single- or four-beat burst transfers (eight-beat when the 603 isin 32-bit bus mode).
Single-beat operations transfer from one to eight bytes within a double word at atime and
can be misaligned; see Section 3.2.2.4, “Effect of Alignment in Data Transfers” Burst
operations always transfer eight words and are aligned on eight-word address boundaries.
Burst transfers give significantly higher bus throughput than single-beat transfers.

The type of transaction initiated by the processor depends on whether the code or data is
cacheable and, for store operations, whether the memory accessed is marked write-back or
write-through mode. Software controls this mode on a page or block basis. Burst transfers
support cacheable operations only; that is, memory structures must be marked as cacheable
(and write-back for data store operations) in the respective page or block descriptor to take
advantage of burst transfers.

The processor output TBST indicates to the system whether the current transaction is a
single-beat or aburst transfer (except during eciwx/ecowx transactions, when it signalsthe
state of EAR[28]). A burst transfer has an assumed address order. For load or store
operations that miss the cache and are marked cacheable (stores are also marked as
write-back) in the MMU, the processor uses the double-word—aligned (quad-word—aligned
for the 601) address associated with the critical code or data that initiated the transaction.

3-22 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Thisminimizes|latency by allowing critical datato be forwarded to the processor beforethe
rest of the cache block is filled. For all other burst operations, however, cache block
transfers start with the oct-word—aligned data.

Bus masters including these processors may generate byte-wise odd parity for their
outgoing data and drive this information onto the DP[0—7] lines coincidentally with their
data. The processors check this parity whenever they read data and assert the DPE signal
and take a machine check or checkstop exception if an error is detected. Parity checking
can be disabled within the processors by setting a bit in the HID register.

The processors do not directly support dynamic memory access interfacing to subsystems
with less than a 64-bit data path. Other system components must provide any required
trandation to devices with less than 64-bit data paths. The 601 provides limited data
mirroring for noncachable transfers of less than aword.

3.3.4 Data Transfer Termination

Data bus transactions can be terminated by one of the four signals, TA, DRTRY, TEA, or
ARTRY, which are described as follows:

* Asserting TA indicates normal termination of data transactions. It must be asserted
on the bus cycle coincident with the datait qualifies. The slave can withhold TA for
any number of clock cycles until valid datais ready to be supplied or accepted.

« DRTRY indicatesinvalid read datain the previous bus clock cycle. DRTRY extends
the current data beat and does not terminateit. If it is asserted after the last (or only)
data beat, the processor negates DBB but till considers the data beat active and
waits for another assertion of TA. DRTRY isignored on write operations.

Upon receiving afinal (or only) termination condition, the processor negates DBB
for one cycle, except when data streaming is used. If DRTRY is asserted to extend
the last (or only) data beat past the negation of DBB, the memory system should
three-state the data bus on the clock after the final assertion of TA, even though it
negatesDRTRY on that clock. This preventsamomentary databus conflict if awrite
access begins on the following cycle.

» Asserting TEA signalsanonrecoverable error during adatatransfer. It isrecognized
at any time during assertion of DBB or when avalid DRTRY could be sampled.
Asserting TEA endsthe datatenureimmediately evenif itisinthemiddle of aburst;
however, it does not prevent incorrect data that has been acknowledged with TA
from being written into the processor’s cache or GPRs. Asserting TEA causes either
amachine check exception or a checkstop condition depending on the M SR setting.

* Asserting ARTRY for the addresstenure associated with the current datatenure ends
the data tenure immediately. It may not be due to address pipelining. If ARTRY is
connected for the processor, the earliest allowable assertion of TA to the processor
depends directly on the earliest possible assertion of ARTRY to the processor; see
Section 3.3.1.1, “Effect of ARTRY Assertion on Data Transfer and Arbitration on
the PowerPC 604 Processor.”

Chapter 3. Memory Access Protocol 3-23

3.3.4.1 Normal Single-Beat Termination

Single-beat data read operations normally end when TA is asserted by aresponding slave.
Figure 3-9 shows that TEA and DRTRY must remain negated during the transfer.

| 1 | 2 | 3 | 4 | 6 |
| | | | |
ﬁ %S‘/\ P \
qualified DBG \ \ /
-y |
DBB
& <A

data \—9(\ .

Figure 3-9. Normal Single-Beat Read Termination

Normal termination of a single-beat data write transaction occurs when TA is asserted by a
responding slave. TEA must remain negated during the transfer. As shown in Figure 3-10,
DRTRY isnot sampled during data writes.

| 1 | 2 | 3 | 4 |
| | | |
TS p \ _/_57 N
qualified DBG N\ /
_ =2 @
C)‘—f_(—\
data [X ;; X
\ gLy >
& NI Y/ —
] | |
drtry
AACK /7

Figure 3-10. Normal Single-Beat Write Termination

3-24 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Normal burst transfer termination occurs when TA is asserted for four bus clock cycles,
shownin Figure 3-11. To pace datatransfer beats, clock cyclesin which TA isasserted need
not be consecutive. To terminate read bursts, TEA and DRTRY must remain negated during
the transfer. For successful write bursts, DRTRY isignored and TEA must remain negated.

I 4 | 5 I 6 | 7 |

| 3
|
TS / _5__
gualified DBG | i; ‘/
DBB 4 —= @_

data A =X X X_ X
— e

Figure 3-11. Normal Burst Transaction

For read bursts, DRTRY may be asserted one bus clock cycle after TA is asserted to signal
that the associated dataisinvalid. It stays asserted until the cycle after valid dataiis sent by
the slave (see Figure 3-12).

[1 | 2 1 3 | 4 |1 5 |

|
s _/—5‘——_

|
qualified DBG | =‘/ —
oBe s g -

Figure 3-12. Termination with DRTRY

Chapter 3. Memory Access Protocol 3-25

Thus, a data beat can be terminated speculatively with TA and confirmed one bus clock
cycle later by negating DRTRY (valid only for read transactions). TA must be asserted on
the clock cycle before the first bus clock cycle of the assertion of DRTRY;; otherwise results
are undefined. Asserting DRTRY extends data bus mastership such that no other processors
can use the data bus until DRTRY is negated. Therefore, in Figure 3-12, DBB cannot be
asserted until clock cycle 5. This is true for both read and write operations, although
DRTRY isignored by the processors for write operations.

Figure 3-13 shows the effect of using DRTRY during a burst read. It also shows the effect
of using TA to pace the datatransfer rate; in clock cycle 3, TA isnegated for the second data
beat. The processor data pipeline proceeds in clock cycle 4 when TA is reasserted.

Note that DRTRY is useful for systems that implement speculative data forwarding (for
example, those with direct-mapped, second-level caches where hit/miss is determined on
the following bus clock cycle) or for parity- or ECC-checked memory systems. Figure 3-13
shows the data transferred in cycle 5 invalidated by the assertion of DRTRY in cycle6. Its
negation in cycle 7 and 8 and the assertion of TA indicates valid data beats.

1

2 | 3 1 4 1 5 1 6 | 7 1 8 | 9 |

1L R [I [I
-

qualified DBG

b
ﬂ

DBB C , —7/_(7_
data‘ X X X X\ ><:
fa| \g -\ o/

| Ny / ‘-

Figure 3-13. Read Burst with TA Wait States and DRTRY

3.3.4.2 Data Transfer Termination Due to a Bus Error

To indicate that a bus error occurred, TEA can be asserted while DBB is asserted or when
avalid DRTRY could be recognized by the processor. Asserting TEA to the processor
terminates the transaction; that is, further assertions of TA and DRTRY are ignored and
DBB isnegated. If the system asserts TEA for adatatransaction on the same cycle or before
ARTRY s asserted for the corresponding address transaction, the processor ignores the
effects of ARTRY on the address transaction and considers it successfully completed.

3-26 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

From a bus standpoint, asserting TEA causes nothing worse than the early termination of
the data tenure in progress. All the system logic involved in processing the data transfer
prior to the TEA must return to the normal nonbusy state following the TEA so that the bus
operations associated with a machine check exception can proceed. Due to bus pipelining
in the 604, al outstanding bus operations, including queued requests, complete in normal
fashion following the assertion of TEA. The machine check exception can be taken while
these transactions are in progress.

Asserting TEA causes a machine check exception (and possibly a checkstop condition
within the processor). See Section 5.3.1, “ Checkstop State (MSR[ME] = 0).” Becausethese
processors do not implement a synchronous error capability for memory accesses, the
exception instruction pointer points not to the memory access that caused the assertion of
TEA but to the instruction about to be executed (perhaps several instructions later).
However, assertion of TEA does not invalidate data entering the GPR or the cache.
Additionally, the corresponding address of the access that caused TEA to be asserted is not
latched by the processor. To recover, the exception handler must either identify and correct
the error that caused TEA to be asserted or the processor must be reset; therefore, this
function should be used only to flag fatal system conditions to the processor (such as parity
or uncorrectable ECC errors).

After the processor has committed to run a transaction, that transaction must eventually
complete. Addressretry causes the transaction to be restarted. Although, TA wait states and
DRTRY assertion for reads delay termination of individual data beats, eventually the
system must either terminate the transaction or assert TEA (to generate a machine check
exception). Therefore, software must check for the end of physical memory and thelocation
of certain system facilities to avoid memory accesses that might cause TEA to be asserted.

If MSR[ME] is clear when TEA is asserted, a true checkstop condition occurs (instruction
execution halted and processor clock stopped); a machine check exception occurs if
MSR[ME] is set.

Chapter 3. Memory Access Protocol 3-27

3.4 Timing Examples

This section shows timing diagramsfor various scenarios. Figure 3-14 illustrates the fastest
single-beat reads possible for these processors, showing both minima latency and
maximum single-beat throughput. By delaying the data bus tenure, latency increases, but,
because of split-transaction pipelining, the overall throughput is not affected unlessthe data
bus latency causes the fourth (third for 601 and 603) address tenure to be delayed.

Note that all bidirectional signals are three-stated between bus tenures.

112131 41 51 61 7181 9110111 |12

g B
BR[_L/ [\ / \ / \
BG _| / ‘ \ |/ ‘ \ |/ ‘ 7
ABB \ [T\ /T /
S |/ L/ |/
A[0-31] (oPUA 1 oPUA 1 CcPUA)
TT[0-4] (‘Read | —— ‘Read‘ —— | Read‘)
TBST
GBL [[I [I [
AACK |/ |/ |/
ARTRY
DBG. \ / \ / \ /
DBB L/ L/ ./
D[0-63] () () {(Cn)
TA \ / \ / \ /
DRTRY
TEA
N I Y s O I

112131 41 51 61 7181911011 |12 |

Figure 3-14. Fastest Single-Beat Reads

3-28 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Figure 3-15 shows the fastest single-beat writes supported by these processors. The

TT[1-4] signas are binary encoded 0bx0010 (TTO can be either O or 1).

BR [\

[2121 31 41

5 |

61 718

| 9 [10 | 11 | 12 |

AR / \ /
[VAR [\ /
\ /T /T /
./ L/ L/
{_ cPUA »———+ cPUA F—)
<IstI>——<Issz>——<I I>
I [I [I [
|/ ./ ./
\ / \ / \ /
L/ L/ L/
(Cou) (Cou) (Cou)
\ / \ / /
(R [O Y I I
| 112 | 3| 4] 5] 6] 78191011 |12 |

Figure 3-15. Fastest Single-Beat Writes

Chapter 3. Memory Access Protocol

Figure 3-16 shows three ways to delay single-beat reads showing data-delay controls:

» TheTA signal can remain negated to insert wait statesin clock cycles 3 and 4.
» For the second access, DBG could have been asserted in clock cycle 6.
» Inthethird access, DRTRY isasserted in clock cycle 11 to flush the previous data.

Note that all bidirectional signals are three-stated between bus tenures.

Il 112 | 314 15 1617 1819 li1li11l 121 131141

(5 s I Y I Iy I o
BR L/ L/ L/
BG [\ / \ / \ |/ /
ABB \ /T /T /
TS L/ L/ L/
A[0-31] (CPUA)+~ CPUA) _CPUA)
TT[0-4] (IRead | —— IReadI —— IReadI)
TBST
GBL I [I [[I
AACK L/ L/ |/
ARTRY
DBG \ / / \ / \ /
DBB \ / |/ /
D[0-63] () {_in_) {(Bad X_in_}
TA / \ / \ / \ /
DRTRY |/
TEA
(B 5 I I I Y I B

Il 1212 I 314 15 1617 1819 l1li111121 131141

Figure 3-16. Single-Beat Reads Showing Data-Delay Controls

3-30 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Figure 3-17 shows data-delay controls in a single-beat write operation. Bidirectional
signals are three-stated between bus tenures. Data transfers are delayed in the following

ways:
» TA isheld negated to insert wait statesin clocks 3 and 4.
* Inclock 6, DBG is held negated, delaying the start of the data tenure.

Thelast accessis not delayed (DRTRY isvalid only for read operations).

|12 12 | 3] 4| 5| 6| 7|8 | 9 |10 |11 |12 |

NEEEhEEhhhkh
BR [\ / | \ 7\ 7\
BG [\ / ‘ \ |/ ‘ \ |/ | 7
ABB \ N\ T\ /
s |/ _|/ |/
A[0-31] (_cPUA 1 cCPUA) (cPUA)
TT[0-4] { ‘sew | —— ‘saw‘ — | SBW‘)
TBST
GBL [[[[I [
AACK |/ |/ | /
ARTRY
DB \ |/ 7T\ L[\ |/
BB \ / /T
D[0-63] { out) { out ¥ { out ¥
iy 7 _| / \ [\
DRTRY
TEA
(5 Y o 0

212131 41 51 6l 71819 l10l11 112

Figure 3-17. Single-Beat Writes Showing Data Delay Controls

Chapter 3. Memory Access Protocol 3-31

Figure 3-18 shows the use of data-delay controls with burst transfers. All bidirectional
signals are three-stated between bus tenures. Note the following:

» Thefirst data beat of bursted read data (clock 3) is the critical double word (quad
word for 601).

» Thewrite burst shows the use of TA signal negation to delay the third data beat.
» Thefina read burst shows the use of DRTRY on the third data beat.
e Theaddressfor the third transfer is delayed until the first transfer compl etes.

[1]2|3 |4 |56 7|8 |9 |10|11|12|13|14|15|16|17]18 |19 |20]

L pEpSpNpipipigl
BR _J/JT\ ;JQ 7\
BG N
ABB N\ | /N /T L/
ST _/
AJ0-31] (CPUA CPUA) (CPUA)
TT[0-4] (Read Wiite) E
TBST \ /N / L/
GBL [1 [[[
AACK L/ L/ \ L/
ARTRY
DBG _\ |/ \ |/ \ |/
DBB \ /N /N /
D[0-63] G X X X T ——(Qun QX _outz X Quty——{in Xin X X Xin)
A \ [\ a [\ /[
DRTRY _|/
TEA
209 14 To 1671 71871 o202 15113 12151 181 17128 115 20

Figure 3-18. Burst Transfers with Data Delay Controls

3-32 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Figure 3-19 shows the use of the TEA signal. Note that all bidirectional signals are
three-stated between bus tenures. Note the following:

» Thefirst data beat of the read burst (in clock 3) isthe critical double word (quad
word for 601).

* TheTEA signa cancels the burst write transfer on the third data beat.
» The processor eventually causes an exception to be taken on the TEA event.

|1]2|3 |4 |5|6|7]|8 |9 |10]|11]|12|13|14|15]|16]17 |
My

=
Br |/ [\ 7T\ 7 T\
s N\ /J-\ /J_\ [T
ABB \ /T / \ /
TS [\ _/ L/
A[0-31] (CPUA CPUA) (CPUA)
TT[0-4] (CRead Write) \A;i/
TBST
GBL | [1 [| [
AACK _L/ \ L/ L/
ARTRY
DBG \ |/ \ |/ \ |/
DBB \ / T\ /\ /
D[0-63] {Cin XCin XCin i }——(QuX{Ouhputd——in X in }(in)}(in)
TA \ [\ [\ /
DRTRY
TEA L/
[T Z1a a5 (67| 7a o |1b] o5l 12| 13| 12 251 a6 oy

Figure 3-19. Use of Transfer Error Acknowledge (TEA)

Chapter 3. Memory Access Protocol 3-33

3-34 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Chapter 4
Memory Coherency

This chapter describes hardware resources defined by the 60x bus definition that maintain
memory coherency such that all devices that share memory in a system using a PowerPC
processor have an accurate view of memory. Although the PowerPC architecture memory
model requires memory to be kept coherent, it does not define either the snooping protocol
or the use of MESI coherency states commonly used on PowerPC processors. The 60x
processors provide resources that support memory coherency by snooping bustransactions.
Thischapter provides an overview of how the 60x processorsimplement the MESI protocol
and the bus operations implemented by the 60x processors that ensure cache coherency.

Note that there are unique characteristics to the cache implementations of each of the
PowerPC processors, which are summarized in the following sections.

4.1 Overview of Cache Implementations

To support a wide variety of processor implementations, the cache model defined by the
PowerPC architecture is very flexible. Although it supports Harvard architecture caches,
that is separate instruction and data caches, thisis not required. Processor caches can vary
greatly with respect to size, organization, and set-associativity, However, these
considerations do not affect the bus design in a substantial way. For example, the number
of setsin aprocessor’s cache implementation determines the number of cache set el ement
(CSEn) signals that must be implemented.

Major areas where a processor’s cache structure affects the bus design are L 2 cache support
and the level of support given to multiprocessing concerns such as snooping, coherency-
related bus operations, and MES!| state logic. For example, the PowerPC 603 processor is
not optimized for use in multiprocessor systems and therefore does not support the SHD
bus signa or the shared (S) MESI state. Differences in how processors implement
coherency-related bus operations are described in Section 4.10, “Overview of
Implementation Differences.”

The following section provides an overview of the cache implementations in the PowerPC
601, 603, and 604 processors.

Chapter 4. Memory Coherency 4-1

4.1.1 PowerPC 601 Processor Cache Organization

The 601 implements a single unified cache that is configured as eight sets of 64 lines, each
consisting of two sectors, four state bits (two per sector), an address tag, and several bitsto
maintain the LRU function. The two state bits implement the four-state MESI (modified-
exclusive-shared-invalid) protocol. Each sector contains eight 32-bit words. Note that
PowerPC architecture defines the cacheable unit as a block, which is a sector in the 601.

To maintain the flow of instructions through the instruction queue, the instruction unit
accesses the cache frequently. The queue is eight words (one sector) long, so an entire
sector can be loaded into the instruction unit on asingle clock cycle.

The cache organization is shown in Figure 4-1. Replacement strictly follows an LRU
algorithm; that is, the least-recently used sector is used, which may mean that a modified
sector is replaced on a miss if it is the least-recently used, even if invalid sectors are
avalable. However, for performance reasons, certain conditions (for example, the
execution of some cache instructions) generate accesses to the cache without modifying the
bits that perform the LRU function.

A

(] (]
8 SETS . .
L Ld
|/ [[1 [|
[I | I [I L
LINE 0| ADDRESSTAG| | | | M SECTORO SECTOR 1 —
L1 L gl
LT gl
L1 L
L1 e
L1 g
L1]
L] L] L]
L] (] (]
. | . . |
— ' —
LINE 63| ADDRESSTAG| | | | |~ <—— B8WORDS —>[<—— 8WORDS
|« 16 WORDS >

Figure 4-1. PowerPC 601 Processor Cache Organization

Each cache block contains 16 contiguous words from memory that are loaded from a
16-word boundary (that is, bits A26-A31 of the logical (effective) addresses are zero); asa
result, cache lines are aligned with page boundaries.

4-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Note that address bits A20-A25 provide an index to select aline. Bits A26-A31 select a
byte within a line. The tags consists of bits PAO-PA19. Address trandation occurs in
parallel, such that higher-order bits (the tag bits in the cache) are physical.

4.1.2 PowerPC 603 Processor Cache Organization

The 603 has separate instruction and data caches. The organization of the 603 data and
instruction caches is shown in Figure 4-2.

T T T T T T T
128 Sets [°
o } } L } } } }
/ . .
[: [| I
T T T T T T T
Block 0| Address Tag 0 —State Words 0-7
t t t t t t t
Block 1| AddressTag 1 —1State Words 0-7
} } } } } } }
Block 2| Address Tag 2 State Words 0-7
} } } } } } }
Block 3| Address Tag 3 State Words 0-7

|«—— 8 Wwords/Block ———]

Figure 4-2. PowerPC 603 Processor Cache Organization

Each cache block has eight contiguous words from memory that are loaded from an
eight-word boundary, that is, bitsA27-A31 of thelogical (effective) addresses are zero. As
aresult, cache blocks are aligned with page boundaries.

Address bits A20-A26 provide an index to select a set. Bits A27-A31 select a byte within
ablock. Thetags consist of bits PAO—PA 19. Addresstranslation occursin paralel, such that
higher-order bits (the tag bits in the cache) are physical. Replacement strictly follows an
LRU agorithm; that is, the least-recently used block is updated on a cache miss.

The 603 instruction cache, is like that of the data cache, although bits are not provided to
maintain MEI cache coherency.

4.1.3 PowerPC 603e Processor Cache Enhancements
The 603e provides the following enhancements to the 603 cache implementation:

e Theinstruction cache is blocked only until the critical load completes (hit under
reloads allowed).

e Thecritical doubleword issimultaneously written to the cache and forwarded to the
reguesting unit, thus minimizing stalls due to load delays.

Chapter 4. Memory Coherency 4-3

» Providesfor an optional data cache operation broadcast feature (enabled by the
HIDO[ABE] bit) that allowsfor correct system management using an external copy-
back L2 cache.

» Optiona broadcast of cache control instructions dcbi, dcbf, and dcbst through
configuration of HIDO[ABE] hit.

4.1.4 PowerPC 604 Processor Cache Organization

The 604 cache implementation consists of separate 16-Kbyte instruction and data caches
(Harvard architecture). The 604 instruction and data cache organization is shown in
Figure 4-3.

T T T T T T T
128 Sets [°
L] I I d T T T T
° °
[: [| I
T T T T T T T
Block 0| Address Tag 0 | State Words 0-7
t t t t t t t
Block 1| AddressTag 1] State Words 0-7
} } } } } } }
Block 2| Address Tag 2 State Words 0-7
t t t t t t t
Block 3| Address Tag 3 State Words 0-7

|«— 8 Words/Block —————]

Figure 4-3. PowerPC 604 Processor Cache Organization

Both caches are four-way set associative and implement an LRU replacement algorithm
within each set. The cache directories are physically addressed with the physical (real)
address tag stored in a cache directory.

Both the instruction and data caches have 32-byte cache blocks. The coherency state bits
for each block of the data cache allow encoding for all four possible MESI states. The
coherency state bit for each cache block of the instruction cache allows encoding for two
possible states:

— Invalid (INV)
— valid (VAL)

Each cache can be invalidated or locked by setting appropriate bits in the hardware
implementation dependent register O (HIDO).

The 604 uses eight-word burst transactions to transfer cache blocks to and from memory.
When requesting burst reads, the 604 presents a double-word—aligned address. Memory
controllers are expected to transfer this double word of datafirst, followed by double words
from increasing addresses, wrapping back to the beginning of the eight-word block as

4-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

required. Burst misses can be buffered into two eight-word line-fill buffers before being
loaded into the cache. Cache block writes for copy-back operations always present the first
address of the block and transfer data beginning at the start of the block. However, this does
not keep other masters from transferring critical double words first on the bus for writes.

4.1.5 PowerPC 604e Processor Cache Enhancements

The 604e has separate 32-K byte data and instruction caches. Thisis double the size of the
604 caches. The 604e caches are logicaly organized as a four-way set with 256 sets
compared to the 604's 128 sets. The physical address bits that determine the set are 19
through 26 with 19 being the most-significant bit of the index. If bit 19 is zero, the block of
data is an even 4-Kbyte page that resides in sets 0-127; otherwise, bit 19 is one and the
block of datais an odd 4-Kbyte page that resides in sets 128-255. Because the caches are
four-way set-associative, the cache set element (CSE[0-1]) signalsremain unchanged from
the 604. Figure 4-4 shows the organization of the 604e caches.

Sets128-255
(odd pages) e® | | «®
I [[I I
Sets 0-127 - I -
(even pages) . u | | .° -
i .
T T T T T T T B
Block 0| Address Tag0 | | State| Words 0-7 L
t t t } t t t N
Block 1| Address Tag 1 | | State Words 0-7 L] L
f f f f f f f B
Block 2| Address Tag 2 || State| Words 0-7 ||
Block 3| Address Tag3 | [~ [State Words 0-7 in
|«—— 8 Words/Block ————»]

Figure 4-4. PowerPC 604e Processor Cache Organization

4.2 Cache Coherency Overview

A coherent memory system provides the same image of memory to all devicesthat share a
system’'s memory. This is important for multiprocessor systems because it alows for
synchronization, task migration, and the cooperative use of shared resources. Anincoherent
memory system could easily produce unreliable results depending on when and which
processor executed a task. Maintaining coherency is a concern primarily for data cache
implementations. For example, if a processor does not have exclusive access to an
addressed block before performing a store operation, another processor could have a copy
of the old (or stale) data. Two processors reading from the same memory location would
get different data.

Chapter 4. Memory Coherency 4-5

To maintain a coherent memory system, each processor follows simple rules for managing
the cache state such as broadcasting its intention to read a cache block not in the cache and
itsintention to writeinto ablock not owned exclusively. Other devices respond by snooping
the broadcast addresses and reporting cache status back to the originating processor.

The status returned includes a shared indicator (the SHD signal) and an address retry
indicator (the ARTRY signal). The snooping processor asserts SHD if it has a copy of the
addressed block; it asserts ARTRY if it has a modified copy of the addressed cache block
that must be written back to memory or if another processor had a problem that kept it from
snooping the address. For additional information about snooping, see Section 4.7.1,
“Genera Comments on 60x Snooping.”

To maximize performance, the 601 and 604 provide a second path into the data cache
directory for snooping that allows the mainstream instruction processing to operate
concurrently with snooping. Instruction processing is affected only when snoop-control
logic requires a snoop push of modified data to maintain memory coherency.

4.3 Memory Coherency—MESI Protocol

Each cache block isin one of the four MESI states. Addresses presented to the cache are
indexed into the cache directory and are compared against the cache directory tags. If no
tags match, the result is a cache miss. If atag match occurs, a cache hit has occurred and
the directory indicates the state of the block through three state bits kept with the tag.

The four possible states for a cache block are invalid (1), shared (S), exclusive (E), and
modified (M), which are defined in Table 4-1.

Table 4-1. MESI State Definitions

MESI State Definition

Modified (M) | The addressed block is valid in the cache and in only this cache. The block is modified with respect
to system memory—that is, the modified data in the block has not been written back to memory.
Note that some documentation identifies this as XM (exclusive modified) state.

Exclusive (E) | The addressed block is in this cache only. The data in this block is consistent with system memory.
Note that some documentation identifies this as XU (exclusive unmodified) state.

Shared (S) The addressed block is valid in the cache and in at least one other cache. This block is always
consistent with system memory. That is, the shared state is shared-unmodified; there is no shared-
modified state. The 603, which is not optimized for multiprocessor implementations, does not
support the shared (S) state.

Invalid (1) This state indicates that the addressed block is not resident in the cache and/or any data contained
is considered not useful.

4-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Figure 4-5 illustrates the basic relationships of the MESI states.

Modified in Cache A Shared in Cache A
Cache A Cache B Cache A Cache B
. Data invalid/ - ;
M— Valid Data —1 not congruent S ——{ Valid Data S ——{ Valid Data
System Memory System Memory
Data invalid/ ;
— > not congruent — ™ Valid Data
Exclusive in Cache A Invalid in Cache A
Cache A Cache B Cache A Cache B
. Data invalid/ ; .
E —| Valid Data —{not congruent | —={ Invalid Data X—{ Don'’t Care
System Memory System Memory
— > Valid Data — Don'’t Care

Figure 4-5. MESI States

Although memory space designated for instructions is rarely updated, data in memory
space designated for data is continually being changed as the results from instruction
execution are stored in memory. Therefore, maintaining coherency in data caches requires
greater hardware support.

Chapter 4. Memory Coherency 4-7

The 604 and 601 have dedicated hardware to provide memory coherency by snooping bus
transactions. The address retry capability enforces the four-state, MESI cache coherency
protocol (see Figure 4-6).

INVALID
(On a miss, the old
line is first invalidated
and copied back
if M)

DCBST (604)

WH
BUS TRANSACTIONS
RH = Read Hit @: Snoop Push
RMS = Read Miss, Shared
RME = Read Miss, Exclusive @z Invalidate Transaction
WH = Write Hit
WM = Write Miss @: Read-with-Intent-to-Modify

SHR = Snoop Hit on a Read
SHW = Snoop Hit on a Write or @: Cache Block Fill
Read-with-Intent-to-Modify

Figure 4-6. MESI Cache Coherency Protocol (601/604)—State Diagram (WIM = 001)

The global (GBL) output signal indicates whether the current transaction must be snooped
by other devices. Address bus masters assert GBL to indicate that the current transaction is
aglobal access (that is, an access to memory shared by more than one device) and should
be snooped. If GBL is not asserted for the transaction, that transaction is not snooped.

Normally, GBL reflects the M-hit value specified for the memory reference in the
corresponding tranglation descriptor(s). Care must be taken to minimize the number of
pages marked as global, because the retry protocol discussed in the previous section is used
to enforce coherency and can require significant bus bandwidth.

4-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

When a processor is not the address bus master, GBL is an input. The 604 snoops a
transaction if TS and GBL are asserted together in the same bus clock cycle (this is a
qualified snooping condition). No snoop update to the 604 cache occurs if the snooped
transaction is not marked global. Thisincludes invalidation cycles.

When the processor detects a qualified snoop condition, the address associated with the TS
is compared against the data cache tags through a dedicated cache tag port. Snooping
completes if no hit is detected. If, however, the address hits in the cache, the processor
reacts according to the MESI protocol shown in Figure 4-6, assuming the WIM bits are set
to write-back mode, caching allowed, and coherency enforced (WIM = 001).

Write hits to modified cache blocks of nonglobal pages do not generate invalidate
broadcasts. Several bus transactionsinvolve moving datathat can no longer accessthe TLB
M bit (for example, replacement cache block copy-back or a snoop push). In these cases,
because hardware cannot determine whether the cache block was originally marked global,
the processor marks these transactions as nonglobal to avoid retry deadlocks.

See Table 4-2 for the CSE[0-1] encodings for the 604.

4.4 Coherency Timing

60x processors communicate the results of their snooping over the snoop response lines,
ARTRY and SHD. These signals are defined to be valid at least the cycle after assertion of
AACK. A 60x that tries to acquire a memory block is considered to have acquired it after
it has successfully completed the address tenure requesting the data (no-ARTRY
indication). After that cycle, it snoops for that address. Likewise, a 60x processor that is
flushing data from its cache is considered to have completed the transfer from the
standpoint of memory coherency after it has successfully completed the address tenure for
the push or copy-back. Once this has occurred, it no longer snoops for this address.

Note that this has implications to system design. For example, after a 60x pushes a cache
block, it may be some time before the block is actually stored in memory. If aread of the
same block occurs after the push address tenure is completed, it is not snooped by the 60x
performing the push. The system must ensure that proper ordering is maintained so that the
correct datais read.

4.5 Coherency Protocol

The 60x bus supports a four-state (MESI) cache coherency protocol through the use of
address retry (see Figure 4-6). The 601 and 604 implement the protocol to the extent
required to support multiprocessor systems. Because it does not support the shared state,
the 603 supports a three-state subset of the MESI protocol, (MEI) protocol, which assures
coherency in aasingle-processor system. All references to the shared state do not apply to
the 603.

Chapter 4. Memory Coherency 4-9

When the 60x is not the bus master, it monitors the bus. If GBL is asserted, the 601/604
snoop address transfers. Due to the 603 Iwar x/stwex. implementation, which is based on
the MEI protocol, the bus is snooped regardless of the state of GBL. See Section 8.8,
“lwarx/stwex. Considerations,” for more information.

The 604 snoops its own nonglobal or global transfers (internally, not across the bus) in the
case of the address-only operations, ICBI, SYNC, TLBIE, and TLBSYNC, and can assert
ARTRY inresponse.

Normally, GBL reflects the value of the M bit provided by the translation mechanismin the
master processor. See Section 4.8, “External WIM Bit Settings,” for details of the
conditions under which GBL does not reflect the state of the M bit. Figure 4-6 shows the
MESI protocol implemented by the 601 and 604; Figure4-7 shows the MEI cache
coherency protocol for the 603.

SH/CRW
R
EXCLUSIVE
RH
SH/CIR
BUS TRANSACTIONS

SH =Snoop Hit @ = Snoop Push
RH =Read Hit
RM =Read Miss
WH =Write Hit @ = Cache Line Fill

WM=Write Miss
SH/CRW=Snoop Hit, Cacheable Read/Write
SH/CIR=Snoop Hit, Cache Inhibited Read

Figure 4-7. MEI Cache Coherency Protocol (603)—State Diagram (WIM = 001)

4-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

4.5.1 PowerPC 603 Processor lwarx/stwcx. Implementation

Dueto the 603's three-state MEI protocol and absence of address-only broadcast transfers,
the Iwarx/stwcex. instruction pair is different from the 601 and 604. All globa reads
snooped by the 603 (except for a RWNITC) invalidate a cache block, and all reads
originating from the 603 are RWITMs (except for reads from cache-inhibited pages).
Therefore, apotential deadlock can occur if RWITMs cancel areservation asin the 601 and
604. The following operations are required for the 603 Iwar x/stwcx. implementation:

* RWITM invalidates the cache, but does not clear the reservation.
* Only writes on the bus can clear areservation.
e stwcx. istreated as awrite-through bus operation.

Clearing the reservation on all writes including castouts and snoop pushes (nonglobal)
require snooping for all globa and nongloba address transfers for reservation address
register monitoring; however, a snoop on a nonglobal address transfer does not change any
cache states.

4.5.2 Cache Set Element Signals

The cache set element signals, CSEn, are output signals that indicate which set member of
the cache is involved for cache block reads and writes. Note that because of the different
sizesand structures of the caches, the number of signalsrequired to identify acache set vary
from processor to processor. There are three cache set element signals on the 601 (CSE[0—
2]), one on the 603 (CSE), and two on the 604 (CSE[0-1]).Table 4-2 defines these signals
for a four-way set-associative cache, such as is implemented in the 604. For more
information, see Section 2.4.12, “ Cache Set Element (CSEn)—Output.”

Table 4-2. CSE[0-1] Signals

CSE[0-1] Cache Set Element
00 Block 0
01 Block 1
10 Block 2
11 Block 3

4.5.3 Address Retry Sources

Snooping devices use SHD and ARTRY to respond to snoop requests. Because these
signals are wire-ORed among many potential snoopers that can have different snoop
responses, little significance can be attached to the particular combination of the two bits
that appears on the bus.

An assertion of ARTRY, regardless of whether SHD is asserted, indicates either that at |east
one snooper had a pipeline collision or asnoop hit to amodified block and that the address
must be retried. Assertion of SHD alone indicates that at |east one snooper had a snoop hit
on a shared cache block. The 603 does not implement SHD.

Chapter 4. Memory Coherency 4-11

4.6 Memory Coherency Actions—PowerPC 60x
Processor-Initiated Operations

Table 4-3 roughly describesthe behavior of the 60x with respect to cacheableload and store
operations. All reads originating from the 603 except those where caching is inhibited are
RWITMs. Also, al reads on the bus except RWNITC invalidate a cache block.

Table 4-3. Memory Coherency Actions on Load Operations

Cache State Bus Operation Snoop Response Action
| Read -ARTRY, -SHD Load data and mark E
-ARTRY, SHD Load data and mark S
ARTRY Retry read operation
M, E, S None Don't care Read from cache

Table 4-4 roughly describes the behavior of the 60x with respect to load and store
operations to cacheable, write-back memory. Note that the state of the SHD signal is not

important in this table.

Table 4-4. Memory Coherency Actions on Store Operations

Cache State Bus Operation Snoop Response Action
| RWITM -ARTRY Load data, modify it, mark M
ARTRY Retry the RWITM
S Kill -ARTRY Modify cache, mark M
ARTRY Retry the kill
None Don't care Modify cache, mark M
M None Don'’t care Modify cache

For detailed descriptions of these operations, see, Section E.1, “Load Operations,” and
Section E.2, “ Store Operations.”

4.6.1 Cache Control Instructions

Table 4-5 lists bus operations performed by the 601 and 604 when they execute cache
control instructions.

4-12 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 4-5. PowerPC 601 and 604 Processor Bus Operations Initiated by Cache
Control Instructions

Instruction | Current Cache State | Next Cache State Bus Operation Comment

sync Don't care No change SYNC First clears memory queue
ichi Don't care | 604: ICBI; 601: Kill —

dcbi Don't care | Kill —

dcbf E,S, I | Flush —

M | Write w/ kill Marked as WT
dcbst E S, | No change Clean —

M E Write wikill Marked as WT
dcbz | M Kill A write-back may be required

S M Kill —

E,M M None Write over modified data
dcbt, | E,S Read State change on reload
dcbtst

M, E, S No change None —

Figure 4-6 shows the operations for the 603.

Table 4-6. PowerPC 603 Bus Operations Initiated by Cache Control Instructions

Instruction Current Cache State Next Cache State | Bus Operation Comment
sync Don't care No change None First clears memory queue
dcbi, icbi Don't care | None —
dcbf E, I | None —
M | Write wikillL —
dcbst E, I No change None —
M E Write wikillL —
dcbz? | M RWITM Possible castout on cache miss
E,M M RWITM Write over modified data
dcbt | E RWITM State change on reload 2
E,M No change None —

1 RWITM on DCBZ serves both as a substitute for a DCBZ broadcast and as a mechanism to zero out the
cache block (data from RWITM ignored).

2603 has a touch load buffer. A cache reload is delayed until a hit in the touch load buffer occurs.

Chapter 4. Memory Coherency

4-13

Table 4-5 and Table 4-6 give a general sense of the basic behavior of the processor. For
example, it does not address noncacheable or write-through cases, nor does it completely
describe the exact mechanisms for the operations described.For acomplete listing of cache
coherency operations, see Appendix E, “Coherency Action Tables.”

4.6.2 TLB Invalidate Entry Instruction Processing

Executing a tlbie instruction causes a processor to invalidate any TLB entry that
corresponds to that instruction’s effective address. It also causes a TLBIE operation to be
broadcast onto the bus (except on the 603).

4.6.2.1 TLBIE Bus Operation

The TLBIE bus operation is an address-only transaction. The address that is transmitted
contains at least bits EA[12-19] in their correct bit positions. Processors that receive this
transaction use the address to index into their TLB(s) and invalidate an entire congruence
class. Any other device that implements its own TLB must process the TLBIE bus
operation.

To avoid system deadlock conditions, devicesthat process TL BIE bus operations must start
the operation only after the bus operation has been completed without an ARTRY response.
Because participating devices take an unspecified amount of time to perform their
invalidations, completion of the entire invalidation sequence is not guaranteed until
completion of a synchronization operation, as described in Section 4.7, “Descriptions of
Bus Transactions and Snoop Responses.” The 601 uses the sync instruction to synchronize
TLBIE operations; the 604 uses tlbsync.

4.7 Descriptions of Bus Transactions and Snoop
Responses

This is a summary of bus transactions and snoop responses. Causes and effects of these
operations are given in Appendix E, “ Coherency Action Tables”

4.7.1 General Comments on 60x Snooping

When 60x processors are not bus master, they monitor bus traffic and perform cache and
memory queue Snooping as appropriate. Snooping istriggered by the receipt of aqualified
snoop request, as indicated by the simultaneous assertion of the TS and GBL.

Processors drive two snoop status signals, ARTRY and SHD, in response to qualified snoop
reguests. These signals provide information about the state of the addressed block with
respect to 60x for the current bus operation. These signals are described in more detail
earlier in this document. The following additional comments apply:

» Any bus transaction that does not have GBL asserted can be ignored by all bus
snoopers. Such transactions are ignored by 60x processors (except 603). For more
information, refer to Chapter 8, “ System Interface Operation,” in the Power PC 603e
RISC Microprocessor User’s Manual.

4-14 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

» Several bustransactions (write with flush, read, and read with intent to modify) are
defined twice, once with TTO clear and once with it set (for atomic operations).
These operations behave in the same manner with respect to bus snooping.

» Thereceiving processor may assert ARTRY in response to any bus transaction due
to internal conflicts that prevent the appropriate snooping.

4.7.2 Clean Block

Clean block is an address-only transaction a 60x processor issues after executing a dcbst
instruction. If GBL is asserted, a clean block transaction causes 60x processors to respond
asfollows:

« |f theaddressed block isinthel, S, or E state, no further action is taken.

 If theaddressed block isinthe M state, the modified block is copied back to memory
and the state of the block is changed to E.

The 603 does not broadcast or snoop clean block operations.

4.7.3 Flush Block

Flush block is an address-only transaction that a processor issues after executing a dcbf
instruction. If GBL is asserted, a flush block transaction causes 60x processors to respond
asfollows:

» |f the addressed block isin the S or E state, the state of the addressed block is
changedto .

« If the addressed block isin the M state, the snooping device assertsARTRY and
SHD, the modified block is pushed out of the cache, and its state is changed to I.

The 603 does not broadcast or snoop flush block operations.

4.7.4 Write with Flush, Write with Flush Atomic

Write with flush and write with flush atomic areissued by a processor after executing stores
or stwex. respectively to memory in avariety of different states, particularly noncacheable
and write-through. 60x processors do not use this transaction code for burst transfers, but
system use for bursts is not precluded. If they appear on the bus and the GBL signal is
asserted, the 60x processors have the same snoop response as for flush block, except that a
hit on the reservation address causes loss of the reservation.

4.7.5 Kill Block

A Kkill block is an address-only transaction that a processor generates by executing a dcbi
instruction (or anicbi instruction in a601), adcbztoan | or Sline, or awriteto an Sline.
If GBL is asserted when a transaction appears on the bus, an addressed block in the cache
isforced to the | state.

The 603 does not broadcast or snoop kill operations.

Chapter 4. Memory Coherency 4-15

4.7.6 Write with Kill

A processor typically issues awrite-with-kill operation whenever it performs a cache block
write back. 60x processors use this transaction code for burst transfers. If they appear on
the bus and the GBL signal is asserted, the 60x processors have the same snoop response
asfor kill block.

4.7.7 Read, Read Atomic

Read isused by most single-beat or burst bus operations. If GBL is asserted, 60x processors
respond to read operations as follows:

« |f the addressed block is present and in the | state, the 60x takes no action.
« |f the addressed block is present and in the S state, the 60x asserts SHD.

« |f the addressed block is present and in the E state, the 60x asserts SHD and changes
the cache statefromEto S.

» If the addressed block is present in the cache in the M state, the 60x asserts both
ARTRY and SHD. In addition, it changes the state of that cache block from M to S.

Read atomic operations appear in response to an lwarx instruction and receive the same
snooping treatment as a read operation.

4.7.8 Read with Intent to Modify (RWITM)

The RWITM transaction is issued to acquire exclusive use of a memory location, for the
purpose of modifying it. One example is a processor that writes to a block that is not
currently in its cache. RWITM transactions on the bus, when GBL is asserted, cause 60x
processors respond as follows:

« |f the addressed block is not present in the cache, the 60x takes no action.

» If theaddressed block is present in the cachein the S or E state, the 60x changesthe
state of that cache block to .

» If the addressed block is present in the cache in the M state, the 60x asserts both
ARTRY and SHD, pushesthe modified block out of the cache, and changesthe state
of that cache block fromM to I.

RWITM atomic appears on the bus in response to an stwcx. instruction and receives the
same snooping treatment as RWITM.

4.7.9 TLB Invalidate

TLB invalidate is issued by a processor that executes a tlbie instruction. This operation
sends at least certain bits of an effective address (EA) across the bus. Receiving processors
invalidate the entire congruence class in any TLBs associated with that effective address.

The address transmitted with the tlbie instruction contains EA[12-19] in their correct
respective bit positions (see Figure 4-8).

4-16 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Bus Address

Bits from EA
0 12 19 31

Figure 4-8. Effective Address Bits in Bus Address

When the TLBIE appears on the bus, attached 60x processors invalidate the congruence
class of the TLB that corresponds to the transmitted bits of the effective address.

4.7.10 SYNC

SYNC isan address-only transaction that a 60x processor places onto the bus as the result
of execution of a sync instruction. If a processor has other snooped cache operations
pending when it detects a SYNC on the bus, it assertsARTRY. A 601 detecting aSYNC on
the bus also asserts ARTRY for any pending operations based on an invalidated TLB.

The 603 does not broadcast or snoop SYNC.

4.7.11 TLBSYNC

TLBSYNC is an address-only transaction placed on the bus by execution of a tlbsync
instruction or apending TLBIE bus operation. A 604 seeing tlbsync, assertsARTRY if any
pending operations are based on an invalidated TLB.

The 603 does not broadcast or snoop TLBSY NC operations. The 601 does not implement
the tlbsync instruction and does not generate this bus operation.

4.7.12 EIEIO

The EIEIO bus operation is generated by executing an eieio instruction, which acts as a
fence in the instruction flow to enforce ordered execution of accesses to noncacheable
memory. The 60x processors internally enforce ordering of such accesses with respect to
the eieio, in the sense that noncacheabl e accesses due to instructions that occur before the
eieio in the program order are placed on the bus before any noncacheable accesses that
result from instructions that occur after the eieio, with the EIEIO bus operation separating
the two sets of bus operations.

If the system implements any mechanism that allows reordering of noncacheable requests,
then the appearance of an EIEIO should cause it to force ordering between accesses that
occurred before and those that occur later.

The 603 does not broadcast or snoop EIEIO operations.

Chapter 4. Memory Coherency 4-17

4.7.13 ICBI

This operation isissued by a processor that executes an instruction cache block invalidate
(icbi) instruction. All copies of the addressed block in bus-attached instruction caches are
invalidated.

The 603 does not broadcast or snoop |CBI operations.
Theicbi causes the 601 to broadcast a kill operation to the bus.

4.7.14 Read with No Intent to Cache (RWNITC)

Read with no intent to cache (RWNITC) operations are issued by a bus-attached device as
TT[0-4] = 0b01011 (like aread, but with TT4 = 1). The 603 and 604 snoop thisand, if they
get a cache hit on ablock marked M, push the block and mark it E (the ordinary response
would be to push and mark it Sin 604 and push and invalidate for 603).

For a graphics adapter that reads display data from memory, this data may be in the
processor’s cache and the subject of frequent updates. Because the adapter does not cache
the data, there is no reason for the processor to leave the block in the S state, requiring abus
operation to regain E access. Because the 603 has no S state, it must also reread the data.

4.7.15 XFERDATA

XFERDATA read and write bus transactions result from execution of the eciwx or ecowx
instructions, respectively. These instructions help certain adapter types (especially
displays) make high-speed data transfers with memory by calculating an effective address,
trandlating it, and presenting the resulting physical address to the adapter.

The XFERDATA read and write transfer a word of data to or from the processor,
respectively. They also present the 4-bit resource ID (RID) field, which is stored in the
processor’s transfer control register (TCR) to the bus, using the concatenation of the bits
TBST || TSIZ[0-2]. These transactions are unique in the sense that the address that is
transferred does not select the slave device; it is simply being passed to the slave device for
use in asubsequent transaction. Rather, the RID field is used to select the appropriate slave
device. Althoughit isintended that the slave device sel ected by the RID bits use the address
transferred in a subsequent datatransfer, the exact nature of this datatransfer is not defined
by 60x bus architecture. It is a private transfer that can be defined by the system like any
other direct-memory access.

4-18 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

4.8 External WIM Bit Settings

The write-through (WT), cache-inhibit (CI), and global (GBL) signals generally
correspond to the W, |, and M bits supplied by the translation mechanism (page table or
BAT); however, there are exceptions:

» Inrea mode, load and store operations bypass the trand ation mechanism and are
implicitly WIM =001 or WIM = 011 if the cache is disabled or locked.

« Write-back and snoop push operations do not involve the transl ation mechanism and
are sent out asWIM = 000.

e TLB reloads are placed onto the bus asWIM = 001 or WIM = 011 if the cacheis
disabled or locked.

» Thedcbst and dcbf instructionsto non—write-through memory are placed on the bus
indicating write-through (write-with-kill bus operation) if the cache block isin the
M state.

» The XFERDATA bus operations are always placed on the bus with WIM = 010,
regardless of the state of the WIM hits supplied by the translation mechanism.

» For SYNC, TLBSYNC, TLBIE, and EIEIO, WIM = xx1, where x is not defined.
» For ICBI, WIM is as provided by the trans ation mechanism.

4.9 Direct-Memory Access and Memory Coherency

When system devices perform direct-memory accesses, they may chooseto assert or negate
GBL. 60x processors never snoop a request for which this bit is negated. It is therefore a
system design decision whether or not a device that accesses memory should work from
memory that is guaranteed to be coherent or not. The trade-off is that snooped accesses,
while convenient, generally reduce system performance.

Another option available to system designers is to define different burst length transfers,
using the reserved code points defined in the TSIZ[0-2] field. 60x processors snoop
regardless of the state of the TSIZ signals, provided GBL is asserted. Note that coherency
cannot be maintained if the system defines a transfer that crosses a cache block boundary.

4.10 Overview of Implementation Differences

Table4-7 summarizes the basic differences in how the various PowerPC processors
implement the bus operations defined in this chapter. This is a brief overview of those
differences and do not describe the more subtle differencesin thelogic that isused to ensure
cache coherency which are described in Appendix E, “Coherency Action Tables.”

Chapter 4. Memory Coherency 4-19

Table 4-7. Differences in Implementation of Bus Operations

Bus Operation

Differences

Clean block The 603 does not broadcast or snoop clean block operations.
Flush block The 603 does not broadcast or snoop flush block or implement SHD.
Write with flush, In the 601, HIDO[31] controls whether HP_SNP_REQ specifies high-priority operations.

Write with flush atomic

Kill block

The 603 does not broadcast or snoop Kkill.

Write with kill

Read, read atomic

The 603 does not implement SHD and S state.

Read with Intent to
modify (RWITM)

TLB invalidate

A snooping 604 also asserts ARTRY when it has a pending TLB invalidate operation and a
second TLB invalidate operation is detected. The 601 uses the sync instruction to
synchronize TLBIE operations; the 603 and 604 use tlbsync.

SYNC

The PowerPC architecture permits data accesses from more than one instruction to be
combined for cache-inhibited operations, except when the accesses are separated by a sync
instruction, or by an eieio instruction when the page or block is also designated as guarded.
This combined access capability is not implemented on the 603e.

The 603 does not broadcast or snoop SYNC.

A SYNC operation is also generated by the eieio instruction on the 601.

TLBSYNC

A 604 seeing tlbsync, asserts ARTRY if any pending operations are based on an invalidated
TLB. The 603 does not broadcast or snoop tlbsync. The 601 does not implement the tibsync
instruction and does not generate this bus operation.

EIEIO

The 603 does not broadcast or snoop EIEIO.
The eieio is treated as a no-op by the 603e.

ICBI

The 603 does not broadcast or snoop ICBI. The icbi causes the 601 to broadcast a kill
operation to the bus.

Read with no intent to
cache (RWNITC)

Read with no intent to cache (RWNITC) operations are issued by a bus-attached device as
TT[0-4] = 0b01011. The 603 and 604 snoop this and, if they get a cache hit on a block
marked M, push the block and mark it E (the ordinary response would be to push and mark it
S in 604 and push and invalidate for 603). For a graphics adapter that reads display data from
memory, this data may be in the processor’s cache and the subject of frequent updates.
Because it has no S state, the 603 handles some operations differently.

XFERDATA —

1/0 reply The I/O reply operation serves as the final bus operation in the series of bus operations that
service direct-store interface operation. The 603e processors do not perform these
operations because they do not implement the direct-store facility.

4-20 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Chapter 5
System Status Signals

This chapter further describes the operation of the system status signals (interrupt,
checkstop, and reset signals) which are described in Section 2.9, “ System Status Signals.”
Most of these areinput signals that are used to generate asynchronous exceptions either as
afunction of normal system operations or as the result of an error. This chapter also briefly
discusses asynchronous exceptions described in The Programming Environments Manual,
with particular attention given to differences in how 60x processors implement those
exceptions.

5.1 Overview

The PowerPC 601, 603, and 604 processors implement asynchronous exceptions that are
triggered by signals. Asynchronous exceptions can be either maskable or nonmaskable.

Table 5-1 lists the signal-triggered operations implemented in the 60x processors. (The
only other architecture-defined asynchronous exception, the decrementer exception, is
triggered internally.) The table shows the event priority and indicates whether a related
exception is maskable and precise.

Table 5-1. Resets, Interrupts, and Their Sources

Resets/ Maskable/ Precise/ I Source
Interrupts | Nonmaskable | Imprecise Priority
601 603 604

Hard reset Nonmaskable |Imprecise |Highest priority HRESET |[HRESET |HRESET
Machine Nonmaskable |[Imprecise [Second-highest priority TEA TEA, MCP, | TEA, MCP,
check APE, DPE |APE, DPE
Soft reset Nonmaskable |[Imprecise [Third-highest priority SRESET [SRESET |[SRESET
System Maskable Precise Lower priority than synchronous — SMI SMI
management* exceptions; higher than external

interrupt.
External Maskable Precise Lower priority than a system INT INT INT
interrupt management exception; higher

than decrementer exception.

*The system management exception is not defined by the PowerPC architecture, but is implemented similarly in

several PowerPC processors.

Chapter 5. System Status Signals

Table 5-2 describes general differencesin how the 601, 603, and 604 implement the system

status signals.

Table 5-2. Processor Bus Signal Differences

Signal(s)

Related Exception

Difference

Interrupt (INT)

External interrupt
(0x00500)

For the 601, this signal may be negated after the minimum pulse
width of three processor clock cycles.

System
management
interrupt (SMI)

System management
interrupt
(0x01400)

The system management interrupt exception is not defined by the
PowerPC architecture and not implemented on the 601.

Machine check
(MCP)

Machine check
(0x00200)

This signal is not defined for the 601.

Checkstop input
(CKSTP_IN)

Machine check
(0x00200)

Early versions of the 603 identified this signal as CKSTP.

Checkstop output
(CKSTP_OUT)

Machine check
(0x00200)

Early versions of the 603 identified this signal as CHECKSTOP.

Hard reset System reset After assertion, output drivers are released to high impedance within
(HRESET) (0x00100) five SYSCLK pulses (three for the 601) after the assertion of
HRESET.
Soft reset System reset Negation may occur any time after the minimum soft reset pulse
(SRESET) (0x00100) width of 2 (10 for the 601) bus cycles has been met.
5.2 Resets

There are two types of resets:

» Hard resets—These occur with the proper assertion of the HRESET signal, as part
of asystem’s power-on reset, or due to other system-dependent occurrences. After a
hard reset occurs, registers and other resources are initialized and instruction
fetching begins at the system reset exception vector at OxFFF00100.

» Soft resets—These occur with the proper assertion of the SRESET signal. When the
SRESET isdetected, the machine state is saved in the SRRO and SRR1 registers, the
MSR isreset, and exception processing continues from the system reset exception
handler which resides at vector offset 0x00100.

5-2

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

5.2.1 Hard Reset and Power-On Reset

The 60x processors are reset by asserting the HRESET input for a minimum period of time
after V 4q is stable. On the 603 and 604, this includestimefor the phase-locked loop to lock.
Refer to the respective hardware specifications for the duration requirement.

While HRESET is asserted, all 60x outputs are placed in the high-impedance state and bus
content has no relevance. This state may continue after the HRESET signal has been
negated asthe processor performsvariousinternal initializations and tests. The system must
not perform any activity based on interpretation of floating lines.

Most control lines require pull-up resistors to be negated because they are multidrop. The
BR signal must also be pulled up so it is not recognized as asserted during processor
initialization.

Thefollowing is also true when a hard reset occurs:

» External checkstops are enabled.

» Theon-chip test interface has given control of the I/Os to the rest of the chip for
functional use.

» Since the reset exception has data and instruction translation disabled (MSR[DR]
and MSR[IR] both cleared), the chip operatesin direct address translation mode
(referred to as the real addressing mode in the architecture specification).

» Because MSR][IP] is set by ahard reset, the first instruction is fetched from address
OxFFFO_0100.

5.2.1.1 Hard Reset Settings

Notethat ahard reset operation should be performed on power-on to appropriately reset the
processor. Table 5-3 showsthe state of the machine just beforeit fetchesthefirst instruction
after ahard reset.

Table 5-3. Hard Reset Settings

Resource 6011 603 603e 604/604e 2
BATs All Os Unknown Unknown Undefined
Cache All 0s All cache blocks invalidated [All cache blocks invalidated | Undefined and disabled
CR All 0s All 0s All Os Undefined
CTR All 0s All 0s All 0s Undefined
DABR — — — Breakpoint disabled;

Address undefined.

DAR All 0s All 0s All 0s Undefined
DCMP/ICMP |— All 0s All Os —
DEC All Os FFFF_FFFF FFFF_FFFF Undefined
DMISS/IMISS |— All Os All Os —

Chapter 5. System Status Signals 5-3

Table 5-3. Hard Reset Settings (Continued)

Resource 6011 603 603e 604/604e 2
DSISR All 0s All 0s All 0s Undefined
EAR All Os All Os — E cleared; RID undefined.
FPRs All Os All Os Unknown Undefined
FPSCR All 0s All 0s All 0s Cleared
GPRs All 0s All 0s Unknown Undefined
HASH1 — — All Os —
HASH2 — — All Os —
HIDO 8001_0080 [All0s All Os All Os
HID1 All Os — All Os —
HID2 See IABR |— — —
HID5 All Os — — —
HID15 All Os — — —
IABR All Os All Os All Os Breakpoint is disabled.
Address is undefined.
LR All 0s All 0s All 0s Undefined
MQ All 0s — — —
MSR 0000_1040 [0000_0040 0000_0040 0000_0040 (only IP set)
PIR — — — Undefined
PVR Version-dependent
RPA — All Os All Os —
RTCL All Os — — _
RTCU All Os — — —
SDR1 All Os All 0s All Os Undefined
SPRGs All 0s All 0s All 0s Undefined
SRRO All 0s All 0s All 0s Undefined
SRR1 All 0s All Os All 0s Undefined
SRs All 0s Unknown Unknown Undefined

Tag directory

All Os. (However, LRU bits are initialized so each side of the cache has a unique LRU value.)

TBL

All 0s

All 0s

Undefined

5-4

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 5-3. Hard Reset Settings (Continued)

Resource 6011 603 603e 604/604e 2
TBU — All 0s All 0s Undefined
TLBs All 0s Unknown Unknown Undefined
XER All Os All Os All Os Undefined

1601 notes: Master checkstop enabled; internal power-on reset checkstops enabled. Note that if external
clock is connected to RTC for the 601, the RTCL, RTCU, and DEC registers can change from their initial
value of Os without receiving instructions to load those registers. All internal arrays and registers are
cleared during the hard reset process.

2604/604¢e notes: Both HRESET and TRST signals should be asserted during power up and must remain
asserted according to the values provided in the PowerPC 604 RISC Microprocessor Hardware
Specifications. The 604 internal state after the hard reset interval is defined below. If HRESET is asserted
for less than this amount of time, results are not predictable. If HRESET is asserted during normal
operation, all operations stop and the machine state is lost. The processor automatically begins
operations by issuing an instruction fetch. Because caching is inhibited at start-up, this generates a
single-beat load operation on the bus.

The following output signals are placed in high impedance during hard reset: ABB, TS, XATS, A[0-31],

AP[0-3], TT[0-4], TSIZ[0-2], TBST, TCn, CI, WT, GBL, CSEn, ARTRY, SHD, DBB, DH[0-31], DL[0-31],
and DP[0-7].

The following output signals are negated during hard reset: BR, APE, DPE, RSRV, and CHKSTP_OUT.

The 604€’s bus interface can be configured into one of two modes during a hard reset, as
described in Table 5-4.

Table 5-4. PowerPC 604e Processor Modes Configurable during HRESET

604e Mode Input Signal Timing Requirements Notes
Normal bus DRTRY Must be negated throughout HRESET assertion. After | —
mode HRESET negation, DRTRY can be used normally.
Fast-L2 mode DRTRY Must be asserted and negated coincidentally with Can be done by tying
HRESET and remain negated during normal operation. | DRTRY to HRESET
No-DRTRY Mode | DRTRY Must be asserted coincidentally with HRESET and Can be done by tying
(604 only) remain asserted during normal operation. DRTRY asserted.

5.2.2 Soft Reset
A soft reset is generated by the proper assertion of the SRESET signal. When the signal is

recognized as asserted, the system reset exception isgenerated as described in thefollowing
section.

5.2.2.1 System Reset Exception (0x00100)

The system reset exception is defined by the PowerPC architecture (operating environment
architecture, or OEA) as a honmaskable, asynchronous exception signaled to the processor
typically through the assertion of a system-defined signal.

Chapter 5. System Status Signals 5-5

Table 5-5 shows how the machine state is saved and the M SR settings after the system reset
exception isinvoked.

Table 5-5. System Reset Exception—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next if
no exception conditions were present.

SRR1 0 Loaded with equivalent bits from the MSR (cleared in the 601)
1-4 Cleared
5-9 Loaded with equivalent bits from the MSR (cleared in the 601)
10-15 Cleared
16-29 Loaded with equivalent bits from the MSR
30 Loaded from the equivalent MSR bit, MSR[RI]%, if the exception is recoverable;
otherwise cleared.
31 Loaded with equivalent bit from the MSR

Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.
If the processor state is corrupted to the extent that execution cannot resume reliably, the bit
corresponding to MSR[RI]L, (SRR1[30]), is cleared.

MSR pow! 0 PR 0 SE 0 IR 0
TGPRZ2 0 FP 0 BE 0 DR% 0
[SC— ME — FE1 0 R 0
EE 0 FEO © p3 — LE® Setto value of ILE

1 Not implemented on the 601

2603e only

3 |dentified as EP on the 601

4 |dentified as IT on the 601

5 |dentified as DT on the 601

6 Not implemented on the 601. Control of little-endian mode on the 601 is provided by HIDO[28], the LM bit.

When a system reset exception is taken, instruction execution continues at offset 0x00100
from the physical base address indicated by MSR[1P].

If the exception isrecoverable, the value of the MSR[RI] bit is copied to the corresponding
SRR1 hit. The exception functions as a context synchronizing operation. The exception is
not recoverable if areset exception causes the loss of any of the following:

« Anasynchronous precise exception (interrupt, system management, or decrementer)
e Direct-store error type DSI
» Floating-point enabled type program exception

If the SRR1 bhit corresponding to MSR[RI] is cleared, the exception is context
synchronizing only with respect to subsequent instructions. Note that each implementation
provides a means for software to distinguish between power-on reset and other types of
system resets (such as soft reset).

5.2.2.2 Soft Reset on the PowerPC 601 Microprocessor

Because the 601 does not implement the MSR[RI] bit, it does not support restarting the
interrupted process, however, to perform diagnostic operations it attempts to save the
processor state.

5-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

5.2.2.3 Soft Reset on the PowerPC 603 Microprocessor

When SRESET is asserted, the processor attempts to reach arecoverable state by allowing
the next instruction to either complete or cause an exception, blocking the completion of
subsequent instructions and allowing the completed store queue to drain. A soft reset is
recoverable provided that attaining the recoverable state does not cause a machine check
exception.

5.2.2.4 Soft Reset on the PowerPC 604 Microprocessor

Unlike hard reset, soft reset does not directly affect the states of output signals. Attemptsto
use system reset during a hard reset sequence or while the JTAG logic is nonidle causes
unpredictable results. Processing interrupted by a system reset can be restarted.

5.3 Machine Check and Checkstops

The PowerPC architecture defines a machine check exception which is used for
diagnostics. Generally when a condition that generates amachine check is present, whether
the exception is taken is determined by the value of the machine check enable bit,
MSR[ME]. If it is cleared, the machine check exception is disabled and the processor
instead enters checkstop state, which is described in the following section.

For a detailed discussion of the machine check exception, see Section 5.3.2, “Machine
Check Exception (0x00200).

5.3.1 Checkstop State (MSR[ME] = 0)

When a processor is in the checkstop state, instruction processing is suspended and
generally cannot be restarted without resetting the processor. The contents of all latches
(except any associated with the bus clock) are frozen within two cycles upon entering
checkstop state so that the state of the processor can be analyzed as an aid in problem
determination.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid translation. On such a system,
for example, execution of aData Cache Block Set to Zero (dcbz) instruction that introduces
a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

Notethat not all PowerPC processors provide the samelevel of error checking. The reasons
aprocessor can enter the checkstop state are implementati on-dependent.

Chapter 5. System Status Signals 5-7

5.3.2 Machine Check Exception (0x00200)

If no higher-priority exception is pending (namely, a hard reset), the processor initiates a
machine check exception when the appropriate condition is detected. Note that the causes
of machine check exceptions are implementation- and system-dependent, and are typically
signalled to the processor by the assertion of a specified signal on the processor interface.

When a machine check condition occurs and MSR[ME] = 1, the exception is recognized
and handled. If MSR[ME] = 0 and a machine check occurs, the processor generates an
internal checkstop condition. When a processor isin checkstop state, instruction processing
is suspended and generally cannot continue without resetting the processor. Some
implementations may preserve some or al of the internal state of the processor when
entering the checkstop state, so that the state can be analyzed as an aid in problem
determination.

In general, it is expected that a bus error signal would be used by a memory controller to
indicate a memory parity error or an uncorrectable memory ECC error. Note that the
resulting machine check exception has priority over any exceptions caused by the
instruction that generated the bus operation.

If a machine check exception causes an exception that is not context synchronizing, the
exception is not recoverable. Also, if a machine check exception causes the loss of one of
the following exceptions, the exception is not recoverable:

» Anexterna exception (interrupt or decrementer)
» Direct-store error type DSI exception

» Floating-point enabled type program exception, If the SRR1 bit corresponding to
MSR[RI] is cleared, the exception is context synchronizing only with respect to
subsequent instructions. If the exceptionisrecoverable, the SRR1 bit corresponding
to MSR[RI] is set and the exception is context synchronizing.

On some implementations, a machine check exception may be caused by referring to a
nonexistent physical (real) address, either because translation is disabled (MSR[IR] or
MSR[DR] = 0) or through an invalid translation. On such a system, execution of the dcbz
instruction can cause a delayed machine check exception by introducing a block into the
data cache that is associated with an invalid physical (real) address. A machine check
exception could eventually occur when and if a subsequent attempt is made to store that
block to memory.

When a machine check exception is taken, registers are updated as shown in Table 5-6.

5-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 5-6. Machine Check Exception—Register Settings

Register Setting Description

SRRO On a best-effort basis, implementations can set this to an EA of some instruction that was
executing or about to be executing when the machine check condition occurred.

SRR1 Bit 30 is loaded from MSR[RI]! if the processor is in a recoverable state. Otherwise cleared. The
setting of all other SRR1 bits is implementation-dependent.

MSR POwW! 0 PR 0 SE 0 RS 0
TGPR2 0 FP 0 BE O DR® 0
[N — ME® — FE1 0 R 0
EE 0 FEO O P4 — LE7 Setto value of ILE

L Not implemented on the 601

3603 only

3 Note that when a machine check exception is taken, the exception handler should set MSR[ME] as soon as it is
practical to handle another machine check exception. Otherwise, subsequent machine check exceptions cause the
processor to automatically enter the checkstop state.

4 |dentified as EP on the 601

5 |dentified as IT on the 601

6 |dentified as DT on the 601

7 Not implemented on the 601. Control of little-endian mode on the 601 is provided by HIDO[28], the LM bit.

If MSR[RI] is set, the machine check exception may still be unrecoverable in the sense that
execution cannot resume in the same context that existed before the exception.

When amachine check exceptionistaken, instruction execution resumes at offset 0x00200.

5.3.2.1 Machine Check Exception (0x00200)—
PowerPC 601 Processor

The 601 conditionally initiates a machine check exception after detecting the assertion of
the TEA signal, which indicates that a bus error occurred and the system terminates the
current transaction. One clock cycle after TEA is asserted, the data bus signals go to the
high-impedance state; however, data entering the GPR or the cache is not invalidated.

If the MSR[ME] hit is set, the exception is recognized and handled; otherwise, the 601
attempts to enter an internal checkstop condition. This may not lead to a checkstop
depending upon the state of the various checkstop enable control bitsin the HIDO register.
These are described in Section5.3.2.2.1, “Checkstop Sources and Enables
Register—HIDO.”

If MSR[ME], HIDO[CE], and HIDO[EM] bits are cleared (that is, when both the master
checkstop and the machine check checkstops are disabled), the machine check exceptionis
taken.

In general, it is expected that the TEA signal would be used by a memory controller to
indicate a memory parity error or an uncorrectable memory ECC error. Note that the
resulting machine check exception isimprecise and has priority over any exceptions caused
by the instruction that generated the bus operation.

Chapter 5. System Status Signals 5-9

5.3.2.2 Checkstop State (MSR[ME] = 0)—PowerPC 601 Processor

When a processor is in checkstop state, instruction processing is suspended and generally
cannot be restarted without resetting the processor. The contents of al latches are frozen
within two cycles upon entering checkstop state so that the state of the processor can be
analyzed as an aid in problem determination.

A machine check exception may result from referring to a nonexistent physical address. In
some implementations, for example, execution of a Data Cache Block Set to Zero (dcbz)
instruction that introduces a block into the cache associated with a nonexistent physical
address may delay the machine check exception until an attempt is made to store that block
to main memory.

Checkstop sources and enables for the 601 are described in the following section.

5.3.2.2.1 Checkstop Sources and Enables Register—HIDO

The checkstop sources and enables register (HIDO), shown in Figure5-1, is a
supervisor-level register that defines enable and monitor bits for each of the checkstop
sources in the 601. The SPR number for HIDO is 1008.

EDT EBA EBD
ESH ECP
ECD EIU

ETD —| I— EPP

CE| S | M |TD|CD|SH|DT|BA|BD| CP| IU |PP 000 ES|EM LM

0 1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
DRF ———
DRL
PAR

[] Reserved EMC EHP

Figure 5-1. HIDO—Checkstop Sources and Enables Register (601)

Table 5-7 defines the bits in HIDO. The enable bits (bits 15-31) can be used to mask
individual checkstop sources, although these are provided primarily to mask off any false
reports of such conditions for debugging purposes. Bit O (HIDO[CE]) isamaster checkstop
enable; if it is cleared, al checkstop conditions are disabled; if it is set, individua
conditions can be enabled separately. HIDO[EM] (bit 16) enables and disables machine
check checkstops; clearing this bit masks machine check checkstop conditions that occur
when MSR[ME] is cleared. Bits 1-11 are the checkstop source bits, and can be used to
determine the specific cause of a checkstop condition.

All enablebitsexcept 15 and 24 are disabled at start up. The operating system should enable
these checkstop conditions before the power-on reset sequence is compl ete.

5-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 5-7. HIDO—Checkstop Sources and Enables Register (601)

Bit Name Description

0 CE Master checkstop enable. Enabled if set. If this bit is cleared and the TEA signal is asserted, a
machine check exception is taken, regardless of the setting of MSR[ME].

1 S Microcode checkstop detected if set.

2 M Double machine check detected if set.

3 TD Multiple TLB hit checkstop if set.

4 CD Multiple cache hit checkstop if set.

5 SH Sequencer time out checkstop if set.

6 DT Dispatch time out checkstop if set.

7 BA Bus address parity error if set.

8 BD Bus data parity error if set.

9 CP Cache parity error if set.

10 U Invalid microcode instruction if set.

11 PP Direct-store interface access protocol error if set.

12-14 — Reserved

15 ES Enable microcode checkstop. Enabled by hard reset. Enabled if set.

16 EM Enable machine check checkstop. Disabled by hard reset. Enabled if set. If this bit is cleared
and the TEA signal is asserted, a machine check exception is taken, regardless of the setting
of MSR[ME].

17 ETD Enable TLB checkstop. Disabled by hard reset. Enabled if set.

18 ECD Enable cache checkstop. Disabled by hard reset. Enabled if set.

19 ESH Enable sequencer time out checkstop. Disabled by hard reset. Enabled if set.

20 EDT Enable dispatch time out checkstop. Disabled by hard reset. Enabled if set.

21 EBA Enable bus address parity checkstop. Disabled by hard reset. Enabled if set.

22 EBD Enable bus data parity checkstop. Disabled by hard reset. Enabled if set.

23 ECP Enable cache parity checkstop. Disabled by hard reset. Enabled if set.

24 EIU Enable for invalid ucode instruction checkstop. Enabled by hard reset. Enabled if set.

25 EPP Enable for direct-store protocol checkstop. Disabled by hard reset. Enabled if set.

26 DRF 0 Optional reload of alternate sector on instruction fetch miss is enabled.

1 Optional reload of alternate sector on instruction fetch miss is disabled.

27 DRL 0 Optional reload of alternate sector on load/store miss is enabled.

1 Optional reload of alternate sector on load/store miss is disabled.
28 LM 0 Big-endian mode is enabled.

1 Little-endian mode is enabled.
29 PAR 0 Precharge of the ARTRY and SHD signals is enabled.

1 Precharge of the ARTRY and SHD signals is disabled.

Chapter 5. System Status Signals 5-11

Table 5-7. HIDO—Checkstop Sources and Enables Register (601) (Continued)

Bit Name Description

30 EMC

o

No error detected in main cache during array initialization.
1 Error detected in main cache during array initialization.

31 EHP 0 The HP_SNP_REQ signal is disabled. Use of the associated queue position is restricted
to a snoop hit that occurs when a read is pending. That is, its address tenure is complete
but the data tenure has not begun.

1 The HP_SNP_REQ signal is enabled. Use of the associated queue position is restricted
to a snoop hit on an address tenure that had HP_SNP_REQ asserted.

Checkstop enable bits can be set or cleared without restriction. If a checkstop source bit is
set, it can be cleared; however, if the corresponding checkstop condition is still present on
the next clock, the bit will be set again. A checkstop source bit can only be set when the
corresponding checkstop condition occurs and the checkstop enable bit is set; it cannot be
set viaan mtspr instruction. That is, you cannot manually cause a checkstop.

The HIDO register is set to 0x80010080 by the hard reset operation. However, the state of
the EMC bit depends on the results of the power-on diagnostics for the main cache array.
Thisbit is set if the cache fails the built-in self test during the power-on sequence.

5.3.2.3 Machine Check Exception—PowerPC 603 Processor

The 603 conditionally initiates a machine check exception after detecting the assertion of
the TEA or MCP signals on the 603 bus (assuming the machine check is enabled,
MSR[ME] =1). The assertion of one of these signalsindicates that abus error occurred and
the system terminates the current transaction. One clock cycle after the signal is asserted,
the data bus signal's go to the high-impedance state; however, data entering the GPR or the
cache is not invalidated. Note that if HIDO[EMCP] is cleared, the processor ignores the
assertion of the MCP signal.

Register settings when the 603 takes a machine check exception are described in Table 5-6.

Note that the 603 makes no attempt to force recoverahility; however, it does guarantee the
machine check exception is always taken immediately upon request, with a nonpredicted
address saved in SRRO, regardless of the current machine state. Any pending storesin the
completed store queue are cancelled when the exception is taken. Software can use the
machine check exception in a recoverable mode for checking bus configuration. For this
case, a sync, load, sync instruction sequence is used. A subsequent machine check
exception at the load address indicates a bus configuration problem and the processor isin
arecoverable state.

If MSR[ME] is set, the exception is recognized and handled; otherwise, the 603e attempts
to enter an internal checkstop. Note that the resulting machine check exception has priority
over any exceptions caused by the instruction that generated the bus operation.

5-12 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

5.3.2.4 Checkstop State (MSR[ME] = 0)—PowerPC 603 Processor

When the 603 enters checkstop state, it asserts the checkstop output signal, CKSTP_OUT.
The following events will cause the 603e to enter the checkstop state:

» Machine check exception occurs with MSR[ME] cleared.
e External checkstop input, CKSTP_IN, is asserted.
» A direct-store protocol error occurs.

When a processor is in checkstop state, instruction processing is suspended and generally
cannot be restarted without resetting the processor. The contents of al latches are frozen
within two cycles upon entering the checkstop state so that the state of the processor can be
analyzed as an aid in problem determination.

Notethat not all PowerPC processors provide the samelevel of error checking. The reasons
aprocessor can enter checkstop state are implementation-dependent.

5.3.2.5 Machine Check Exception—PowerPC 604 Processor

The 604 implements the machine check exception as defined in the PowerPC architecture
(OEA). It conditionally initiates a machine check exception after an address or data parity
error occurred on the bus or in a cache, after receiving a qualified transfer error
acknowledge (TEA) indication on the 604 bus, or after the machine check interrupt (MCP)
signal had been asserted. As defined in the OEA, the exception is not taken if the MSR[ME]
is cleared.

Machine check conditions can be enabled and disabled using bits in the HIDO register
described in Table 5-8.

Table 5-8. Machine Check Enable Bits

HIDO Bit Description
0 Enable machine check input pin
1 Enable cache parity checking
2 Enable machine check on address bus parity error
3 Enable machine check on data bus parity error

A TEA indication on the bus can result from any load or store operation initiated by the
processor. In general, the TEA signal is expected to be used by a memory controller to
indicate that a memory parity error or an uncorrectable memory ECC error has occurred.
Note that the resulting machine check exception isimprecise and unordered with respect to
the instruction that originated the bus operation.

If the MSR[ME] bit and the appropriate bits in HIDO are set, the exception is recognized
and handled; otherwise, the processor generates an internal checkstop condition. When a
processor is in checkstop state, instruction processing is suspended and generally cannot

Chapter 5. System Status Signals 5-13

continue without restarting the processor. Note that many conditions may lead to the
checkstop condition; the disabled machine check exception is only one of these.

Machine check exceptions are enabled when MSR[ME] = 1; this is described in
Section 5.3.2.5.1, “Machine Check Exception Enabled (MSR[ME] = 1).” If MSR[ME] =0
and a machine check occurs, the processor enters the checkstop state. Checkstop state is
described in Section 5.3.1, “ Checkstop State (MSR[ME] = 0).”

5.3.2.5.1 Machine Check Exception Enabled (MSR[ME] = 1)
When a machine check exception is taken, registers are updated as shown in Table 5-6.

The machine check exception is usually unrecoverable in the sense that execution cannot
resume in the same context that existed before the exception. If the condition that caused
the machine check does not otherwise prevent continued execution, MSR[ME] is set to
allow the processor to continue execution at the machine check exception vector address.
Typicaly earlier processes cannot resume; however, the operating systems can then use the
machine check exception handler to try to identify and log the cause of the machine check
condition.

5.3.2.5.2 Checkstop State (MSR[ME] = 0)

When a processor is in checkstop state, instruction processing is suspended and generally
cannot resume without the processor being reset. The contents of al latches are frozen
within two cycles upon entering checkstop state.

A machine check exception may result from referencing a nonexistent physical address,
either directly (with MSR[DR] = 0), or through an invalid translation. On such a system,
for example, execution of aData Cache Block Set to Zero (dcbz) instruction that introduces
a block into the cache associated with a nonexistent physical address may delay the
machine check exception until an attempt is made to store that block to main memory.

5.4 External Interrupt Exception (0x00500)

The PowerPC architecture defines an external interrupt exception, which in the 60x
processorsis signaled to the processor by the assertion of the external interrupt signal, INT.
The exception may be delayed by other higher-priority exceptions or if the MSR[EE] bitis
zero when the exception is detected. Note that the occurrence of this exception does not
cancel the external request.

The register settings for the external interrupt exception are shown in Table 5-9.

5-14 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table 5-9. External Interrupt—Register Settings

Register Setting Description

SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present. On the 603, note that in the rare case when the next instruction
is not in the completion queue, the 603 searches elsewhere to provide the appropriate restart
instruction address to SRRO.

SRR1 0 Loaded with equivalent bits from the MSR (cleared in the 601 and 603)

1-4 Cleared

5-9 Loaded with equivalent bits from the MSR (cleared in the 601 and 603)

10-15 Cleared

16-31 Loaded with equivalent bits from the MSR

Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.
MSR POW! 0 PR 0 SE 0 IR4 0

TGPR? 0 FP 0 BE O DR% 0

([N =C— ME — FE1 O Rt 0

EE 0 FEO 0 P — LE® Setto value of ILE

1 Not implemented on the 601

2 603e only

3 |dentified as EP on the 601

4 |dentified as IT on the 601

5 |dentified as DT on the 601

6 Not implemented on the 601. Control of little-endian mode on the 601 is provided by HIDO[28], the LM bit.

Note that the processor recognizes the interrupt conditi (ﬂW asserted) only if MSR[EE]
is set. To guarantee that the external interrupt is taken, INT must remain asserted until the
processor takes the interrupt; otherwise, the processor is not guaranteed to take an external
interrupt.

After the INT is detected asserted, the processor stops dispatching instructions and waits
for executing instructions to complete. Therefore, exceptions caused by instructions in
progress are taken before the external interrupt exception is taken. After al instructions
complete, the processor takes the external interrupt exception.

Theinterrupt handler must send acommand to the device that asserted INT, acknowledging
the interrupt and instructing the device to negate INT.

When an external interrupt exception is taken, instruction execution resumes at offset
0x00500 from the physical base address indicated by MSR[IP].

5.4.1 External Interrupt—PowerPC 601 Processor

In early versions of the 601 (processor revision level 0x0000), the external interrupt is a
level-sensitive signal and should be held active until reset by the interrupt service routine.
Phantom interrupts due to phenomena such as crosstalk and bus noise should be avoided.

Chapter 5. System Status Signals 5-15

5.4.2 External Interrupt—PowerPC 603 Processor

On the 603, note that in the rare case when the next instruction is not in the completion
gueue, the 603 searches elsewhere to provide the appropriate restart instruction address to
SRRO.

5.5 System Management Interrupt Exception
(0x01400)

The system management interrupt, which is implemented on the 603 and 604, but not on
the 601, behaves like an external interrupt except for the signal asserted and the vector
taken.

A system management interrupt is signaled to the processor by the assertion of the SMI
signal. The interrupt may not be recognized if a higher-priority exception occurs
simultaneously or if the MSR[EE] hit is cleared when SMI is asserted. Note that SMI takes
priority over INT if they are recognized simultaneoudly.

After the assertion of SMI is detected (and provided that MSR[EE] is set), the processor
waits for the next instruction (and any exceptions associated with that instruction) to
complete before taking the system management interrupt. Note that in the rare case when
the next instruction is not in the completion queue, the processor searches elsewhere to
provide the appropriate restart instruction address to SRRO.

The register settings for the system management interrupt exception are the same as those
for the externa interrupt, as shown in Table 5-10.

Table 5-10. System Management Interrupt—Register Settings

Register Setting Description
SRRO Set to the effective address of the instruction that the processor would have attempted to execute next
if no interrupt conditions were present.
SRR1 0 Loaded with equivalent bits from the MSR (cleared in the 601)
1-4 Cleared
5-9 Loaded with equivalent bits from the MSR (cleared in the 601)
10-15 Cleared
16-31 Loaded with equivalent bits from the MSR
Note that depending on the implementation, reserved bits in the MSR may not be copied to SRR1.
MSR POW 0 PR O SE O IR 0
TGPR1 0 FP 0 BE 0 DR 0
ILE — ME — FE1L 0 RI 0
EE 0 FEO O P — LE Setto value of ILE
1603e only

When a system management interrupt is taken, instruction execution for the handler begins
at offset 0x01400 from the physical base address indicated by MSR[IP].

5-16 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

The processor recognizes the interrupt condition (SM1 asserted) only if MSR[EE] is set; it
ignoresthe interrupt condition if the M SR[EE] hit is cleared. To guarantee that the external
interrupt istaken, the SMI signal must be held active until the processor takes the exception.
If the SMI signal is negated before the interrupt is taken, the processor is not guaranteed to
take a system management interrupt. The interrupt handler must send a command to the

device that asserted SMI, acknowledging the interrupt and instructing the device to negate
SMI.

Chapter 5. System Status Signals 5-17

5-18 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Chapter 6
Additional Bus Configurations

Chapters 2 through 5 describe basic 60x bus operations. However some processors support
additional bus functionality, including the following:

* No-dataretry mode (referred to asno-DRTRY mode).—This mode allows DRTRY
to be disabled in the 603 and 604e, which in turn allows data to be forwarded one
bus cycle sooner than if DRTRY isenabled. (No-DRTRY mode isimplemented on
the 604e, but not on the 604; see data streaming mode below.)

« Data streaming mode—Data streaming is the ability to begin data tenure after a
previous data tenure with no dead cycles between. Data streaming isimplemented
on 604s. (Note that in 604 documentation, this was called fast-L 2/data streaming
mode and no-DRTRY /data streaming mode, athough thereis no relation to the no-
DRTRY mode described above.)

» 32-bit databus mode—The 603 supports an optional 32-bit databus mode, in which
the processor uses only byte lanes 0-3 for adata transfer, therefore allowing a
maximum of 32 bits of datato be transferred per bus clock.

* Reduced pinout mode—The 603 provides an optional reduced-pinout mode that
disables DL[0-31], DP[0-7], AP[0-3], APE, DPE, and RSRV for reduced power
consumption. The 32-bit data bus mode isimplicitly selected when reduced-pinout
mode is enabled.

» Direct-store mode, which provides an alternative method for 1/0O bus operations, is
described in Chapter 7, “ Direct-Store I nterface.”

6.1 No-DRTRY Mode (603 and 604e)

The 603 family and 604e processors provides a way to disable the use of the data retry
function. No-DRTRY mode allows data to be forwarded during load operations to the
internal processor one bus cycle sooner than with normal bus protocol.

The 60x bus protocol specifies that, during load operations, the memory system normally
can cancel datathat the master read on the bus cycle after TA was asserted. On 603 and 604e
processors, thislate cancellation requires any dataloaded at the businterfaceto be held one
additional bus clock to verify that the it is valid before forwarding it to the internal CPU.
For systems that do not use the DRTRY function, no-DRTRY mode eliminates this one-
cycle stall and alows datato passto theinternal CPU immediately when TA is recognized.

Chapter 6. Additional Bus Configurations 6-1

When the processor isin no-DRTRY mode, data can no longer be cancelled the cycle after
it is acknowledged by an assertion of TA. Data is immediately forwarded to the CPU
internally, and any attempt at |ate cancellation by the system may cause improper operation
by the processor.

When the 603e uses normal bus protocol, data can be cancelled the bus cycle after TA by
either late cancellation by DRTRY or by ARTRY. When nho-DRTRY modeis selected, both
cancellation cases must be disallowed in the system design for the bus protocol.

No-DRTRY mode requires the system to ensure that DRTRY not be asserted to the
processor, which may cause improper operation of the bus interface. The system must also
ensure that a snooping device does not assert ARTRY later than the first assertion of TA to
the processor, but not on the cycle after the first assertion of TA.

Apart from the inability to cancel datathat was read by the master on the bus cycle after TA
was asserted, the 603 bus protocol isidentical to that for the basic transfer bus protocols, as
well asfor 32-bit data bus mode.

The processor selects the desired DRTRY mode at start-up by sampling DRTRY at the
negation of HRESET. If DRTRY is negated, normal operation is selected; if it is asserted,
no-DRTRY mode is selected.

6.1.1 No-DRTRY Mode in PowerPC 604e Processor

In no-DRTRY mode, the system must define the beginning of the window in which the
snoop response is valid and ensure that no data is transferred before the same cycle as the
beginning of that window. For example, if the system defines a snoop response window that
begins the second cycle after TS, TA can be asserted no sooner than the second cycle after
TS. Thistiming constraint on the earliest allowable assertion of TA with respect to ARTRY
isidentical to that constraint in data streaming mode.

To upgrade a 604-based system to the 604e and use no-DRTRY, the following should be
observed:
» The system uses the 604 in normal bus mode, described earlier in this section.
« DRTRY must be tied negated and never used.
» The system must never assert TA before the first cycle of the system’s snoop
response window.

This system would then see a performance improvement due to the shorter effective latency
seen by the 604e on read operations. This improvement is equal to one bus cycle (three
processor cyclesin 3:1 bus mode).

6-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

6.2 Data Streaming Mode (604)

Data streaming is the ability to start a data tenure after a previous data tenure with no dead
cycles between. (Note that in 604 documentation, this was called fast-L 2/data streaming
mode and no-DRTRY/data streaming mode, although there is no connection to the no-
DRTRY mode described above.) The 604 supports data streaming only for consecutive
burst-read data transfers. This does include support for data streaming consecutive burst
read data transfers between two separate masters. For instance, in a multiple-604 system,
data streaming is alowed on consecutive burst read data transfers from different 604s.

To cause data streaming, the system asserts DBG during the last data transfer of the first
datatenure as shown in Figure 6-1. To fully realize the performance gain of data streaming,
the system should be prepared to, but is not required to, supply an uninterrupted sequence
of TA assertions.

0
BusClock 1 1 [1 [L[LI L[L[L[L 1
N\

DBG

DATA (TR-AL X TR-A2 X TR-A3 { TR-A4 X TR-BL X TR-B2 X TR-B3 X TR-B4 }——

Figure 6-1. Data Transfer in Data Streaming Mode

6.2.1 Data Valid Window in the Data Streaming Mode

Standard bus mode operations allow data to be transferred no earlier than the cycle before
the ARTRY window that the system defines. In some cases, an asserted ARTRY invalidates
the data that wastransferred the previous cycle, in the sameway DRTRY cancels datafrom
the previous cycle.

In data streaming mode, the data buffering that allows late cancellation of a data transfer
does not exist, so late cancellation with ARTRY is aso impossible. Therefore, the earliest
that data can be transferred in data streaming mode isthefirst cycle of the ARTRY window,
not the cycle before that.

6.2.2 Data Valid Window in the Data Streaming Mode

Standard bus mode operations allow data to be transferred no earlier than the cycle before
the ARTRY window that the system defines. In some cases, an asserted ARTRY invalidates
the data that wastransferred the previous cycle, in the sameway DRTRY cancels datafrom
the previous cycle.

Chapter 6. Additional Bus Configurations 6-3

In data streaming mode, the data buffering that allows late cancellation of a data transfer
does not exist, so late cancellation with ARTRY is aso impossible. Therefore, the earliest
that data can be transferred in data streaming mode isthe first cycle of the ARTRY window,
not the cycle before that.

6.2.3 Design Practices for Data Streaming Mode

It is recommended that use of data streaming mode be accompanied by two other system
design practices:

» Donot useABB. If the system isdesigned so an address tenure is defined by TS and
AACK assertion, (which the 604 is designed to support), ABB is unnecessary and
should be pulled high at the 604. Because ABB has a short restore-high time, ABB
should not be used in systems that try to achieve a short cycle time.

» Do not use DBB, which isrestored high in the same way asABB and therefore has
the same problems in a system with short cycle times. To avoid using DBB, the
system arbiter must assert DBG for asingle cycle, one cycle before the 604 is
supposed to begin its data tenure. The DBB signal should be pulled high. The
additional system cost of operating in this manner isthat data transfers must be
counted and DBG can be asserted only on the last cycle in a data tenure.

6.3 32-Bit Data Bus Mode (603)

The 603 supports an optional 32-bit data bus mode, which operates like the 64-bit data bus
mode but uses only byte lanes 0-3, corresponding to DH[0-31] and DP[0-3]. Byte lanes
4-7 (DL[0-31] and DP[4—7]) are never used in this mode. Unused bus signals are ignored
during read operations and are driven low for write operations.

In 32-bit bus mode, data tenures can be one, two, or eight beats depending on the size of
the program transaction and the cache mode for the address. Data transactions of one or two
data beats are performed for caching-inhibited load/store or write-through store operations.
Note that two-beat burst transactions do not assert TBST (having the same TBST and
TSIZ[0-2] encodings as the 64-bit data bus mode).

Single-beat data transactions transfer four bytes or less, and two-beat data transactions are
performed for eight-byte operations only. The 603 generates an eight-byte operation only
for a double-word—aligned load double or store double operation to or from the floating-
point registers (FPRS).

Eight-beat burst datatransactions|oad datainto or store datafrom the 603’sinternal caches.
These transactions transfer 32 bytesin the same way as in 64-bit data bus mode, asserting
TBST and signalling atransfer size of 2 (TSIZ[0-2] = 0b010).

6-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

The same bus protocols apply for arbitration, transfer, and termination of the address and
data tenures for both 32- and 64-bit bus modes. For word or smaller transactions, late
ARTRY cancellation of the data tenure applies on the bus clock after the first data beat is
acknowledged (after the first TA); for double-word or burst operations, this may occur on
the bus clock after the second data beat is acknowledged (after the second TA or coincident
with respective TA if no-DRTRY mode is selected).

An example of an eight-beat data transfer while the 603 isin 32-bit data bus modeis shown
in Figure 6-2. In this example, TA remains asserted for the entire burst transaction.

0 1 2 3 4 5 6 7 8 9 10 11
(I
TS N
_— |
A[0-31] ———
TBST a
AACK _ |/
ARTRY 7
_— —
DH[0-31] —C 0 X1 X2 X3 X 4 X5 X 6 X 7 »—
T TUONIN NN NN ™
DRTRY / .
TEA 7 \ﬁ

Figure 6-3 shows an example of atwo-beat datatransfer (with DRTRY asserted during each

datatenure).

Figure 6-2. 32-Bit Data Bus Transfer (Eight-Beat Burst)

Chapter 6. Additional Bus Configurations

TS

ABB

A[0-31]

TBST

AACK

ARTRY

1]

A

0 X 1 >—

X
I~
/ \

X
™

L

/ N\
|

N4

Figure 6-3. 32-Bit Data Bus Transfer (Two-Beat Burst with DRTRY)

The 603 selects the data bus mode at start-up by sampling TLBISYNC at the negation of
HRESET. If TLBISYNC is asserted, the bus runs in 32-bit data mode; otherwise, it runsin
64-bit mode. If the TLBISYNC input function is not used, it can be connected to HRESET
to place the processor in 32-bit bus mode. Otherwise, it should be connected to a pull-up
resistor to select 64-bit mode. For systems using the TLBISYNC input function, HRESET
must be logically combined with TLBISYNC to select a data bus mode.

6.4 Reduced-Pinout Mode (603)

The 603 has an optional reduced-pinout mode. This mode idles the switching of numerous
signalsfor reduced power consumption. The DL[0-31], DP[0-7], AP[0-3], APE, DPE, and
RSRV signals are disabled when the reduced-pinout mode is selected. Note that the 32-bit
data bus mode isimplicitly selected when the reduced-pinout mode is enabled.

When the 603 is in reduced-pinout mode, the bidirectional and output pins disabled are
always driven low during the periods when normally they would have been driven by the
603. The open-drain outputs (APE and DPE) are always three-stated. Bidirectional inputs
are always turned off at the input receivers of the 603 and are not sampled.

The 603 selects either full-pinout or reduced-pinout mode at start-up by sampling the state
of QACK at the negation of HRESET. If QACK is low at the negation of HRESET, full-
pinout mode is selected by the 603. If QACK is high at the negation of HRESET, reduced-
pinout mode is selected.

6-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Chapter 7
Direct-Store Interface

Accesses to direct-store segments, as defined in the PowerPC architecture, are executed on
the bus using the extended transfer protocol (ETP), an extension to the basic transfer
protocol described in previous chapters. Except for onesignal, XATS, this protocol usesthe
same signal set as the basic transfer protocol, although some signals are redefined. The
PowerPC 601 processor documentation refers to the direct-store interface as the 1/0
controller interface.

Direct-store operations are no longer required by the PowerPC architecture. Some
processors, such as the PowerPC 603e processor, do not support this feature.

PowerPC architecture defines the following characteristics for direct-store accesses:

* The extended address delivered to the 1/0 system includes a bus unit ID (BUID) to
address one of several bus devices and a 32-bit address to be delivered to each.

» A transaction error can be detected and associated with the original instruction.

To satisfy the requirements of PowerPC architecture for direct-store segments, the
following extensions are implemented:

« A new set of bus operationsis provided that redefines how the transfer type (TTn),
transfer burst (TBST), and transfer size (TSIZn) signals are used. These signals
together generate the extended address transfer code (XATC), as shown in
Table 7-4.

» Each direct-store address transfer takes two beats. The first transmits the BUID and
several control bits from the segment register, and the second transfers a complete
32-bit address to the slave device.

» Explicit sender/receiver tags are provided.

» A split-response protocol is enforced; that is, the sender must wait for areply from
the receiver before considering a transaction compl ete.

« The60x doesnot burst direct-store transactions, but atype of streaming ispermitted.
Streaming (in this context) allows multiple single-beat transactions to occur before
areply from the direct-store receiver is required.

Chapter 7. Direct-Store Interface 7-1

Direct-store transactions are like memory-mapped accesses, as shown in Figure 7-1. They
use most of the same signals. They use separate arbitration for the split address and data
buses, and also define address-only and single-beat transactions. The address retry vehicle
isidentical, although there is no hardware coherency support.

A given 60x processor processes one direct-store transaction at a time, but may perform
other bus transactions for the duration of the transfer. A direct-store cycle does not inhibit
other bus traffic within its envel ope.

In addition to the extensions noted above, there are fundamental differences between the
basic transfer protocol and the extensions. For example, use of DRTRY is undefined. Also,
only four bytes of the eight-byte data path are available (transmitted on DH[0-31]. This
facilitates lower pin-count direct-store interfaces but also offer substantially less bandwidth
than memory accesses. Additionally, load/store instructions to direct-store addresses
cannot retire until an error-free reply is received, which likely further degrades
performance, compared to access to normal segments.

ADDRESS TENURE 1/0 RESPONSE
AN AN

/
ARBITRATION| TRANSFER |TERMINATION|OO0|ARBITRATION TRANSFER [TERMINATION

INDEPENDENT ADDRESS AND DATA

N

DATA TENURE

/_
/= —~ NO DATA TENURE FOR 1/0 RESPONSE
|ARBITRATION| TRANSFER |TERMINATION| eee (/O responses are address-only)

Figure 7-1. Direct-Store Interface Protocol Tenures

The 601 supports an additional mode, memory-forced direct-store mode, that is not defined
by the PowerPC architecture and dependent on the value of BUID. This is described in
Section 7.6, “Memory-Forced Direct-Store Interface (PowerPC 601 Processor Only).”

7.1 Direct-Store Transaction Protocol Details

As mentioned previously, there are two address-bus beats corresponding to two packets of
information about the address. The two packets contain the sender and receiver tags, the
address and extended address bits, and extra control and status bits. The two beats of the
address bus (plus attributes) are shown at the top of Figure 7-2 as two packets. Packet O is
then expanded to reflect the XATC and address bus information in detail.

7-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

7.1.1 Packet O

Figure 7-2 shows the organization of the first packet in a direct-store transaction. The
XATC contains the transfer code. The address bus contains the following:

Key bit || segment register || sender tag

A[0-31] + Attributes

N .
/(Address Bus (A[0-31])
J N

0 7 0 123 1112 27 28 31

XATC + L | | |
1/0 Transfer Code

BUID
W W, PID
Ve
From Segment Register
Key Bit
Reserved

Figure 7-2. Direct-Store Operation—Packet 0

The contents of the address bus are described in Table 7-1.

Table 7-1. Address Bits for Packet 0

Bits Description
0-1 Reserved. These bits should be cleared for compatibility with future PowerPC microprocessors.
2 Key bit—either SR[Kp] or SR[Ks]. Kp indicates user-level access and Ks indicate supervisor-level access.

The processor multiplexes the correct key bit into this position according to the operating context.

3-27 Address bits 3-27 correspond to bits 3—-27 of the selected segment register. A[3—11] form the receiver tag
(BUID). Software must initialize these SR bits to the ID of the BUC to be addressed. The 601 supports an
additional mode, memory-forced direct-store mode, not defined by the PowerPC architecture, and
dependent on the value of BUID. See Section 7.6, “Memory-Forced Direct-Store Interface (PowerPC 601
Processor Only).”

28-31 PID (sender tag)—Allows a maximum of 16 processor IDs to be defined for a given system. If more bits
are needed for a very large multiprocessor system, the L2 cache (or equivalent logic) can append a larger
processor tag. The BUC addressed by the receiver tag should latch the sender address required by the
subsequent 1/O reply operation.

The 601 and 604 PID comes from PID [28-31]. The 603 PID is always driven as 0b0000.

Chapter 7. Direct-Store Interface 7-3

7.1.2 Packet 1

The second address beat, packet 1, transfers byte counts and the physical address for the
transaction, as shown in Figure 7-3.

N
r —
0 7 0 34 31
XATC + [SR[28-31] Bus Address |
Byte Count Address Bus (A[0-31])

Figure 7-3. Direct-Store Operation—Packet 1

For packet 1, the XATC is defined as follows:

« Load request operations—XATC containsthetotal number of bytesto betransferred
(128 bytes maximum for the 601, 603, and 604).

* Immediate/last (load or store) operations—XATC contains the current transfer byte
count (1 to 4 bytes).

The processor gives the physical address, A[0-31], a concatenation of SR[28-31] with
EA[4-31], to the BUC, which must keep a valid address pointer for the reply.

7.1.3 1/0 Reply Operations

BUCsrespond to direct-store transactionswith an I/O reply operation, shown in Figure 7-4,
which informs the processor of the success or failure of the operation. This requires a
system to have bus mastership capability—a substantially more complex design task than
bus slave implementations that use memory-mapped 1/0 access. Replies from the BUC to
the processor are address-only transactions. As with packet O of the address bus on direct-
store operations, the XATC has the transfer code (see Table 7-4). Additionally, an 1/O reply
operation transfers the sender/receiver tagsin the first beat.

Address Bus (A[0-31])

N\
—
0 7 0 123 1112 2728 31
XATC L1 | | |
I/O Transfer Code _Y__)\T)\ A N _
g Y
BUID BUC—gpecific PID
— _J
Error Segment Register
Bit
Reserved

Figure 7-4. 1/0O Reply Operation

7-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

The address bits are described in Table 7-2.

Table 7-2. Address Bits for I/O Reply Operations

Bits Description
0-1 Reserved. These bits should be cleared for compatibility with future PowerPC microprocessors.
2 Error bit. It is set if the BUC records an error in the access.
3-11 BUID. Sender tag of a reply operation. Corresponds with bits 3—11 of one of the segment registers.
12-27 | Address bits 12—27 are BUC-specific and are ignored by the processor.
28-31 | PID (receiver tag). The processor effectively snoops operations on the bus and, on reply operations,

compares this field to PID[28-31] (601 and 604) to determine if it should recognize this 1/O reply.

The second beat of the address bus is reserved; the XATC and address buses should be
driven to zero to preserve compatibility with future protocol enhancements.

The following sequence occurs when a processor detects an error hit set on an 1/O reply:

1
2.
3.

The processor compl etes the instruction that initiated the access.
If the instruction is aload, the datais forwarded onto the register file(s)/sequencer.

A direct-store error exception is generated, which transfers processor control to the
direct-store error exception handler to recover from the error.

If the error bit is not set, the instruction that caused the access completes and instruction
execution resumes. System designers should note the following:

On the 601 and 603, reply operations that match the processor tag but arrive
unexpectedly cause a checkstop condition. The 604 ignores these operations.

External logic must assert AACK input for the processor, even though it is the
receiver of the reply operation.

The processor monitors address parity when enabled by software and XATS and
reply operations (load or store).

Chapter 7. Direct-Store Interface 7-5

7.2 Direct-Store Operations
Table 7-3 lists the type of bus operations supported by the direct-store interface.

Table 7-3. Direct-Store Bus Operations

Operation Type Direction

Load request Address only 60x --> /O

Load immediate Address/data 60x --> /O

Load last Address/data 60x --> /O

Store immediate Address/data 60x --> /O

Store last Address/data 60x --> /O
Load reply Address only 1/0 --> 60x
Store reply Address only 1/0 --> 60x

Table 7-3 shows the seven direct-store operations defined by the 60x. A singleload or store
instruction to a direct-store segment generates one or more direct-store operations (two or
more direct-store operations for loads) from the 60x and one reply operation from the
addressed device. For the first address beat, the XATC contains the direct-store transfer
code shown in Table 7-4. The XATC isformed as follows:

XATC=TTO-TT3 || TBST || TSIZ0-TSIZ2
TT4 isnot used. Definitions for these signals are irrelevant to direct-store transfers.

Table 7-4. Extended Address Transfer Code Definitions

Operation TT[0-3] TBST TSIZ[0-2]
Load request 0100 0 000
Load immediate 0101 0 000
Load last 0111 0 000
Store immediate 0001 0 000
Store last 0011 0 000
Load reply 1100 0 000
Store reply 1000 0 000

Note: The values in the TBST column are the logical values seen on the signal.

7-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

7.3 Store Operations
Store operations are defined for the 60x as follows:

« Storeimmediate and store last operations transfer up to 32 bits of datato the device.
* A storereply from the dlave device indicates the success or failure of that access.

A direct-store access consists of one or more data transfer operations followed by a store
reply operation from the slave device. If the data can be transferred in one 32-bit data
transaction, it is marked as a store last operation followed by the store reply operation; no
store immediate operation isinvolved in the transfer, shown in the following:

STORE LAST (from 60x).....STORE REPLY (from slave device)

If more dataisinvolved, thereis one or more store immediate operations. The slave device
detects the last transfer by looking for the store last transfer code, shown in the following:

STORE IMMEDIATE(S).....STORE LAST....STORE REPLY

7.4 Load Operations

Direct-store load accesses are like stores, except that the 60x receives instead of transmits
data. As with basic transfer protocol, the 60x is master on both load and store operations.
The system must grant the data bus to the 60x when the device is ready to provide data.
Direct-store |oad requests have no anal ogous store operation; these address-only operations
inform the addressed device of the number of bytes required on the subsequent load
immediate/load last operations. The simplest, 32-bit or less, direct-store load is as follows:

LOAD REQUEST.....LOAD LAST....LOAD REPLY (from slave device)

If more dataisinvolved, thereis one or more load immediate operations. The device detects
the last datatransfer by looking for the load last transfer code, shown in the following:

LOAD REQUEST.....LOAD IMMEDIATE(S).....LOAD LAST....LOAD REPLY

Three of the seven defined operations are address-only transactions, which like basic
transfer protocol, do not use the data bus. Unlike the basic transfer protocol, however, these
transactions are not broadcast from one master to all snooping devices; rather, they pass
control information between the processor and a specific slave device.

Chapter 7. Direct-Store Interface 7-7

7.5 Direct-Store Operation Timing

The figures in this section show timings for typical load and store accesses to direct-store
segments. All arbitration signals except for ABB and DBB have been omitted for clarity.
Note that for either case, the number of immediate operations depends on the amount of
datato betransferred. If fewer than four bytes of data are transferred and the data does not
straddle a double-word address, there is no immediate operation. The 60x can transfer up
to 128 bytes of datawith aload or store instruction.

Figure 7-5 shows XATS asserted with the same timing as TS in basic transfer protocol.
However, the address bus (and XATC) change on the next bus cycle. The first beat of the
two-beat address bus operation is valid for one bus cycle window only, as defined by the
assertion of XATS and cannot be extended. Address bus beat two can be extended by
delaying assertion of AACK until the system latches the address.

| REQUESTOP | IMM.OP | LASTOP | | REPLYOP |
11 21 3|14 |5 6 7|81 9 |10]11 |12 |13 |

| | | I | | I | |
ABB —__4 | | | |/ 5 |\ |
| | | | | | | | |
HATS | I I | | I
1 1 1 1 1 1 1 1 1
ADDR+XATC :—(PKT 0 X PKT 1)+(PKTOX PKT 1)—35:—(PKT 0 X PKT 1 }——%—~{(X Reply X Rsrvd X
T T T T T T T T

|

| | |

| | |

$ | §+

EER / I\ | |

I I I I

I I I I

I I I I | | _: : : :

317 | ; ; ; ; ; ! I I I I
Pri 3:L]I I I I I A I X I I X I X:: | | | |
TA \ |/ \ | | | |

Figure 7-5. Direct-Store Interface Load Access Example

The load request and load reply operations in Figure 7-5 are address-only. Other types of
bus operations can occur between individual direct-store operations on the bus. In this best-
case example (no wait states), up to eight bytes of data are transferred in 13 bus cycles.

Figure 7-6 shows a store operation to a direct-store segment, consisting of a store
immediate, astore last, and a store reply. Datais transferred on DH[0-31]. Unlike the load
case, there is no request operation because the 60x has the data ready for the slave device.

7-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

| IMM.OP | LASTOP | | REPLYOP |
11 21314115 1]6]7]8]9]10|

AB:—\: :/'55:_\ : :/_|‘-35—|—_|_|_/_
1

T
| | | | | |
| | | | | | |
:—SH—\ | t | }
BB | I | _I_/ | |
DH[0-31] ;:x:zl—:q:x: :
|

TA! A A

—

| ! ! ! |

ADDR+XATC :—(PKITOXPKlTl)—gg—(PKToXPKIU)—gg—(XRe:JIyXRsn/de
|

|

|

|

|

|

|

Figure 7-6. Direct-Store Interface Store Access Example

If TEA is asserted during a direct-store access, the resulting action is delayed until all data
transfers from the direct-store access complete. The device asserting TEA must keep it
asserted until the last direct-store datatenure is complete. The direct-store reply, in cases of
TEA assertion, is not required and is ignored by the processor. The processor does not
recognize the assertion of TEA until the last direct-store data tenure completes.

7.6 Memory-Forced Direct-Store Interface

(PowerPC 601 Processor Only)

The 601 defines two types of direct-store segments (segment register T bit set) based on the
value of the BUID, asfollows:

Direct-store interface (BUID # 0x07F)—Normal direct-store accesses include all
transactions between the 601 and BUCs mapped through direct-store address space.

Memory-forced direct-store interface (BUID = 0x07F)—Memory-forced direct-
store interface operations access memory space. They do not use the extensionsto
the memory protocol described for direct-store accesses, and they bypass the page-
and block-trand ation and protection mechanisms. The physical addressisfound by
concatenating bits 28-31 of the respective segment register with bits 4-31 of the
effective address. This address is marked noncacheabl e, write-through, and global.

Because memory-forced direct-store accesses address memory space, they are
subject to the same coherency control as other memory reference operations. More
generally, accesses to memory-forced direct-store segments are considered to be
cache-inhibited, write-through, and memory-coherent operationswith respect to the
601 cache and bus interface.

Chapter 7. Direct-Store Interface 7-9

7-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

Chapter 8
System Considerations

This chapter describes general considerations for system design with the 60x bus. The
following topics are included:

» Arbitration

e Write datareordering

« AACK generation

e Useof sync and tibsync

e Pull-up resistors

» Features for improved bus performance

» |EEE 1149.1-compliant interface

» Using DBWO

* |warx/stwcx. considerations

8.1 Arbitration

Depending on the system implementation, the system arbiter may have various functions.
Asaminimum, it performs arbitration for accessto the address bus and grants accessto the
data bus. It connects to each bus master with at least three unique signals; two for address
bus control, bus request (BR) and bus grant (BG), and one for data bus granting, DBG.

Apart from negating bus requeststhe cycle after ARTRY isasserted, 60x bus protocol offers
no inherent fairness in determining bus mastership. Therefore system designers must
consider system needs as a whole when choosing an arbitration strategy.

8.2 Using the Data Bus Write-Only Mechanism

Some processors support alimited out-of -order capability for its own pipelined transactions
through the data bus write only (DBWO) signal. When the assertion of DBWO is
recognized on the clock of a qualified data bus grant, the processor is directed to perform
the next pending data write tenure (if any) even if a pending read tenure would have
normally been performed. The DBWO signal only allows a write tenure to be performed
ahead of a pending read tenure from the same processor, not another write tenure.

Chapter 8. System Considerations 8-1

In general, an address tenure is followed immediately by its associated data tenure.
Transactions pipelined by aprocessor complete in strict order except when the system uses
DBWO to alow a processor to perform a snoop push-out operation (or other write
transaction pending in the write queues) between the address and data tenures of a read
operation. This effectively envelopes the write operation within the read operation.
Figure 8-1 shows how DBWO supports envel oped write transactions.

| Read Address | |Write Address |<—

. 1 2
BG LT Enveloped Write
ABB — — — Transaction
AACK L1

\ Y

Write Data Read Data
1

2

DBG] LT
DBB 1 [[
DBWO —_[

Figure 8-1. Data Bus Write Only Transaction

Care should be used when using the enveloped write feature. For systems that do not
implement this capability, DBWO should remain negated. In systems where this capability
is needed, DBWO should be asserted under the following scenario:

1. Theprocessor initiates aread transaction (either single-beat or burst) by completing
the read address tenure with no address retry (ARTRY negated).

2. Then, the processor initiates a write transaction by completing the write address
tenure with no ARTRY.

3. Atthispoint, if DBWO is asserted with a qualified data bus grant to the processor,
the processor asserts DBB and drives the write data onto the data bus, out of order
with respect to the address pipeline. The write transaction ends with the processor
negating DBB.

4. Thenext qualified data bus grant signals the processor to complete the outstanding
read transaction by latching the data on the bus. This assertion of DBG should not
be accompanied by an asserted DBWO.

8-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

Any number of bus transactions by other bus masters can be tried between any of these
steps. Note the following regarding DBWO:

» TheDBWO signal can be asserted if no read operation is pending; it does not affect
write ordering.

* Ordering and presence of data bus writes is determined by the writesin the write
gueues when BG is asserted for the write address (not DBG). A snoop push-out
operation has highest priority over other queued write operations.

» Because morethan onewrite can bein the write queue when DBG isasserted for the
write address, more than one data bus write can be enveloped by a pending read.

The arbiter must monitor bus operations and coordinate masters and slaves with respect to
the use of the data bus when DBWO is used. Individual DBG signals associated with each
bus device should allow the arbiter to synchronize both pipelined and split-transaction bus
organizations. Individual DBG and DBWO signals provide a primitive form of source-level
tagging for the granting of the data bus.

The ability to perform a snoop push before completion of aread transaction that has been
started by the processor prevents certain deadlock conditions. Consider a case where a 60x
processor shares a bus with a memory controller and a bus converter. Assume that the bus
converter produces an XY Z bus and that the foll owing two requests appear simultaneously:

* A request from the processor on the 60x bus that requires an XY Z bus transaction.
» A request onthe XY Z busthat should cause adatatransfer with memory on the 60x.

The bus converter queues the processor request until the XY Z bus transaction completes.
The XY Z bus transaction causes a request on the 60x bus, and, unfortunately, a snoop hit
that requires a push. To avoid deadlock, this envel oped push must compl ete before the data
transfer for the processor request. Thisisa problem with bus converters using certain styles
of buses. In such cases, the system should assert DBWO and DBG together for write
operations identified as snoop pushes, which may be a difficult determination because a
system might assert this signal for all write data transfers, effectively reordering all write
data ahead of outstanding reads.

The arbiter must monitor all bus operationsin progress and synchronize masters and slaves
with respect to the use of the databus. Each master’'s DBG allows the arbiter to synchronize
pipelining and supports split transaction bus organi zations.

Chapter 8. System Considerations 8-3

8.3 AACK Generation

Systems can use the signals provided by 60x processors to implement a ssimple, single-
envelope bus in which data and address tenures are always together. It can also implement
a bus that provides limited pipelining, in which subsequent addresses are sent out before
the completion of the current data transfer. It even alows creation of a bus that provides
split address and data transfers. The degree to which each processor may support such
operations depends on processor design, namely the depth and logic associated with the
read and write buffersin the processor’s bus interface unit (BIU).

The system designer must determine how AACK signals the completion of an address
transfer and allows other address transfers to occur. Following are some possibilities:

» The system arbiter may assert AACK the cycle after it sees an asserted TS. This
allows requests to be placed onto the bus at the maximum rate of one every three
cycles. System design must ensurethat these requests do not exceed therate at which
dlave devices can process them. One alternativeisfor the arbiter to limit the number
of outstanding requests, using the bus grant mechanism.

Another possibility would beto collect busy status from individual bus devices, and
use this to pace the arbitration mechanism or to delay the AACK response.

* Individual devicesmight generate AACK, based on their decode of the address. This
approach is somewhat limited in performance, however. If the bus clock is slow, it
might be permissible to latch the address, decode it, and then drive AACK on the
next cycle. Notethat it would be necessary to prevent falsetransitions of AACK. For
asystem with afast clock rate, devices would need to latch the address, take acycle
to decode it, and then issue AACK on the second cycle following TS, or later.

The 60x processors do not provide agraceful way to recover from an operation that receives
no AACK; however, they perform all address checking that they are to perform before
placing addresses on the bus. In general, a processor considers all requests complete when
they are placed on the bus, and there is no recoverable error reporting on the bus.

8.4 SYNC vs.TLBSYNC and System Design

The601 and 604 handle TLBIE, SYNC, and TLBSY NC bus operations differently. Ina601
system, TLBIE operations are followed by a SYNC operation. In a 604 system, TLBIE
operations are followed by TLBSY NC operations, which may affect devices that maintain
TLBs.

If processors perform the TLBIE operation immediately, or if no pending operations are
gueued, they may require no extra steps to ensure compatibility. However, if they maintain
queues of pending operations, and these queues contain translated addresses, they may
need to participate in the synchronization operation, and they may need to implement
different modes for 601 and 604.

8-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

8.5 Pull-Up Resistors

ARTRY, SHD, and DRTRY. When control of these signals is passed from one device to
another, the device that is releasing control always deasserts them before release. The
signals are then left in high-impedance state before being driven by another device. Pull-up
resistors are required on these signals to keep them in the negated state for this interval.
Note that this can be afairly high value resistor because it does not cause a transition and
only retainsavalue.

8.6 Features for Improved Bus Performance
The following 60x processor features help improve bus performance:
» Disabling the DRTRY feature (603 and 604€) decreases read |atency by one cycle.

» Theuseof ABB and DBB are optional on 60x processors. Because of the fractional-
cycle restoration to the high state, this helps achieve shorter cycle time.

» Consecutive read data transfers can be sent without a dead cycle (604). This
increases maximum bandwidth by 25%.

8.7 IEEE 1149.1-Compliant Interface

The 604 boundary-scan interface is a fully-compliant implementation of the IEEE 1149.1
standard. This section describes the 604 IEEE 1149.1(JTAG) interface.

8.7.1 IEEE 1149.1 Interface Description

Table 8-1 describesthe 604’ sfive dedicated JTAG signals. The TDI and TDO scan portsare
used to scan instructions and data into the various scan registers for JTAG operations. The
scan operation is controlled by the test access port (TAP) controller which in turn is
controlled by the TM S input sequence. Scan datais latched at the rising edge of TCK.

Table 8-1. IEEE Interface Signal Descriptions

Signal Name Input/Output Weak Pullup Provided IEEE 1149.1 Function
TDI Input Yes Serial scan input signal
TDO Output No Serial scan output signal
TMS Input Yes TAP controller mode signal
TCK Input Yes Scan clock
TRST Input Yes TAP controller reset

TRST isaJTAG-optional signal used to reset the TAP controller asynchronously; it ensures
that JTAG logic does not interfere with normal chip operation. It can be asserted coincident
with HRESET.

Chapter 8. System Considerations 8-5

8.8 lwarx/stwcx. Considerations

The lwar x and stwcx. instructions are used to synchronize multiple processors. Operation
of these instructions is described in the following sections.

8.8.1 Coherency Participation

This section describes the 604 MESI coherency mechanism. There are three lega WIM
encodings that define coherency-required regions:

¢ Xx11—Noncacheable
e 001—Write-back
e 101—Write-through

This discussion assumes that any semaphore (the address used for an lwarx/stwex.
operation) addressed by different processors, has the same WIM encodings regardless of
which processor accesses it. Additionally, some of the discussion of write-back cacheable
and write-through cacheable are combined as they have similar requirements.

8.8.1.1 Noncacheable Reservations

Regardless of whether they are associated with reservations, load and store operations to
noncacheabl e semaphores must access main memory. Loads for noncacheable semaphores
occur as read atomic bus operations. Typically, noncacheable writes (write-with-flush
operations) can be buffered at various stages. However, these writes must be broadcast to
al processors holding reservations so they can be compared against reservation addresses.

Note that this is not strictly true. If a memory system implemented a directory of
reservations (entry per processor), it would need only direct noncacheable writes to the
appropriate processor when a match is detected. It could directly reset the reservation if
another input signal existed, although there is not one present on the 604.

Because it appears to be required for memory coherence for these writes to be broadcast
(rather than for reservation reasons), it can be assumed that Iwar x/stwex. will follow this
requirement. Noncacheable writes would not be required to be broadcast, if no processor
could have a cached copy of the data. Thisis not specified by the PowerPC architecture.

Snooping by the processor for write-with-flush (normal and atomic) operations to the
reservation address must begin as soon as the lwarx address is acknowledged. This is
because a write to that address can occur between the address and data phase of an lwar x
instruction. If a snooped write operation matches, the reservation is cleared. Snooping for
writes by an L2 cache must begin as soon as the lwarx address is acknowledged on its
system bus. L2 snoop filtering for reservations may be simple or complex (see
Section 8.8.2, “Filtering Options for Reservations,” for alternatives). In either case,
snooping must be able to start as soon as the L2 system bus side sees an acknowledgment,
which may constrain when the processor can assert RSRV.

8-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

The stwcx. instruction cannot be allowed to complete until the operation (write with flush
atomic) gains accessto main memory. Thisrequiresany L2 cacheto delay acknowledgment
of completion of the operation until it is globally performed. Buffering cannot be provided
unlessit is after the completion point with respect to main memory.

8.8.1.2 Cacheable Reservations

If aread to a cacheable semaphore misses, it is fetched with a read atomic bus operation.
This placesthe datain the cache as S or E, depending upon the state of the SHD signal. The
read may hit in the cache with states M, E, or Sfor write-back cacheable space, or E or S
for write-through cacheabl e space. It is recommended that the processor notify the external
world of the address of the reservation when setting a reservation on an address in the
cache. See Section 8.8.2, “Filtering Options for Reservations.”

8.8.1.3 Read Snooping Requirements

A processor with areservation on a cacheable semaphore must ensure that any subsequent
reads (both read and read atomic) by any other processor do not take the address into their
cache in the exclusive state (E). This prevents semaphores that are write-back, cacheable
from being modified by awritethat isinvisibleto the processor holding the reservation (that
is, going from the E state to M state within the other cache). For the MESI protocol used
by the 604, this involves asserting SHD whenever another processor executes a read to the
reservation address. This assertion of SHD for reservation purposes is independent of
whether the data associated with the addressisin the cache.

Thisrequirement also extendsto an L2 cache. If areservation isheld, it must selectively or
freely assert SYS SHD for read operations that may occur to the semaphore address. See
Section 8.8.2, “Filtering Options for Reservations.”

8.8.1.4 Write-Back Reservation-Canceling Snoops

I'n addition to snooping to ensure that reads do not take exclusive ownership of areservation
address, the processor must also snoop for operations that would cancel the reservation.
This snooping is in addition to that required to maintain cache coherency. The following
operations cancel areservation held on a semaphore that is write-back cacheable as they
involve transfer of ownership of the address to another processor:

* RWITM—another processor gains ownership before completing a store

« RWITM atomic—another processor gains ownership before completing an stwcx.

» Kill block—another processor storesinto a shared block or adcbz instruction is
executed

A write-with-kill operation cannot occur since it would imply that another processor has
gained ownership, in which case areservation would have been lost.

Chapter 8. System Considerations 8-7

8.8.1.5 Write-Through Reservation-Canceling Snoops

The following operations cancel a reservation held on a semaphore that is write-through
cacheable as they involve transfer of ownership of the address to some other processor:

* RWITM—another processor gains ownership before completing a store.
« RWITM atomic—another processor gains ownership before completing an stwcx..
» Write and flush—another processor stores into a shared block.

Because an address can be treated as both write-through and write-back by different
processors, both of the previous sets of operations should be snooped for clearing
reservations.

8.8.1.6 Noncanceling Bus Operations

Because the following bus operations do not transfer ownership, they do not cancel the
reservation to another processor regardless of the effect they may have on the state of the
datain the cache:

¢ Clean block—another processor executing dcbst
* Flush block—another processor executing dcbf

These operations can be viewed as transferring ownership back to main memory. They are
often followed by an attempt to gain ownership, but these operations in themselves do not
transfer ownership to another processor or cancel the reservation:

8.8.2 Filtering Options for Reservations

An L2 cache must also participate in bus operations to ensure correct operation of
reservations. There is arange of options for filtering reservations. The following sections
describe two much different approaches and the hardware required for each. This section
assumes that bus operations are passed on to support reservations; clearly an operation may
be passed either for supporting reservations, coherency, or both.

8.8.2.1 Minimal Reservation Support

The simplest approach to reservation filtering relies only on an indication that areservation
exists; for example assertion of the RSRV signal. In this case, when no reservation is
indicated by the processor (RSRV negated) no reservation-influencing operation (or read-
influenced operation, for example, read/read atomic operations that might need to have
SYS SHD asserted) need to be passed on to the processor. When areservation is held by
the processor (RSRV asserted) all reservation-influencing operations are passed on to the
processor. All reservation-influenced operations are responded to with SYS _SHD asserted.

8-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

This approach requires no state in the L2 (or higher level cache) and relies upon simply
gathering the various reservation indications at any level and passing them down as a
unified signal to lower levelsto allow reservation influencing operations to propagate back
up the tree where they can be selected by a branch that is interested in such operations.
While the hardware requirements are ssmple in this approach, performance is affected in
the following ways:

» Theavailable system bus bandwidth is reduced while operations are retried pending
aresponse from the top of the tree.

« Intermediate buses are tied up so other processors cannot have higher level misses
serviced.

» Many read operations are cached as shared instead of exclusive, which generates
unnecessary bus traffic later when stores are performed to those addresses. For a
large multiprocessor system, this could cause significant lossin total bandwidth.

Implementation of this scheme only requires timely assertion of the RSRV signal by a
processor. If RSRV were asserted by the end of the cycle after AACK assertion for
operations where a read-atomic operation is required, or the next three-state after setting
the reservation for a cache hit, then there is adequate time for the L2 controller to prepare
for future system bus operations.

8.8.2.2 Improved Reservation Snooping

A more hardware-intensive approach to filtering isto require L 2 caches to contain registers
and comparators for the address associated with a specific processor’'s reservation. The
controller only passes on reservation-modifying cycles from the system bus side to the
processor bus side and can participate directly in reservation-influenced cycles. Thus, only
those addresses with actual outstanding reservations causes accesses to be retried on the
system bus, intermediate buses being unavailable, and placed in other caches as shared only
when necessary to maintain areservation.

To provide this level of support, a processor must always ensure lower levels can snoop
addresses on which areservation is placed. In the case of either noncacheable or cacheable
miss operations, the address is transmitted during the read-atomic operation that acquires
the data. For cacheable snoop hits, an address-only bus operation should be performed, to
allow the reservation address to be passed cleanly from the processor to any L2 caches.

Thisadditional bus operation typeis proposed since there are problemsin using the current
read-atomic operation in the face of a cache hit. While there are many ways of trying to use
the current datatransferring read-atomic operation, there are problemswith both the L1 and
higher level caches dealing with the case of modified data already resident in the cache. For
these reasons it is cleaner to require a new bus operation type which would transmit a
reservation address down from one level in the hierarchy to the next below.

Additionally, the reservation address needs to be cleared so higher levels of the memory
hierarchy can stop snooping for reservations. This stwcx. address-only operation is an
optimization, and is not required. The cost of not clearing the reservation address is that a

Chapter 8. System Considerations 8-9

small amount of unnecessary snoop operations is sent up the memory hierarchy to the
processor assumed to be holding the reservation and a small amount of system bus
bandwidth is lost to unnecessary retries.

8.8.2.3 Iwarx/stwcx. Address-Only Operation

An lwar x/stwcex. address-only operation should meet several criteria. Most importantly, it
should not cause abnormal system behavior in systems designed around the 601 and only
sampling TT[0-4]. For thisreason they have been mapped to operations such as clean block
and flush block that are innocuous from a system perspective. This yields the TT[0-4]
encodings shown in Table 8-2.

Table 8-2. Transfer Type Settings for lwarx/stwcx. Address-Only Operation

TT[0-4] Cycle
00001 Set lwarx address.
00010 Clear reservation address.

8.8.2.4 Software Implications

Bus traffic should be considered when system software deals with semaphores.
Noncacheable semaphores incur no additional overhead because al Iwarx/stwex.
operations are broadcast anyway. However, if the semaphore was in the cache, cacheable
semaphores may cause additional address-only bus cycles for each lwarx instruction
executed. Likewise, write-back, cacheable semaphores may cause additional address-only
bus cycles for each stwex. operation. This small overhead may dictate some software
considerations if lwarx/stwcx. are used frequently. For example, to reduce bus bandwidth
for heavily-used semaphores, something like the following test and test and set operation
may be needed:

loop: Id mn,S
cmpi rn, VAL
bee loop
Ilwarx m,S
ops as required

stwcex. m,S

bne loop.

The preceding operation may be more useful than the following test and set operation:

loop: Ilwarx m,S
ops as required
stwcx. m,S

bne loop.

8-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

Appendix A
Processor Summary

This section provides an overview of the different functionality of the PowerPC 601, 603
and 604 processors. The 603 supports coherent memory, but does not explicitly support
multiprocessors or L2 caches. The 601 and 604 support both multiprocessing
configurations and L2 caches. Table A-1 summarizes differences in bus and memory

coherency behavior between the 60x processors.

Table A-1. Bus and Memory Coherency Behavior Summary

Functionality

601

603

604

Cache set element (bits)

3

1

2

Linefill strategy

Critical quad word

Critical double word

Critical double word

Cache coherency protocol MESI MEI MESI

Broadcast cache operations Yes No Yes

TLBI on bus Yes No Yes

TLBISYNC SYNC bus operation TLBISYNC input signal | TLBSYNC bus
operation

ICBI on bus N/A No Yes
(extra TT operation)

EIEIO on bus SYNC bus operation No EIEIO bus operation

No-DRTRY mode

No

No-DRTRY mode

No-DRTRY/data
streaming mode

Clocking

Direct, with phase inputs
(PCLK_EN, BCLK_EN)

PLL

PLL

Window of opportunity usage Varies Snoop push only Snoop push only
Snoop push buffering Varies Dedicated Dedicated

Fast push after ARTRY if parked Yes No No

High priority push (input signal) Yes No No

Read with no intent to cache No Yes Yes

Timing of ARTRY/SHD restore A B B

(see notes at end of signal tables)

Broadcast lwarx indicator on cache hit | No No Yes

Appendix A. Processor Summary

Table A-1. Bus and Memory Coherency Behavior Summary (Continued)

Functionality 601 603 604
Slight differences in TC encodings — — —
Data bus disable signal No Yes Yes
TA required during last DRTRY No Yes Yes
Snoop response signals ARTRY, SHD ARTRY ARTRY, SHD
Misaligned within double word that No Yes Yes
crosses word causes two accesses
Time base source RTC input System clock System clock
Time base enable RTC TBEN TBEN
Power management — Several modes Nap mode
Power management signals — QREQ, QACK RUN, HALTED
DBWO only with pending read Nothing Transfer read Transfer read
Data mirroring on CI writes Yes No Unspecified
Early ARTRY data tenure termination [No Yes Yes
Processor ID value in PIO From PID register Zero From PID register
Snoop for misplaced PIO reply Yes No No
32-bit data transfer mode No Yes No
Reduced pinout mode No Yes No
CKSTP_OUT asserted, outputs high No Yes Yes
impedance for CKSTP_IN assertion
Optional machine check for checkstop | No Yes Yes
condition
Cancel reservation on snooped RWITM | Yes No Yes
Snoop nonglobal transactions for No Yes No
reservation cancellation
stwcx. treated as write-through No Yes No

WT state on snoop push

See Section 2.4.7,
“Transfer Code (TCn)—
Output”

See Section 2.4.7,
“Transfer Code (TCn)—
Output”

See Section 2.4.7,
“Transfer Code (TCn)—
Output”

Differencesin programming model (for example, implementation-specific special-purpose
registers) are described in the user’s manual for each device.

A-2

PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

Appendix B
Processor Clocking Overview

This appendix provides a short overview of clocking on the PowerPC 60x processors.
Detailed information is provided in each processor's user's manua and hardware
specifications.

B.1 PowerPC 601 Microprocessor Clocking

The 601 requires an input clock, 2X_PCLK, which operates at twice the processor rate. In
addition, it requiresthe PCLK_EN signal, which defines the phase of the internal processor
clock, and the BCLK_EN signal, which likewise determines the phase of the internal bus
clock, both relative to positive edges of theinput clock. Figure B-1 illustratesthe clocksfor
the 601, with the bus clock enable selected to run at half the processor frequency.

2X_PCLK
PCLK_EN
PCLK (internal)

BCLK_EN

Bus Clock Cycles ‘ ‘

Figure B-1. PowerPC 601 Processor Clocking

See the PowerPC 601 RISC Microprocessor User’s Manual and PowerPC 601 RISC
Microprocessor Hardware Specifications for more information.

Appendix B. Processor Clocking Overview B-1

B.2 PowerPC 603 and PowerPC 604 Microprocessor
Clocking

The 603 and 604 clocks are derived by internal phase-locked loops (PLL) which lock onto
the positive edge of the bus clock input. In agiven system, it is required that the bus clock
operate at a constant frequency, so the PLL can maintain its lock.

603, 604
REG
BUS_CLK
PCLK_STRAP(0) PROC_CLK
PCLK_STRAP(1) PLL BUS_CLK_INT
PCLK_STRAP(2)

Figure B-2. PowerPC 603 and PowerPC 604 Processor Clock Generation

Clock selection inputs on the chips are sampled at reset to determine the clock ratio at
which the part operates. The condition of these inputs also programs the VCO to operate
within its proper range. The 603 and 604 can operate with a variety of bus-and-processor
clock frequency ratios. This functionality is described generaly in the user’'s manuals and
more specifically in the hardware specifications.

B-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

Appendix C
Processor Upgrade Suggestions

This appendix provides upgrade suggestions for the PowerPC 601, PowerPC 603, and
PowerPC 604 processors.

C.1 PowerPC 601 Processor Upgrade to 60x

The recommended approach to disable the 601 when a 60x processor is plugged into an
upgrade socket is as follows:

« Apply HRESET for at least 300 processor clock cycles. This causesall outputsto be
placed in high-impedance state and put Osin all internal latches and registers. The
HRESET signal can be held active longer if desired, but the minimum is 300 cycles.

» Deactivatethe 2X_PCLK or PCLK_EN. This stops the processor and minimize any
dynamic power.

» Hold TST16 low to ensure that all OCDs remain in a high-impedance state.

All other test signals should be connected as specified in the PowerPC 601 RISC
Microprocessor Hardware Specifications.

C.2 PowerPC 603 Processor Upgrade to 604 or 60x

Figure C-1 illustrates the recommended connection that allows a 603 to upgrade to a 604
(and potentially other future 60x chips).

Appendix C. Processor Upgrade Suggestions C-1

Upgrade Socket

CKSTP_IN Bus Signals

275 CKSTP_OUT

UPGRADE_SENSE ‘
603
E CKSTP_IN
System Checkstop
CKSTP_OUT—1—

Figure C-1. PowerPC 603 to PowerPC 604 Processor Upgrade Option

A designer should consider the following:

The upgrade socket has 604 pinout.

Pin 275 is ordinarily an OGND pin. Instead of connecting it to ground, useit as
negative true output UPGRADE_SENSE to indicate presence of upgrade processor.

Put a pull-up resistor on UPGRADE_SENSE.

On BGA module, use any ground as upgrade sense.

If the system does not use CKSTP_IN, use a pull-up resister. A gateis not required.
If the system does not sample CKSTP_OUT, multiplexing is unnecessary.

TBEN, and SY SCLK.

Upgrade socket provides RUN input. The 603 has no equivalent function.
Upgrade socket provides HALTED output. The 603 has no equivalent function.
603 has QREQ and QACK. There are no corresponding signals on upgrade.
No connection necessary on CLKOUT (test only).

C-2

PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

CKSTP_IN isreferred to as CKSTP on earlier versions of the 603. Likewise,
CKSTP_OUT isreferred to as CHECKSTOPR.,

Processors may have different strappings on PLL_CFG. Programmability on the
upgrade socket is recommended.

ANALOG VDD inputs on the two processors should each have dedicated filter
network.

Connection of TRST, TDI, TDO, TMS, and TCK is afunction of system JTAG
testing requirements.

Pull-up L1 TEST_CLK, L2 TEST_CLK, and LSSD_MODE on the 603 and
L1 TEST CLK, L2 TEST_CLK, LSSD_MODE, and ARRAY_WR on the
upgrade socket.

C.3 PowerPC 604 Processor Upgrade to 60x

The following describes the recommended connection to provide for upgrades from 604 to
future processors:

Pin 275 isordinarily an OGND signal. Instead of connecting it to ground, useit as
negative true output UPGRADE_SENSE to indicate presence of upgrade processor.

Put a pullup resistor on UPGRADE_SENSE.
On BGA module, use any ground as upgrade sense

If the system does not use the CKSTP_IN input, use a pull-up resister. A gate is hot
required.

DBWO, DBB, DH, DL, DBDIS, DPn, DPE, TA, DRTRY, TEA, INT, SMI, MCP,
SRESET, HRESET, RSRV, TBEN, and SYSCLK.
No connection necessary for CLKOUT (test only).

Processors may have different strappings on PLL_CFG. Programmability on
upgrade socket is recommended.

ANALOG VDD inputs on the two processors should each have dedicated filter
network.

Connection of TRST, TDI, TDO, TMS, and TCK is afunction of system JTAG
testing requirements.

Pull up L1 TEST CLK, L2 TEST CLK,LSSD_MODE, and ARRAY_WR on
both processors.

Appendix C. Processor Upgrade Suggestions C-3

PowerPC Microprocessor Family: The Bus Interface for 32-Bit microprocessors

Appendix D
L2 Considerations for the PowerPC 604
Processor

This L2 cache reduces the average memory access time for each processor and partitions
bus traffic between the various buses. In addition to keeping most of the individual
processor bus traffic off of the system bus, this arrangement can screen memory coherency
snoop traffic, keeping it off of individual processor buses. This section discusses the use of
an L2 cache controller in a system configuration shown in Figure D-1.

604

60x Bus

L2

System Bus

Figure D-1. L2 Cache Controller Organization

The system bus may use a 60x bus or a bus of some other design. Methods of designing a
system with an L2 cache are as follows:

» No snoop filtering—The simplest approach to an L2 system design isto not filter
snoop activity. Thisis not practical for multiprocessor systems.

» Keeping acopy of L1 tags—Keeping acopy of theL1tagsinthe L2 cachealowsa
system address to be compared against the L1 tags and the L2 tags in paralédl. If
neither directory matches, the processor/L 2 cache complex is not involved in the
current bus transaction and does not need to intervene in the operation. Typically,
intervention implies assertion of either SYSARTRY or SYS-SHD.

* Maintaining L1 state and tags—Keeping a copy of the L1 tags and recording
whether the cacheblock isinthe Sor E stateallowsthe L2 cacheto filter more snoop
traffic from the processor than by saving the L1 state alone.

Appendix D. L2 Considerations for the PowerPC 604 Processor D-1

e SimpleL1inclusion—L1 inclusion requires that an address cannot beinthe L1
cache unlessit isin the L2 cache. Ensure that the contents of the L1 cache are a
subset of the contents of the L2 cache.

» Marked L1 inclusion—In addition to guaranteeing inclusion, marked inclusion
keeps more information about when an L2 cache entry isalso in the L1 cache. The
advantages of marked L1 inclusion over simple L1 inclusion include being able to
do abetter job of snoop filtering and reducing the amount of back invalidations.

For each of these approaches (except the simplest case of performing no snoop filtering),
each description includes the following:

* Requirementsfor saving state information—Information about the kind and amount
of state information that must be maintained.

* Operations required for processor bus operations—Information regarding
operationsthat are necessary to maintain consistency betweentheL 1 and L2 caches.

» System bus operation forwarding to the processor—A description of the system bus
operations must be passed to the processor for each configuration.

Note that the prefix SY S distinguishes system bus signals from 60x signals with the same
name. For example, the system bus counterpart to the 60x signal SHD is SYS-SHD.

D.1 Unfiltered Snooping

The simplest way to design in an L2 cache isto not filter snoop operations. The L2 cache
responds to snoop requests from the system bus after first passing the snoop request through
to the L1 cache. This following design issues should be considered:

 If the processor’s L1 cache has a second tag port dedicated to snooping, the
processor is not stalled for unnecessary snoops. Thisistrue for the 601 and 604 but
not for the 603.

» Thetimethe external address busis busy with unnecessary snoopsis not a
significant portion of the address bandwidth required by the processor. A
multiprocessor system cannot meet this condition practically; however, a
single-processor system can meet the condition if DMA address bandwidth is low.

D.2 Keeping a Copy of L1 Tags

Keeping a copy of the L1 tags in the L2 cache allows a system address to be compared
against the L1 tags and the L2 tags in pardlel. If neither directory matches, the
processor/L 2 cache complex is not involved in the current bus transaction and does not need
tointervene. Typically, intervention implies assertion of either SYS-ARTRY or SYS-SHD.

If only the L2 tag matches, the L2 cache must intervene. If an L1 tag matches, the system
address must be passed to the processor so it can respond. After the processor responds and
completes any necessary snoop response, the system bus operation can be rerun against the
possibly-changed state of the L2 cache.

D-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

D.2.1 Requirements for Saving State Information

This approach requires the implementation of a set of cache tags and comparators to
maintain the addresses in the primary cache. For separate 16-Kbyte instruction and data
caches, each cache directory must have 4 by 128 entries of avalid bit and 20 tag bits, for a
combined total of 21 Kbits and eight 21-bit comparators. The valid bit is assumed to be
implemented as a seven-transistor cell, asit should be cleared at power-up for repeatability
and testing. Because this resource isasmall fraction of the total tag required for a 1-Mbyte
L2 (approximately 256 Kbits), it easily can be placed in the same controller. Thistag array
must be able to read atag and valid bit, to write atag and valid bit, and compare atag and
valid bit against an address (and assumed one valid hit).

A second state requirement is a set of registers with associated comparators per register
(termed the copy-back address registers) to hold addresses displaced from the L 1 tags that
need snooping. One such register is needed for each copy-back buffer on the processor.
These registers need only be able to write and compare. Reading them is unnecessary.

D.2.2 Operations Required for Processor Bus Operations

Apart from the memory required, the L2 cache must determine when a replacement
operation has been performed by the L1 cache. This determination together with the cache
set information allowsthe L2 to update the L 1 directory copy so asto insert the new address
information. Therefore, the following processor bus operations must be decoded and dealt
with as indicated.

» Read, RWITM, read atomic, RWITM atomic—Provided the cache inhibit (CI)
signal is not asserted, the tag is allocated in the L1 directory asindicated by the
CSEn signals and address. Additionally, in the 604 these allocations must indicate
whether they have caused a data and address pair to be transferred into a copy-back
buffer.

Note that the 601 position is that the cache directory model must be increased in
associativity by as many buffers as exist. For example, the 604 would require a
four-way instruction cache model and ‘4+1’ data cache model. It is referred to as
‘4+1’ becauseit isnot truly afive-way model since groups 0-3 are selected by CSE,
group 4 is replaced by the evicted tag.

e Kill block—TCO asserted distinguishes kill block operations that deallocate cache
entries (caused by DCBI cache operations) from kill block operations that allocate
entriesin the L1 cache (caused by DCBZ cache operations) or retain a cache entry
(astoreto ashared entry). Likewise, kill-block operations as aresult of aDCBZ
operation must also indicate (through TC2) whether an entry has been placed in a
copy-back buffer.

Whenever an alocation is generated by the processor that uses a copy-back buffer,
the previous L 1 directory entry must be saved into a copy-back addressregister. The
use of these registersis simple first-inffirst-out. It is unnecessary to copy the valid

bit from the tag directory into the address register, but for repeatability and testing,

Appendix D. L2 Considerations for the PowerPC 604 Processor D-3

it isuseful to have in the copy-back address registers avalid bit that isinitialized to
invalid at power-up and loaded with the valid bit from the tag array when an address
is copied into one of these registers.

The copy-back address registers could strictly have their valid bit reset whenever a
write-with-kill operation matches (which indicates the castout operation is
occurring), but thisis an optimization that is probably unnecessary. The copy-back
address register ismorelikely to be reloaded with another displaced tag fromthe L1
than it is to detect a match on the system bus side.

D.2.3 Forwarding System Bus Operations to the Processor

When a system bus operation (with SYS-GBL asserted) occurs on the system bus, it is
compared against both the copy of the L1 directory and the copy-back address registers. If
there is a match, the system bus operation must be forwarded onto the processor to
determine the final outcome. If no match occurs, the addressed data does not reside in the
processor and so can complete. Note that this does not address the match in L2 case, which
is a separate issue.

However, instead of ssimply loading the valid bit of the L1 directory shadow with a one
when an allocation is detected, it could be loaded with the value of the GBL signal.
Comparisons against system bus operations (which were marked as SY S-GBL) would still
compare the valid bit read from the tag arrays against one. This automatically maximizes
use of the information supplied on the GBL signal.

Note the following discussion of system bus operations is concerned with snoop filtering,
and hence memory-accessing operations. Clearly operationssuch as TLBIE and SYNC that
do not involve memory accesses are not filtered and are passed to the processor unchanged.

D.3 Maintaining L1 State and Tags

An alternative to simply keeping the tags of an L1 cache is to keep state information about
the L1 cache, namely whether the cachelineisinthe S or E state. Keeping thisinformation
allows the L2 cache to filter even more snoop traffic from the processor.

Because some transitions, such as E to M, are invisible outside the processor, maintaining
an identical copy of the L1 cache block state isimpossible. Thus, the L1 directory copy is
restricted to keeping the following range of states, I, S, and EX. The EX state describes both
cases of the processor having the data exclusively (M and E). EX implies simply valid but
not shared and does not distinguish whether the data has been modified with respect to main
memory or to the L2 cache.

D-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

D.3.1 Requirements for Saving State Information

The only state additional to that for the simple copy of tags structure required is a single
state bit. The tag entry for the data cache now looks like 4 by 128 entries of a valid bit,
shared/exclusive bit, and 20 tag bits, which requires only an extra 1/2 Kbits. However, it is
likely that the increase would be 1 Kbits since probably the same macrocell would be used
in the instruction and data halves of the L1 copy.

D.3.2 Operations Required for Processor Bus Operations

L ogic must detect not only whether atag matchesinthe L1 directory copy for asystem bus
operation, but also the type of intervention required and whether it must be passed to the
processor before it can complete. This logic is on the critical path for the snoop access,
because it must be determined whether SY SSARTRY or SY S-SHD needsto be asserted in
response to the system bus operation.

Along with operations monitored for L 1 tag maintenance, the casesin Table D-1 need to be
distinguished.

Table D-1. Operations Required for Processor Bus Operations

Bus Operation Allocate/Deallocate Action

Read, read Allocate as per State loaded as S if SYS-SHD was asserted or EX if SYS-SHD was

atomic discussion above negated. It is assumed that the value of SHD reflects the value of
SYS-SHD sampled, which is practical in a single-processor system. In a
multiprocessor system, it may be desirable to always assert SHD on a
read regardless of the state of SYS-SHD.

RWITM, RWITM | Allocate as per State loaded as EX.

atomic discussion above

Write with kill Allocate State goes to EX (or S, see below).

Write with kill Deallocate State goes to INV. It may not match in L1 tag, and the address may already
be transferred into the copy-back address register.

Kill block Store into S cache | Allocate tag if necessary and state goes to EX.

block or allocate

Kill block Deallocate State goes to I.

ICBI — State goes to I.

Flush block — State goes to I.

Write with kill — Distinguished as with kill block. If TCO is asserted, the address is
deallocated from the cache; if TCO is negated, then it is retained in the
cache (there are no actual allocations associated with a write with kill). As
a further optimization, TC1 can be used to determine the final L1 cache
state for a write with kil (allocate). If TC1 is asserted, the cache state is S
and if it is negated, the cache state is E; the L1 state should be setto S or
EX, respectively.

Appendix D. L2 Considerations for the PowerPC 604 Processor

D-5

D.3.3 Forwarding System Bus Operations to the Processor

If an L1 tag entry was marked as S, for system read operations (a fairly common
occurrence) the L2 controller can directly respond with the SYS-SHD signal without
requiring an accessto the processor’s cache. This not only reduces processor-to-L2 address
bus interference, it aso improves the system bus bandwidth, as the system bus operation
would not need to beretried during interrogation of the processor’s L 1 cache. Whenever the
L1 tag state is E or whenever something other than asimple read operation is performed on
the system bus, the operation passes to the processor to determine the final outcome.

D.4 Simple L1 Inclusion

L1 inclusion requires that when an address is not in the L2 cache, it isaso not in the L1
cache. Although this functionally is the same as saying that an address cannot beinthe L1
cache unlessitisinthe L2 cache, thefirst definition more closely reflectshow L1 inclusion
isimplemented.

Thesimplest approachto L1 inclusioninan L2 cacheisto require that whenever something
isdiscarded fromthe L2 cache, to ensurethat it is also discarded from the L 1 cache through
a back invalidation. In this discussion, the L2 cache is assumed to use four-state MESI
protocol. Simplifications to a three-state protocol are trivial.

D.4.1 Requirements for Saving State Information

SimpleL 1 inclusion requiresthe sametags and state asis needed to implement the L 2. Note
that the state information can be kept across the L2 cache block or per-coherency granule.

D.4.2 Operations Required for Processor Bus Operations

The operations performed and monitored to maintain L1 inclusion are like those required
for maintaining L1 tags (See Section D.3.2, “Operations Required for Processor Bus
Operations.”) However, as is discussed below, there is no need to be concerned with the
indication that a copy-back buffer is being used.

When an allocation is performed by the L 1 cache, the L2 cache must also ensure that atag
is alocated. Before alocation of a tag in the L2, a back invaidation (flush block or
RWITM) for each coherency granule removed must be sent to the processor. These back
invalidations cause either a snoop miss or hit.

For a snoop miss, the L1 cache has replaced that entry (either previously or for the current
alocation) and no further work is needed. Only when snoop push-backs required for all
removed granules are completed can the old tag be removed from the L2 directory and the
fetch for the new tag begin. The replacement of a tag from the L2 may itself require a
copy-back to main memory. Whether the copy-back is buffered is independent from the
maintenance of the inclusion.

D-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Allocation operations for L2 inclusion are decoded like those required for maintaining L1
tag copies. With L1 inclusion however, there is no need to monitor the L1 cache'suse of its
copy-back buffers because the back invalidations force any modified data replaced to be
copied back tothe L2 level (if not all the way to main memory) before the fetch operations
can proceed, thereby reducing the benefit of copy-back buffersin such an environment.

The data cache block allocated in an L2 cache can be larger than that in the L1 cache, in
which case multiple back-invalidation operations to the L1 cache may be required
whenever a tag is deallocated in the L2 cache, depending upon whether subblocking is
implemented. This increases the latency of such operations and must be weighed against
the hit rate advantages of such a configuration.

D.4.3 Forwarding System Bus Operations to the Processor
If L1 inclusion is assured, the following scenarios can be considered:

» The system bus operation does not match in the L2 directory. In this case, there can
be no copy in the L1 cache, so the system bus operation requires no intervention.

e Theaddress matchesin the cacheandisin E or M state. In this case, the system bus
operation must be retried and the operation must be forwarded to the processor
cache because it may have a more up-to-date copy of the data.

» The address matches in the cache and isin the S state. In this case, for the smple
case of aread/read-atomic operation, SY S-SHD needs to be asserted only. Other
operations may requireretrying, evenif the dataisonly state S, asit isreasonableto
wait until the operation completes at the processor before letting it complete on the
system bus.

D.5 Marked L1 Inclusion

In addition to guaranteeing inclusion, marked inclusion keeps more information about
when an L2 cache entry is aso in the L1 cache. Viewed narrowly, it is only necessary to
require that when an entry is marked as not in the L 1 cache, that it in fact not be present. It
is acceptable to assume an entry isin the L1 when it isin fact not. Without maintaining a
structure that mimicsthe L1 directory, it ishard to closely match entries marked asincluded
in the L1 with those that actually are. Marked L1 inclusion offers reduction of back
invalidations and more efficient snoop filtering than simple L1 inclusion.

D.5.1 Requirements for Saving State Information

The included state for atag is typicaly independent of the coherency states supported by
the L2 cache; for example, both a shared and an exclusive data entry can be present or not
in the L1 cache. Inclusion information is most easily kept on a 32-byte coherency granule
(doing otherwise may complicate some mechanisms with no large benefit). Consider the
extra state required for a 1-Mbyte L2 cache; for such a configuration, the additional
memory required is 32 Khits.

Appendix D. L2 Considerations for the PowerPC 604 Processor D-7

D.5.2 Operations Required for Processor Bus Operations

The operations performed to maintain marked L1 inclusion are like those required for
simple L1 inclusion. When an dlocation is performed by the L1 cache, the L2 cache must
also ensure that atag is allocated and that the inclusion bit for the accessed 32-byte granule
is set (that this bit might already be set if a processor discarded this block without being
detected). Before an L2 cache tag can be alocated, it must be inspected. If the tag contains
address granulesfor which theinclusion bit is set, aback invalidation for each granule must
be sent to the processor. If they do not, the tag can be removed directly, assuming that the
datais copied back to main memory as required by the state indicated for the cache blocks.
The old tag can be removed from the L2 directory and the fetch for the new tag can begin
only when the snoop push-backs required for al included granules are completed. Aswith
simpleinclusion, replacing atag from the L2 may require a copy-back to main memory.

The inclusion bit is reset whenever a processor bus operation is performed, which visibly
removes an entry from the L1 cache. These operations are as follows:

« Writewith kill (deallocate)—A cache castout operation or a snoop responsein
which the L1 cache state goesto invalid, so the inclusion bit can be reset.

» Kill block (deallocate)—The result of dcbi instruction, L1 cache state goesto
invalid, so theinclusion bit can be reset.

* ICBI—Theresult of anichi instruction, L1 cache state goesto invalid, so the
inclusion bit can be reset.

Other operations indicate an entry has been removed from the L1 cache; in particular read
operations. However, because it is not easy to determine for which L2 cache block to reset
the inclusion bit, L2 inclusion bits can only approximate the actual L1 contents.

The exact L2 set index to use can be determined only by creating a structure like the L1
directory that can track both the L1 set index and the L1 group entry information. This
structure could be simpler than the L1 directory because it needs no comparator and
because it requires only an L2 index entry rather than atag. However, adding this structure
to marked L1 inclusion requires more resources and is needlessly more complicated than
simply implementing an L2 cache with a copy of the L1 tag and state information.

D.5.3 Forwarding System Bus Operations to the Processor
When a system bus operation is run, the cases of interest are as follows:

* Snoop miss—Because of L1 inclusion, there is no need to pass the operation onto
the processor.

» Snoop hit withinclusion bit reset—Thereis a so no need to pass the operation to the
processor.

e Snoop hitwithinclusion bit set—The operationsareidentical tosimpleL1inclusion
operations.

D-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Appendix E

Coherency Action Tables

The tables in this appendix describe the behavior of the 60x bus when certain operations
are presented to the bus. These tables describe the difference in how the bus operates
depending upon such factors as the WIM bit settings, the current MESI state, the setting of
the transfer type signals (TT[0-4]), and the signals that are presented as the result of the
operation (ARTRY and SHD) being snooped on the bus.

The tables in this appendix aso indicate the difference in how specific 60x processors

respond to certain operations.

Abbreviations used in these tables are described in Table E-1.

Table E-1. Guide to Abbreviations

Abbreviation

Meaning

LRS

lwarx reservation set

RdA

Read atomic

RWITM

Read-with-intent-to-modify

RWITMA

Read-with-intent-to-modify-atomic

SBR

Single-beat read

SBRA

Single-beat read atomic

SBW

Single-beat write

WWF

Write-with-flush

WWFA

Write-with-flush-atomic

WWK

Write-with-kill

For a description of these operations and others listed in these tables, refer to Section 4.7,
“Descriptions of Bus Transactions and Snoop Responses.”

Appendix E. Coherency Action Tables

E-1

E.1 Load Operations

Table E-2 indicates the behavior and response of 60x processors when aload operation is
presented to the system bus.

Table E-2. Coherency Actions—Load Operations

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM3 | TT[0-4] P
000 |!I 60x Read 000 |o01010 (None) Load block into cache
Forward data to perform load
603 RWITM 01110 Mark cache block E
60x Read 000 |o01010 SHD Load block into cache
Forward data to perform load
Mark cache block S
603 RWITM 01110 Load block into cache
Load from cache
Mark cache block E
60x Read 000 |01010 |[ARTRY or Release bus
ARTRY&SHD Retry operation
603 RWITM 01110
MES! | 60x (None) (n/a) | (n/a) (n/a) Load from cache
001 |!I 60x Read 001 |o01010 (None) Load block into cache
Forward data to perform load
Mark cache block E
603 RWITM 01110 Load block into cache
Load from cache
Mark cache block E
60x Read 001 |o01010 SHD Load block into cache
Forward data to perform load
Mark cache block S
603 RWITM 01110 Load block into cache
Load from cache
Mark cache block E
60x Read 001 |01010 |[ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 RWITM 01110
MES? | 60x (None) (n/a) | (n/a) (n/a) Load from cache

E-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-2. Coherency Actions—Load Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
wiM | MESI Operation | WiM3 | TT[0-4] P
x1x |1 60x SBR W1M | 01010 (None) or SHD | Load from main memory
603 RWITM 01110
60x SBR Wi1M | 01010 |ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 RWITM 01110
ES! |e60x SBR W1M | 01010 (None) or SHD | Load from main memory
E 603 RWITM x1M | 01110 (None) or SHD | Load from main memory
601 (None) (n/a) | (n/a) (n/a) Mark cache block |
Cache retry the operation
ES! |60x SBR W1M | 01010 ARTRY or Release the bus
ARTRY&SHD Retry the operation
E 603 RWITM x1M | 01110 ARTRY or Release the bus
ARTRY&SHD Retry the operation
601 (n/a) (n/a) | (n/a) (n/a) (n/a)
M 60x SBR W1M | 01010 (None) or SH Paradox?—cache should be |
Load from main memory
603 RWITM 01110
601 WWK 00110 (n/a) Flush the block
Mark cache block |
Cache retry the operation
60x SBR W1M | 01010 ARTRY or Paradox?—cache should be |
ARTRY&SHD Release the bus
603 RWITM 01110 Retry the operation
601 WWK 00110
100 |1 60x Read 100 |01010 (None) Load block into cache
Load from cache
603 RWITM 01110 Mark the cache block E
60x Read 100 |01010 SHD Load block into cache
Load from cache
Mark cache block S
603 RWITM 01110 Load block into cache
Load from cache
Mark cache block E
60x Read 100 |01010 ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 RWITM 01110
MES! (None) (n/a) | (n/a) (n/a) Load from cache

Appendix E. Coherency Action Tables

E-3

Table E-2. Coherency Actions—Load Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WM | MESI Operation | WiM3 | TT[0-4] P
101 |1 60x Read 101 | 01010 (None) Load block into cache
Load from cache
603 RWITM 01110 Mark cache E
60x Read 101 | 01010 SHD Load block into cache
Load from cache
Mark cache block S
603 RWITM 01110 Load block into cache
Load from cache
Mark cache block E
60x Read 101 | 01010 ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 RWITM 01110
MES! | 60x (None) (n/a) | (n/a) (n/a) Load from cache
Notes:

1Because it does not implement shared state, these entries are not applicable to the 603.

2 coherency paradox to the processor may cause incoherent data to appear in the system. That is, there
is a potential for data integrity errors in the system.

3The WIM bits in this column are active-high representations of the active-low WT, CI, and GBL 60x bus
signals, respectively. Thus, a WIM = 101 value corresponds to 60x signal value of WT, CI, GBL = 010.

E-4

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.2 Store Operations
Table E-3 describes the behavior of the 60x busin response to store operations.

Table E-3. Coherency Actions—Store Operations

Cache Bus
Snoop
Proc. Processor Response
. Response
WIM | MESI Operation | WIM | TT[0-4]
000 |1 60x RWITM 000 |01110 (None) or SHD | Load block into cache
Store to cache
Mark cache M
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
st 60x Kill 000 |01100 (None) or SHD | After kill is successfully presented:
Store to cache
Mark cache block M
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E 60x (None) (nfa) | (n/a) (n/a) Store to cache
Mark cache block M
M 60x (None) (nfa) | (n/a) (n/a) Store to cache
001 |1 60x RWITM 001 | 01110 (None) or SHD | Load block into cache
Mark cache block E
Store to cache
Mark cache block M
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
st 60x Kill 001 | 01100 (None) or SHD | After kill is successfully presented:
Mark cache block E
Store to cache
Mark cache block M
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E 60x (None) (nfa) | (n/a) (n/a) Store to cache
Mark cache block M
M 60x (None) (nfa) | (n/a) (n/a) Store to cache

Appendix E. Coherency Action Tables

E-5

Table E-3. Coherency Actions—Store Operations (Continued)
Cache Bus
Snoop
Proc. Processor Response
. Response
WIM | MESI Operation | WIM | TT[0-4]
x1x |1 60x WWF xIM | 00010 | (None) or SHD | Store to main memory
601 ARTRY or Release the bus
ARTRY&SHD | Retry the operation
ES! |e60x WWF x1M | 00010 (None) or SHD | Paradox?—cache should be |
Store to main memory
601 (None) (nfa) | (n/a) (n/a) Mark cache block |
Cache retry the operation
60x WWF x1M (00010 |ARTRY or Paradox?®—cache should be |
ARTRY&SHD | Release the bus
Retry the operation
601 (n/a) (n/a) | (n/a) (n/a) (n/a)
M 60x WWF x1M | 00010 (None) or SHD | Paradox?—cache should be |
Store to main memory
601 WWK 00110 Flush the block
Mark cache block |
Cache retry the operation
60x WWF x1M | 00010 |ARTRY or Paradox®—cache should be |
ARTRY&SHD | Release the bus
601 WWK 00110 Retry the operation
100 || 60x WWF 100 | 00010 (None) or SHD | Store to main memory
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
st (None) or SHD | Store to cache
Store to main memory
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E (None) or SHD | Store to cache
Store to main memory
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
M 60x WWF 00010 (None) or SHD | Store into cache
Store into main memory
601 WWK 00110 Push the block
Mark cache block E
Cache retry the operation
60x WWF 00010 | ARTRY or Release the bus
ARTRY&SH Retry the operation
601 WWK 00110
E-6 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-3. Coherency Actions—Store Operations (Continued)

Cache Bus
Snoop
Proc. Processor Response
. Response
WIM | MESI Operation | WIM | TT[0-4]
101 |1 60x WWEF 101 | 00010 (None) or SHD | Write to main memory
(Note: no reload on a store miss)
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
st (None) or SHD | Store to cache
Store to main memory
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E (None) or SHD | Store to cache
Store to main memory
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
M 60x WWF 00010 (None) or SHD | Store to cache
Store to main memory
601 WWK 00110 Push block
Mark cache block E
Cache retry the operation
60x WWF 00110 |ARTRY or Release the bus
ARTRY&SH Retry the operation
601 WWK 00110
Notes:

1Because it does not implement shared state, these entries are not applicable to the 603.

2A coherency paradox to the processor may cause incoherent data to appear in the system; that is, there
is a potential for data integrity errors in the system.

Appendix E. Coherency Action Tables

E-7

E.3 LWARX Operations

Table E-4 describes the behavior of the 60x busin responseto LWARX operation generated
by the execution of an Iwar x instruction. Note that the reservation entry in thistable refers
to reservations associated with the lwar x instruction.

Table E-4. Coherency Actions—LWARX Operations

Cache Bus Snoo
Proc. Reservation Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 |1 60x RdA 000 |11010 Set by this op | (None) Load block into cache
Set reservation
603 RWITMA 11110 Load from cache
Mark cache block E
60x RdA 000 |11010 Set by this op | SHD Load block into cache
Set reservation
Load from cache
Mark cache block S
603 RWITMA 11110 Load block into cache
Set reservation
Load from cache
Mark cache block E
60x RdA 000 |11010 (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITMA 11110
MES! [60x LRS 000 | 00001 Set by this op | (None) or Set reservation
SHD Load from cache
601/603 (n/a) (n/a) | (n/a) (n/a)
60x LRS 000 | 00001 (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601/603 (n/a) (n/a) | (n/a) (n/a) (n/a)

E-8 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-4. Coherency Actions—LWARX Operations (Continued)

Cache Bus Snoo
Proc. Reservation Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] p
001 |1 60x RdA 001 |11010 Set by this op | (None) Load block into cache
Mark cache block E
603 RWITMA 11110 Set reservation
Load from cache
60x RdA 001 |11010 Set by this op | SHD Load block into cache
Set reservation
Load from cache
Mark cache block S
603 RWITMA 11110 Load block into cache
Set reservation
Load from cache
Mark cache block E
60x RdA 001 |11010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITMA 11110
MES! [60x LRS 001 | 00001 Set by this op | (None) or Set reservation
SHD Load from cache
601/603 (n/a) (n/a) | (n/a) (n/a)
60x LRS 001 | 00001 (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601/603 (n/a) (n/a) (n/a)

Appendix E. Coherency Action Tables

E-9

Table E-4. Coherency Actions—LWARX Operations (Continued)

Cache Bus Snoo
Proc. Reservation Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] p
xix |1 60x SBRA xiM | 11010 Set by this op | (None) or Set reservation
SHD Load from main memory
603 RWITMA 11110
60x SBRA x1M | 11010 (n/a) ARTRY or Release the bus
ARTRY&SH Retry the operation
603 RWITMA 11110
Es! [e0x RdA x1M | 11010 Set by this op | (None) or Set the reservation
SHD Load from main memory
603 RWITMA 11110
601 (None) (n/a) | (n/a) (n/a) (n/a) Mark cache block |
Cache retry the operation
60x RdA x1IM |11010 | (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITMA 11110
601 (None) (n/a) | (n/a) (n/a) (n/a)
M 60x RdA xiM | 11010 Set by this op | (None) or Paradox?—cache should be |
SHD Set the reservation
603 RWITMA 11110 Load from main memory
601 WWK 00110 (n/a) Flush the block
Mark cache block |
Cache retry the operation
60x RdA x1IM | 11010 (n/a) ARTRY or Paradox?—cache should be |
ARTRY&SHD | Release the bus
603 RWITMA 11110 Retry the operation
601 WWK 00110
100 || 6013 RdA 100 |[11010 Set by this op | (None) Load block into cache
Set reservation
Load from cache
Mark cache block E
SHD Load block into cache
Set reservation
Load from cache
Mark cache block S
(n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
MES |6013 RdA (nfa) | (n/a) Set by this op | (n/a) Set reservation
Load from cache
E-10 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-4. Coherency Actions—LWARX Operations (Continued)

Cache Bus Snoo
Proc. Reservation Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] p
101 (I 6013 RdA 101 |11010 Set by this op | (None) Load block into cache
Set reservation
Load from cache
Mark cache block E
SHD Load block into cache
Set reservation
Load from cache
Mark cache block S
(n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
MES | 6013 (n/a) (n/a) | (n/a) Set by this op | (n/a) Set reservation
Load from cache
Notes:

1Because it does not implement shared state, these entries are not applicable to the 603.

2A coherency paradox to the processor may cause incoherent data to appear in the system. That is, there is a
potential for data integrity errors in the system.

3An LWARX to a page marked write-through causes a DSI exception; therefore, this transaction does not occur

on the bus.

E.4 STWCX Operations

Table E-5 describes the behavior of the 60x busin responseto STWCX operation generated
by the execution of an stwcx. instruction. Note that the reservation entry in thistable refers
to reservations set by the lwarx instruction and cleared either by the stwcx. instruction or
by a snoop operation.

Table E-5. Coherency Actions—STWCX Operations

Cache Bus Snoo
Proc. Res. Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 |1 60x (None) (n/a) | (n/a) None (n/a) Update CR
60x RWITMA [000 |11110 Yes (None) or Load block into cache
(and SHD Release the reservation
reset) Update CR
Store to cache
Mark cache M
603 WWFA 10010 Issue WWF on the bus
Release the reservation
Update CR
60x RWITMA | 000 11110 Yes ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 WWFA 10010

Appendix E.

Coherency Action Tables

E-11

Table E-5. Coherency Actions—STWCX Operations (Continued)

Cache Bus S
Proc. Res. Resnooonpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 |st 60x (None) (n/a) | (n/a) None (n/a) Update CR
Kill 000 |01100 Yes (None) or After kill is successfully presented:
(and SHD Release reservation
reset) Update CR
Store to cache
Mark cache block M
01100 Yes ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E 60x (None) (n/a) | (n/a) None (n/a) Update CR
60x (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and Update CR
reset) Store to cache
Mark cache block M
603 WWFA 000 | 10010 (None) or WWFA on the bus
SHD Wait for write to complete
Release reservation
Update CR
Store to cache
60x (None) (n/a) | (n/a) Yes (n/a) (n/a)

(and
603 WWFA 000 10010 reset) ARTRY or Release the bus

ARTRY&SHD | Retry the operation

M 60x (None) (n/a) | (n/a) None (n/a) Update CR
60x (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and Update CR
reset) Store to cache
603 WWFA 000 | 10010 (None) or WWFA on the bus
SHD Wait for write to complete

Release reservation
Update condition register
Store to cache

60x (None) (n/a) | (n/a) Yes(and | (n/a) (n/a)
reset)

603 WWFA 000 10010 ARTRY or Release the bus
ARTRY&SHD | Retry the operation

E-12 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-5. Coherency Actions—STWCX Operations (Continued)

Cache Bus Snoo
Proc. Res. Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
001 || 60x (None) (n/a) | (n/a) None (n/a) Update CR
60x RWITMA | 001 11110 Yes (None) or Load block into cache
(and SHD Release the reservation
reset) Update the CR
Store to cache
Mark cache M
603 WWFA 10010 Issue WWF on the bus
Release the reservation
Update the CR
60x RWITMA | 001 11110 Yes ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 WWFA 10010
st 60x (None) (n/a) | (n/a) None (n/a) Update CR
Kill 001 | 01100 Yes (None) or Release reservation
(and SHD Update CR
reset) Mark cache block E
Store to cache
Mark cache block M
Yes ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E 60x (None) (n/a) | (n/a) None (n/a) Update CR
60x (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and Update CR
reset) Store to cache
Mark cache block M
603 WWFA 001 10010 (None) or WWFA on bus
SHD Wait for write to complete
Release reservation
Update CR
Store to cache
60x (None) (n/a) | (n/a) Yes (n/a) (n/a)
603 WWFA 001 10010 ARTRY or Release the bus
ARTRY&SHD | Retry the operation

Appendix E. Coherency Action Tables

E-13

Table E-5. Coherency Actions—STWCX Operations (Continued)

Cache Bus Snoo
Proc. Res. Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
001 | M 60x (None) (n/a) | (n/a) None (n/a) Update CR
60x (None) (n/a) | (n/a) Yes (n/a) Release reservation
(and Update CR
reset) Store to cache
603 WWFA 001 10010 (None) or WWFA on bus
SHD Wait for write to complete
Release reservation
Update CR
Store to cache
60x (None) (n/a) | (n/a) Yes (n/a) (n/a)
603 WWFA 001 10010 ARTRY or Release the bus
ARTRY&SHD | Retry the operation
x1x |1 60x (None) (n/a) | (n/a) None (n/a) Update CR
WWFA x1M | 10010 Yes (None) or Release reservation
(and SHD Update CR
reset) Store to main memory
Yes ARTRY or Release the bus
ARTRY&SHD | Retry the operation
ES! |e60x (None) (n/a) | (n/a) None (n/a) Paradox?—cache should be |
Update CR
601 Mark cache block |
Cache retry the operation
60x WWFA x1M | 10010 Yes (None) or Paradox?—cache should be |
(and SHD Release reservation
reset) Update CR
Store to main memory
601 (None) (n/a) | (n/a) Mark cache block |
Cache retry the operation
60x WWFA x1M [10010 Yes ARTRY or Paradox?—cache should be |
ARTRY&SH Release the bus
Retry the operation
601 (n/a) (n/a) | (n/a) (n/a)
E-14 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-5. Coherency Actions—STWCX Operations (Continued)

Cache Bus Snoo
Proc. Res. Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
xlx (M 60x (None) (n/a) | (n/a) None (n/a) Paradox?®—cache should be |
Update CR
601 WWK x1M] 00110 (None) or Flush the block
SHD Mark cache block |
Cache retry the operation
60x (n/a) (n/a) | (n/a) None (n/a) (n/a)
601 WWK x1iM | 00110 ARTRY or Release the bus
ARTRY&SHD | Retry the operation
60x WWFA x1M | 10010 Yes (None) or Paradox?—cache should be |
(and SHD Release reservation
reset) Update CR
Store to main memory
601 WWK 00110 Flush the block
Mark cache block |
Cache retry the operation
60x WWFA x1iM | 10010 Yes ARTRY or Paradox?®—cache should be |
ARTRY&SHD | Release the bus
Retry the operation
601 WWK 00110
100 |1 601% | (None) (n/a) | (n/a) None (n/a) Update CR
RWITMA [100 |11110 Yes (None) or Load block of data into cache
(and SHD Release reservation
reset) Update the CR
Store to cache
Mark cache M
(n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation
S 6012 | (None) (n/a) | (n/a) (None) | (n/a) Update CR
Kill 100 | 01100 Yes (None) or After Kill is successfully presented:
(and SHD Release reservation
reset) Update CR
Store to cache
Mark cache block M
60x3 | (n/a) (n/a) | (n/a) Yes (n/a) See footnote 3
601 Kill 100 | 01100 (n/a) ARTRY or Release the bus
ARTRY&SHD | Retry the operation

Appendix E. Coherency Action Tables

E-15

Table E-5. Coherency Actions—STWCX Operations (Continued)

Cache Bus Snoo
Proc. Res. Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
100 |E 601° [(None) (n/a) | (n/a) None ARTRY or Update CR
ARTRY&SHD
Yes (n/a) Release reservation
(and Update CR
reset) Store to cache
Mark cache block M
M 6013 | (None) (n/a) | (n/a) None (n/a) Update CR
Yes (n/a) Release reservation
(and Update CR
reset) Store to cache
101 |1 6012 | (None) (n/a) | (n/a) None (n/a) Update CR
RWITMA | 101 11110 Yes (None) or Load block of data into cache
(and SHD Release reservation
reset) Update CR
Store to cache
Mark cache M
(n/a) ARTRY or Release the bus
ARTRY&SH Retry the operation
S 6013 | (None) (n/a) | (n/a) None (n/a) Update CR
Kill 101 | 01100 Yes (None) or After kill is successfully presented
(and SHD Release reservation
reset) Update CR
Store to cache
Mark cache block M
(nfa) |60x3 | (n/a) (n/a) | (n/a) Yes(and | (n/a) See footnotes 2 and 3
not
reset)
S 601 Kill 101 | 01100 (n/a) ARTRY or Release the bus
ARTRY&SH Retry the operation
E-16 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-5. Coherency Actions—STWCX Operations (Continued)

Cache Bus Snoo
Proc. Res. Res onpse Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
101 |E 601 (None) (n/a) | (n/a) None (n/a) Update CR
Yes Release reservation
(and Update CR
reset) Store to cache
Mark cache block M
M 601 (None) (n/a) | (n/a) None (n/a) Update CR
Yes Release reservation
(and Update CR
reset) Store to cache
Notes:

1Because it does not implement shared state, these entries are not applicable to the 603.

2An stwex. to a page marked write-though causes a DSI exception. Therefore this bus transaction cannot
occur. The state of reservation is not changed due to an stwcx. to a page marked write-though.

SFor all but 601s, an LWARX to a page marked write-through causes a DSI exception; therefore this
transaction does not occur on the bus.

E.5 DCBT Operations

Table E-6 shows the coherency actions when a DCBT operation is generated by the
execution of adcbt instruction.

Table E-6. Coherency Actions—DCBT Operations

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 [60x Read 000 |01010 (None) Load block into cache

Mark the cache E

603 RWITM 01110

60x Read 000 |01010 SHD Load block into cache
Mark the cache S

603 RWITM 01110 Load block into cache
Mark the cache E

60x Read 000 |01010 ARTRY or Release the bus

ARTRY&SHD | Retry the operation
603 RWITM 01110
MES! | 60x (None) (n/a) | (n/a) (n/a) No-op

Appendix E. Coherency Action Tables E-17

Table E-6. Coherency Actions—DCBT Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
001 [60x Read 001 |01010 (None) Load block into cache
Mark the cache E
603 RWITM 01110
60x Read 001 |01010 SHD Load block into cache
Mark the cache S
603 RWITM 01110 Load block into cache
Mark the cache E
60x Read 001 |01010 ARTRY or Release the bus
ARTRY&SH Retry the operation
603 RWITM 01110
MES?! (None) (n/a) | (n/a) (n/a) No-op
Xx1x | 60x (None) xIM | (n/a) (n/a) No-op
601 SBR
ES? 60x (None) (nfa) | (n/a) (n/a) No-op
601 Mark cache block |
Cache retry the operation
M 60x (None) (n/a) | (n/a) (n/a) No-op
601 WWK x1M | 00110 (None) or Flush the block
SHD Mark cache block |
Cache retry the operation
M 60x (n/a) (n/a) | (n/a) (n/a) (n/a)
601 WWK x1M | 00110 ARTRY or Release the bus
ARTRY&SHD | Retry the operation
100 [60x Read 100 |o01010 (None) Load block into cache
Mark the cache E
603 RWITM 01110
60x Read 100 |o01010 HD Load block into cache
Mark the cache S
603 RWITM 01110 Load block into cache
Mark the cache E
60x Read 100 |o01010 ARTRY or Release the bus
ARTRY&SH Retry the operation
603 RWITM 01110
MES! | 60x (None) (n/a) | (n/a) (n/a) No-op

E-18 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-6. Coherency Actions—DCBT Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
101 [60x Read 101 | 01010 (None) Load block into cache
Mark the cache E
603 RWITM 01110
60x Read 101 | 01010 SHD Load block into cache
Mark the cache S
603 RWITM 01110 Load block into cache
Mark the cache E
60x Read 101 | 01010 ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITM 01110
MES?! (None) (n/a) | (n/a) (n/a) No-op

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

Appendix E. Coherency Action Tables E-19

E.6 DCBTST Operations

Table E-7 describes the behavior of the 60x bus interface in response to the execution of a
dcbtst instruction.

Table E-7. Coherency Actions—DCBTST Operations

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 | 60x Read 000 |01010 | (None) Load the block of data into cache
Mark the cache E
603 RWITM 01110
60x Read 000 |01010 |SH Load the block of data into cache
Mark the cache S
603 RWITM 01110 Load the block of data into cache
Mark the cache E
60x Read 000 |01010 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITM 01110
st 60x (None) (nfa) | (n/a) (n/a) No-op
ME 000
001 | 60x Read 001 |01010 | (None) Load the block of data into cache
Mark the cache E
603 RWITM 01110
60x Read 001 |01010 |SHD Load the block of data into cache
Mark the cache S
603 RWITM 01110 Load the block of data into cache
Mark the cache E
60x Read 001 01010 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITM 01110
MES?! | 60x (None) (n/a) | (n/a) (n/a) No-op
x1x I 60x (None) x1IM | (n/a) (n/a) No-op
601 SBR
Es? 60x (None) (nfa) | (n/a) (n/a) No-op
601 Mark cache block |
Cache retry the operation
M 60x (None) (nfa) | (n/a) (n/a) No-op
601 WWK x1M | 00110 | (None)or Flush the block
SHD Mark cache block |
Cache retry the operation
60x (None) (nfa) | (n/a) (n/a) (n/a)
601 WWK x1M | 00110 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation

E-20 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-7. Coherency Actions—DCBTST Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
100 | 60x Read 100 |[01010 [(None) Load the block of data into cache
Mark cache E
603 RWITM 01110
60x Read 100 |01010 |[SH Load the block of data into cache
Mark cache as block S
603 RWITM 01110 (Ignore the shared response)
Load the block of data into cache
Mark cache E
60x Read 100 |[01010 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITM 01110
MES! | 60x (None) (nfa) | (n/a) (n/a) No-op
101 | 60x Read 101 [01010 [(None) Load the block of data into cache
Mark cache block E
603 RWITM 01110
60x Read 101 01010 |SH Load the block of data into cache
Mark cache block S
603 RWITM 01110 Load the block of data into cache
Mark cache block E
60x Read 101 01010 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITM 01110
MES! | 60x (None) (n/a) | (n/a) (n/a) No-op

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E.7 DCBZ Operations

Table E-8 describes the behavior of the 60x bus interface in response to the execution of a
dcbz instruction.

Appendix A. Coherency Action Tables E-21

Table E-8. Coherency Actions—DCBZ Operations

Cache

Bus

Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 | 60x Kill 000 01100 | (None) or Establish the block in data cache without
SHD fetching the block from main memory
Set all bytes to zero
Mark cache block M
603 RWITM RWITM, then write zeros instead of data
Mark cache block M
60x Kill 000 01100 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITM
st 60x Kill 000 01100 | (None) or Clear all bytes in the block
SHD Mark cache block M
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E (None) 000 (n/a) (n/a) Clear all bytes in the block
Mark cache block M
M (None) (nfa) | (n/a) (n/a) Write zeros to all bytes in the cache block
001 | 60x Kill 001 01100 | (None) or Establish the block in data cache without
SHD fetching the block from main memory
Set all bytes to zero
Mark cache block M
603 RWITM RWITM, then write zeros instead of data
Mark cache block M
60x Kill 001 01100 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 RWITM
st 60x Kill 001 01100 | (None) or Mark cache block E
SHD Set all bytes of the block to zero
Mark the cache block M
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E (None) (nfa) | (n/a) (n/a) Write zeros to all bytes in the cache block
Mark cache block M
M (None) (nfa) | (n/a) (n/a) Write zeros to all bytes in the cache block
All MESY | (n/a) (n/a) (n/a) | (n/a) (n/a) A dcbz to a cache-inhibited or write-
others through page causes an alignment
exception; this bus transaction cannot
occur.

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E-22

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.8 DCBST Operations

Table E-9 describes the behavior of the 60x bus interface in response to the execution of a
dcbst instruction.

Table E-9. Coherency Actions—DCBST Operations

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 | 60x Clean 000 | 00000 (None) or SHD | No-op
601 100
601 100 | (n/a) (n/a)
60x Clean 000 | 00000 |ARTRY or Release the bus
ARTRY&SHD
601 100
603 (None) (nfa) | (n/a) (n/a) (n/a)
st 60x Clean 000 | 00000 (None) or SHD | No-op
601 100
60x 000 | 00000 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 100
E 60x Clean 000 | 00000 (None) or SHD | No-op
601 100
603 (None) (n/a) | (n/a) (n/a)
60x Clean 000 | 00000 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 100
603 (None) (n/a) | (n/a) (n/a) (n/a)
M 60x WWK 100 | 00110 (None) or SHD | Write the block to main memory
Mark cache block E
603 000
60x WWK 100 |00110 |[ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 000

Appendix A. Coherency Action Tables

E-23

Table E-9. Coherency Actions—DCBST Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WM | MESI Operation | WM | TT[0-4] P
001 | 60x Clean 001 | 00000 (None) or SHD | No-op
601 101
603 (None) (n/a) | (n/a) (n/a)
60x Clean 001 | 00000 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 101
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Clean 001 | 00000 (None) or SHD | No-op
601 101
60x Clean 001 | 00000 |ARTRY or Release the bus
ARTRY&SH Retry the operation
601 101
E 60x Clean 001 | 00000 (None) or SHD | No-op
601 101
603 (None) (n/a) | (n/a) (n/a)
60x Clean 001 | 00000 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 101
603 (None) (n/a) | (n/a) (n/a)
M 60x WWK 001 |00110 (None) or SHD | Write all bytes in the cache block to
main memory
601 101 Mark cache block E
603 001
60x 001 ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 101
603 001
X1x | 60x Clean W1M | 00000 (None) or SHD | No-op
601 11M
603 (None) (nfa) | (n/a) (n/a)
60x Clean W1M (00000 [|ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 11M
603 (None) (n/a) | (n/a) (n/a)
E-24 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-9. Coherency Actions—DCBST Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
x1x ES! | 60x Clean W1M | 00000 [(None) or SHD | No-op
603 (None) (nfa) | (n/a) (n/a)
M 60x WWK 100 | 00110 (None) or SHD | Write all bytes in the cache block to
main memory
Mark cache block E
601 11M Flush the block
Mark cache block |
60x 100 ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 11M
100 | 60x Clean 100 | 00000 (None) or SHD | No-op
603 (None) (nfa) | (n/a) (n/a)
60x Clean 100 |00000 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (n/a) | (n/a) (n/a)
st 60x Clean 100 | 00000 (None) or SHD | No-op
60x 100 |00000 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E 60x Clean 100 | 00000 (None) or SHD | No-op
603 (None) (n/a) | (n/a) (n/a)
60x Clean 100 | 00000 [ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (nfa) | (n/a) (n/a) (n/a)
M 60x WWK 100 | 00110 (None) or SHD | Push the block
Mark cache block E
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
101 ESY 60x Clean 101 | 00000 (None) or SHD | No-op
603 (None) (n/a) | (n/a) (n/a)
60x Clean 101 | 00000 |[ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)

Appendix A. Coherency Action Tables

E-25

Table E-9. Coherency Actions—DCBST Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
101 M 60x WWK 100 | 00110 (None) or SHD | Push the block
Mark cache block E
601 101
60x 100 | 00110 |[ARTRY or Release the bus
ARTRY&SH Retry the operation
601 101

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E-26 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.9 DCBF Operations

Table E-10 describes the behavior of the 60x bus interface in response to the execution of
adcbf instruction.

Table E-10. Coherency Actions—DCBF Operations

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
000 |I 60x Flush 000 |00100 | (None)or No-op
SHD
601 100
603 (None) (n/a) | (n/a) (n/a)
60x Flush 000 |00100 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 100
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Flush 000 |00100 | (None)or Mark cache block |
SHD
601 100
603 (None) (n/a) | (n/a) (n/a)
60x Flush 000 |00100 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 100
603 (None) (n/a) | (n/a) (n/a)
E 60x Flush 000 |00100 | (None)or Mark cache block |
SHD
601 100
603 (None) (n/a) | (n/a) (n/a)
60x Flush 000 |00100 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 100
603 (None) (n/a) | (n/a) (n/a) (n/a)
M 60x WWK 100 |[00110 | (None)or Write the block of data back to main
SHD memory
603 000 Mark the cache block |
60x WWK 100 |[00110 [ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 000

Appendix A. Coherency Action Tables E-27

Table E-10. Coherency Actions—DCBF Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
wiM | MESI Operation | WIM | TT[0-4] P
001 |I 60x Flush 001 | 00100 |(None)or No-op
SHD
601 101
603 (None) (n/a) | (n/a) (n/a)
60x Flush 001 |00100 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 101
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Flush 001 | 00100 | (None)or Mark cache block |
SHD
601 101
60x 001 ARTRY or Release the bus
ARTRY&SH Retry the operation
601 101
E 60x Flush 001 | 00100 | (None)or Mark cache block |
SHD
601 101
603 (None) (n/a) | (n/a) (n/a)
60x Flush 001 |00100 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 101
603 (None) (n/a) | (n/a) (n/a) (n/a)
M 60x WWK 100 |[00110 | (None)or Write all bytes in the cache block to
SHD main memory
601 101 Mark cache block |
603 001
60x WWK 100 |00110 |[ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 101
603 001
x1x |1 60x Flush W1M | 00100 | (None) or No-op
SHD
601 11M
603 (None) (n/a) | (n/a) (n/a)
60x Flush WI1M (00100 |ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 11M
603 (None) (n/a) | (n/a) (n/a)

E-28 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-10.

Coherency Actions—DCBF Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
x1x [ES! |60x Flush W1M | 00100 | (None) or Mark cache block |
SHD
601 (None) (n/a) | (n/a) (n/a) Cache retry the operation
603 Mark cache block |
60x Flush W1M | 00100 |ARTRY or Retry the operation
ARTRY&SH
601 (None) (n/a) | (n/a) (n/a) (n/a)
603
M 60x WWK 100 |[00110 | (None)or Flush the block
SHD Mark cache block |
601 11M
60x WWK 100 |[00110 [ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 11M
100 |1 60x Flush 100 |00100 [(None)or No-op
SHD
603 (None) (n/a) | (n/a) (n/a)
60x Flush 100 |[00100 [ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Flush 100 |[00100 [(None)or Mark cache block |
SHD
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E 60x Flush 100 |[00100 [(None)or Mark cache block |
SHD
603 (None) (n/a) | (n/a) (n/a)
60x Flush 100 |00100 |[ARTRY or Release the bus
ARTRY&SH Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
M 60x WWK 100 |[00110 [(None)or Push the block
SHD Mark cache block |
ARTRY or Release the bus
ARTRY&SHD | Retry the operation

Appendix A. Coherency Action Tables

E-29

Table E-10. Coherency Actions—DCBF Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
101 |1 60x Flush 101 [00100 [(None)or No-op
SHD
603 (None) (n/a) | (n/a) (n/a)
60x Flush 101 | 00100 |[ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Flush 101 | 00100 | (None) or Mark cache block |
SHD
ARTRY or Release the bus
ARTRY&SHD | Retry the operation
E 60x Flush 101 | 00100 | (None) or Mark cache block |
SHD
603 (None) (n/a) | (n/a) (n/a)
60x Flush 101 [00100 [ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
M 60x WWK 100 |[00110 | (None)or Flush the block
SHD Mark cache block |
601 101
60x WWK 100 |[00110 [ARTRY or Release the bus
ARTRY&SHD | Retry the operation
601 101

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E-30 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.10 DCBI Operations

Table E-11 describes the behavior of the 60x bus interface in response to the execution of
adcbi instruction.

Table E-11. Coherency Action—DCBI Operations

Cache Bus
Snoop Processor Response
Processor Response
WIM | MESI Operation | WIM | TT[0-4]
000 | 60x Kill 000 01100 | (None) or SHD [No-op
603 (None) (n/a) | (n/a) (n/a)
60x Kill 000 01100 | ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Kill 000 |[01100 |(None)or SHD | Mark the cache block |
ARTRY or Release the bus
ARTRY&SHD Retry the operation
ME 60x Kill 000 |[01100 | (None)or SHD | Mark cache block |
603 (None) (n/a) | (n/a) (n/a)
60x Kill 000 |01100 |ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
001 | 60x Kill 001 |[01100 |(None)or SHD [No-op
603 (None) (n/a) | (n/a) (n/a)
60x Kill 001 |01100 |ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Kill 001 (01100 | (None)or SHD | Mark cache block |
ARTRY or Release the bus
ARTRY&SHD Retry the operation
ME 60x Kill 001 |[01100 |(None)or SHD | Mark cache block I
603 (None) (n/a) | (n/a) (n/a)
60x Kill 001 |[01100 |ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)

Appendix A. Coherency Action Tables E-31

Table E-11. Coherency Action—DCBI Operations (Continued)

Cache Bus
Snoop Processor Response
Processor Response
WIM | MESI Operation | WIM | TT[0-4]
X1x | 60x Kill W1M | 01100 | (None)or SHD | No-op
603 (None) (n/a) | (n/a) (n/a)
60x Kill W1M (01100 | ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
S'E 60x Kill W1M [01100 | (None)or SHD | Mark cache block |
603 (None) (n/a) | (n/a) (n/a)
601 Mark cache block |
Cache retry the operation
60x Kill W1M (01100 | ARTRY or Release the bus
ARTRY&SHD Retry the operation
601/603 (None) (n/a) | (n/a) (n/a) (n/a)
M 60x Kill WI1M [01100 | (None)or SHD | Mark cache block |
603 (None) (n/a) | (n/a) (n/a)
601 WWK W1M | 01100 | (None)or SHD | Flush the block
Mark cache block |
Cache retry the operation
60x Kill WI1M | 01100 | ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
601 WWK W1M (01100 | ARTRY or Release the bus
ARTRY&SHD Retry the operation
100 | 60x Kill 100 [01100 [(None)or SHD | No-op
603 (None) (n/a) | (n/a) (n/a)
60x Kill 100 |01100 |ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Kill 100 01100 [(None)or SHD | Mark cache block |
ARTRY or Release the bus
ARTRY&SHD Retry the operation
ME 60x Kill 100 [01100 [(None)or SHD | Mark cache block I
603 (None) (n/a) | (n/a) (n/a)
60x Kill 100 |01100 |ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)

E-32 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-11. Coherency Action—DCBI Operations (Continued)

Cache Bus
Snoop Processor Response
Processor Response
WIM | MESI Operation | WIM | TT[0-4]
101 | 60x Kill 101 | 01100 | (None)or SHD | No-op
603 (None) (n/a) | (n/a) (n/a)
60x Kill 101 | 01100 |[ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
st 60x Kill 101 | 01100 [(None)or SHD | Mark cache block I
603 (None) (n/a) | (n/a) (n/a) (n/a)
60x Kill 101 | 01100 |[ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)
ME 60x Kill 101 | 01100 [(None)or SHD | Mark cache block |
603 (None) (n/a) | (n/a) (n/a)
60x Kill 101 | 01100 |[ARTRY or Release the bus
ARTRY&SHD Retry the operation
603 (None) (n/a) | (n/a) (n/a) (n/a)

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

Appendix A. Coherency Action Tables

E-33

E.11 ICBI Operations

Table E-12 describes the behavior of the 60x bus interface in response to the execution of
anicbi instruction.

Table E-12. Coherency Actions—ICBI Operations

Cache Bus Snoop
Processor ‘ Response Processor Response
WIM | MESI Operation | WIM | TT[0-4]
000 | 60x ICBI 000 |[01101 | (None) or SHD | No-op
603 (None) (nfa) | (n/a) (n/a)
601 (n/a)
60x ICBI 000 |01101 |ARTRYor |Release the bus
ARTRY&SHD | Retry the operation
603 (None) (nfa) | (n/a) (n/a) (n/a)
601 (n/a)
VAL 60x ICBI 000 |[01101 | (None)or SHD | Mark I-cache block |
603 (None) (nfa) | (n/a) (n/a)
601 (n/a) No-op (unified cache)
60x ICBI 000 |01101 [ARTRYor |Release the bus
ARTRY&SHD | Retry the operation
603 (None) (nfa) | (n/a) (n/a)
601 (n/a) (n/a)
001 60x ICBI 001 |01101 | (None) or SHD | No-op
603 (None) (nfa) | (n/a) (n/a)
601 (n/a)
60x ICBI 001 |01101 |ARTRYor |Release the bus
ARTRY&SHD | Retry the operation
603 (None) (nfa) | (n/a) (n/a) (n/a)
601 (n/a)
VAL 60x ICBI 001 |01101 | (None)or SHD | Mark I-cache block |
603 (None) (nfa) | (n/a) (n/a)
601 (n/a) No-op (unified cache)
60x ICBI 001 |01101 |ARTRYor |Release the bus
ARTRY&SHD | Retry the operation
603 (None) (nfa) | (n/a) (n/a)
601 (n/a) (n/a)
E-34 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Table E-12.

Coherency Actions—ICBI Operations (Continued)

Cache Bus Snoop
Processor _ Response Processor Response
WIM | MESI Operation | WIM | TT[0-4]
x1x I 60x ICBI xIM | 01101 | (None) or SHD | No-op

603 (None) (nfa) | (n/a) (n/a)

601 (n/a) No-op (unified cache)

60x ICBI xIM | 01101 |ARTRYor |Release the bus
ARTRY&SHD | Retry the operation

603 (None) (nfa) | (n/a) (n/a) (n/a)

601 (n/a)

VAL 60x ICBI x1IM |01101 | (None) or SHD | Mark I-cache block |

603 (None) (nfa) | (n/a) (n/a)

601 (n/a) No-op (unified cache)

60x ICBI x1M (01101 [ARTRYor [Release the bus
ARTRY&SHD | Retry the operation

603 (None) (nfa) | (n/a) (n/a) (n/a)

601 (n/a)

100 60x ICBI 100 |[01101 [(None)or SHD | No-op

603 (None) (nfa) | (n/a) (n/a)

601 (n/a)

60x ICBI 100 (01101 |ARTRYor [Release the bus
ARTRY&SHD | Retry the operation

603 (None) (nfa) | (n/a) (n/a) (n/a)

601 (n/a)

VAL 60x ICBI 100 [01101 | (None) or SHD | Mark I-cache block |

603 (None) (nfa) | (n/a) (n/a)

601 (n/a) No-op (unified cache)

60x ICBI 100 | 01101 |ARTRYor |Release the bus
ARTRY&SHD | Retry the operation

603 (None) (nfa) | (n/a) (n/a)

601 (n/a) (n/a)

Appendix A. Coherency Action Tables

E-35

Table E-12.

Coherency Actions—ICBI Operations (Continued)

Cache Bus
Snoop
Processor Response Processor Response
WIM | MESI Operation | WIM | TT[0-4] P
101 | 60x ICBI 101 01101 | (None) or SHD | No-op
603 (None) (nfa) | (n/a) (n/a)
601 (n/a)
60x ICBI 101 | 01101 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (nfa) | (n/a) (n/a) (n/a)
601 (n/a)
VAL 60x ICBI 101 [01101 | (None) or SHD | Mark I-cache block |
603 (None) (nfa) | (n/a) (n/a)
601 (n/a) No-op (unified cache)
60x ICBI 101 | 01101 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation
603 (None) (nfa) | (n/a) (n/a)
601 (n/a) (n/a)

E.12 SYNC Operations

Table E-13 describes the behavior of the 60x bus interface in response to the execution of
async instruction. This table does not fully describe the operation of the sync instruction.

Table E-13. Coherency Actions—SYNC Operations

ARTRY or
ARTRY&SHD

Release the bus

Cache Bus
Snoop
Response Processor Response
WIM | MESI | WIM | TT[0-4] P
(n/a) (n/a) xx1 01000 (None) or SH The sync instruction has completed

Retry the operation

E-36

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.13 EIEIO Operations

Table E-14 describes the behavior of the 60x bus interface in response to the execution of
an eieio instruction.This table does not fully describe the operation of the eieio instruction.

Table E-14. Coherency Actions—EIEIO Operations

Cache Bus
Snoop
Response Processor Response
WIM | MESI WIM TT[0-4] P
(n/a) (n/a) xx1 10000 (None) or SHD | The eieio instruction completed.
ARTRY or Release the bus
ARTRY&SHD Retry the operation

E.14 TLBIE Operations

Table E-15 describes the behavior of the 60x bus interface in response to the execution of
atlbieinstruction. This table does not fully describe the operation of the tibieinstruction.

Table E-15. Coherency Actions—TLBIE Operations

Cache Bus
Snoop

Response

Processor Response
WIM MESI | WIM | TT[0-4]

(n/a) (n/a) xx1 11000 (None) or SH Hold off any new memory instructions
Wait for completion of any outstanding memory instructions
Invalidate the requested TLB entry

ARTRY or Release the bus
ARTRY&SHD Retry the operation

E.15 TLBSYNC Operations

Table E-16 describes the behavior of the 60x bus interface in response to the execution of
a tlbsync instruction. This table does not fully describe the operation of the tlbsync
instruction.

Table E-16. Coherency Actions—TLBSYNC Operations

Cache Bus
Snoop

Processor Response
Response

WIM | MESI | WIM | MESI

(n/a) (n/a) xx1 01001 | (None) or SHD | The tlbsync instruction has completed

01001 | ARTRY or Release the bus
ARTRY&SHD | Retry the operation

Appendix A. Coherency Action Tables E-37

E.16 Snoop-Kill Operations

Table E-17 describes the behavior of the 60x bus interface in response to a snoop-kill bus

operation.
Table E-17. Coherency Actions—Snoop-Kill Operations
Cache Bus
. Snoop
Processor Reservation Response Processor Response
WIM | MESI WIM | TT[0-4] P
(n/a) | 60x xx1 01100 [None (None) No-op
60x Yes (and reset) Release reservation
603 No-op
S'EM |60x None Mark cache block |
603 No-op
60x Yes (and reset) Mark cache block |
Release reservation
603 No-op
M 604 Yes (and reset) |ARTRY&SH Try to write cache block back to
main memory
If successful, mark cache block |

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E-38

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.17 Snoop-Read Operations
Table E-18 describes the behavior of the 60x bus interface in response to a snoop-read bus

operation.
Table E-18. Coherency Actions—Snoop-Read Operations
Cache Bus Snoo
Proc. Reservation Res onpse Processor Response
WIM | MESI WIM [TT[0-4] P
(n/a) | 1 60x x11 |01010 | None (None) No-op
60x Yes SHD
603 (None)
st 60x (n/a) SHD No-op
E 60x SHD Mark cache block S
603 (None) Mark cache block |
M 60x x01 ARTRY or Try to write cache block back to main memory
ARTRY&SHD | If successful, mark cache block S
603 Try to write cache block back to main memory
If successful, mark cache block |
60x x11 Try to write cache block back to main memory
If successful, mark cache block S
603 Try to write cache block back to main memory
If successful, mark cache block E

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

Appendix A. Coherency Action Tables

E-39

E.18 Snoop-Read-Atomic Operations

Table E-19 describes the behavior of the 60x bus interface in response to a snoop-read
atomic bus operation.

Table E-19. Coherency Actions—Snoop-Read Atomic Operations

Cache Bus Snoo
Proc. Res. Res onpse Processor Response
WIM | MESI WIM | TT[0-4] P
(n/a) | 60x xx1 11010 | None (None) No-op
60x Yes SHD
603 None
st 60x None SHD No-op
E 60x (n/a) SHD Mark cache block S
603 None Mark cache block |
M 60x x01 ARTRY&SHD | Try to write cache block back to main memory
If successful, mark cache block S
603 Try to write cache block back to main memory
If successful, mark cache block |
60x x11 Try to write cache block back to main memory
If successful, mark cache block S
603 Try to write cache block back to main memory
If successful, mark cache block E

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E-40 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.19 Snoop-RWITM Operations
Table E-20 describes the behavior of the 60x bus interface in response to a snoop-RWITM

bus operation.
Table E-20. Coherency Actions—Snoop-RWITM Operations
Cache Bus
. Snoop
Reservation Response Processor Response
WIM [MESI | WIM | TT[0-4] P
(nfa) |1 xx1 01110 | None (None) No-op
Yes (and reset) Release reservation
s'E None Mark cache block |
Yes (and reset) Mark cache block |
Release reservation
M None ARTRY&SH Try to write cache block back to main memory
If successful, mark cache block |
Yes (and reset) Try to write cache block back to main memory
If successful:
Mark cache block |
Release reservation

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E.20 Snoop-RWITM-Atomic Operations

Table E-21 describes the behavior of the 60x bus interface in response to a snoop-snoop-
RWITM atomic bus operation.

Table E-21. Coherency Actions—Snoop-RWITM Atomic Operations

Cache Bus
. Snoop
Reservation Processor Response
Response
WIM MESI | WIM | TT[0-4]
(n/a) | xx1 11110 None (None) No-op
Yes (and reset) Release reservation
SlE None Mark cache block |
Yes (and reset) Mark cache block |
Release reservation
M None ARTRY&SHD | Try to write cache block back to main memory
If successful, mark cache block |
Yes (and reset) Try to write cache block back to main memory
If successful:
Mark cache block |
Release reservation

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

Appendix A. Coherency Action Tables

E-41

E.21 Snoop-Flush Operations

Table E-22 describes the behavior of the 60x bus interface in response to a snoop-snoop-
flush bus operation.

Table E-22. Coherency Actions—Snoop-Flush Operations

Cache Bus Snoo
Proc. Reservation Res onpse Processor Response
WIM | MESI WIM | TT[0-4] P
(n/a) | 60x xx1 00100 | None (None) No-op
Yes (None) No-op. Snoop-flush operation cannot clear
the reservation.
SlE 60x (n/a) (None) Mark cache block |
603 No-op
M 60x ARTRY&SH Try to write cache block back to main
memory
If successful, mark cache block |
603 (None) No-op

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E.22 Snoop-Clean Operations

Table E-23 describes the behavior of the 60x businterface in response to a snoop-clean bus
operation.

Table E-23. Coherency Actions—Snoop-Clean

Cache Bus
Snoop

Processor Response Processor Response

WIM | MESI WIM | TT[0-4] P

(n/a) ESY 60x xx1 00000 (None) No-op

M 60x xx1 ARTRY&SHD | Try to write cache block back to main memory
If successful, mark cache block E

603 (None) No-op

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E-42 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.23 Snoop-Write-with-Flush Operations

Table E-24 describes the behavior of the 60x businterfacein responseto a snoop-write with
flush bus operation.

Table E-24. Coherency Actions—Snoop-Write-with-Flush Operations

Cache

Bus

WIM | MESI

WIM

TT[0-4]

Reservation

Snoop
Response

Processor Response

(n/a)

st

xx1

00010

None

Yes (and reset)

None

Yes (and reset)

None

Yes (and reset)

(None)

No-op

Release reservation

Mark cache block |

Mark cache block |
Release reservation

Paradox?—no one else should be writing if this
cacheis E
Mark cache block |

Paradox?—no one else should be writing if this
cacheis E

Mark cache block |

Release reservation

None

Yes (and reset)

ARTRY&SHD

Paradox?—no one else should be writing if this
cache is M

Try to write cache block back to main memory
If successful, mark cache block |

Paradox?>—no one else should be writing if this
cache is M

Try to write cache block back to main memory
If successful:

Mark cache block |

Release reservation

Notes:

1Because it does not implement shared state, these entries are not applicable to the 603.

2A coherency paradox to the processor may cause incoherent data to appear in the system. That is, there
is a potential for data integrity errors in the system.

Appendix A. Coherency Action Tables

E-43

E.24 Snoop-Write-with-Kill Operations

Table E-25 describes the behavior of the 60x bus interface in response to a snoop-write-

with-kill bus operation.

Table E-25. Coherency Actions—Snoop-Write-with-Kill Operations

Cache Bus
. Snoop
Reservation Response Processor Response
WIM | MESI | WIM | TT[0-4] P
(n/a) | xx1 00110 None (None) No-op
Yes (and reset) Release reservation
st None Mark cache block |
Yes (and reset) Mark cache block |
Release reservation
E None Paradox?—no one else should be writing if this
cache is E
Mark cache block |
Yes (and reset) Paradox?—no one else should be writing if this
cache is E
Mark cache block |
Release reservation
M None Paradox?—no one else should be writing if this
cache is M
Mark cache block |
Yes (and reset) Paradox?—no one else should be writing if this
cache is M
Mark cache block |
Release reservation
Notes:

1Because it does not implement shared state, these entries are not applicable to the 603.

2A coherency paradox to the processor may cause incoherent data to appear in the system. That is, there is
a potential for data integrity errors in the system.

E-44

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.25 Snoop-Write-with-Flush-Atomic Operations

Table E-26 describes the behavior of the 60x bus interface in response to a snoop-write-
with-flush-atomic bus operation.

Table E-26. Coherency Actions—Snoop-Write-with-Flush-Atomic Operations

Cache

Bus

WIM | MESI

WIM

TT[0-4]

Reservation

Snoop
Response

Processor Response

(n/a) |

sl

xx1

00110

None

Yes (and reset)

None

Yes (and reset)

None

Yes (and reset)

(None)

No-op

Release reservation

Mark cache block |

Mark cache block |
Release reservation

Paradox?—no one else should be writing if this
cache is E
Mark cache block |

Paradox?—no one else should be writing if this
cache is E

Mark cache block |

Release reservation

None

Yes (and reset)

ARTRY&SHD

Paradox?—no one else should be writing if this
cache is M

Try to write block back to main memory

If successful, mark cache block |

Paradox?>—no one else should be writing if this
cache is M

Try to write block back to main memory

If successful:

Mark cache block |

Release reservation

Notes:

1Because it does not implement shared state, these entries are not applicable to the 603.

2A coherency paradox to the processor may cause incoherent data to appear in the system. That is, there is
a potential for data integrity errors in the system.

Appendix A. Coherency Action Tables

E-45

E.26 Snoop-TLB-Invalidate Operations

Table E-27 describes the behavior of the 60x bus interface in response to a snoop-TLB-
invalidate bus operation.

Table E-27. Coherency Actions—Snoop-TLB-Invalidate Operations

Cache Bus
Snoop Response Processor Response
WIM | MESI | WIM | TT[0-4]
(n/a) (n/a) xx1 11000 | (None) Respond with (None) when all previous TLB

invalidates have been performed

(None) but ARTRY is Do not perform the TLB invalidate—this is to prevent
activated on the bus from | a deadlock condition from occurring
another processor

ARTRY Respond with retry until TLB has been invalidated.
Previous TLB invalidate is still in progress.

E.27 Snoop-SYNC Operations

Table E-28 describes the behavior of the 60x bus interface in response to a snoop-SYNC
bus operation.

Table E-28. Coherency Actions—Snoop-SYNC Operations

Cache Bus

Snoop
Response Processor Response

WIM | MESI | wWiM | TT[0-4] P
(n/a) | (n/a) |xx1 01000 (None) If there are no TLB invalidates pending that were

initiated by this processor, no-op

ARTRY If there is a TLB invalidate pending that was initiated by
this processor, respond with retry.
OR

If there is a snoop push address tenure (write/w/Kill)
pending due to previous snoop.

E.28 Snoop-EIEIO Operations

Table E-29 describes the behavior of the 60x bus interface in response to a snoop-EIEIO
bus operation.

Table E-29. Coherency Actions—Snoop-EIEIO Operations

Cache Bus
Snoop
Response Processor Response
WIM | MESI | WIM | TT[0-4] P
(n/a) (n/a) xx1 10000 (None) No-op. The 604 family never asserts ARTRY for an
EIEIO snoop.
ARTRY

E-46 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

E.29 Snoop-TLBSYNC Operations

Table E-30 describes the behavior of the 60x bus interface in response to a snoop-
TLBSYNC bus operation.

Table E-30. Coherency Actions—Snoop-TLBSYNC Operations

Cache Bus
Snoop

Response Processor Response
WIM [MESI | WIM | TT[0-4] P

(n/a) |(n/a) [xx1 |01001 (None) If no TLB invalidates are pending and there are no marked
transactions, no-op. Note that all queues in the processor with
translated addresses are considered marked whenever a TLBI snoop
operation completes. These transactions may hit in the cache
internally and clear the mark. Other times, these transactions must
complete a 60x bus address tenure before these marks can be
cleared. TLBSYNC snoops are ARTRYd until all marks are cleared.

ARTRY If a TLB invalidate is pending or if any marked transactions are
pending, respond with retry

E.30 Snoop-ICBI Operations

Table E-31 describes the behavior of the 60x bus interface in response to a snoop-1CBI bus
operation.

Table E-31. Coherency Actions—Snoop-ICBI Operations

Cache Bus
Snoop
Response Processor Response
WIM | MESI | WIM | TT[0-4] P
(n/a) | xx1 011001 | (None) No-op
VAL Invalidate entry in I-cache

Appendix A. Coherency Action Tables E-47

E.31 Snoop-RWNITC Operations

Table E-32 describes the behavior of the 60x businterfacein responseto asnoop-RWNITC
bus operation.

Table E-32. Coherency Actions—Snoop-RWNITC Operations

Cache Bus
. Snoop
Processor Reservation Response Processor Response
WIM | MESI WIM | TT[0-4] P
(nfa) |1 60x xx1 01011 | None (None) No-op
60x Yes SHD No-op
603 (n/a) (n/a)
st 60X (n/a) SHD No-op
E 60x SHD No-op
603 (None) Mark cache block E
M 601 ARTRY&SHD | Try to write cache block back to main
memory
If successful, mark cache block S
604 Try to write cache block back to main
memory
If successful, mark cache block E
603 ARTRY No-op

Note: 1Because it does not implement shared state, these entries are not applicable to the 603.

E-48 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Glossary of Terms and Abbreviations

The glossary contains an alphabetical list of terms, phrases, and abbreviations used in this
book. Some of the terms and definitions included in the glossary are reprinted from |EEE
Sd 754-1985, |IEEE Sandard for Binary Floating-Point Arithmetic, copyright ©1985 by
the Institute of Electrical and Electronics Engineers, Inc. with the permission of the IEEE.

A Architecture. A detailed specification of requirements for a processor or
computer system. It does not specify details of how the processor or
computer system must be implemented; instead it provides a
template for afamily of compatible implementations.

Asynchronous exception. Exceptions that are caused by events externa to
the processor’s execution. In this document, the term * asynchronous
exception’ is used interchangeably with the word interrupt.

Atomic access. A bus accessthat attemptsto be part of aread-write operation
to the same address uninterrupted by any other accessto that address
(the term refers to the fact that the transactions are indivisible). The
60x processorsimplement atomic accessesthrough the lwar x/stwcx.
instruction pair.

B BAT (block address trandation) mechanism. A software-controlled array
that stores the available block address trandlations on-chip.

Beat. A single state on the 60x businterface that may extend across multiple
bus cycles. A 60x transaction can be composed of multiple address
or data beats.

Biased exponent. An exponent whose range of valuesis shifted by a constant
(bias). Typicaly abiasisprovided to allow arange of positive values
to express arange that includes both positive and negative values.

Big-endian. A byte-ordering method in memory where the address n of a
word corresponds to the most-significant byte. In an addressed
memory word, the bytes are ordered (left to right) O, 1, 2, 3, with 0
being the most-significant byte.

Glossary of Terms and Abbreviations Glossary-1

Block. An area of memory that ranges from 128 Kbyte to 256 Mbyte, whose
size, trandation, and protection attributes are controlled by the BAT
mechanism.

Boundedly undefined. A characteristic of results of certain operations that
are not rigidly prescribed by the PowerPC architecture. Boundedly-
undefined results for a given operation may vary among
implementations, and between execution attempts in the same
implementation.

Although the architecture does not prescribe the exact behavior for
when results are allowed to be boundedly undefined, the results of
executing instructions in contexts where results are alowed to be
boundedly undefined are constrained to ones that could have been
achieved by executing an arbitrary sequence of defined instructions,
in valid form, starting in the state the machine was in before
attempting to execute the given instruction.

Burst. A multiple beat data transfer whose total size is typically equal to a
cache block.

Bus clock. Clock that causes the bus state transitions.

Busmaster. The owner of the address or data bus; the device that initiates or
reguests the transaction.

C Cache. High-speed memory component containing recently-accessed data
and/or instructions (subset of main memory).

Cache block. A small region of contiguous memory that is copied from
memory into a cache. The size of a cache block may vary among
processors; the maximum block size is one page. In PowerPC
processors, cache coherency is maintained on a cache-block basis.
Note that the term * cache block’ is often used interchangeably with
‘cacheline’.

Cache coherency. An attribute wherein an accurate and common view of
memory is provided to al devices that share the same memory
system. Caches are coherent if a processor performing a read from
its cacheis supplied with data corresponding to the most recent value
written to memory or to another processor’s cache.

Glossary-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Cache flush. An operation that removes from a cache any data from a
specified address range. This operation ensures that any modified
data within the specified address range is written back to main
memory. This operation is generated typically by a Data Cache
Block Flush (dcbf) instruction.

Caching-inhibited. A memory update policy in which the cacheis bypassed
and the load or storeis performed to or from main memory.

Cast-outs. Cache blocks that must be written to memory when a cache miss
causes a cache block to be replaced.

Clear. To cause a bit or bit field to register avalue of zero. See also Set.

Context synchronization. An operation that ensures that al instructionsin
execution complete past the point where they can produce an
exception, that all instructions in execution complete in the context
in which they began execution, and that all subsequent instructions
arefetched and executed in the new context. Context synchronization
may result from executing specific instructions (such asisync or rfi)
or when certain events occur (such as an exception).

Copy-back. An operation in which modified datain a cache block is copied
back to memory.

D Denormalized number. A nonzero floating-point number whose exponent
has a reserved value, usually the format's minimum, and whose
explicit or implicit leading significand bit is zero.

Direct-mapped cache. A cache in which each main memory address can
appear in only one location within the cache, operates more quickly
when the memory request is a cache hit.

Direct-store. Interface available on PowerPC processors only to support
direct-store devices from the POWER architecture. When the T bit
of a segment descriptor is set, the descriptor defines the region of
memory that is to be used as a direct-store segment. Note that this
facility is being phased out of the architecture and will not likely be
supported in future devices. Therefore, software should not depend
on it and new software should not useit.

Glossary of Terms and Abbreviations Glossary-3

Effective address (EA). The 32- or 64-bit address specified for aload, store,
or an instruction fetch. This address is then submitted to the MMU
for trandation to either aphysical memory address or an |/O address.

Exception. A condition encountered by the processor that requires special,
supervisor-level processing.

Exception handler. A software routine that executes when an exception is
taken. Normally, the exception handler corrects the condition that
caused the exception, or performs some other meaningful task (that
may include aborting the program that caused the exception). The
address for each exception handler is identified by an exception
vector offset defined by the architecture and a prefix selected viathe
MSR.

Exclusive state. MESI state (E) in which only one caching device contains
datathat isaso in system memory.

Execution synchronization. A mechanism by which al instructions in
execution are architecturally complete before beginning execution
(appearing to begin execution) of the next instruction. Similar to
context synchronization but doesnt force the contents of the
instruction buffers to be deleted and refetched.

Exponent. In the binary representation of a floating-point number, the
exponent is the component that normally signifies the integer power
to which the value two is raised in determining the value of the
represented number. See also Biased exponent.

Feed-forwarding. A feature that reduces the number of clock cycles that an
execution unit must wait to use a register. When the source register
of the current instruction isthe same as the destination register of the
previousinstruction, theresult of the previousinstructionisrouted to
the current instruction at the sametimethat it iswritten to the register
file. With feed-forwarding, the destination busis gated to the waiting
execution unit over the appropriate source bus, saving the cycles
which would be used for the write and read.

Fetch. Retrieving instructions from either the cache or main memory and
placing them into the instruction queue.

Glossary-4

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Floating-point register (GPR). Any of the 32 registers in the floating-point
register file. These registers provide the source operands and
destination results for al floating-point data manipulation
instructions. Floating-point load instructions move data from
memory to registers, and floating-point store instructions move data
from registers to memory.

Flush. An operation that causes a modified cache block to be invalidated and
the data to be written to memory.

Fraction. In the binary representation of afloating-point number, the field of
the significand that lies to the right of itsimplied binary point.

G General-purpose register (GPR). Any of the 32 registers in the genera
purpose register file. These registers provide the source operands and
destination results for all integer data manipulation instructions.
Load instructions move data from memory to registers, and store
instructions move data from registers to memory.

H Harvard architecture. An architectural model featuring separate caches for
instruction and data.

| |EEE 754. A standard written by the Institute of Electrical and Electronics
Engineers that defines operations and representations of binary
floating-point arithmetic.

Implementation. A particular processor that conforms to the PowerPC
architecture, but may differ from other architecture-compliant
implementations for example in design, feature set, and
implementation of optional features. The PowerPC architecture has
many different implementations.

I mplementation-dependent. An aspect of afeature in a processor’s design
that is defined by a processor’s design specifications rather than by
the PowerPC architecture.

I mplementation-specific. An aspect of afeature in a processor’s design that
is not required by the PowerPC architecture, but for which the
PowerPC architecture may provide concessions to ensure that
processors that implement the feature do so consistently.

Glossary of Terms and Abbreviations Glossary-5

I mprecise exception. A type of synchronous exception that is allowed not to
adhere to the precise exception model (see Precise exception). The
PowerPC architecture alows only floating-point exceptions to be
handled imprecisely.

I nexact. Loss of accuracy in an arithmetic operation when the rounded result
differs from the infinitely precise value with unbounded range.

In-order. An aspect of an operation that adheres to a sequential model. An
operation is said to be performed in-order if, a the time that it is
performed, it is known to be required by the sequential execution
model. See Out-of -order.

Instruction queue. A holding place for instructions fetched from the current
instruction stream.

Interrupt. An external signal that causes the processor to suspend current
execution and take a predefined exception.

Invalid state. State of a cache entry that does not currently contain a valid
copy of acache block from memory.

Key bits. A set of key bits referred to as Ks and Kp in each segment register
and each BAT register. The key bits determine whether supervisor or
user programs can access a page within that segment or block.

Kill. An operation that causes a cache block to be invalidated.

L atency. The number of clock cycles necessary to perform an action, such as
amemory access.

L east-significant bit (Isb). The bit of least value in an address, register, data
element, or instruction encoding.

L east-significant byte (L SB). The byte of least value in an address, register,
data element, or instruction encoding.

Little-endian. A byte-ordering method in memory where the address n of a
word corresponds to the least-significant byte. In an addressed
memory word, the bytes are ordered (left to right) 3, 2, 1, 0, with 3
being the most-significant byte. See Big-endian.

Livelock. A statein which processorsinteract in away such that no processor
makes progress.

Glossary-6

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

M Memory-mapped accesses. Accesses whose addresses use the segmented or
block address translation mechanisms provided by the MMU and
that occur externally with the bus protocol defined for memory.

Memory coherency. Refers to memory agreement between caches and
system memory (for example, MESI cache coherency).

Memory consistency. Refers to levels of memory with respect to a single
processor and system memory (for example, on-chip cache,
secondary cache, and system memory).

Memory management unit. The functional unit that is capable of trandating
an effective (logical) address to a physical address, providing
protection mechanisms, and defining caching methods.

MESI (modified/exclusive/shared/invalid). Cache coherency protocol used
to manage caches on different devices that share a memory system.
Note that the PowerPC architecture does not specify the
implementation of a MESI protocol to ensure cache coherency.

Modified state. When a cache block is in the modified state, it has been
modified by the processor since it was copied from memory. See
MES!.

Multiprocessing. The capability of software, especialy operating systems,
to support execution on more than one processor at the sametime.

M ost-significant bit (msb). The highest-order bit in an address, registers,
data element, or instruction encoding.

Most-significant byte (MSB). The highest-order byte in an address,
registers, data element, or instruction encoding.

O OEA (operating environment architecture). The level of the architecture
that describes PowerPC memory management model, supervisor-
level registers, synchronization requirements, and the exception
model. It also defines the time-base feature from a supervisor-level
perspective. Implementations that conform to the PowerPC OEA
also conform to the PowerPC UISA and VEA.

Optional. A feature, such as an instruction, aregister, or an exception, that is
defined by the PowerPC architecture but not required to be
implemented.

Glossary of Terms and Abbreviations Glossary-7

Out-of-order. An aspect of an operation that allowsit to be performed ahead
of one that may have preceded it in the sequential model, for
example, speculative operations. An operation is said to be
performed out-of-order if, at the time that it is performed, it is not
known to be required by the sequential execution model. See
In-order.

Overflow. An error condition that occurs during arithmetic operations when
the result cannot be stored accurately in the destination register(s).
For example, if two 32-bit numbers are multiplied, the result may not
be representable in 32 bits.

Packet. A term used with respect to direct-store operations.

Page. A region in memory. The OEA defines a page as a 4-Kbyte area of
memory, aligned on a 4-Kbyte boundary.

Page table entry (PTE). Data structures containing information used to
trandlate effective address to physical address on a 4-Kbyte page
basis. A PTE consists of 8 bytes of information in a32-bit processor.

Park. The act of alowing a bus master to maintain mastership of the bus
without having to arbitrate.

Pipeining. A technique that breaks operations, such as instruction
processing or bus transactions, into smaller distinct stages or tenures
(respectively) so that a subsequent operation can begin before the
previous one has completed.

Precise exceptions. The pipeline can be stopped so the instructions that
preceded the faulting instruction can complete, and subsequent
instructions can be executed following the execution of the exception
handler. The system is precise unless one of the imprecise modes for
invoking the floating-point enabled exception isin effect.

Physical memory. The actual memory that can be accessed through the
system’s memory bus.

Glossary-8

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Q Quad word. A group of 16 contiguous locations starting at an address
divisible by 16.

Quiesce. To cometo rest. The processor is said to quiesce when an exception
is taken or a sync instruction is executed. The instruction stream is
stopped at the decode stage and executing instructions are allowed to
complete to create a controlled context for instructions that may be
affected by out-of-order, parallel execution. See Context
synchronization.

R Reservation. The processor establishes a reservation on a cache block of
memory space when it executes an lwarx instruction to read a
memory semaphore into a GPR.

Reserved field. In a register, a reserved field is one that is not assigned a
function. A reserved field may be a single bit. The handling of
reserved bits is implementation-dependent. Software is permitted to
write any value to such abit. A subsequent reading of the bit returns
0 if the value last written to the bit was 0 and returns an undefined
value (0 or 1) otherwise.

RISC (reduced instruction set computing). An architecture characterized
by fixed-length instructions with nonoverlapping functionality and
by a separate set of load and store instructions that perform memory
accesses.

S Segment. A 256-Mbyte area of virtual memory that isthe most basic memory
space defined by the PowerPC architecture. Each segment is
configured through a unique segment descriptor.

Segment descriptors. Information used to generate the interim virtual
address. The segment descriptors reside in 16 on-chip segment
registers for 32-bit implementations.

Set (v). Towriteanonzero valueto abit or bit field; the opposite of clear. The
term ‘set’ may also be used to generally describe the updating of a
bit or bit field.

Set (n). A subdivision of a cache. Cacheable data can be stored in a given
location in any one of the sets, typically corresponding to its lower-
order address bits. Because several memory locations can map to the
same location, cached dataistypically placed in the set whose cache
block corresponding to that address was used least recently.

See Set-associativity.

Glossary of Terms and Abbreviations Glossary-9

Set-associativity. Aspect of cache organization in which the cache space is
divided into sections, called sets. The cache controller associates a
particular main memory address with the contents of a particular set,
or region, within the cache.

Significand. The component of a binary floating-point number that consists
of an explicit or implicit leading bit to the left of itsimplied binary
point and afraction field to the right.

Slave. The device addressed by a master device. The daveisidentified in the
address tenure and is responsible for supplying or latching the
requested data for the master during the data tenure.

Snooping. Monitoring addresses driven by a bus master to detect the need for
coherency actions.

Snoop push. Write-backs due to a snoop hit. The block will transition to an
invalid or exclusive state.

Split-transaction. A transaction with independent request and response
tenures.

Split-transaction bus. A bus that allows address and data transactions from
different processors to occur independently.

Strong ordering. A memory access model that requires exclusive access to
an address before making an update, to prevent another device from
using stale data.

Supervisor mode. The privileged operation state. In supervisor mode,
software can access al control registers and can access the
supervisor memory space, among other privileged operations.

Synchronization. A process to ensure that operations occur strictly in order.
See Context synchronization and Execution synchronization.

Synchronous exception. An exception that is generated by the execution of
a particular instruction or instruction sequence. There are two types
of synchronous exceptions, precise and imprecise.

System memory. The physical memory available to a processor.

Glossary-10

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

T TLB (trandation lookaside buffer) A cache that holds recently-used page
table entries.

Tenure. The period of bus mastership. There can be separate address bus
tenures and data bus tenures. A tenure consists of three phases:
arbitration, transfer, termination.

Throughput. The measure of the number of instructions that are processed
per clock cycle.

Transaction. A complete exchange between two bus devices. A transaction
is minimally comprised of an address tenure; one or more data
tenures may be involved in the exchange. There are two kinds of
transactions: address/data and address-only.

Transfer termination. Signal that refersto both signal sthat acknowledgethe
transfer of individua beats (of both single-beat transfer and
individual beats of a burst transfer) and to signals that mark the end
of the tenure.

U UISA (user instruction set architecture). The level of the architecture to
which user-level software should conform. The UISA defines the
base user-level instruction set, user-level registers, data types,
floating-point memory conventions and exception model as seen by
user programs, and the memory and programming models.

Unified cache. Combined data and instruction cache.

User mode. The unprivileged operating state of a processor used typically by
application software. In user mode, software can only access certain
control registers and can access only user memory space. No
privileged operations can be performed. Also referred to as problem
state.

\V/ VEA (virtual environment architecture). The level of the architecture that
describes the memory model for an environment in which multiple
devices can access memory, defines aspects of the cache model,
defines cache control instructions, and defines the time-base facility
from a user-level perspective. Implementations that conform to the
PowerPC VEA aso adhere to the UISA, but may not necessarily
adhere to the OEA.

Virtual address. An intermediate address used in the translation of an
effective address to a physical address.

Glossary of Terms and Abbreviations Glossary-11

Weak ordering. A memory access model that allows bus operations to be
reordered dynamically, which improves overall performance and in
particular reduces the effect of memory latency on instruction
throughput.

Word. A 32-bit data element.

Write-back. A cache memory update policy in which processor write cycles
are directly written only to the cache. Externa memory is updated
only indirectly, for example, when amodified cache block is cast out
to make room for newer data.

Write-through. A cache memory update policy in which al processor write
cycles are written to both the cache and memory.

Glossary-12

PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

Numerics

601, see PowerPC 601

603, see PowerPC 603

604, see PowerPC 604

60x bus
arbitration, 8-1
block diagram, 1-3
bus operations, 4-15
bus/memory coherency summary, A-1
definition, 1-1
features, 1-3
general description, xvi
implementation differences, summary, 4-19
overview, 1-1
processor-initiated operations, 4-12
signals, overview, 1-4
snooping, 4-14
system design considerations, 8-1
upgrade suggestions, C-1

A
AACK (address acknowledge) signal, 2-17, 8-4
ABB (address bus busy) signals, 2-3
Acronyms/abbreviations, list, xxi
Address bus
address bus parity, 3-9
address transfer signals, 3-8, 3-9
address transfer termination, 3-17
arbitration, 3-6
arbitration signals, 2-2, 3-4
tenure, 3-6
Address pipelining, 3-5
Address transfer signals, 3-8, 3-9
Alignment
aligned data transfers
32-hit bus, 3-12
64-bit bus, 3-11
effect in data transfers, 3-10
external control instructions, 3-17
misaligned data transfers
601, 3-13
603, 32-bit mode, 3-16
603/604, 3-14
An (address bus) signdls, 2-6
APE (address parity error) signal, 2-8
APn (address bus parity) signals, 2-7

INDEX

Arbitration
description, 8-1
signals, 3-4
ARTRY (addressretry) signal, 2-18

B

Basic transfer protocol, 1-2
BG (bus grant) signal, 2-2
Block diagram, 1-3
BR (bus request) signal, 2-2
Burst ordering, 3-10
Bus arbitration signals, 3-4
Bus operations
additional bus configurations, 6-1
summary, 6-1
clean block, 4-15
coherency actions, E-1
description, 4-14
EIEIO, 4-17
flush block, 4-15
ICBI, 4-18
implementation differences, 4-19
improved bus performance features, 8-5
kill block, 4-15
non-canceling bus operations, 8-8
processor summary, A-1
read, 4-16
read atomic, 4-16
RWITM (read with intent to modify), 4-16
RWNITC (read with no intent to cache), 4-18
SYNC, 4-17,8-4
SYNC vs TLBSYNC, system design, 8-4
TLB invdidate, 4-16
TLBIE, 4-14
TLBSYNC, 4-17, 8-4
write with flush, 4-15
write with flush atomic, 4-15
write with kill, 4-16
XFERDATA, 4-18
Bus protocol, 3-2
Bus transactions, see Bus operations

Index

Index-1

INDEX

Cc

Cache
cache coherency overview, 4-5
cache control instructions, 4-12
L2 considerations (604), D-1
overview, implementations, 4-1
CI (cache inhibit) signal, 2-15
CKSTP_IN (checkstop input) signal, 2-28
CKSTP_OUT (checkstop output) signal, 2-28
Clocking, overview, B-1
Coherency actions, E-1
Conventions, general, xx
CSEn (cache set element) signals, 2-17, 4-11

D

Data bus
alignment
aligned data transfers
32-bit bus, 3-12
64-bit bus, 3-11
burst ordering during data transfers, 3-10
effect of alignment in datatransfers, 3-10
misaligned data transfers
601, 3-13
603, 32-bit mode, 3-16
603/604, 3-14
arbitration
data bus, 3-19
effect of ARTRY assertion (604), 3-20
signals, 3-4
burst ordering, 3-10
data bus tenure, 3-19
data transfer termination, bus error, 3-26
effect of ARTRY assertion (604), 3-20
DBB (data bus busy) signal, 2-21, 3-21
DBDIS (data bus disable) signal, 2-24
DBG (data bus grant) signal, 2-20
DBWO (data bus write only) signal, 2-21, 3-22, 8-1
DHn/DLn (data bus) signals, 2-22
Direct-memory access, description, 4-19
Direct-store interface
direct-store operations, 1-2, 7-6
load operations, 7-7
memory-forced direct store interface (601), 7-9
overview, 7-1
store operations, 7-7
timing diagrams, 7-8
tranaction protocol details, 7-2
DPE (data parity error) signal, 2-24
DPn (data bus parity) signals, 2-23
DRTRY (dataretry) signal, 2-25

E

eciwx/ecowx, alignment, 3-17
Exceptions
checkstops, 5-7
external interrupt, 5-14
machine check, 5-7
system management interrupt, 5-16
system reset, 5-5

®

GBL (global) signal, 2-16

H

HALTED signal, 2-32

HIDO (checkstop sources and enables) register
(601), 5-10

HP_SNP_REQ (high-priority snoop request) signal
(601 only), 2-17

HRESET (hard reset) signal, 2-29, 5-2

|EEE 1149.1 interface, 8-5

Instructions
cache control instructions, 4-12
eciwx/ecowx, alignment, 3-17
tibie processing, 4-14

INT (interrupt) signal, 2-27

L

L2 _INT (external cache intervention) signal, 2-30
Iwarx/stwex.

address-only operation, 8-10

considerations, 8-6

implementation (603), 4-11

M

MCP (machine check interrupt) signal, 2-28
Memory access protocol, 3-2
Memory coherency
actions, 60x-initiated operations, 4-12
coherency actions, E-1
description, 4-1, 4-19
MESI protocol, 4-6
processor summary, A-1
protocol, 4-9
timing, 4-9

Index-2 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

INDEX

P

PowerPC 601
cache organization, 4-2
clocking, B-1
description, xv
external interrupt exception, 5-15
HIDO register, 5-10
machine check exception, 5-9
memory-forced direct-store interface, 7-9
misaligned data transfers, 3-13
signals
HP_SNP_REQ, 2-17
SRESET, 5-6
transfer code signal encoding, 2-12
transfer encoding, 2-9
upgrade to 60x, C-1
PowerPC 603
bus operations
32-bit data bus mode, 6-4
no-DRTRY mode, 6-1
reduced-pinout mode, 6-6
cache organization, 4-3
checkstop state, 5-13
clocking, B-2
description, xv
external interrupt exception, 5-16
Iwarx/stwex. implementation, 4-11
machine check exception, 5-12
misaligned data transfers, 3-14
misaligned data transfers, 32-bit mode, 3-16
signals
SRESET, 5-7
transfer code signal encoding, 2-12
transfer encoding, 2-9
upgrade to 604, C-1
upgrade to 60x, C-1
PowerPC 603e
cache enhancements, 4-3
PowerPC 604
ARTRY assertion on data transfers/arbitration, 3-20
cache organization, 4-4
clocking, B-2
data streaming mode bus operations, 6-3
description, xv
L2 cache considerations, D-1
machine check exception, 5-13
misaligned data transfers, 3-14
normal to doze transition (604¢), 2-33
signals
SRESET, 5-7
transfer code signal encoding, 2-13
transfer encoding, 2-9
upgrade to 60x, C-3

PowerPC 604e
cache enhancements, 4-5
no-DRTRY mode bus operation, 6-1

Q

QACK (quiescent acknowledge) signal, 2-32
QREQ (quiescent request) signal, 2-32
QUIESC_REQ (quiescent request) signal, 2-31

R

RESUME signal, 2-31
RSRV (reservation) signal, 2-29
RUN signal, 2-32

S
SHD (shared) signal, 2-19
Signals
60x signals, overview, 1-4
AACK, 2-17, 8-4
ABB, 2-3
address bus signals, 2-2
address transfer attribute signals, 2-8, 3-9
address transfer signals, 2-6
address transfer start signals, 2-4
address transfer termination signals, 2-17
An, 2-6

arbitration signals, 2-2, 3-4
ARTRY, 2-18

BG, 2-2

BR, 2-2

bus arbitration signals, 3-4

CI, 2-15

CKSTP_IN, 2-28
CKSTP_OUT, 2-28

CSEn, 2-17, 4-11

data bus arbitration signals, 2-20
data bus lane assignments, 2-23
datatransfer signals, 2-22, 3-22
data transfer termination signals, 2-25, 3-23
DBB, 2-21, 3-21

DBDIS, 2-24

DBG, 2-20

DBWO, 2-21, 3-22, 8-1
DHn/DLn, 2-22

DPE, 2-24

DPn, 2-23

DRTRY, 2-25

GBL, 2-16

HALTED, 2-32

HP_SNP_REQ (601 only), 2-17
HRESET, 2-29, 5-2

Index

Index-3

INDEX

INT, 2-27 TS (transfer start) signals, 2-4
L2_INT, 2-30 TSIZn (transfer size) signals, 2-10, 3-9
MCP, 2-28 TTn (transfer type) signals, 2-8, 3-9
power managment signals, 2-31

processor state signals, 2-29 W

QACK, 2-32 ’ .

QREQ, 2-32 WIM bit settings, 4-19

quick reference list, 1-5 WT (write-through) signals, 2-16

QUIESC_REQ, 2-31

RESUME, 2-31 X

RSRV, 2-29 XATS (extended address transfer start) signals, 2-5
RUN, 2-32

SHD, 2-19

SMI, 2-27

SRESET, 2-29, 5-2
summary, signal differences, 2-34
SYS QUIESC, 2-31
system status signals, 2-27, 5-1
TA, 2-25
TBEN, 2-30
TBST, 2-10
TCn, 2-11
TEA, 2-26
TLBISYNC, 2-30
TS, 2-4
TSIZn, 2-10, 3-9
TTn, 2-8, 3-9
WT, 2-16
XATS, 2-5
SMI (system management interrupt) signal, 2-27
Snoop responses, descriptions, 4-14
Split-bus transactions, 3-5
SRESET (soft reset) signal, 2-29, 5-2
SYS QUIESC (system quiesced) signal, 2-31

T

TA (transfer acknowledge) signal, 2-25
TBEN (time base enable) signal, 2-30
TBST (transfer burst) signals, 2-10
TCn (transfer code) signals, 2-11
TEA (transfer error acknowledge) signd, 2-26
Termination
data transfer termination, bus error, 3-26
normal single-beat read/write, 3-24
Timing diagram examples, 3-28
TLBIE bus operation, 4-14
tibie processing, 4-14
TLBISYNC (TLB synchronization) signal, 2-30
Transfer protocols, 1-2
Transition state
doze to nap transition, 2-33
nap to doze transition, 2-34
normal to doze transition, 2-33

Index-4 PowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors

