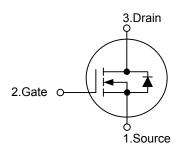
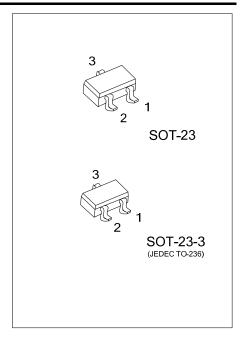


UNISONIC TECHNOLOGIES CO., LTD

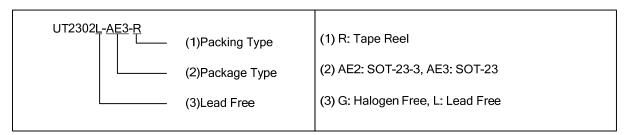
UT2302 **Power MOSFET**

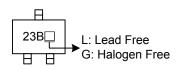

N-CHANNEL ENHANCEMENT MODE


DESCRIPTION

The UTC UT2302 is N-channel Power MOSFET, designed with high density cell, with fast switching speed, ultra low on-resistance, and excellent thermal and electrical capabilities.

Used in commercial and industrial surface mount applications and suited for low voltage applications such as DC/DC converters.


SYMBOL



ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT2302L-AE2-R	UT2302G-AE2-R	SOT-23-3	S	G	D	Tape Reel	
UT2302L-AE3-R	UT2302G-AE3-R	SOT-23	S	G	D	Tape Reel	

MARKING

UT2302

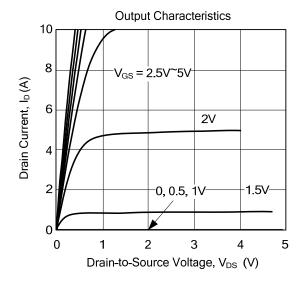
■ **ABSOLUTE MAXIMUM RATINGS** (Ta = 25°C, unless otherwise specified)

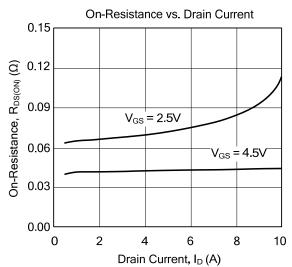
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	20	V	
Gate-Source Voltage		V_{GSS}	±8	V	
Desir Occurrent (Nata 4)	Continuous	I _D 2.4		Α	
Drain Current (Note 1)	Pulsed	I _{DM}	10	Α	
Power Dissipation		P_D	1.25	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T_{STG}	-55 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

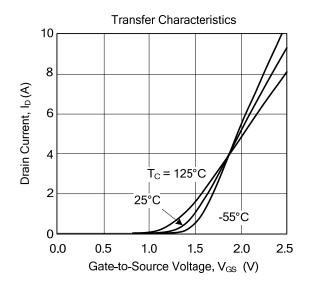
■ THERMAL DATA

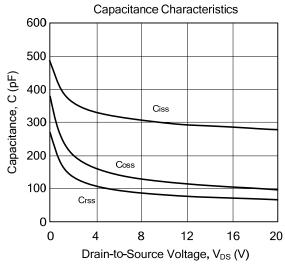
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Junction to Ambient (Note 3)	θ_{JA}			100	°C/W

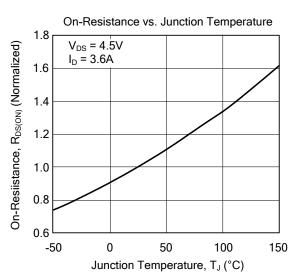

■ ELECTRICAL CHARACTERISTICS (Ta =25°C, unless otherwise specified)

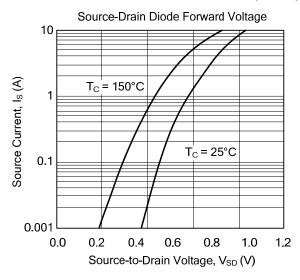

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
OFF CHARACTERISTICS									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0 V, I _D =250 μA	20			>			
Drain-Source Leakage Current	I _{DSS}	V _{DS} =20 V, V _{GS} =0 V			1.0	μΑ			
Gate-Source Leakage Current	I _{GSS}	V_{DS} =0 V, V_{GS} = ±8V			±100	nA			
ON CHARACTERISTICS									
Gate-Threshold Voltage	$V_{GS(TH)}$	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	0.45			V			
Static Drain-Source On-State Resistance	R _{DS(ON)}	V_{GS} =4.5 V, I_{D} =7.2 A			50	mΩ			
Static Dialii-Source Oil-State Resistance		V _{GS} =2.5 V, I _D =3.1 A		75	95	mΩ			
On State Drain Current (Note2)	I _{D(ON)}	$V_{DS} \ge 5V$, $V_{GS} = 4.5 V$	6			Α			
DYNAMIC PARAMETERS									
Input Capacitance	C _{ISS}			450		pF			
Output Capacitance	Coss			70		pF			
Reverse Transfer Capacitance	C _{RSS}			43		pF			
SWITCHING PARAMETERS									
Turn-ON Delay Time	t _{D(ON)}			7	15	ns			
Turn-ON Rise Time	t _R	V_{DD} =10V, R _L =10 Ω , I _D =1A,		55	80	ns			
Turn-OFF Delay Time	t _{D(OFF)}	V_{GEN} =4.5V, R_G =6 Ω		16	60	ns			
Turn-OFF Fall-Time	t _F			10	25	ns			
Total Gate Charge	Q_{G}			5.2	10	nC			
Gate-Source Charge	Q_GS	V_{DS} =10V, V_{GS} =4.5 V, I_{D} =3.6 A		0.65		nC			
Gate-Drain Charge	Q_GD			1.5		nC			
DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS									
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} =0 V, I _S =1.0 A		0.76	1.2	V			
Maximum Continuous Drain-Source					1.6	Λ			
Diode Forward Current	I _S				1.6	Α			
Marca 4 December - Darbert Diller - 100 Peet	=								

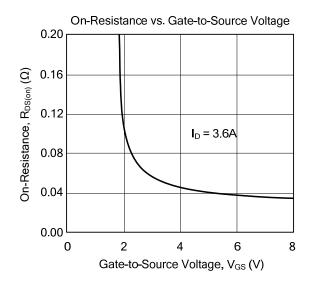
Note:1. Repetitive Rating: Pulse width limited by $T_{\rm J}$

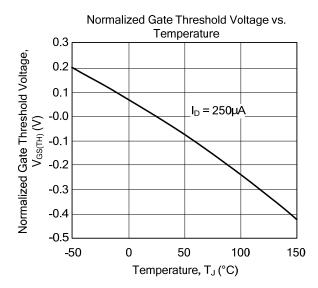

- 2. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%
- 3. Surface mounted on 1 in² copper pad of FR4 board

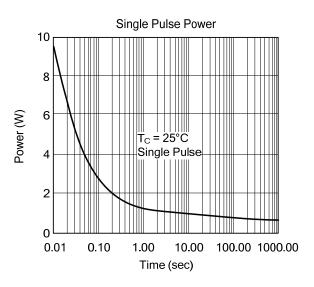

■ TYPICAL CHARACTERISTICS

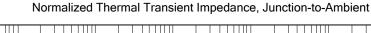


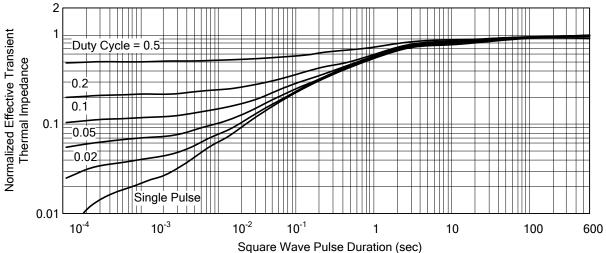









■ TYPICAL CHARACTERISTICS(Cont.)



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.