

## IXDN414PI / N414CI / N414YI / N414SI IXDI414PI / I414CI / I414YI / I414SI

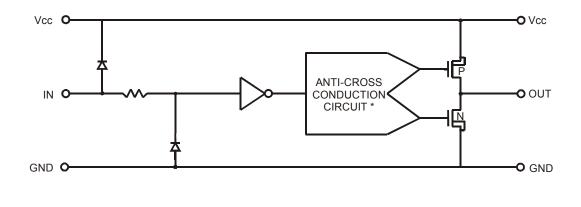
## 14 Ampere Low-Side Ultrafast MOSFET and IGBTDrivers

# Features

- Built using the advantages and compatibility of CMOS and IXYS HDMOS<sup>™</sup> processes
- Latch-Up Protected Over Entire
   Operating Range
- High Peak Output Current: 14A Peak
- Wide Operating Range: 4.5V to 35V
- High Capacitive Load Drive Capability: 15nF in <30ns</li>
- Matched Rise And Fall Times
- Low Propagation Delay Time
- Low Output Impedance
- Low Supply Current

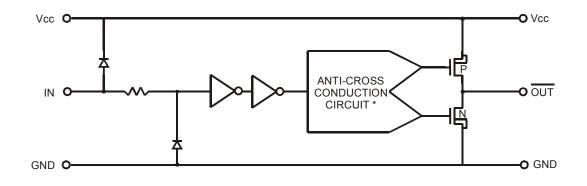
## Applications

- Driving MOSFETs and IGBTs
- Motor Controls
- Line Drivers
- · Pulse Generators
- Local Power ON/OFF Switch
- Switch Mode Power Supplies (SMPS)
- DC to DC Converters
- Pulse Transformer Driver
- Class D Switching Amplifiers


## **General Description**

The IXDI414/IXDN414 are high speed high current gate drivers specifically designed to drive the largest MOSFETs and IGBTs to their minimum switching time and maximum practical frequency limits. The IXDI/N414 can source and sink 14A of peak current, while producing voltage rise and fall times of less than 30ns, to drive the latest IXYS MOSFETs & IGBTs. The input of the driver is compatible with TTL or CMOS and is fully immune to latch up over the entire operating range. Designed with small internal delays, a patent-pending circuit virtually eliminates transistor cross conduction and current shoot-through. Improved speed and drive capabilities are further enhanced by very low, matched rise and fall times.

The IXDN414 is configured as a non-inverting gate driver and the IXDI414 is an inverting gate driver.


The IXDN414/IXDI414 family are available in standard 8 pin P-DIP (PI), 5-pin TO-220 (CI), TO-263 (YI) and 14-pin SOIC (SI) surface-mount packages.





\* Patent Pending

# Figure 2 - IXDI414 Inverting 14A Gate Driver Functional Block Diagram



# **Pin Description And Configuration**

|     |                | DESCRIPTION                                                                                                                                                                                                             |
|-----|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC | Supply Voltage | Positive power-supply voltage input. This pin provides power to the entire chip. The range for this voltage is from 4.5V to 25V.                                                                                        |
| IN  | Input          | Input signal-TTL or CMOS compatible.                                                                                                                                                                                    |
| OUT | Output         | Driver Output. For application purposes, this pin is connected via an external resistor to a Gate of a MOSFET/IGBT.                                                                                                     |
| GND | Ground         | The system ground pin. Internally connected to all circuitry, this pin<br>provides ground reference for the entire chip. This pin should be<br>connected to a low noise analog ground plane for optimum<br>performance. |



**16 PIN SOIC** 

| ORDERING INFORMATION |              |                |               |  |  |
|----------------------|--------------|----------------|---------------|--|--|
| Part Number          | Package Type | Temp. Range    | Configuration |  |  |
| IXDN414PI            | 8-Pin PDIP   | 4000 to 19500  |               |  |  |
| IXDN414SI            | 14-Pin SOIC  | -40°C to +85°C |               |  |  |
| IXDN414CI            | 5-Pin TO-220 | -40°C to +85°C | Non Inverting |  |  |
| IXDN414YI            | 5-Pin TO-263 | -40°C to +85°C |               |  |  |
| IXDI414PI            | 8-Pin PDIP   | 4000 to 19500  |               |  |  |
| IXDI414SI            | 14-Pin SOIC  | -40°C to +85°C |               |  |  |
| IXDI414CI            | 5-Pin TO-220 | -40°C to +85°C | Inverting     |  |  |
| IXDI414YI            | 5-Pin TO-263 | -40°C to +85°C |               |  |  |

NOTES 1: Either "I" or "N";

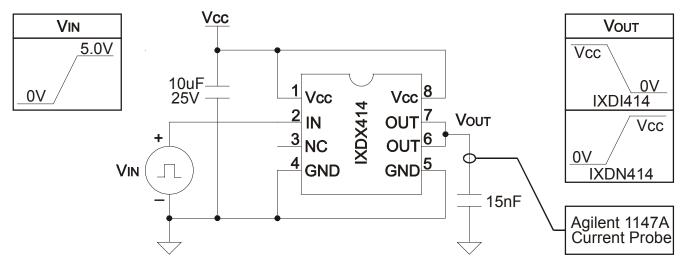
2: Mounting or solder tabs on all packages are connected to ground

# LIXYS

| ue<br>/                              | <b>Operating Ratings</b> Parameter                             | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| /                                    |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                    | Maximum Junction Temperature                                   | 150 <sup>0</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                      | Operating Temperature Range                                    | -40 <sup>0</sup> C to 85 <sup>0</sup> C                                                                                                                                                                                                                                                                                                                                                                                                              |
| C + 0.3V                             | Thermal Resistance (Junction To Case)                          | )                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                      | TO220 (CI)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| V                                    | TO263 (YI)                                                     | 0.55 K/W                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                      | 14-Pin SOIC (SI)                                               | 3 K/W                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mW                                   | Thermal Resistance (Junction to Ambien                         | nt)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      |                                                                | 150 K/W                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                      |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| nW/K                                 | 14-Pin SOIC                                                    | 120 K/W                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N/K                                  | TO-220 (CI), TO-263 (YI)                                       | 10 K/W                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <sup>O</sup> C to 150 <sup>O</sup> C |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0 <sup>0</sup> C                     |                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                      | /<br>3V to<br>C + 0.3V<br>//////////////////////////////////// | BV to<br>C + 0.3V       Operating Temperature Range         Thermal Resistance (Junction To Case)<br>TO220 (CI)<br>TO263 (YI)<br>14-Pin SOIC (SI)         mW       Thermal Resistance (Junction to Ambie<br>8-Pin PDIP (PI)<br>14-Pin SOIC<br>TO-220 (CI), TO-263 (YI)         mW/K<br>V/K       Thermal Resistance (Junction to Ambie<br>8-Pin PDIP (PI)<br>14-Pin SOIC<br>TO-220 (CI), TO-263 (YI)         * Subject to internal lead current lime |

## **Electrical Characteristics**

Unless otherwise noted,  $T_{_A}$  = 25 °C,  $~4.5V \le V_{_{CC}} \le 35V$ . All voltage measurements with respect to GND. Device configured as described in *Test Conditions*.

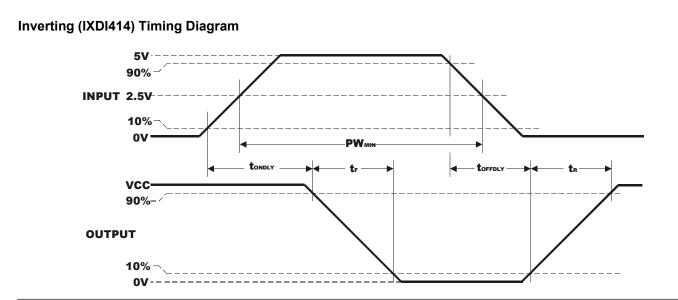

| Parameter                                               | Test Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High input voltage                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Low input voltage                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Input voltage range                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V <sub>CC</sub> + 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Input current                                           | $0V \leq V_{IN} \leq V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| High output voltage                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>CC</sub> - 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Low output voltage                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Output resistance<br>@ Output high                      | $I_{OUT}$ = 10mA, $V_{CC}$ = 18V                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Output resistance                                       | $I_{OUT}$ = 10mA, $V_{CC}$ = 18V                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Peak output current                                     | V <sub>CC</sub> is 18V                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Continuous output                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ower dissipation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise time <sup>(1)</sup>                                | $C_{L}$ =15nF Vcc=18V                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Fall time <sup>(1)</sup>                                | C <sub>L</sub> =15nF Vcc=18V                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| On-time propagation delay <sup>(1)</sup>                | C <sub>L</sub> =15nF Vcc=18V                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1: Offetiating the period iberyond                      | which the device is intended to be fund                                                                                                                                                                                                                                                                                                                                                                                                                              | ctional but do not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | quarantee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | specific perform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ance limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| nteed specifications apply only<br>Power supply voltage | for the test conditions listed. Exposure                                                                                                                                                                                                                                                                                                                                                                                                                             | to absolute maxir<br>4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | num rated c<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <del>conditions for ext</del><br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del>ended peri</del> o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TIOROWN RESUBBLY COURT ADD SOL                          | nsitiveเงto อิออิหาดstatic discharge; f                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SD proced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ures which han                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| assembling this component                               | $V_{\rm IN} = 0V$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                         | High input voltage<br>Low input voltage<br>Input voltage range<br>Input current<br>High output voltage<br>Low output voltage<br>Output resistance<br>@ Output high<br>Output resistance<br>@ Output Low<br>Peak output current<br>Continuous output<br>current<br>Rise time <sup>(1)</sup><br>Fall time <sup>(1)</sup><br>On-time propagation<br>delay <sup>(1)</sup><br>1: Offeting propagation only<br>device feliability. Voltage<br>TICROWING SUPPL/CEUTrapt ser | High input voltage         Low input voltage         Input voltage range         Input current $0V \le V_{IN} \le V_{CC}$ High output voltage         Low output voltage         Output resistance $I_{OUT} = 10$ mA, $V_{CC} = 18V$ @ Output high $I_{OUT} = 10$ mA, $V_{CC} = 18V$ @ Output resistance $I_{OUT} = 10$ mA, $V_{CC} = 18V$ @ Output Low $I_{OUT} = 10$ mA, $V_{CC} = 18V$ Peak output current $V_{CC}$ is $18V$ Continuous output current $V_{CC}$ is $18V$ Continuous output current $V_{CL} = 15$ nF Vcc= $18V$ Fall time <sup>(1)</sup> $C_L = 15$ nF Vcc= $18V$ On-time propagation delay <sup>(1)</sup> $C_L = 15$ nF Vcc= $18V$ 1: Offetime propagation delay <sup>(1)</sup> $C_L = 15$ nF Vcc= $18V$ 1: Offetime propagation delay <sup>(1)</sup> $C_L = 15$ nF Vcc= $18V$ 1: Offetime propagation delay <sup>(1)</sup> $C_L = 15$ nF Vcc= $18V$ 1: Offetime propagation delay <sup>(1)</sup> $C_L = 15$ nF Vcc= $18V$ 1: Offetime propagation delay <sup>(1)</sup> $C_L = 15$ nF Vcc= $18V$ | High input voltage       3.5         Low input voltage       -5         Input current $0V \le V_{IN} \le V_{CC}$ -10         High output voltage $V_{CC} - 0.025$ Low output voltage       V_{CC} - 0.025         Low output voltage       0UT = 10mA, $V_{CC} = 18V$ @ Output resistance $I_{OUT} = 10mA, V_{CC} = 18V$ @ Output high       0utput resistance         Output resistance $I_{OUT} = 10mA, V_{CC} = 18V$ @ Output Low       Peak output current         Peak output current $V_{CC}$ is 18V         Continuous output       8 Pin Dip (PI) (Limited by pkg power dissipation) current         rurent       TO220 (CI), TO263 (YI)         Rise time <sup>(1)</sup> $C_L = 15nF$ Vcc=18V         Pall time <sup>(1)</sup> $C_L = 15nF$ Vcc=18V         On-time propagation $C_L = 15nF$ Vcc=18V         On-time propagation $C_L = 15nF$ Vcc=18V         On-time propagation for which the device is intended to be functional, but do not mitted specifications and value infidicate conditions for which the device is intended to be functional, but do not mitted specifications and value if the test conditions fisted. Exposure to absolve the maxing device Higheling! | High input voltage3.5Low input voltageInput voltage range-5Input current $0V \le V_{IN} \le V_{CC}$ -10High output voltage $V_{CC} - 0.025$ Low output voltage $V_{CC} - 0.025$ Low output voltage $V_{CC} = 18V$ Output resistance $I_{OUT} = 10mA, V_{CC} = 18V$ Output LowPeak output currentVcc is 18V14Continuous output<br>current8 Pin Dip (PI) (Limited by pkg power dissipation)<br>currentcurrentTO220 (CI), TO263 (YI)Rise time (1) $C_L = 15nF$ Vcc=18VQ0On-time propagation<br>delay (1)1: Offertning propagation<br>delay (1) $C_L = 15nF$ Vcc=18V30delay (1)1: Offertning stoppogationy ond para0textr5mRH Vste# 18vsolute Maximum Ratings" may cauge perat values indicate conditions for which the device is intended to be functional, but do not guarantee<br>and values indicate conditions for which the device is intended to be functional, but do not guarantee<br>and values indicate conditions for which the device is intended to be functional, but do not guarantee<br>to device reliability.TICROVINGESUPARIDAR Contract and sensitive intro device for baseline is intended to be functional, but do not guarantee<br>and the device reliability.TICROVINGESUPARIDAR Contract and the device is intended to be functional, but do not guarantee<br>and the device reliability. | High input voltage3.5Low input voltage range-5 $V_{CC} + 0.3$ Input voltage range-5 $V_{CC} + 0.3$ Input current $0V \le V_{IN} \le V_{CC}$ -1010High output voltage $V_{CC} - 0.025$ $V_{CC} - 0.025$ Low output voltage $0.025$ $0.001$ 1000@ Output high $0_{UT} = 10$ mA, $V_{CC} = 18V$ 6001000@ Output resistance $I_{OUT} = 10$ mA, $V_{CC} = 18V$ 6001000@ Output resistance $I_{OUT} = 10$ mA, $V_{CC} = 18V$ 6001000@ Output resistance $I_{OUT} = 10$ mA, $V_{CC} = 18V$ 6001000@ Output Low $V_{CC}$ is $18V$ 14Continuous output8 Pin Dip (PI) (Limited by pkg power dissipation)3currentTO220 (CI), TO263 (YI)4Rise time <sup>(1)</sup> $C_L = 15$ nF Vcc=18V2025On-time propagation $C_L = 15$ nF Vcc=18V3033delay <sup>(1)</sup> $3$ $33$ $33$ $33$ 1: Offertning thropagation for which the device is intended to be functional, but do not guarantee specific perform $100$ 1: Offertning thropagation for which the device is intended to be functional, but do not guarantee specific perform $35$ 1: Offertning thropagation for which the device is intended to be functional, but do not guarantee specific perform $35$ 1: Offertning thropagation for which the device is intended to be functional, but do not guarantee specific perform $35$ 1: Offertning thropagation for which the device is intended to be functional, but do not guarantee speci |

<sup>(1)</sup> See Figures 3a and 3b



# IXDN414PI/N414CI/N414YI/N414SI IXDI414PI/I414CI/I414YI/I414SI

# Figure 3a - Characteristics Test Diagram

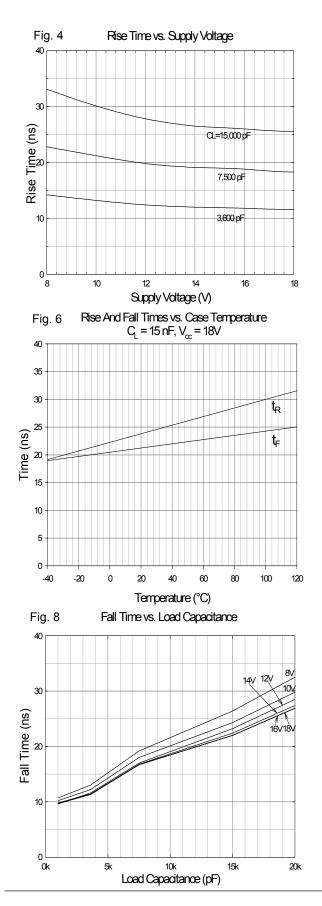


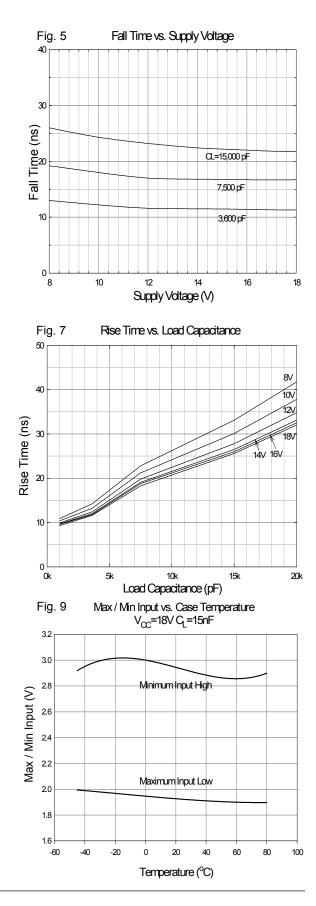

IN

ο

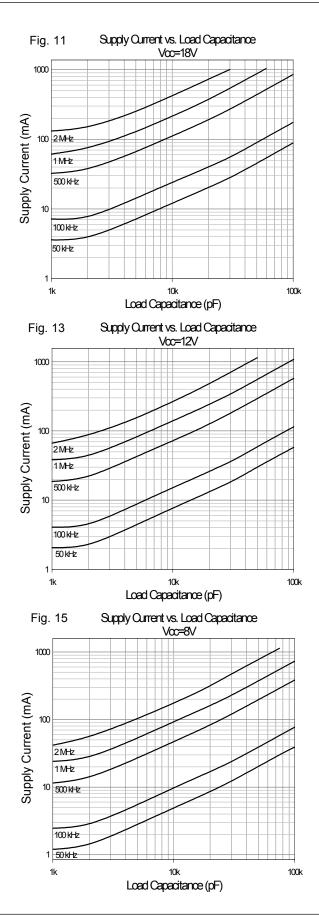
# Figure 3b - Timing Diagrams

Non-Inverting (IXDN414) Timing Diagram

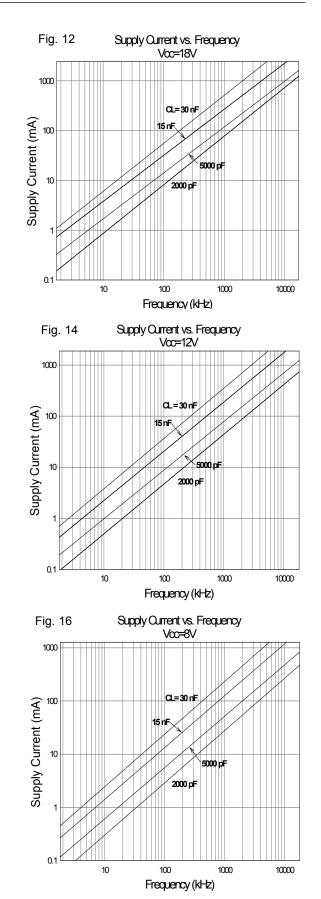




4



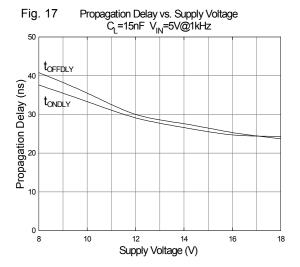

## IXDN414PI/N414CI/N414YI/N414SI IXDI414PI/I414CI/I414YI/I414SI

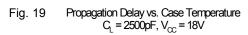
# **Typical Performance Characteristics**

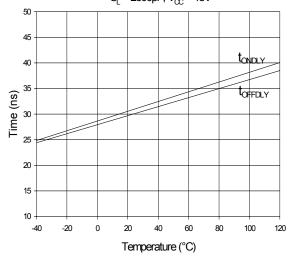


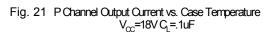


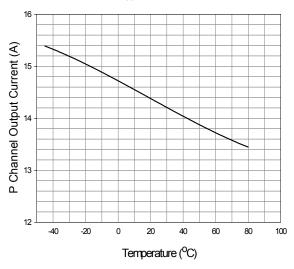

# IXDN414PI / N414CI / N414YI / N414SI IXDI414PI / I414CI / I414YI / I414SI





[XY





## IXDN414PI/N414CI/N414YI/N414SI IXDI414PI/I414CI/I414YI/I414SI











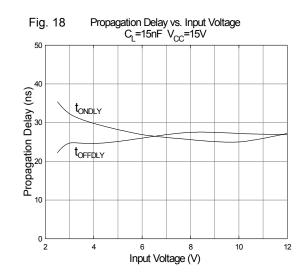



Fig. 20 Quiescent Supply Current vs. Case Temperature  $V_{cc}$ =18V  $V_{IN}$ =5V@1kHz

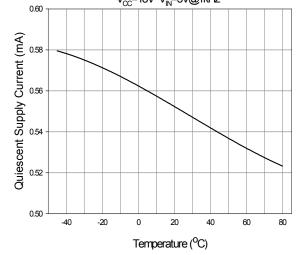
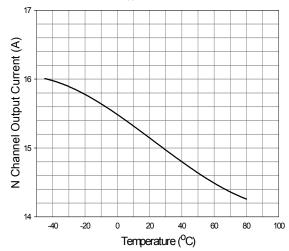
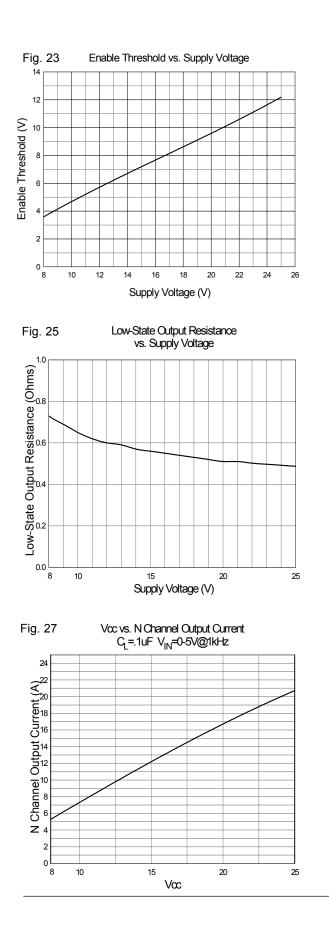
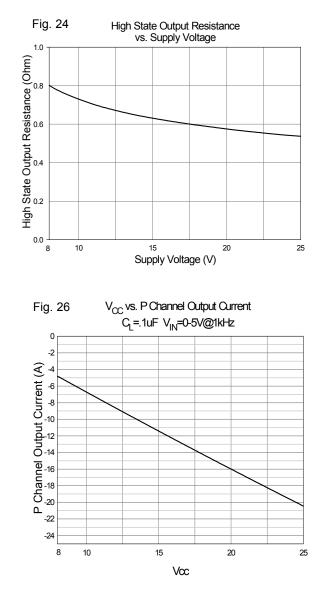






Fig. 22 N Channel Output Ourrent vs. Case Temperature  $V_{cc}\mbox{=}18V~C_{L}\mbox{=}.1uF$ 









# Supply Bypassing, Grounding Practices and Output Lead inductance

When designing a circuit to drive a high speed MOSFET utilizing the IXDN414/IXDI414, it is very important to observe certain design criteria in order to optimize performance of the driver. Particular attention needs to be paid to **Supply Bypassing**, **Grounding**, and minimizing the **Output Lead Inductance**.

Say, for example, we are using the IXDN414 to charge a 5000pF capacitive load from 0 to 25 volts in 25ns.

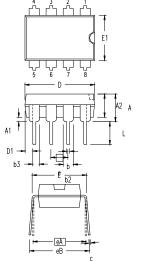
Using the formula:  $I = \Delta V C / \Delta t$ , where  $\Delta V = 25V C = 5000 pF \& \Delta t = 25 ns$  we can determine that to charge 5000 pF to 25 volts in 25 ns will take a constant current of 5A. (In reality, the charging current won't be constant, and will peak somewhere around 8A).

# SUPPLY BYPASSING

In order for our design to turn the load on properly, the IXDN414 must be able to draw this 5A of current from the power supply in the 25ns. This means that there must be very low impedance between the driver and the power supply. The most common method of achieving this low impedance is to bypass the power supply at the driver with a capacitance value that is a magnitude larger than the load capacitance. Usually, this would be achieved by placing two different types of bypassing capacitors, with complementary impedance curves, very close to the driver itself. (These capacitors should be carefully selected, low inductance, low resistance, high-pulse currentservice capacitors). Lead lengths may radiate at high frequency due to inductance, so care should be taken to keep the lengths of the leads between these bypass capacitors and the IXDN414 to an absolute minimum.

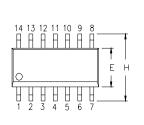
# GROUNDING

In order for the design to turn the load off properly, the IXDN414 must be able to drain this 5A of current into an adequate grounding system. There are three paths for returning current that need to be considered: Path #1 is between the IXDN414 and its load. Path #2 is between the IXDN414 and its power supply. Path #3 is between the IXDN414 and whatever logic is driving it. All three of these paths should be as low in resistance and inductance as possible, and thus as short as practical. In addition, every effort should be made to keep these three ground paths distinctly separate. Otherwise, the returning ground current from the load may develop a voltage that would have a detrimental effect on the logic line driving the IXDN414.

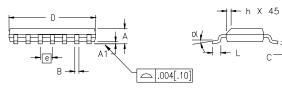

# OUTPUT LEAD INDUCTANCE

Of equal importance to Supply Bypassing and Grounding are issues related to the Output Lead Inductance. Every effort should be made to keep the leads between the driver and it's load as short and wide as possible. If the driver must be placed farther than 2" (5mm) from the load, then the output leads should be treated as transmission lines. In this case, a twisted-pair should be considered, and the return line of each twisted pair should be placed as close as possible to the ground pin of the driver, and connected directly to the ground terminal of the load.

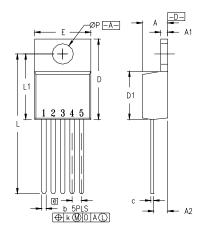



# IXDN414PI/N414CI/N414YI/N414SI IXDI414PI / I414CI / I414YI / I414SI

#### 8-PIN DIP Case Outline




| SYM<br>A | MIN  | INCHES |          | MILLIMETERS |  |
|----------|------|--------|----------|-------------|--|
| A        |      | MAX    | MIN      | MAX         |  |
|          | .140 | .180   | 3.56     | 4.57        |  |
| A1       | .015 | .040   | 0.38     | 1.02        |  |
| A2       | .125 | .145   | 3.18     | 3.68        |  |
| b        | .015 | .020   | 0.38     | 0.51        |  |
| b2       | .055 | .065   | 1.40     | 1.65        |  |
| b3       | .035 | .045   | 0.89     | 1.14        |  |
| С        | .009 | .012   | 0.23     | 0.30        |  |
| D        | .355 | .400   | 9.02     | 10.16       |  |
| D1       | .010 | .040   | 0.25     | 1.02        |  |
| E        | .300 | .325   | 7.62     | 8.26        |  |
| E1       | .240 | .270   | 6.10     | 6.86        |  |
| ę        | .100 | BSC    | 2.54 BSC |             |  |
| eA       | .300 | BSC    | 7.62 BSC |             |  |
| eВ       | .300 | .430   | 7.62     | 10.92       |  |
| L        | .120 | .140   | 3.05     | 3.56        |  |

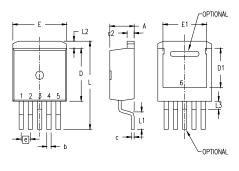

#### **14-PIN SOIC Case Outline**

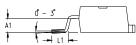


|     | INCH    | FS   | MILLIMETERS |      |  |
|-----|---------|------|-------------|------|--|
| SYM | MIN MAX |      | MIN         | MAX  |  |
| A   | .053    | .069 | 1.35        | 1.75 |  |
| A1  | .004    | .010 | 0.10        | 0.25 |  |
| В   | .013    | .020 | 0.33        | 0.51 |  |
| С   | .008    | .010 | 0.19        | 0.25 |  |
| D   | .337    | .344 | 8.55        | 8.75 |  |
| E   | .150    | .157 | 3.80        | 4.00 |  |
| е   | .050    | BSC  | 1.27        | BSC  |  |
| Н   | .228    | .244 | 5.80        | 6.20 |  |
| h   | .010    | .020 | 0.25        | 0.50 |  |
| L   | .016    | .050 | 0.40        | 1.27 |  |
| α   | 0°      | 8°   | 0°          | 8°   |  |



## 5-Leaded TO-220 Case Outline





| SYM  | INCH    | IES   | MILLIMETERS |       |
|------|---------|-------|-------------|-------|
| 2114 | MIN     | MAX   | MIN         | MAX   |
| A    | .170    | .190  | 4.32        | 4.83  |
| A1   | .045    | .055  | 1.14        | 1.40  |
| A2   | .090    | .115  | 2.29        | 2.92  |
| b    | .025    | .040  | 0.64        | 1.02  |
| С    | .015    | .025  | 0.38        | 0.64  |
| D    | .580    | .620  | 14.73       | 15.75 |
| D1   | .340    | .370  | 8.64        | 9.40  |
| E    | .390    | .415  | 9.91        | 10.54 |
| е    | .067BSC |       | 1.70 BSC    |       |
| k    | 0       | .014  | 0           | 0.36  |
| L    | .995    | 1.045 | 25.27       | 26.54 |
| L1   | .470    | .510  | 11.94       | 12.95 |
| P    | .139    | .156  | 3.53        | 3.96  |

NOTE: This drawing will meet all dimensions requirement of JEDEC outlines TS-001AA and 5 lead version TO-220AB.

**IXYS** Corporation 3540 Bassett St; Santa Clara, CA 95054 Tel: 408-982-0700; Fax: 408-496-0670 e-mail: sales@ixys.net www.ixys.com

#### 5-Leaded TO-263 Case Outline





| SYM  | L INCH | IES  | MILLIMETERS |       |  |
|------|--------|------|-------------|-------|--|
| 2114 | MIN    | MAX  | MIN         | MAX   |  |
| A    | .165   | .189 | 4.20        | 4.80  |  |
| A1   | .083   | .106 | 2.10        | 2.70  |  |
| b    | .024   | .039 | 0.60        | 0.99  |  |
| C    | .016   | .028 | 0.40        | 0.70  |  |
| c2   | .047   | .055 | 1.20        | 1.40  |  |
| D    | .346   | .374 | 8.80        | 9.50  |  |
| D1   | .260   | .283 | 6.60        | 7.20  |  |
| E    | .380   | .406 | 9.65        | 10.30 |  |
| E1   | .295   | .323 | 7.50        | 8.20  |  |
| е    | .067   | BSC  | 1.70 BSC    |       |  |
| L    | .583   | .622 | 14.80       | 15.80 |  |
| L1   | .088   | .112 | 2.24        | 2.84  |  |
| L2   | .039   | .055 | 1.00        | 1.40  |  |
| L3   | .047   | .067 | 1.20        | 1.70  |  |

- 1. All metal surface are solder plated except trimmed area.
- 2.
- Short lead of No. 3 is optional of IXYS. No. 3 lead is connected to No. 6 lead (bottom heat sink) internally. 3.

IXYS Semiconductor GmbH Edisonstrasse15 ; D-68623; Lampertheim Tel: +49-6206-503-0; Fax: +49-6206-503627 e-mail: marcom@ixys.de