

- 14-bit resolution
- 2MHz sampling rate
- No missing codes
- Functionally complete
- Small 24-pin DDIP or SMT package
- Low power, 1.8 Watts
- Operates from $\pm 15 \mathrm{~V}$ or $\pm 12 \mathrm{~V}$ supplies \& +5 V supply
- Edge-triggered; No pipeline delays
- Unipolar 0 to +10V input range

PRODUCT OVERVIEW

The ADS-919 is a high-performance, 14-bit, 2 MHz sampling A/D converter. This device accurately samples full-scale input signals up to Nyquist frequencies with no missing codes. The ADS-919 features outstanding dynamic performance including a THD of -74 dB .

Housed in a small 24-pin DDIP or SMT (gullwing) package, the functionally complete ADS-919 contains afast-settling sample-hold amplifier, a subranging (two-pass) A/D converter, a precise voltage
reference, timing/control logic, and error correction circuitry. Digital input and output levels are TTL.

Requiring $\pm 15 \mathrm{~V}$ (or $\pm 12 \mathrm{~V}$) and +5 V supplies, the ADS-919 typically dissipates 1.8 W (1.5W for $\pm 12 \mathrm{~V}$). The unit is offered with a unipolar input (0 to +10 V). Models are available for use in either commercial (0 to $+70^{\circ} \mathrm{C}$) or HI-REL (-55 to $+125^{\circ} \mathrm{C}$) operating temperature ranges. Applications include radar, sonar, spectrum analysis, and graphic/medical imaging.

NNPUT/OUTPUT CONNECTIONS			
PIN	FUNCTION	PIN	FUNCTION
1	BIT 14 (LSB)	24	-12V/-15V SUPPLY
2	BIT 13	23	ANALOG GROUND
3	BIT 12	22	+12V/+15V SUPPLY
4	BIT 11	21	+10V REFERENCE OUT
5	BIT 10	20	ANALOG INPUT
6	BIT 9	19	ANALOG GROUND
7	BIT 8	18	BIT 1 (MSB)
8	BIT 7	17	BIT 2
9	BIT 6	16	START CONVERT
10	BIT 5	15	$\overline{\text { EOC }}$
11	BIT 4	14	DIGITAL GROUND
12	BIT 3	13	+5V SUPPLY

BLOCK DIAGRAM

Figure 1. ADS-919 Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS			PHYSICAL/ENVIRONMENTAL				
PARAMETERS	LIMITS	UNITS	PARAMETERS	MIN.	TYP.	MAX.	UNITS
+12V/+15V Supply (Pin 22)	0 to +16	Volts	Operating Temp. Range, Case				
-12V/-15V Supply (Pin 24)	0 to -16	Volts	ADS-919MC, GC	0	-	+70	${ }^{\circ} \mathrm{C}$
+5V Supply (Pin 13)	0 to +6	Volts	ADS-919MM, GM	-55	-	+125	${ }^{\circ} \mathrm{C}$
Digital Input (Pin 16)	-0.3 to + Vod +0.3	Volts	Thermal Impedance				
Analog Input (Pin 20)	-4 to +17	Volts		-	6	-	${ }^{\circ} \mathrm{C}$ Watt
Lead Temperature (10 seconds)	+300	${ }^{\circ} \mathrm{C}$	$\theta c a$	-	24	-	${ }^{\circ} \mathrm{C}$ Watt
			Storage Temperature Range	-65	-	+150	${ }^{\circ} \mathrm{C}$
			Package Type	24-pin, metal-sealed, ceramic DDIP or SMT			
			Weight	0.42 ounces (12 grams)			

FUNCTIONAL SPECIFICATIONS
($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \pm \mathrm{VCC}= \pm 15 \mathrm{~V}$ (or $\pm 12 \mathrm{~V}$), $+\mathrm{V} D \mathrm{D}=+5 \mathrm{~V}, 2 \mathrm{MHz}$ sampling rate, and a minimum 1 minute warmup (1) unless otherwise specified.)

ANALOG INPUT	$+25^{\circ} \mathrm{C}$			$0 \mathrm{TO}+70^{\circ} \mathrm{C}$			$-55 \mathrm{TO}+125^{\circ} \mathrm{C}$			UNITS
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Input Voltage Range (2)	-	0 to +10	-	-	0 to +10	-	-	0 to +10	-	Volts
Input Resistance	-	1	-	-	1	-	-	1	-	k Ω
Input Capacitance	-	7	15	-	7	15	-	7	15	pF
DIGITAL INPUT										
Logic Levels										
Logic "1"	+2.0	-	-	+2.0	-	-	+2.0	-	-	Volts
Logic "0"	-	-	+0.8	-	-	+0.8	-	-	+0.8	Volts
Logic Loading "1"	-	-	+20	-	-	+20	-	-	+20	$\mu \mathrm{A}$
Logic Loading "0"	-	-	-20	-	-	-20	-	-	-20	$\mu \mathrm{A}$
Start Convert Positive Pulse Width (3)	20	200	-	20	200	-	20	200	-	ns
STATIC PERFORMANCE										
Resolution	-	14	-	-	14	-	-	14	-	Bits
Integral Nonlinearity (fin $=10 \mathrm{kHz}$)	-	± 0.5	-	-	± 0.75	-	-	± 1	-	LSB
Differential Nonlinearity ($\mathrm{fin}=10 \mathrm{kHz}$)	-	± 0.5	+0.95	-	± 0.5	± 0.95	-	± 0.5	+0.99	LSB
Full Scale Absolute Accuracy	-	± 0.1	± 0.3	-	± 0.2	± 0.4	-	± 0.4	± 0.8	\%FSR
Unipolar Offset Error (Tech Note 2)	-	± 0.1	± 0.25	-	± 0.2	± 0.4	-	± 0.4	± 1.25	\%FSR
Gain Error (Tech Note 2)	-	± 0.1	± 0.3	-	± 0.3	$\pm .05$	-	± 0.5	± 1	\%
No Missing Codes (fin $=10 \mathrm{kHz}$)	14	-	-	14	-	-	14	-	-	Bits
DYNAMIC PERFORMANCE										
500 kHz to 1 MkHz	-	-76	-70	-	-76	-70	-	-74	-69	dB
Total Harmonic Distortion (-0.5 dB) dc to 500 kHz 500 kHz to 1 MkHz	-	$\begin{aligned} & -74 \\ & -74 \end{aligned}$	-70 -70	-	-74 -74	-70 -70	-	-73 -73	$\begin{aligned} & -69 \\ & -68 \end{aligned}$	dB
(w/o distortion, -0.5 dB)										
dc to 500 kHz	74	77	-	74	77	-	71	76	-	dB
500 kHz to 1 MkHz	74	77	-	74	77	-	71	75	-	dB
Signal-to-Noise Ratio (4)										
(\& distortion, -0.5 dB)										
dc to 500 kHz	70	74	-	70	74	-	68	73	-	dB
500 kHz to 1 MkHz	70	74	-	70	74	-	68	72	-	dB
Two-tone Intermodulation										
Distortion (fin $=200 \mathrm{kHz}$, 500 kHz , $\mathrm{f}=2 \mathrm{MHz}-0.5 \mathrm{~dB}$)	-	-80	-	-	-80	-	-	-79	-	dB
Noise	-	300	-	-	350	-	-	450	-	$\mu \mathrm{Vrms}$
Input Bandwidth (-3 dB)										
Small Signal (-20dB input)	-	9	-	-	9	-	-	9	-	MHz
Large Signal (-0.5 dB input)	-	8	-	-	8	-	-	8	-	MHz
Feedthrough Rejection (fin $=1 \mathrm{MHz}$)	-	82	-	-	82	-	-	82	-	dB
Slew Rate	-	± 200	-	-	± 200	-	-	± 200	-	V/ LS
Aperture Delay Time	-	± 20	-	-	± 20	-	-	± 20	-	ns
Aperture Uncertainty	-	5	-	-	5	-	-	5	-	ps rms
S/H Acquisition Time										
Overvoltage Recovery Time (5)	-	400	500	-	400	500	-	400	500	ns
A/D Conversion Rate	2	-	-	2	-	-	2	-	-	MHz

DATEL is a registered trademark of Murata Power Solutions - 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

	$+25^{\circ} \mathrm{C}$			0 to $+70^{\circ} \mathrm{C}$			-55 to $+125^{\circ} \mathrm{C}$			
ANALOG OUTPUT	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	UNITS
Internal Reference										
Voltage	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	+9.95	+10.0	+10.05	Volts
Drift	-	± 5	-	-	± 5	-	-	± 5	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
External Current	-	-	1.5	-	-	1.5	-	-	1.5	mA
DIGITAL OUTPUTS										
Logic Levels										
Logic "1"	+2.4	-	-	+2.4	-	-	+2.4	-	-	Volts
Logic "0"	-	-	+0.4	-	-	+0.4	-	-	+0.4	Volts
Logic Loading "1"	-	-	-4	-	-	-4	-	-	-4	mA
Logic Loading "0"	-	-	+4	-	-	+4	-	-	+4	mA
Delay, Falling Edge of EOC to										
Output Coding					ight Bin					
POWER REQUIREMENTS , $\pm 15 \mathrm{~V}$										
Power Supply Ranges										
+15V Supply	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	Volts
-15V Supply	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Currents										
+15V Supply	-	+45	+60	-	+45	+60	-	+45	+60	mA
-15V Supply	-	-45	-60	-	-45	-60	-	-45	-60	mA
+5V Supply	-	+85	+95	-	+85	+95	-	+85	+95	mA
Power Dissipation	-	1.8	2.2	-	1.8	2.2	-	1.8	2.2	Watts
Power Supply Rejection	-	-	± 0.02	-	-	± 0.02	-	-	± 0.02	\%FSR/\%V
POWER REQUIREMENTS, $\pm 12 \mathrm{~V}$										
Power Supply Ranges										
+12V Supply	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	+11.5	+12.0	+12.5	Volts
-12V Supply	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	-11.5	-12.0	-12.5	Volts
+5V Supply	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	Volts
Power Supply Currents										
+12V Supply	-	+45	+65	-	+45	+65	-	+45	+65	mA
-12V Supply	-	-45	-60	-	-45	-60	-	-45	-60	mA
+5V Supply	-	+85	+95	-	+85	+95	-	+85	+95	mA
Power Dissipation	-	1.5	1.7	-	1.5	1.7	-	1.5	1.7	Watts
Power Supply Rejection	-	-	± 0.02	-	-	± 0.02	-	-	± 0.02	\%FSR/\%V

Footnotes:

(1) All power supplies must be on before applying a start convert pulse. All supplies and the clock (START CONVERT) must be present during warmup periods. The device must be continuously converting during this time. There is a slight degradation in performance when using $\pm 12 \mathrm{~V}$ supplies.
(2) See Ordering Information for availability of $\pm 5 \mathrm{~V}$ input range. Contact DATEL for availability of other input voltage ranges.
(3) A 2 MHz clock with a 200 ns wide start convert pulse is used for all production testing. See Timing Diagram for more details.
(4) Effective bits is equal to:
$\frac{(\text { SNR }+ \text { Distortion })-1.76+\left[20 \log \frac{\text { Full Scale Amplitude }}{\text { Actual Input Amplitude }}\right]}{6.02}$
(5) This is the time required before the A / D output data is valid once the analog input is back within the specified range.

TECHNICAL NOTES

1. Obtaining fully specified performance from the ADS-919 requires careful attention to pc-card layout and power supply decoupling. The device's analog and digital ground systems are connected to each other internally. For optimal performance, tie all ground pins (14, 19 and 23) directly to a large analog ground plane beneath the package.
Bypass all power supplies and the REFERENCE OUTPUT (pin 21) to ground with $4.7 \mu \mathrm{~F}$ tantalum capacitors in parallel with $0.1 \mu \mathrm{~F}$ ceramic capacitors. Locate the bypass capacitors as close to the unit as possible. If the userinstalled offset and gain adjusting circuit shown in Figure 2 is used, also locate it as close to the ADS-919 as possible.
2. The ADS-919 achieves its specified accuracies without the need for external calibration. If required, the device's small initial offset and gain errors
can be reduced to zero using the input circuit of Figure 2. When using this circuit, or any similar offset and gain-calibration hardware, make adjustments following warmup. To avoid interaction, always adjust offset before gain.
3. When operating the ADS-919 from $\pm 12 \mathrm{~V}$ supplies, do not drive external circuitry with the REFERENCE OUTPUT. The reference's accuracy and drift specifications may not be met, and loading the circuit may cause accuracy errors within the converter.
4. Applying a start convert pulse while a conversion is in progress ($\overline{\mathrm{EOC}}=$ logic "1") initiates a new and inaccurate conversion cycle. Data from the interrupted and subsequent conversions will be invalid.

CALIBRATION PROCEDURE (Refer to Figures 2 and 3)

Any offset and/or gain calibration procedures should not be implemented until devices are fully warmed up. To avoid interaction, offset must be adjusted before gain. The ranges of adjustment for the circuit of Figure 2 are guaranteed to compensate for the ADS-919's initial accuracy errors and may not be able to compensate for additional system errors.

All fixed resistors in Figure 2 should be metal-film types, and multiturn potentiometers should have TCR's of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or less to minimize drift with temperature.
A/D converters are calibrated by positioning their digital outputs exactly on the transition point between two adjacent digital output codes. This can be accomplished by connecting LED's to the digital outputs and adjusting until certain LED's "flicker" equally between on and off. Other approaches employ digital comparators or microcontrollers to detect when the outputs change from one code to the next.

For the ADS-919, offset adjusting is normally accomplished at the point where the output bits are 0 's and the LSB just changes from a 0 to a 1. This digital output transition ideally occurs when the applied analog input is $+1 / 2 \mathrm{LSB}(+305 \mu \mathrm{~V})$.

Figure 2. ADS-919 Calibration Circuit

Gain adjusting is accomplished when all bits are 1's and the LSB just changes from a 1 to a 0 . This transition ideally occurs when the analog input is at +full scale minus $11 / 2$ LSB's $(+9.999085 \mathrm{~V})$.

Zero/Offset Adjust Procedure

1. Apply a train of pulses to the START CONVERT input (pin 16) so the converter is continuously converting. If using LED's on the outputs, a 200 kHz conversion rate will reduce flicker.
2. Apply $+305 \mu \mathrm{~V}$ to the ANALOG INPUT (pin 20).
3. Adjust the offset potentiometer until the output bits are all 0's and the LSB flickers between 0 and 1.

Gain Adjust Procedure

1. Apply +9.999085 V to the ANALOG INPUT (pin 20).
2. Adjust the gain potentiometer until the output bits are all 1 's and the LSB flickers between 1 and 0 .

Table 1. Zero and Gain Adjust

INPUT VOLTAGE RANGE	$\begin{aligned} & \text { ZERO ADJUST } \\ & +1 / 2 \text { LSB } \end{aligned}$	GAIN ADJUST +FS -11/2 LSB	
0 to +10V	+305 V	+9.999085V	
Table 2. Output Coding			
INPUT VOLTAGE(0 T0 +10V)	UNIPOLAR SCALE	DIGITAL OUTPUT	
		$\begin{gathered} \text { OFFSET } \\ \text { MSB } \end{gathered}$	$\begin{aligned} & \text { BINARY } \\ & \text { LSB } \end{aligned}$
+9.999390	+FS -1LSB	11111111111111	
+7.500000	+3/4 FS	11000000000000	
+5.000000	+1/2 FS	10000000000000	
+2.500000	+1/4 FS	01000000000000	
+0.000610	+1LSB	00000000000001	
0.000000	0	00000000000000	

Coding is straight binary; $1 \mathrm{LSB}=610 \mu \mathrm{~V}$.

Figure 3. Typical ADS-919 Connection Diagram
DATEL is a registered trademark of Murata Power Solutions • 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

THERMAL REQUIREMENTS

All DATEL sampling A/D converters are fully characterized and specified over operating temperature (case) ranges of 0 to $+70^{\circ} \mathrm{C}$ and -55 to $+125^{\circ} \mathrm{C}$. All room-temperature ($\mathrm{TA}=+25^{\circ} \mathrm{C}$) production testing is performed without the use of heat sinks or forced-air cooling. Thermal impedance figures for each device are listed in their respective specification tables.

These devices do not normally require heat sinks, however, standard precautionary design and layout procedures should be used to ensure
devices do not overheat. The ground and power planes beneath the package, as well as all pcb signal runs to and from the device, should be as heavy as possible to help conduct heat away from the package.

Electrically-insulating, thermally-conductive "pads" may be installed underneath the package. Devices should be soldered to boards rather than "socketed," and of course, minimal air flow over the surface can greatly help reduce the package temperature.

Notes: 1. $\mathrm{fs}_{\mathrm{s}}=2 \mathrm{MHz}$.
2. The ADS-919 is an edge-triggered device. All internal operations are triggered by the rising edge of the start convert pulse, which may be as narrow as 20 nsec . All production testing is performed at a 2 MHz sampling rate with 200 nsec wide start pulses. For lower sampling rates, wider start pulses may be used, however, a minimum pulse width low of 20 nsec must be maintained.

Figure 4. ADS-919 Timing Diagram

DATEL is a registered trademark of Murata Power Solutions • 11 Cabot Boulevard, Mansfield, MA 02048-1151 USA • Tel: (508) 339-3000 • www.datel.com • e-mail: help@datel.com

$(\mathrm{fs}=2 \mathrm{MHz}$, fin $=975 \mathrm{kHz}$, Vin $=-0.5 \mathrm{~dB}, 16,384-$ point FFT $)$
Figure 6. ADS-919 FFT Analysis

Figure 7. ADS-919 Histogram and Differential Nonlinearity

ADS-919

MECHANICAL DIMENSIONS INCHES (mm)			
24-Pin DDIP Versions ADS-919MC ADS-919MM ADS-929MC ADS-929MM ADS-929/883		0.80 MAX . (20.32)	Dimension Tolerances (unless otherwise indicated): 2 place decimal $(. X X) \pm 0.010(\pm 0.254)$ 3 place decimal $(. X X X) \pm 0.005(\pm 0.127)$ Lead Material: Kovar alloy Lead Finish: 50 microinches (minimum) gold plating over 100 microinches (nominal) nickel plating
24-Pin Surface Mount Versions ADS-919GC ADS-919GM ADS-929GC ADS-929GM			Dimension Tolerances (unless otherwise indicated): 2 place decimal (.XX) $\pm 0.010(\pm 0.254)$ 3 place decimal $(. X X X) \pm 0.005(\pm 0.127)$ Lead Material: Kovar alloy Lead Finish: 50 microinches (minimum) gold plating over 100 microinches (nominal) nickel plating

ORDERING INFORMATION				
MODEL NUMBER	OPERATING TEMP. RANGE	ANALOG INPUT		ACCESSORIES
ADS-919MC	0 to $+70^{\circ} \mathrm{C}$	Unipolar (0 to +10V)	ADS-B919/929	Evaluation Board (without ADS-919)
ADS-919MM	-55 to $+125^{\circ} \mathrm{C}$	Unipolar (0 to +10V)	HS-24	Heat Sinks for all ADS-919/929 DDIP models
ADS-919GC	0 to $+70^{\circ} \mathrm{C}$	Unipolar (0 to +10V)	Receptacles for PC board mounting can be ordered through AMP Inc. Part \#3-331272-8 (Component Lead Socket), 24 required. For MIL-STD-883 product specifications, contact DATEL. * For information, see ADS-929 data sheet.	
ADS-919GM	-55 to $+125^{\circ} \mathrm{C}$	Unipolar (0 to +10V)		
ADS-929MC	0 to $+70^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$ *		
ADS-929MM	-55 to $+125^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$)*		
ADS-929GC	0 to $+70^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$ *		
ADS-929GM	-55 to $+125^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V})^{*}$		
ADS-929/883	-55 to $+125^{\circ} \mathrm{C}$	Bipolar ($\pm 5 \mathrm{~V}$ * ${ }^{\text {* }}$		

DATEL is a registered trademark of
Murata Power Solutions, Inc.
11 Cabot Boulevard, Mansfield, MA 02048-1151 USA
ITAR and ISO 9001/14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

