MOTOROLA

 SEMICONDUCTORS MC6800

3501 ED BLUESTEIN BLVD AUSTIN TEXAS 78721

8-BIT MICROPROCESSING UNIT (MPU) MOS

The MCB800 is a monolithic 8-bit microprocessor forming the central (N-CHANNEL, SILICON-G
control function for Motorola's M6800 family. Compatible with TTL, the DEPLETION LOAD,
MCB800, as with all M6800 system parts, requires only one + 5.0-volt
power supply, and no external TTL devices for bus interface.

The MCB800 is capable of addressing 64K bytes of memory with its
16-bit address lines. The 8-bit data bus is bidirectional as well as three-
state, making direct memory addressing and multiprocessing applica-
tions realizable.

® 8-Bit Parallel Processing

S SUFFIX

@ Bidirectional Data Bus CER%‘;'SZA%ZAGE
® 16-Bit Address Bus — 64K Bytes of Addressing
® 72 Instructions — Variable Length
® Seven Addressing Modes — Direct, Relative, Immediate, Indexed,
Extended, Implied and Accumulator P SUFFIX
® Variable Length Stack PLASTIC PACKAGE
CASE 711
® Vectored Restart
® Maskable Interrupt Vector
@ Separate Non-Maskable Interrupt — Internal Registers Saved
Stack
@ Six Internal Registers — Two Accumulators, Index Register, L SUFFIX
Program Counter, Stack Pointer and Condition Code Re%igster‘\ CERAMIC PACKAGE
® Direct Memory Addressing {DMA) and Multiple P sor CASETI5
Capability
® Simplified Clocking Characteristics
® Clock Rates as High as 2.0 MHz
@ Simple Bus Interface Without TTL PIN ASSIGNMENT
@ Halt and Single Instruction Executi Vssllt @ p\ 40[IRESET
HALTQ 2 39[1TSC
#1032 slIN.C.
Rag4 37142
vMalls 36 [1DBE
NMmi[s 3s[IN.C.
DERING INFORMATION sall7 34 :]R/W
quency (MHz) Temperature Order Number veell s 33{1D0
1.0 0°C to 70°C MCB800L Aclle 320101
1.0 —40°C to 85°C MCB800CL
15 0°C o 70°C | MCEBACOL Ao 31[ID2
15 —40°C to 85°C MCB8A00CL A0 30 JD3
2.0 0°C to 70°C MCB8BOOL a3t 12 29[1D4
1.0 0°C to 70°C MCB800S
S Suffix 1.0 —40°C 10 85°C | MCB800CS Adlp3 28105
1.5 0°C to 70°C MCB8AC0S A5{J14 271106
1.5 —40°C to 85°C MCB8A00CS
15 26 [1D7
2.0 0°C to 70°C MCB88C0S A8l !
Plastic 10 0°C 10 70°C | MCGB00P A706 BUATS
P Suffix 1.0 —40°C to 85°C MCB800CP Asl7 24[1A14
1.5 0°C to 70°C MC68A00P
A13
15 ~40°C 10 85°C | MCBBAQOCP Aol 24
2.0 0°C to 70°C MC688C0P At10T19 22 sz
FER:) 21fVss

©MOTOROLA INC., 1984 DS9471-R2

MAXIMUM RATINGS

Rating Symbol Value Unit |

Supply Voltage Vee -03t0 4701 V
Input Volitage Vin -03tc +7.0 4 This device contains circuitry to protect the
Operating Temperature Range T to TH inputs against damage due to high static
MCE800, MC68A00, MCB8B00 TA 0to +70 °C voltages or electrical fields; however, it is ad-
MCB800C, MCEBA00C -40t0 +85 vised that normal precautions be taken to
Storage Temperature Range Tstg ~B5to +160 | °C avoid application of any voltage higher than
maximum-rated voltages to this high-

impedance circuit. Reliability of operation i
enhanced if unused inputs are tied to an
propriate logic voltage le.g., either Vg

THERMAL RESISTANCE

Rating Symbol Value Unit Veel.
Plastic Package 100
Cerdip Package AT 60 °C/W
Ceramic Package 50

POWER CONSIDERATIONS

The average chip-junction temperature, T, in °C can be obtained from:
Ty=Ta+{(Ppeéjal

Where:
Ta=Ambient Temperature, °C
0 JA = Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT+PPORT
PiINT=lccx Ve, Watts — Chip Internal Power
PPORT=Port Power Dissipation, Watts — User Determin

For most applications PpPORT < P|NT and can be neglected. P
drive Darlington bases or sink LED loads.

An approximate relationship between Pp and T (if PPOR

(1

may become significant if the device is configured to

eglected) is:

Pp=K-+(Ty+273°C) (2)
Solving equations 1 and 2 for K gives:
K=Ppe(TA+273°C)+0 A ® PD2)

Where K is a constant pertaining to the parti K can be determmed from equatlon 3 by measuring PD (at eqwllbrlum)
for a known Ta. Using this value of K the v

value of TA.

Symbol Min Typ Max Unit
Logic VIH Vgg+2.0 — Vee v
¢1, 62| ViHC Ve —0.6 - Vee+0.3
Logic ViL Vgg—0.3 — |Vss+038 v
61,621 V¢ Vgg—-0.3 — Vss+04
Logic lin - 1.0 25 pA
o1, 2 - - 100
Do-D7 | - 2.0 10 A
AO-A15, R/W 4 - - 100 #
Hngh Voltage
Load= — 205 xA, Vec=Min) __Do-D7 v Vgg+24) — - v
U pag= —145 A, Voc=Min) AQ0-A15, R/W, VMA OH Vgs+24] - -
UL pad= —100 A, VcC=Min BA Vgs+24)7 - -
Output Low Voltage (I gad= 1.6 mA, V¢ = Min) VoL - - Vss+0.4 N
Internal Power Dissipation (Measured at Ta=T|) PiNT - 0.5 1.0 W
Capacitance
(Vin=0, TA=25°C, f=1.0 MH2) &1 - 25 35
62 Cin - 45 70 pF
DO-D7 - 10 125
Logic inputs - 6.5 10
AO-A15, R/W,VMA | Cout - — 12 pF

MOTOROLA Semiconductor Products Inc.
2

CLOCK TIMING (Vo =50V,

+5%, Vgg=0, TA=Ty to TH unless otherwise noted)

(Measured at Voy=Vsgs+ 1.0 V@t,=t1=<35 ns)

Characteristic Symbol Min Typ Max Unit
Frequency of Operation MC6800 0.1 - 1.0
MCB8A00 0.1 - 1.5 MHz
MCB8B00 01
Cycle Time (Figure 1) MC6800 1.000
MCB8A00 Teye 0.666
MCB8B00 0.500
Clock Pulse Width o1, 92 — MC6800 400
(Measured at Vo —0.6 V) ¢1, 92 — MCBEBADO | PWyH 230
@1, 92 — MCB8BO0 180
Total ¢1 and ¢2 Up Time MC6800 900
MCBBADO tut 600
MC68B0Q 440
Rise and Fall Time (Measured between Vgg+0.4 and Vcc—0.6) tr, tf —
Delay Time or Clock Separation {Figure 1}
(Measured at Voy=Vgg+0.6 V@1t;=tf=< 100 ns) td

FIGURE 1 — CLOCK TIMING WAVEFORM

Teye

tut

6,8,9, 11, 12 and 13)

MC6800 MC88A00 MCB8800 .
Symbol ~ - - Unit
Min | Typ | Max | Min | Typ | Max | Min | Typ | Max
Address Delay
C=90 pF tAD - — 270 | - - 180 — - 150 | ns
C=30 pF — - 260 | — - 165 - — 135
Peripheral Read Access
t 606 | — — 1400} — — 1290 | — — ns
tacc=tut— tAD+ ace
Data Setup Tim tDSR 100 - — 60 — - 40 — - ns
tH 10 - - 10 - — 10| — — ns
tH 10 25 - 10 25 — 10 25 - ns
tAH 30 50 - 30 50 — 30 50 — ns
tEH 450 | — - 280 — - 220 | — - ns
elay Time (Write) 1DDW = — 225 - - 200 - - 160 | ns
Processor Controls
Pracessor Control Setup Time tpCs 200 — - 140 — — 110 - -
Pracessor Control Rise and Fall Time tpCr, tPCE - - 100 | — - 100 | — - 100
Bus Available Delay tBA - — 280 | — - 165 | — - 135 ns
Hi-Z Enable tTSE 0 — 410 0 - 40 0 - 40
Hi-Z Delay tTSD - - 270 | — - 270 | — - 220
Data Bus Enable Down Time During ¢1 Up Time tDBE 180 | — - 120 [— — 75 - —
Data Bus Enable Rise and Fall Times tDBEr. 'DBEf | — - 25 - - 25 - - 25

@ MOTOROLA Semiconductor Products Inc.
3

/

FIGURE 2 — READ DATA FROM MEMORY OR PERIPHERALS

Start of Cycle

®
142

——]

N

" Vine
g4V

-~ 1

\

/

2.4V
R/W

tAD

Address 2.4V

From MPLU 04 v

tAD

24V
VMA

tace

tAD

Data

From Memory
or Peripherals

\\\“ Data Not Valid

2

FIGURE 3 — WRITE IN MEMORY OR

o Start of Cycle

1 "ViHe
—_— 0.4V
¢2 \
R/W

0.4 V A\
- —rtAH
Address 24V ssarpemr—"
From MPU 0.4 \/.

TEH

=

k—tDBEf, —={ [=—tDBEr ty
f—-—

2.4v |

Data

From MPU

NN pata Not valid

NOTES:

le—tDDW-—=

Data Valid

1. Voltage levels shown are V| 0.4, VH=2.4 V, unless otherwise specified.

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted.

@ MOTOROLA Semiconductor Products Inc.
) .

DELAY TIME (ns)

FIGURE 4 — TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (Tppw)

FIGURE 6 — BUS TIMING TEST

800 [=205 sA max @ 28 V
FlgL=1.6mAmax @04V
500 VCC =50V
i Tp=25°C
400
300 —
]
200
—
,//
L
100 —=
Cy includes stray capacitance
0 0 100 200 300 400 500 600
CL, LOAD CAPACITANCE {pF)
Vee
R =22 k2
Test Point MMD6150

or Equiv.

5

DELAY TIME (ng)

MOTOROLA Semiconductor Products Inc.

FIGURE 5 — TYPICAL READ/WRITE, VMA, AND ADDRESS
OUTPUT DELAY versus CAPACITIVE LOADING (Tap)

800 I 01 "=—145 uA max @ 2.4 v

FloL=1.6mAmax @ 0.4V

| Vee=5.0V
800 Frp s osc
400
300
200 —

,/;'/
100 -
CL includes stray capatitance
00 100 200, 400 500 500

\)'CAPACITANCE (pF)

TEST CONDITIONS

The dynamic test load for the Data Bus is
130 pF and one standard TTL load as shown.
The Address, R/W, and VMA outputs are tested
under two conditions to allow optimum opera-
tion in both buffered and unbuffered systems.
The resistor (R) is chosen to insure specified
load currents during VoH measurement.

Notice that the Data Bus lines, the Address
lines, the Interrupt Request line, and the DBE
line are all specified and tested to guarantee
0.4 V of dynamic noise immunity at both
1" and ‘0"’ logic levels.

Clock, ¢1

Clock, ¢2

RESET

Non-Maskable interrupt
HALT

Interrupt Request
Three-State Control
Data Bus Enable

Bus Available

Valid Memory Address

Read/Write, R/W

Vee=Pin 8
Vgg=Pins 1, 21

A15 Al4 A13 A2 AlM

25

!

FIGURE 7 — EXPANDED BLOCK DIAGRAM

A10 A9 AB
24 23 22 20 19 18 17

A B

A7 A6 A5 A4 A3 AZ Al
16 15 14 13 12 1" 10

.

Output

Buffers

Output
Buffers

3 ——
37 —
40— Program
6 | Counter H
2—®1 |pstruction
4—p Decode Stack
and Pointer H
39 > Control
36 - index Index
7 -] Register 4| Register |
5 -
34 ~— Accumulator
] -
Instruction Accumulator
Register B
Condition
Code
Register
ALU

@ MOTOROLA Semiconductor Products Inc.
~ . 6

'

28 29 30 A 32 33
D6 D4 D3 D2 DV DO

MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control
and timing signals be provided to accomplish specific func-
tions and that other signal lines be monitored to determine
the state of the processor.

Clocks Phase One and Phase Two (¢1, ¢2) — Two pins
are used for a two-phase non-overlapping clock that runs at
the V¢ voltage level.

Figure 1 shows the microprocessor clocks. The high level
is specified at ViHC and the low level is specified at ViLC.
The allowable clock frequency is specified by f (frequency).
The minimum ¢1 and ¢2 high level pulse widths are specified
by PWgH (pulse width high time). To guarantee the required
access time for the peripherals, the clock up time, tyt, is
specified. Clock separation, tg, is measured at a maximum
voltage of Vv {overlap voltage). This aliows for a multitude
of clock variations at the system frequency rate.

Address Bus {AO-A15) — Sixteen pins are used for the ad-
dress bus. The outputs are three-state bus drivers capable of
driving one standard TTL load and 90 pF. When the output is
turned off, it is essentially an open circuit. This permits the
MPU to be used in DMA applications. Putting TSC in its high
state forces the Address bus to go into the three-state mode.

Data Bus (D0-D7) — Eight pins are used for the data bus.
It is bidirectional, transferring data to and from the memory
and peripheral devices. it also has three-state output buffers
capable of driving one standard TTL load and 130 pF. D
Bus is placed in the three-state mode when DBE is lo

Data Bus Enable (DBE) — This level sensitive i
three-state control signal for the MPU data &
enable the bus drivers when in the high sta
TTL compatible; however in normal op
driven by the phase two clock. Durin
the data bus drivers will be disabl
desired that another device contrg
Direct Memory Access (DMA),
held low. ;

If additional data setup,gr holditime is required on an MPU
write, the DBE down n be decreased, as shown in
Figure 3 (DBE#¢2 ‘winimum down time for DBE is
tDRE as shown.. ng DBE with respect to E, data
setup or hold t be increased.

read cycle,

rnally. When it is
ata bus, such as in
ns, DBE should be

{BA} — The Bus Available signal will nor-
ow state; when activated, it will go to the
indicating that the microprocessor has stopped
I e address bus is available. This will occur if the
HALTHine is in the low state or the processor is in the WAIT
state as a resuit of the execution of a WAIT instruction. At
such time, all three-state output drivers will go to their off
state and other outputs to their normally inactive level. The
processor is removed from the WAIT state by the occurrence
of a maskable (mask bit | =0) or nonmaskable interrupt. This
output is capable of driving one standard TTL load and
30 pF. if TSC is in the high state, Bus Available will be low.

Read/Write (R/W) — This TTL compatible output signals
the peripherals and memory devices wether the MPU isin a

@ MOTOROLA Semiconductor Products Inc.

7

Read (high) or Write (low) state. The normal standby state of
this signal is Read (high). Three-State Cantrol going high will
turn Read/Write to the off (high impedance) state. Also,
when the processor is halted, it will be in the off state. This
output is capable of driving one standard TTL lo
90 pF. “

RESET — The RESET input is used to res
MPU from a power down condition resulti
failure or initial start-up of the processor
input can also be used to reinitialize tl
after start-up.

If a high level is detected in thi
MPU to begin the reset se

this will signal the
e. During the reset se-
locations (FFFE, FFFF)

routine, the interrupt '+
under program ol before the MPU can be interrupted by
ow (assuming a minimum of 8 clock
the MPU output signals will be in the

lence using the RESET control line. After the power
pply reaches 4.76 V, a minimum of eight clock cycles are
duired for the processor to stabilize in preparation for
starting. During these eight cycles, VMA will be in an in-
determinate state so any devices that are enabled by VMA
which could accept a false write during this time {such as
battery-backed RAM) must be disabled until VMA is forced
low after eight cycles. RESET can go high asynchronously
with the system clock any time after the eighth cycle.

RESET timing is shown in Figure 8. The maximum rise and
fall transition times are specified by tpcr and tpct. if RESET
is high at tpcs (processor control setup time), as shown in
Figure 8, in any given cycle then the restart sequence will
begin on the next cycle as shown. The RESET control line
may also be used 1o reinitialize the MPU system at any time
during its operation. This is accomplished by pulsing RESET
low for the duration of a minimum of three complete ¢2
cycles. The RESET pulse can be completely asynchronous
with the MPU system clock and will be recognized during ¢2
if setup time tpcg is met.

interrupt Request {IRQ) — This level sensitive input re-
quests that an interrupt sequence be generated within the
machine. The processor will wait until it completes the cur-
rent instruction that is being executed before it recognizes
the request. At that time, if the interrupt mask bit in the Con-
dition Code Register is not set, the machine will begin an in-
terrupt sequence. The Index Register, Program Counter, Ac-
cumulators, and Condition Code Register are stored away on
the stack. Next, the MPU will respond to the interrupt re-
quest by setting the interrupt mask bit high so that no further
interrupts may occur. At the end of the cycle, a 16-bit ad-
dress will be loaded that points to a vectoring address which
is located in memory locations FFF8 and FFF9. An address
loaded at these locations causes the MPU to branch to an in-
terrupt routine in memory. Interrupt timing is shown in
Figure 9.

8

"3U| $}NPOId 10}9NPUCOIURS W TOHOLOW

@_____

FIGURE 8 — RESET TIMING

wial [

|#8)#9\n n+1]ln+2|n+ 3

{fm
Power On o
swieen 4
Pawer 5.26 vV ii
Supply %,75 \
Lq— tPCs
RESET

fe tecr
XXX

FFFE FFFF_New PC

il mmmmmﬁ R
/w7 TR Wmmmw !
v+
X)(X X)C,",:X XXX
PC 8-15 PC 0-7 First

T A o .

RYTTTY - inceterminace

FFFE FFFE

‘d’:x_f

— INTERRUPT TIMING

#12 l #13 ’ #14 ; #15 l

Address
XX XXX
Next [nst SP(n) SP{n-1) SP{n-2] SP{n-3} SP(n-4) SP(n-5) SP(n-6) SP(n-7} FFF8 FFFQ New PC
'RQ Fetch Address Address Address
IRQ or \
NMI —
Interrupt
Mask /
XXX XX X X Xy XX
PCO-7 PC8-15 XO0-7 X 8-15 ACCA ACCB CCR New PC 8-15 New PC 0-7 First Inst of
Address Address Interrupt Routine

/
vin (Y S

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally white HALT
is low.

The IRQ has a high-impedance pullup device internal to
the chip; however, a 3 k@ external resistor to V¢ should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMi) and Wait for Interrupt
(WAI) — The MC6800 is capable of handling two types of in-
terrupts: maskable (TRQ) as described eariier, and_non-
maskable (NMI) which is an edge sensitive input. TRQ is
maskable by the interrupt mask in the condition code register
while NMT is not maskable. The handiing of these interrupts
by the MPU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in-
terrupt while the MPU is executing the control program. The
interrupt shown could be either IRQ or NMI and can be asyn-
chronous with respect to ¢2. The interrupt is shown going
fow at time tpCg in cycle #1 which precedes the first cycle of
an instruction (OP code fetch). This instruction is not ex-
ecuted but instead the Program Counter (PC), Index
Register (IX), Accumulators {ACCX), and the Condition
Code Register (CCR)} are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
from FFFC, FFFD for an NMl interrupt and from FFF8, FFFQ
for an TRQ interrupt. Upon completion of the interrupt ser-
vice routine, the execution of RTI will pull the PC, IX, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10).

Figure 11 is a similar interrupt sequence, except in thls
case, a WAIT instruction has been executed in prepar
for the interrupt. This technique speeds up the M
response to the interrupt because the stacking of th
ACCX, and the CCR is already done. While
waiting for the interrupt, Bus Available wilk
dicating the following states of the control li
and the Address Bus, R/W and Data B
impedance state. After the interrupt ¢
previously described.

A 3-10 k@ external resistor to V.
OR and optimum control of i

i in the high
t is serviced as

uld be used for wire-

RUPT VECTORS

MEMORY MAP

Description

Reset
Non-Maskable Interrupt
Software Interrupt
Interrupt Request

Figure 10 for program flow for Interrupts.

Three-State Control (TSC) — When the level sensitive
Three-State Control (TSC) line is a logic 1", the Address
Bus and the R/W line are placed in a high-impedance state.
VMA and BA are forced low when TSC=""1" to prevent
false reads or writes on any device enabled by VMA. it is
necessary to delay program execution while TSC is held
high. This is done by insuring that no transitions of ¢1 (or ¢2)
occur during this period. (Logic levels of the clocks are irrele-
vant so long as they do not changel. Since the MPU is a
dynamic device, the ¢1 clock can be stopped for a maximum

@ MOTOROLA Semiconductor Products Inc.

time PWgH without destroying data within the MPU. TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
have its transitions at tTg (three-state enable) while holding
&1 high and ¢2 low as shown. The Address Bus and R/W
line will reach the high-impedance state at tTSp (three—state
delay), W|th VMA bemg forced low. in this examg

ing held low since DBE= ¢2 At this point in tir MA
transfer could occur on cycles #3 and #4. V
returned low, the MPU Address and R/W
bus. Because it is too late in cycle £#5 to
cycle is dead and used for synchroni
tion resumes in cycie #6. ‘

emory, this
Frogram execu-

Valid Memory Address (V
peripheral devices that there"
bus. In normal operatio
enabling peripheral i
This signal is not thre

- This output indicates to
fid address on the address
nal should be utilized for
es such as the PIA and ACIA.
e. One standard TTL load and
en by this active high signal.

this level sensitive input is in the low state,
machine will be halted. This input is level

ALi line provides an input to the MPU 1o allow con-
of program execution by an outside source. If HALT is
the MPU will execute the instructions; if it is low, the
U will go to a halted or idle mode. A response signal, Bus
ailable (BA) provides an indication of the current MPU
status. When BA is low, the MPU is in the process of ex-
ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped.

When BA is high, the Address Bus, Data Bus, and R/W
tine will be in a high-impedance state, effectively removing
the MPU from the system bus. VMA is forced low so that the
floating system bus will not activate any device on the bus
that is enabled by VMA.

While the MPU is halted, all program activity is stopped,
and if either an NMI or IRQ interrupt occurs, it will be latched
into the MPU and acted on as soon as the MPU is taken out
of the halted mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA=low,
BA=low, Data Bus=high impedance, R/W=high (read
state}, and the Address Bus will contain address FFFE as
long as RESET is low. As soon as the RESET line goes high,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in-
struction. The transition of HALT must occur tpcs before
the trailing edge of @1 of the last cycle of an instruction
(point A of Figure 13). HALT must not go low any time later
than the minmum tpCS specified.

The fetch of the OP code by the MPU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during ¢2 of that cycle, .the MPU would have
halted after completion of the following instruction. BA will
go high by time tgA (bus available delay time) after the last
instruction cycle. At this point in time, VMA is low and R/W,
Address Bus, and the Data Bus are in the high-impedance
state.

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must
be brought high for one MPU cycle and then returned low as
shown at point B of Figure 13. Again, the transitions of
HALT must occur tpcg before the trailing edge of ¢1. BA
will go low at tga after the leading edge of the next ¢1, in-
dicating that the Address Bus, Data Bus, VMA and R/W

FIGURE 10 — MPU FLOWCHART

lines are back on the bus. A single byte, 2 cycle instruction
such as LSR is used for this example aiso. During the first cy-
cle, the instruction Y is fetched from address M+ 1. BA
returns high at tgaA on the last cycle of the instruction in-
dicating the MPU is off the bus. If instruction Y had been
three cycles, the width of the BA low time would have been
increased by one cycle.

ITEMP—=1
RESET I
Next inst
IRl
0—BA

Vector—»=PC
FFFE

&

Py
l

ITMP — |

I

PC. X, A, B, CC

Stack

Notes:

M/ MOTOROLA Semiconductor Products Inc.

3
1-—=BA
0—BA [—>
1
1—=ITMP,
11—
I» Condition Code Register
Vector — PC e n]z]v]e]
NMi FFCA
W FFFEA ITEMP” 1-Bit
IRQ FFF8 Buffer Register

Reset is recognized at any position in the flowchart.

instructions which affect the I-Bit act upon a one-bit buffer register,
“ITMP.” This has the effect of delaying any CLEARING of the |-Bit one
clock time. Setting the I-Bit, however, is not delayed.

See Tables 6-11 for details of Instruction Execution.

W

1L

"ouj sjonpo.d soponpuodiiies W ITOHOLOW

FIGURE 11 — WAIT INSTRUCTION TIMING

Cycle
#1

#2‘#3'#4‘#5‘#6{#7‘#8|#9‘#10‘n

piplinininininininiint

sue XXX XXX XXX >

New PC
Address

_ Instruction SP(n) SP(n-1) SP(h-2) SP(n-3) SP(n-4) SP(n-B) SP(n-8)
R/W J
VMA \
Interrupt -
Mask First Inst
_ of Interrupt
IRQ or Routine
NMI <A
Data Bus X X X X A X X X X X X X
Wait PCOD-7 PCB8-15 1 0-7 I 8-15 ACCA ACCB New PC 8-15 New PC 0-7
Inst Address Address
BA

Note: Midrange waveform indicates
high impedance state.

System
1

MPU &1

Address
Bus

— ft—ITSE ITSE gt fat—

FIGURE 13 — HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG

Last Cycie

of Current
instruction

Instruction

Fetch Execute

Instruction

S350 Sy Ny oy Y Yy iy Sy Yy Y
o2 || l_—{l L1 L 1 l_”J i U 1’1
| | s

tBA-—| /l——

vma __ X \

XY
R/W :X X_T

AN
/s
Fetch Execute
Address X ﬂ N,
Bus Addr M Ve

Data D
Bus
Inst
X

0

Note: Mid'range waveform indicates
high impedance state.

The MPU has three 16-bit registers and
registers available for use by the programmer (

Program Counter — The program cou
(16 bits) register that points to the current address.

Stack Pointer — The stack ponter
that contains the address of the
external push-down/pop-up st
random access Read/Write m
tion {address) that is conv
require storage of inf
lost, the stack mustsb

0 byte register
available location in an
\is stack is normally a
hat may have any loca-
. In those applications that
n the stack when power is
avolatile.

‘e index register is a two byte register
ata or a sixteen bit memory address for
the Indexe de of memory addressing.

— The MPU contains two 8-bit ac-

metic logic unit (ALU}.

Condition Code Register — The condition code register in-
dicates the results of an Arithmetic Logic Unit operation:
Negative (N}, Zero {Z), Overflow (V), Carry from bit 7 (C),
and half carry from bit 3 (H). These bits of the Condition
Code Register are used as testable conditions for the condi-
tional branch instructions. Bit 4 is the interrupt mask bit (I}.
The unused bits of the Condition Code Register (b6 and b7}
are ones.

FIGURE 14 — PROGRAMMING MODEL OF
THE MICROPROCESSING UNIT

ACCA

7 [¢}

ACCB

15 0

| X]

15 o

| re |

15 0
sp

7 0

11 [H] 1N} ZjV|C

M MOTOROLA Semiconductor Products Inc.

12

Accumulator A

Accumulator B

Index Register

Program Counter

Stack Pointer

Condition Code
Register

I— Carry (From Bit 7)

Overflow
Zearo

Negative
Interrupt

Half Carry {(From 8it 3)

MPU INSTRUCTION SET

The MC6800 instructions are described in detail in the
M6800 Programming Manual. This Section will provide a
brief introduction and discuss their use in developing
MCB800 control programs. The MCB800 has a set of 72 dif-
ferent executable source instructions. Included are binary
and decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into 1 to 3 bytes of machine code. The
number of bytes depends on the particular instruction and
on the addressing mode. {The addressing modes which are
available for use with the various executive instructions are
discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which resuit from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 1. There are 197 valid machine codes, 59 of the 256
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes con-
tain{s) an operand, an address, or information from which an
address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: {1) memory reference, so called
because they operate on specific memory locations; (2)
operating instructions that function without needing a
memory reference; (3) 1/0 instructions for transferring data
between the microprocessor and peripheral devices.

In many instances, the MC6800 performs the sarr
tion on both its internal accumulators and .
memory locations. in addition, the MCB800:
adapters (PIA and ACIA) allow the MPU
devices exactly like other memory loca

ator and memory

00 - 40 NEG A 80 SUB A

01 NOP 41 - 81 CMP A

o2 M 42 * 82 SBC A

03 43 COM A 83+

04 4 LSR A 84 AND A

0s “ 45 * 85 BIT A

08 TAP 46 ROR A 86 LDA A

07 TPA 47 ASR A 87

08 INX 48 ASL A 88 EOR A

09 DEX 49 AOL A 89 ADC A

0A CLV 4A DEC A 8A ORA A

08 SEV a8 88 ADD A

oC CLC 4C INC A 8C CPX A

oD SEC 4D TST A 8D BSR

0E Cl 4E 8E LDS

OF SEI 4F CLR A 8k

10 SBA 50 NEG B

11 CBA 51 *

2 ¢ 52 ¢

3 53 COM

14 * 54 LSR

5 55 -

16 TAB 56 ROR

17 TBA 57 ASR

18 - 58 ASL

19 DAA 59 ROL

1A * 5A DEC

1B ABA 58 *

cooe 5C INC

1D 50 TST

12 * 5E

1w 5F C

20 BRA REL| 60 NE IND A IND
21 Al CMP A IND
22 A2 SBC A IND
23 IND | A3 -

24 IND | A4 AND A IND
25 A5 BIT A IND
26 IND |A6 LDA A IND
27 IND |A7 STA A IND
28 IND | A8 EOR A IND
29 IND|A9 ADC A IND
2A IND|AA ORA A IND
2B AB ADD A IND
2 IND [AC CPX IND
2D TST IND |AD JSR IND
2E REL | 6E JMP IND | AE LDS IND
2F REL | 6F CLR IND | AF 8TS IND
30 70 NEG EXT|BO SUB A EXT
31 NS 71" Bt CMP A EXT
32 PUL A 72 N B2 sSBC A EXT
33 PUL B 73 COM EXT|B3 -

34 DES 74 LSR EXT|{B4 AND A EXT
35 TXS 75 “ B85 BIT A EXT
36 PSH A 76 ROR EXT | B6 LDA A EXT
37 PSH B 77 ASR EXT[B7 STA A EXT
38 78 ASL EXT|{B8 EOR A EXT
39 ATS 79 ROL EXT|B9 ADC A EXT
3A 7A DEC EXT{BA ORA A EXT
38 ATl 7B - BB ADD A EXT
3C - 7C INC EXT|{BC CPX EXT
3D M 7D TST. EXT|BD JSR EXT
3E WA 7E UMP EXT|BE LDS EXT
3F Swi 7F CLR EXT|BF 8T8 EXT

perations; (3) Condition
MM Notes: 1. Addressing Modes:
MM A = Accumulator A
MM B = Accumutator B
IMM REL = Relative
IMM IND = Indexed
IMM = Immediate
DIR = Direct
IMM
8 DIR i indicat XX X2
oMP B DiR 2. Unassigned.code indicated by .
SBC B DIR
AND B DIR
BIT B DIR
LDA B DiR
STA B DIR
EOR B DIR
ADC B DiR
ORA B DIR
ADD B DIR
LDX DIR
STX DIR
EQ SUB 8 IND
E1 CMP B IND
E2 SBC B IND
3 -
£4 AND B IND
ES BIT B IND
E6 LDA B IND
E7 STA B IND
E8 EOR B IND
E9 ADC B IND
EA ORA B IND
EB ADD B IND
EC -
ED -
EE LDX IND
EF STX IND
FO suB B EXT
F1 CMP B EXT
F2 SBC B EXT
F3 4
F4 AND B EXT
F5 BIT B8 EXT
F6 LDA B EXT
F7 STA B EXT
F8 EOR B EXT
F9 ADC B EXT
FA ORA B EXT
FB ADD B EXT
FC -
b
FE LDX EXT
FF 8TX EXT

@ MOTOROLA

Semiconductor Products Inc.

13

TABLE 2 — ACCUMULATOR AND MEMORY OPERATIONS
BOOLEAN/ARITHMETIC DPERATION COND. CODE REG.

ADDRESSING MODES

IMMED DIRECT INDEX EXTND IMPLIED (All register labels slaaj2]1]0
OPERATIONS mNeEmonic| 0P ~ =|op. ~ =|lop ~ =|op ~ =|oP ~ = refer to cantents) HIVNZIVIC
Add ADDA 38 2|98 3 2|aA8 2{88 4 3 A+M ~A tle|t|t]t]e
ADDB c8 2|/oe 3 2|e8 5 2|fB 4 3 B+ B tle|o|t]t]t
Add Acmltes ABA 1B 2 1| A+B—A BUH R
Add with Carry ADCA 89 2 2|99 3 2|A3 5 2|89 4 3 A+M*C-A tlefsfs|t]t
ADCE €9 2 2{D9 3 2{E3 5 2|F3 4 3 B+M+C—8 Tleft||t]e
And ANDA 84 2 209 3 2|{A4 5 2/B4 4 3 AcM-A elelt|t(r|e
ANDE c4 2 2|{D4 3 2{€s 5 2|F4 4 3 B-M-B slelt|t|Ria
Bit Test BITA 85 2 2|9 3 2{A5 5 2|85 4 3 AW ele|i|t|R|e
8IT8 €5 2 2|Ds5 3 2|€E5 5 2|F5 4 3 B M o|e1|t|R]e
Clear CLR 6F 7 2]7F 6 3 00—=M e|e R{S|R|R
CLRA 4F 2 1 | 00-A e|e RIS{R|R
CLRB ; 5F 2 1| 00-8B o|eir|s|R
Compare CMPA 81 2 2|9 3 2|A1 5 2[Bl 4 3 A-n elelfis
cMPB C1 2 2|01 3 2{€E1 5 2[F 4 3 B-M ele't
Compare Acmitrs CBA m 2 1 A-B LR
. Comglement, 1's coM 63 7 21713 6 3 M-M L] N
COMA 3 2 1 |E-a S
come 53 2 1 |B-s stlrls
Complement, 2's NEG 60 7 2|70 6 3 00 -M—-M AR)
{Negate) NEGA 0 2 1| 00-A-A D
NEGB 50 2 1| 00-B-3B O
Decimal Adjust, A DAA 19 2 1 Convarts Binary Add. of BC R ©]
into BCO Format
Decrement DEC BA 7 2 M-1-M elo|l|tjs]e
DECA 11 A-1-A o(e|tit]|d]e
DECB 118-1~8 o|e(t(tid]e
Exclusive OR EORA 88 2 298 3 2|A8 5 2 A@M > A e|lo|1|t|R|e
EORB 8 2 2{D8 3 2|E8 5 2 ele||t|R|e
tncrement INC §C 7 2 ale(1[tB)e
INCA eslel1|t®)|e
INCB eleft|1®)e
Load Acmltr LDAA 86 2 2|96 3 2] A6 5 2 ofeltitiRle
LDAB 6 2 2|06 3 2|E6 5 2 o|e(t|i|R|e
Or, (nclusive ORAA [8A 2 2|3A 3 2|AA 5 2 A+M—A ole|i|t|R]e
ORAB CA 2 2[DA 3 2|EA 5 2 B+M—B sle|t|t|r]e
Push Data A - Mgp,SP - 1->8P ole|le(o|o|e
B —Mgp, SP— 18P DRI AN
Pull Data SP+1—>8P,Mgp—~A oieo(o|ofo|e
SP+1->8P,Mgp— B oieo|oio o
Rotate Left 2 M eleit|t®1
} e R W M HH
B ¢ b? ™ bO el lt|BNY
Rotate Right 2 M} ele(tt®t
sy Lo = oo eleli|1|®f1
8 t b7 — b0 NI ¢®1
Shift Left, Arithmetic 2 M - olo|21ti®[1
A o - -0 elelt|t®1
B [b? b0 ele 1Bl
Shift Right, Arithmetic 2 M . e|e|1i1®) !
at Lo ~ o eje|tt®)
B b7 b0 C NOHHAGE
Shift Right, Logic 2 M -~ ole(r|1B):
A 0~OTTIITH - O QUGG
8 b7 LU eleir|1 @)
Store Acmitr, 2{B7 5 3 A=M e(®ilTRIe
2| F7 5 3 B> sleit|t|Rle
Subtract 2|80 4 3 A-M=A oottt
2|F0 4 3 B-M—B ele| |ttt
Subtract Acmltrs. M 2 1] A-B-A oleitlttit
Subtr. with Carry 2|82 4 A-M-C—A eleltit|t|s
F2 4 3 B-M-C—B elejt(t|3|t
Transfer Acmitrs 16 2 1 A—B e|le|t|t|R|®
N 17 2 1| B-A ejejlilR|®
27 6 2 v -00 ele|t]tiRIR
40 2 1| A-00 ele|t|1IR|R
[50 2z 1] 8-00 efe|t|tIR|R
Hit|n|z]v|c

- Arithmetic Minus;
Boolean AND;

Mgp

+ Boolean Inclusive OR:
® Boolean Exclusive OR;
M Complement of M;
ind Transfer Into;

0 Bit = Zero;

00 Byte = Zern;

Contents of memory location pointed to be Stack Pointer;

CONDITION CODE SYMBOLS:

e mMOLNZ T I

Half-carry from bit 3;

Interrupt mask

Negative (sign bit)

Zero (byte}

Overflaw, 2s complement

Carry from bit 7

Reset Always

Set Always

Test and set if true, cleared otherwise
Not Affected

Note — Accumulator addressing mode instructions are included in the column for IMPLIED addressing

14

CONDITION CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)

3}

(Bit V)
(Bit C)
(Bit C)

(Bit V)
(Bit V)
(Bit V)

@ MOTOROLA Semiconductor Products Inc.

Test: Result = 10000000?

Test: Result = 000000007

Test: Decimal value of most significant BCD

Character greater than nine?

{Not cleared if previously set.)

Test: Gperand = 10000000 prior to execution?

Test: Operand = 01111111 prior to execution?

Test: Set equal to result of N®C after shift has eccurred.

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two
categories: (1) Index Register/ Stack Pointer instructions; (2)
Jump and Branch operations.

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index
Register and Stack Pointer are summarized in Table 3.
Decrement (DEX, DES), increment (INX, INS), load (LDX,
LDS), and store (STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com-
pare the Index Register 1o a 16-bit value and update the Con-
dition Code Register accordingly.

The TSX instruction causes the Index Register to be load-
ed with the address of the last data byte put onto the
"stack.” The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be pulled from the
“’stack’”’ to come from the location indicated by the index
Register. The utility of these two instructions can be clarified
by describing the “'stack’” concept relative to the M8800
system.

The "stack” can be thought of as a sequential list of data
stored in the MPU’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out (LIFO) basis in contrast
to the random access mode used by the MPU’s other ad-
dressing modes.

The MCB800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handling of
data movement, subroutines and interrupts. The instruction
can be used to establish one or more "'stacks’’ anywh
read/write memory. Stack length is limited only,
amount of memory that is made available.

Operation of the Stack Pointer with the Pu
structions is illustrated in Figures 15 and 16
struction (PSHA) causes the contents
cumulator (A in this example) to be st
location indicated by the Stack Poin
automatically decremented by o
operation and is “'pointing” to th

wing the storage
L empty stack location.
B) causes the last byte

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack-
ed rather than the next empty location. Note that the PULL
instruction does not “remove’’ the data from memory; in the
example, 1A is still in location (m+ 1) following execution of
PULA. A subsequent PUSH instruction would overw
location with the new "‘pushed’’ data.
Execution of the Branch to Subroutine (BSR
Subroutine (JSR) instructions cause a retur
saved on the stack as shown in Figures 1
stack is decremented after each byte o
pushed onto the stack. For both of i

20. The
address is

WSR instruction. The
be either two or three
R is in the indexed {two

code required for BSR or
bytes, depending on whe

Before it is stacked,
cremented the ¢
location of the

eral operations that cause the status of the
ved on the stack. The Software interrupt (SWI)

askabfe (IRQ) and non-maskabie (NMI) hardware inter-
018 all cause the MPU's internal registers (except for the
ack Pointer itself) to be stacked as shown in Figure 23.
MPU status is restored by the Return from Interrupt, RTI, as
shown in Figure 22.

Jump and Branch Operation

The Jump and Branch instructions are summarized in
Table 4. These instructions are used to control the transfer or
operation from one point to another in the contro! program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. lts only effectis to
increment the Program Counter by one. It is useful during
program development as a ““stand-in” for some other in-
struction that is to be determined during debug. !t is also us-
ed for equalizing the execution time through alternate paths
in a control program.

TABLE 3 — INDEX REGISTER AND STACK POINTER INSTRUCTIONS

COND.CODE REG.

IMMED DIRECT INDEX EXTND IMPLIED 51413 (2170

MNEMONIC | OP | ~| =|OP|~| % 0P|~ | #|OP|~ | =| 0P|~ = | BOOLEAN/ARITHMETIC OPERATION |H|I|NjZ |VIC

CPX sc|3|3f9c|a]z2iac|6]2]|rC|5 |3 Xp—M, Xy~ (M+1) ol oDt Do

DEX 09[4 |1 X-1=X ojs|ell ele

DES (1401 SP—1->8P LA BE 28 28 J

ent Index Reg INX 084 |1 X+1=+X%X sioel eo|®
Increment Stack Pntr INS 34 SP+1->5pP LA AR AN
Load Index Reg LOX CE{3| 3 |BE|{ 4| 2|EE|6 | 2|FE|5 |3 M=Xy, M+ =X o/ o(D|I|R|®
Load Stack Pntr DS 8E | 3| 3|9Ej 4| 2]|AE|B | 2(|BE]S |3 M—SPy, (M+ 1) = SP_ * l@ I|R|®
Store Index Reg STX OF| 5| 2|EF |7 | 2|FF|l6 |3 XH—=M, X~ (M+1) o oDl |R|e
Stare Stack Pntr STS 9F | 5| 2 |AF |7 | 2iBF| 63 SPH —M, SP_~ (M +1) . '@ llRie
Indx Reg — Stack Pntr TXS B4 X—-1-8p IR AR N
Stack Pntr — Indx Reg 78X 34 (1 SP+1 X LI AR I]

@ (Bit N) Test: Sign bit of most significant (MS) byte of resuit= 17
@ (Bit V) Test: 2's complement overflow from subtraction of ms bytes?

(@ (Bit N) Test: Result less than zero? (Bit 15= 1)

@ MOTOROLA

Semiconductor Products Inc.
15

Previously
Stacked
Data

PC i PSHA

FIGURE 15 — STACK OPERATION, PUSH INSTRUCTION

MPU

AcCCA

m+ 1 7F
m+ 2 63
m+ 3 FD

=
/

Next instr.

/_

{a) Before PSHA

1A

3C

D5

EC

f
___/

PC ——b PULA

Next instr.

/

(a) Before PULA

Data Bus

MPU

ACCA

m—2

SP ——» m — 1

New Data m

m+ 1
Previously
Stacked m+ 2
Data

PSHA

Next instr.

FIGURE 16 — STACK-QPERATION, PULL INSTRUCTION

\

(b) After PSHA

MPU
ACCA
m—2
m—-1
m
SP—» m+1 1A
m+ 2 3C
Previously
Stacked m+3 D5
Data
B
PULA
PC = Next Instr,

(b) After PULA

@ MOTOROLA Semiconductor Products Inc.

TABLE 4 — JUMP AND BRANCH INSTRUCTIONS

COND. CODE REG.

RELATIVE INDEX EXTND IMPLIED 5(413(2(1}]0
OPERATIONS MNEMONIC QP! ~ | #|0P} ~ | #£|OP| ~ | #|0OP|~ | # BRANCH TEST HitP|{N|Z|[V]|C
Branch Always BRA 200412 None ¢ oo o e e
Branch It Carry Clear BCC 24|14 |2 C=0 ol oo o0 ele
Branch ! Carry Set BCS 2504 |2 c=1 * i o 0| 0 | oioe
Branch i = Zero BEG 27| 4|2 Z=1 * oo | e .
Branch If 2 Zero BGE 20| 4 | 2 N®V=0 o sio
Branch {f > Zero BGT 260 4 | 2 Z+(N@V)=0 ol ole
Branch If Higher BHI 22| 4 |2 C+Z=0 L [
Branch if < Zero BLE 2F1 4|2 Z+IN@V)I=1 e o .
Branch If Lower Or Same BLS 2314 |2 C+Z=1 L3 * B
Branch If <Zero BLT 200 4 |2 N@V=1 e a0
Branch If Minus BMI 2814 |2 N=1 e ol
Branch if Not Equal Zero 8NE 2614 | 2 £=0 ol e @@
Branch If Overflow Clear BVC 2814 |2 V=0 e| o s 0o
Branch If Overflow Set BVS 29142 V=1 e ol o 0o
Branch If Plus 8PL 2A 4) 2 N=0 o o @ o 0 o
Branch To Subroutine BSR 8D| 8 2 el o el o o
Jump JMP 6E| 4| 2|7E] 3| 3 See Special O ol o0l o000
Jump To Subroutine JSR AD| 8| 218D} 9| 3 } e o e| o| 0| @
No Operation NQP 0112 {1 Advances Pr e o e 0o o |
Return From [nterrupt RTI 3B |10 ®
Return From Subroutine RTS 395 |1]) el oo o ole
Software Interrupt swi JF 12 41 il Operations el o o o0 |0
Wait for Interrupt * WAI JE|9 |1 [@ o oo |@

*WAI puts Address Bus, R/W, and Data Bus in the three-state mode while VMA is held low.

@ (Al Load Condition Code Register from Stack. {See Special O

@ (Bit1) Setwnhen interrupt occurs. If previously set, a
is required to exit the wait state.

Execution of the Jump Instruction, JMP, and Branch
Always, BRA, affects program flow as shown in Figure 17.
When the MPU encounters the Jump {Indexed} instruction
it adds the offset to the value in the Index Register and

Always [BRA) instruction is similar to the Jl
struction except that the relative addressi
and the branch is limited to the rangeW
bytes of the branch instruction it
BRA instruction requires one les
but takes one more cycle to) :

The effect on program flo the Jump to Subroutine
BSRY) is shown in Figures
ogram Counter is properly in-

ode applies
125 or +127
opcode for the

18 through 20. Note t
cremented 1o be_ pei

stes versus 3 bytes! and also executes one cy-

PC Main Program

n | 6E=JMP
K= Offset
INDXD n+1 - EXTND

X+K | Next Instruction

(a} Jump

MOTOROLA Semiconductor Products Inc.

Non-Mask

gle faster than JSR. The Return from Subroutine, RTS, is
used as the end of a subroutine to return to the main pro-
gram as indicated in Figure 21.

The effect of executing the Software Interrupt, SWI, and
the Wait for Interrupt, WAI, and their relationship to the
hardware interrupts is shown in Figure 22. SWI causes the
MPU contents to be stacked and then fetches the starting
address of the interrupt routine from the memory locations
that respond to the addresses FFFA and FFFB. Note that as
in the case of the subroutine instructions, the Program
Counter is incremented to point at the correct return address
before being stacked. The Return from Interrupt instruction,
RTI, (Figure 22} is used at the end of an interrupt routine to
restore control to the main program. The SWHI instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence.

FIGURE 17 — PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS

PC Main Program Main Program

n 7E=JMP
n 2¢=BRA
n+1 {Ky=Next Address
n+1 K= Offset”
n+2 Ky = Next Address

n+2)+K [Next Instruction]
K

*K = Signed 7-bit value

(b) Branch

17

m -2

m—1
SP—m

m

m

FIGURE 18 — PROGRAM FLOW FOR BSR

]

SP = m

m + 1 7E

PC=—» n BSR
n+1 1K = Offset*
n+2 Next Main instr.

7A

f
]

I

*K = Signed 7-Bit Value

{a) Before Execution

SP——#m

(n+3)H

(n+3)L

7E

7A

7C

f

L = Subr. Addr,

Next Main Instr,

n JSR
n+1 Sy = Subr. Addr.
n+2 S| = Subr. Addr.
n+3 Next Main Instr,

(a) Before Execution

_—

—

PC—»3S 1st Subr. instr.

{S formed from

Sy and S)

_/A

(b) After Execution

SP—»m — 2

PC—» n

n+2

18

.——_———/

(n +2)H

(n+2)L

7E

st Subr. Instr.

(b) After Execution

7E m+ 1

L ——

7A

JSR = AD

K = Offset*

Next Main Instr,

/

*K = 8-Bit Unsigned Value

{a) Before Execution

M MOTOROLA Semiconductor Products Inc.

n+2 Next Main Instr.

PC—» X" + K

I

(n+2)H

(n+2}L

3

7A

J

JSR = AD

K = Offset

.
r———/

st Subr. instr.

I

*Contents of Index Register

{b) After Execution

FIGURE 21 — PROGRAM FLOW FOR RTS

SP—»m — 2 m—2
m -1 (n +3)H m—1
m (n +3)L SP— m
m+1 7€ m+ 1
7A

f
___/

n JSR =8D n
n+1 S = Subr. Addr. n+1
n+2 S|_= Subr. Addr. n+2
n+3 Next Main instr. PC —tn + 3

i
————/

Last Subr. instr.

Last Subr. Instr.

RTS

L//_

(b) After Execution

PC —» Sp ATS

{a) Before Execution

/
CCR
ACCB
ACCA
Xy (Index Reg) m—3 Xy
X {Index Reg) m—2 X
PC(n+1)H m — 1 PCH
PC(n+1)L SP—te— m PCL

[e —— e __—
Next Main Instr. PCo—am=— nn+1 Next Main instr.

Sn Last Inter. Instr. Last Subr. Instr.
PC — i RTI Sn RTI
{a) Before Execution (b) After Execution

M MOTOROLA Semiconductor Products Inc.

19

n+1

FIGURE 23 — PROGRAM FLOW FOR INTERRUPTS

Hardware Interrupt or
Non-Maskable [nterrupt (NMI)

Main Program

Wait For
Software Interrupt Interrupt
Main Program Main Program
3F = SWI n 3E = WAI
Next Main Instr. n+1 § Next Main fnstr. n

Last Prog. Byte

“ﬁ’—'/ - g) -

YES

tnt.
Mask Set?
(CCR 4}

Main Instr

Stack
SP— m—~7
—6 .
Stack MPU m Condition Cade
Register Contents l:> m—5 Acmitr. B
m—4] Acmltr. A
m — 3 | Index Register (Xj)
m — 2| Index Regi \
m—1] PC{n+1)

m} PCln+ 130

SWI HDWR
INT

WAI NMI

‘ Restart }

Int.
Mask Set?
(CCR 4)

NMi

Wait Loop

FFFE

FFEC
Fren Y rere

Interrupt Memory Assignment]

FFF8 IRQ MS
FFF9 IRQ LS
FFFA SWI Ms
FFFB SWi LS E:::i::,
FFFC NMI MS
FFFD NMI LS
FFFE Reset MS
FFFF Reset LS

NOTE: MS = Most Significant Address Byte;
LS = Least Significant Address Byte;

@ MOTOROLA

.

Set Interrupt
Mask (CCR 4)

First lnstr. *

Addr. Formed Load Interrupt

By Fetching Vactor Into
2-Bytes From Program Counter
Per. Mem.

Assign.

r Interrupt Program)

st Interrupt Instr.

Semiconductor Products Inc.
20

FIGURE 24 — CONDITIONAL BRANCH INSTRUCTIONS

BMI : N=1 ; BEQ : Z=1 ;
BPL : N=¢ ; BNE : Z=¢
BVC : V=¢ : BCC : C=¢ :
BVS : v=1 BCS : c=1 ;
BHI C+Z=¢ ; BLT : N®V=1
BLS : c+zZ=1 ; BGE : NBV=¢

BLE : Z+{N®V)=1 ;

BGT : Z+{N®VI=9 ;

The conditional branch instructions, Figure 24, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either con-
tinue with the next instruction in sequence {test fails) or
cause a branch to another point in the program (test suc-
ceeds).

Four of the pairs are used for simple tests of status bits N,
Z, V,and C:

1. Branch on Minus (BMI) and Branch On Plus (BPL} tests
the sign bit, N, to determine if the previous resuit was
negative or positive, respectively.

2. Branch On Equal (BEQ) and Branch On Not Equal
(BNE) are used to test the zero status bit, Z, to determine
whether or not the result of the previous operation was equal
to zero. These two instructions are useful following a Com-
pare {CMP) instruction to test for equality between an ac-
cumulator and the operand. They are also used following the
Bit Test (BIT) to determine whether or not the same bit posj-
tions are set in an accumulator and the operand.

3. Branch On Overflow Clear (BVC) and Branc
Overflow Set (BVS) tests the state of the V bit to
if the previous operation caused an arithmetic v

4. Branch On Carry Clear (BCC) and Branch
{BCS) tests the state of the C bit to determi
operation caused a carry to occur. BCC

€ previous
are useful

The Condition ister {CCR) is a 6-bit register
is"useful in controlling program flow
ration. The bits are defined in Figure 25.

-shown in Table 5 are available to the user

for dire ipulation of the CCR.

AC nstruction sequence operated properly, with
ear 00 processors, only if the preceding instruction
was add (Least Significant Bit=1). Similarly it was advisable

@ MOTOROLA Semiconductor Products Inc.

7

for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range 00 (lowest) to FF (highest). BCC following a
comparison (CMP) will cause a branch if the (unsigned)
value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fifth complementary pair, Branch On Higher (BHtkand
Branch On Lower or Same (BLS) are, in a se
plements to BCC and BCS. BHI tests for both (
used following a CMP, it will cause a branc
the accumulator is higher than the op
BLS will cause a branch if the unsignegd’

The remaining two pairs are u
operations in which the values at

n testing results of
ed as signed twao's

case in the following s |
higher or lower; in sigf 0's complement, the com-

smaller where the range of

values is between — 128 and + 127

Branch On L an Zero (BLT) and Branch On Greater
Than Or Equ: GE) test the status bits for Ne V=1
and Ne V spectively. BLT will always cause a branch

: ation in which two negative numbers were

dition, it will cause a branch following a CMP in
the value in the accumulator was negative and the
rand was positive. BLT will never cause a branch follow-
CMP in which the accumulator value was positive and
e operand negative. BGE, the complement to BLT, will
use.a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE)
and Branch On Greater Than Zero (BGT) test the status bits
for Ze (N+V)=1 and Z& (N+V) =0, respectively. The ac-
tion of BLE is identical to that for BLT except that a branch
will also occur if the result of the previous result was zero.
Conversely, BGT is similar to BGE except that no branch will
occur following a zero result.

CONDITION CODE REGISTER
OPERATIONS

to precede any SEl instruction with an odd opcode — such
as NOP. These precautions are not necessary for MC6800
processors indicating manufacture in November 1977 or
later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEI.

FIGURE 256 — CONDITION CODE REGISTER BIT DEFINITION

bg bg b3z bz by bg

(] [n]zfv]c]

Half-carry; set whenever a carry from b3 to bg of the result is generated
by ADD, ABA, ADC; cleared if no b3 to by carry; not affected by other
instructions.

Interrupt Mask; set by hardware or software interrupt or SE| instruction;
cleared by CLI instruction. {Normally not used in arithmetic operations.)
Restored to a zero as a resuit of an RT1 instruction if I, stored on the

stacked is low.

N = Negative; set if high order bit (b7) of result is set; cleared otherwis
Z = Zero; set if result = 0; cleared otherwise.

V = Qverlow; set if there was arithmetic overflow as a resul

cleared otherwise.

C = Carry; set if there was a carry from the most si

result; cleared otherwise.

TABLE S — CONDITION CODE

he operation;

ant bit (b7) of the

R INSTRUCTIONS

COND. CODE REG.

5141331211 0
OPERATIONS BOOLEANOPERATION | H | L [N [Z V]| C
Clear Carry 2 (1 0—-C el el o e o R
Clear Interrupt Mask 2|1 (| e | R{e|e® @ @
Clear Qverflow 2 1 gV e e| e @ R e
Set Carry 0D | 2 1 1-C e ®o| o |0 | 0| S
Set Interrupt Mask OF | 2 1 11 e | S| e e 8| e
Set Qverflow B2 |1 1=V e | e o (@S| e
Acmltr A~ CC 062 |1 A—-CCR
CCR > Acmltr 0721 CCRA e|lojejo|s]|e

action on 197 of the 266 possibilitis that can occur using an
8-bit word length. This larger number of instructions results
from the fact that many of the executive instructions have
more than one addressing mode.

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the
MPU’s internal registers and all of the external memory loca-
tions.

Selection of the desired addressing mode is made by the
user as the source statements are written. Translation into

@ MOTOROLA Semiconductor Products Inc.

22

ADDRESSING MODES

appropriate opcode then depends on the method used. If
manua! translation is used, the addressing mode is inherent
in the opcode. For example, the Immediate, Direct, Indexed,
and Extended modes may all be used with the ADD instruc-
tion. The proper mode is determined by selecting (hex-
adecimal notation) 8B, 9B, AB, or BB, respectively.

The source statement format includes adequate informa-
tion for the selection if an assembler program is used to
generate the opcode. For instance, the Immediate mode is
selected by the Assembler whenever it encounters the “'#”
symbol in the operand field. Similarty, an X" in the operand
field causes the Indexed mode to be selected. Only the
Relative mode applies to the branch instructions, therefore,
the mnemonic instruction itself is enough for the Assembler
to determine addressing mode.

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
vaiue is in the range 0-255 and Extended otherwise. There
are a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the
Assembler automatically selects the Extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 26.

Inherent (Includes “Accumulator Addressing” Mode)

The successive fields in a statement are normally
separated by one or more spaces. An exception to this rule
occurs for instructions that use dual addressing in the
operand field and for instructions that must distinguish be-
tween the two accumulators. In these cases, A and B are

FIGURE 26 — ADDRESSING MODE SUMMARY

Direct: n DO Instruction

Example: SUBB Z

Addr. Range = 0—255 n+1 Z = Oprnd Address
& n+2 Next Instr.
L]
[]
°
(K = One-Byte Oprnd) F4 K = Operand
OR
(K = Twe-Byte Oprnd) 4 Ky = Operand
Z+1 Ky

AN\ 1 Z 5255, Assembler Select DirecpMod
1f Z >> 2585, Extended Mode is selectéd .

Extended: n FO Instruction

Example: CM#E Zyy = Oprnd Address

n+2 Z = Oprnd Address
n+3 Next instr.
L]
L]
[]
(K = One-Byte Oprnd) z K = Operand
OR
(K = Two-Byte Oprnd) z Ky = Operand
Z+1 K = Operand

MOTOROLA Semiconductor Products Inc.

23

“operands’’ but the space between them and the operator
may be omitted. This is commonly done, resulting in ap-
parent four character mnemonics for those instructions.

The addition instruction, ADD, provides an example of
dual addressing in the operand field:

Operator Operand Comment
ADDA MEM12 ADD CONTENTS OF MEM12 TO

or
ADDB MEM12 ADD CONTENTS OF MEM12

The example used earlier for the test instrug
applies to the accumulators and uses thg" ac
dressing mode”’ to designate which o
is being tested:

ulator ad-
accumulators

Immediate: Instruction
Crargle: Loan
n+2 Next Inst.
OR
n Instruction
n+1 K4 = Operand
n+2 K| = Operand
n+3 Next instr.
Relative: n Instruction
Example: BNE K N+ *+K = Brnch Offset
(K = Signed 7-Bit Value) n+2 Next Instr. é
Addr. Range: o
—125 to +129
Relative to n. .
®
(n+2)tK Next Instr. @

@ 1f Brnch Tst Faise, é If Brnch Tst True.

Indexed: n Instruction
Exampie: ADDA Z, X n+1 Z = Offset
Addr. Range: n+2 Next Instr.
0—255 Relative to
index Register, X *

®

®
(Z = 8-Bit Unsigned X+ 2 K = Operand
Value)

Operator Comment
TSTB TEST CONTENTS OF ACCB
or
TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address informa-
tion that is required, that is, "inherent” in the instruction
itself. For instance, the instruction ABA causes the MPU to
add the contents of accmulators A and B together and place
the result in accumulator A. The instruction INCB, another
example of “accumulator addressing,”” causes the contents
of accumulator B to be increased by one. Similarly, INX, in-
crement the Index Register, causes the contents of the Index
Register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 27 and 28. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of
this type require only one byte of opcode. Cycle-by-cycle
operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode — in the immediate address-
ing mode, the operand is the value that is to be operated on.
For instance, the instruction

Comment
LOAD 25 INTO ACCA

Operator Operand
LDAA #25

causes the MPU to “immediately load accumulator A with
the value 25"'; no further address reference is required. The
immediate mode is selected by preceding the operand value
with the "“# symbol. Program flow for this addressing
is illustrated in Figure 29.

The operand format allows either properly defi
bols or numerical values. Except for the mstruc:g
LDX, and LDS, the operand may be any val
to 255. Since Compare.Index Register (
Register (LDX), and Load Stack Pointer (L
values, the immediate mode for theses
quire two-byte operands. In th

nstructlons re-
iate addressing

FIGURE 27 — INHER

MPU

ADDRESSING

MPU
INDEX
=

RAM

-

PROGRAM
MEMORY

-

-

ROGRAM
MEMORY

<—

o

PC INSTR

PC = 6000 INX

/_’

GENERAL FLOW EXAMPLE

@ MOTOROLA Semiconductor Products Inc.

mode, the '‘address’”’ of the operand is effectively the
memory location immediately following the instruction itself.
Table 7 shows the cycle-by-cycle operation for the im-
mediate addressing mode.

Direct and Extended Addressing Modes — In the Direct
and Extended modes of addressing, the operand field of the

285; a two byte operand is generate
ing, enabling the MPU to reach th
tions, 256 through 65635. An exan
and its effect on program flowiis i

The MPU, after encou
tion LDAA (Direct) a
Counter=5004), looks,
dress of the operang
1o the value found t

hg memory loca-
f Direct addressing
ted in Figure 30.

e opcode for the instruc-
ory location 5004 (Program
xt location, 5005, for the ad-
sets the program counter equal
00 in the example) and fetches the
a value 1o be loaded into accumulator
. For instructions requiring a two-byte
DX {Load the Index Register), the operand
retrieved from locations 100 and 101. Table 8
2 cycle-by-cycle operation for the direct mode of

X nded addressing, Figure 31, is similar except that a
byte address is obtained from locations 5007 and 5008
fter the LDAB (Extended) opcode shows up in location
5006. Extended addressing can be thought of as the “stan-
dard” addressing mode, that is, it is a method of reaching
any place in memory. Direct addressing, since only one ad-
dress byte is required, provides a faster method of process-
ing data and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffer-
ing and temporary storage of system variables, the area in
which faster addressing is of most value. Cycle-by-cycle
operation is shown in Table 9 for Extended Addressing.

FIGURE 28 — ACCUMULATOR ADDRESSING

MPU MpPU
ACCB
-15 —»16
RAM RAM

- -

PROGRAM PROGRAM
MEMORY MEMORY

<L—

pc| INSTR oC = 5001 INC B

\/\

EXAMPLE

-

GENERAL FLOW

24

Relative Address Mode — In both the Direct and Extended
modes, the address obtained by the MPU is an absolute
numerical address. The Relative addressing mode, im-
plemented for the MPU's branch instructions, specifies a
memory location relative to the Program Counter’s current
location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the
"relative’ address {see Figure 32)}. Since it is desirable to be
able to branch in either direction, the 8-bit address byte is in-
terpreted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, ‘0" =plus and 1" =minus. The re-
maining seven bits represent the numerical value. This
results in a relative addressing range of + 127 with respect to
the location of the branch instruction itself. However, the
branch range is computed with respect to the next instruc-
tion that would be executed if the branch conditions are not
satisfied. Since two bytes are generated, the next instruction
is located at PC+2. If D is defined as the address of the
branch destination, the range is then:

(PC+2)-127=D=<(PC+2)+127
or
PC-125<D=<PC+129
that is, the destination of the branch instruction must be
within —125 to + 129 memory locations of the branch in-
struction itseif. For transferring control beyond this range,

the unconditional jump (JMP), jump to subroutine (JSR),
and return from subroutine (RTS) are used.

In Figure 32, when the MPU encounters the opcode for
BEQ (Branch if result of last instruction was zero), it tests the
Zero bit in the Condition Code Register. !f that bit is “0,” in-
dicating a non-zero result, the MPU continues execution
with the next instruction {in location 5010 in Figure 32). If the
previous result was zero, the branch condition is satisfied
and the MPU adds the offset, 15 in this case, to PC+2 and
branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficient-
ly direct the MPU to one point or another in the con
gram depending on the outcome of test results.
control program is normally in read-only memory
be changed, the relative address used in execu
instructions is a constant numerical valu
operation is shown in Table 10 for relativé

Indexed Addressing Mode — lexed addressing,
the numerical address is variable and depends on the current
contents of the Index Regist urce statement such as

Comment
T A IN INDEXED LOCATION

Operator Operan
STAA

causes the MPU the contents of accumulator A in

Address Mode Cycle | VMA
and Instructions Cycles # Line Address Bus Data Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2 2 1 Op Code Address + 1 Op Code of Next Instruction
ASR INC SEV :
CBA LSR TAB
CLC NEG TAP
CL1 NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 ¢} ‘ 1 Op Code
PNESX a 2 1 - Address + 1 1 Op Code of Next Instruction
INX 3 Register Contents 1 Irrelevant Data (Note 1)
4 Register Contents 1 Irrelevant Data (Note 1)
oo .. O Pade Addeace 1 N Cada

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION {CONTINUED)

Address Mode Cycle| VMA R/W
and lnstructions Cycles # Line Address Bus Line Data Bus
WAI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Op Code of Next Instruction
3 1 | Stack Pointer 0 | Return Address {Low Order Byte)
4 1 | Stack Pointer — 1 0 | Return Address {High Order Byte
9 5 1 | Stack Pointer — 2 0 | Index Register (Low Order Byte
6 1 | Stack Pointer — 3 0 | Index Register (High Order &
7 1 | Stack Pointer — 4 0 | Contents of Accumul
8 1 |Stack Pointer — 5 0 | Contents of Accumy
9 1 | Stack Pointer — 6 (Note 3) 1
RTI 1 1 | Op Code Address 1
2 1 | Op Code Address + 1 1
3 0 |[Stack Pointer 1
4 1 | Stack Pointer +1 1
10 5 1 | Stack Pointer + 2 ts of Accumulator B from Stack
6 1 |Stack Pointer + 3 ontents of Accumulator A from Stack
7 1 |Stack Pointer +4 Index Register from Stack (High Order
Byte)
8 1 | Stack Painter +5 Index Register from Stack {(Low Order
Byte)
<] 1 |Stack Pointer + 6 Next Instruction Address from Stack
(High Order Byte)
10 1 |Stack Pointer +7 1 | Next Instruction Address from Stack
{Low Order Byte)
Swi 1 1 1 |.0p Code
2 1 1 | Irrelevant Data (Note 1)
3 1 0 | Return Address {Low Order Byte)
4 1 0 | Return Address {High Order Byte)
5 1 0 | Index Register (Low Order Byte)
12 6 1 0 | Index Register {High Order Byte)
7 1 Pointer — 4 0 [Contents of Accumulator A
8 tack Painter — 5 0 | Contents of Accumulator B
Stack Painter — 6 0 | Contents of Cond. Code Register
Stack Pointer — 7 1 | lrrelevant Data (Note 1)
Vector Address FFFA (Hex) 1 [Address of Subroutine {High Order
Byte)
Vector Address FFFB (Hex) 1 | Address of Subroutine (Low Order
Byte)
Note 1. i h addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Note 2 capacitance, data from the previous cycle may be retained on the Data Bus.
Note 3. ‘PU is waiting for the interrupt, Bus Availabte will go high indicating the following states of the control lines: VMA is

s Bus, R/W, and Data Bus are all in the high impedance state.

Index Register). Since there are instructions for manipulating
X during program execution (LDX, INX, DEC, etc.}, the In-
dexed addressing mode provides a dynamic "‘on the fly"* way
to modify program activity.

The operand field can also contain a numerical value that
will be automatically added to X during execution. This for-
mat is illustrated in Figure 33.

When the MPU encounters the LDAB (Indexed) opcode in

@ MOTOROLA

Semiconductor Products Inc.

location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present index Register
value of 400. In the operand format, the offset may be
represented by a label or a numerical value in the range 0-255
as in the example. In the earlier example, STAA X, the
operand is equivalent to 0, X, that is, the 0 may be omitted
when the desired address is equal to X. Table 11 shows the
cycle-by-cycle operation for the Indexed Mode of Address-
ing.

FIGURE 29 — IMMEDIATE ADDRESSING MODE

MPU MPU
ACCA
K ' 25 I i<
RAM RAM
< : < : ADDR
PROGRAM PROGRAM
MEMORY MEMORY
N S~
pc | INSTR pc =5002| LDAA pC
DATA 75 K pC + 1
GENERAL FLOW EXAMPLE

FIGURE 30 — DIRECT ADDRESSING MODE
MPU MPU
ACCA
K l 35 | K
RAM RAM
DATA ADDR = 100
v :'
PROGRAM
MEMORY
INSTR
ADOR

ADDR = 0 < 255

GENERAL FLOW EXAMPLE
TABLE 7 — IMMEDIATE MODE CYCLE-BY-CYCL
Address Mode Cycle |VMA
and Instructions Cycles # Line Address Bus Data Bus

ADC EOR 1 1 COp Code Address Op Code

2:\)‘8 ('Sg': 2 2 1 Op Code Address + Operand Data

BIT SBC

CMP SUB

CPX 1 1 1 Op Code

tgi 3 2 1 s + 1 1 Operand Data (High Order Byte)
3 1 ress + 2 1 Operand Data (Low Order Byte)

"DIRECT MODE CYCLE-BY-CYCLE OPERATION
Address Mode R/W
and Instructions Address Bus Line Data Bus

ADC EOR Op Code Address 1 | OpCode

ADD LDA

AND ORA Op Code Address + 1 1 Address of Operand

BIT SBC 3 1 Address of Operand 1 Operand Data

CMP SUB

CcPX 1 1 Op Code Address 1 Op Code

tg§(2 1 Op Code Address + 1 1 Address of Operand
3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data (Low Order Byte)

ST 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (Note 1)
4 1 Destination Address 0 Data from Accumulator

STS 1 1 Op Code Address 1 Op Code

STX 2 1 Op Code Address + 1 1 Address of Operand

5 3 0 Address of Operand 1 Irrelevant Data {Note 1)

4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand + 1 o} Register Data (Low Order Byte)

Note 1. If device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

@ MOTOROLA

27

Semiconductor Products Inc.

FIGURE 31 — EXTENDED ADDRESSING MODE

ADDR = 256

GENERAL FLOW

MPU MPU
ACCB
<] =1
RAM RAM
ADDR DATA ADDR = 300 45
PROGRAM PROGRAM
MEMORY MEMORY
INSTR PC = 5006 LDA B
PC ADDR
300
ADDR
TN 5009 N~

EXAMPLE

TABLE 9 — EXTENDED MODE CYCLE-BY-CYCLE

Address Mode Cycle| VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
STS 1 1 Op Code Address
sTX 2 1 Op Code Address + 1 Address of Operand (High Order Byte)
6 3 1 Op Code Address + 2 Address of Operand (Low Order Byte}
4 0 Address of Operand § 1 lrrelevant Data (Note 1)
5 1 Address of Operand s} Operand Data {High Order Byte)
6 1 Address of Operand + 1 0 Operand Data (Low Order Byte}
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address 1 Address of Subroutine (High Order Byte)
3 1 Op Code Addres: 1 Address of Subroutine {Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 1 Stack Pointer & o] Return Address {Low Order Byte!
6 1 0 Return Address (High Order Bytel
7 Q 1 trrelevant Data (Note 1)
8 0 Address + 2 1 Irrelevant Data (Note 1)
9 1 de Address + 2 1 Address of Subroutine (Low Order Byte)
Jme 1 p Code Address 1 Cp Code
2 Op Code Address + 1 1 Jump Address {High Order Byte)
Op Code Address + 2 1 Jump Address {Low Order Byte)
ADC EOR 1 Op Code Address 1 Op Code
238 égﬁ 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
3 1 Op Code Address + 2 1 Address of Operand {L.ow Order Byte)
4 1 Address of Operand 1 Operand Data
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 1 Address of Operand 1 Qperand Data (High Order Byte)
5 1 Address of Operand + 1 1 Operand Data (Low Order Byte)
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Destination Address (High Order Byte)
3 1 Op Code Address + 2 1 Destination Address (Low Order Byte)}
4 o] QOperand Destination Address 1 Irrelevant Data {Note 1)
5 1 Operand Destination Address 0 Data from Accumulator
1 1 QOp Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
6 3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
[I:)NECC 75T 4 1 Address of Operand 1 Current Operand Data
5 0 Address of Operand 1 Irrelevant Data (Note 1}
6 1/0 Address of Qperand o} New Operand Data (Note 2)
(Note
2)
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition,

Note 2.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

For TST, VMA = 0 and Operand data does not change.

28

@ MOTOROLA Semiconductor Products Inc.

o,

s,

oy

FIGURE 32 — RELATIVE ADDRESSING MODE

MPU MPU
RAM }AM
Program Program
Memory Memory
PC Instr.
Offset PC 5008 BEQ
(PC + 2)]| Next Instr. 15
PC 5010] Next instr.
'—'\A ‘\—\
(PC + 2) + (Offset)] Nextinstr. PC 5025] Next instr,

MPU

ADDR = INDX
+ OFFSET

ADDR = 405 59

PROGRAM
MEMORY

PC = 5008 LDAB

-

—

EXAMPLE

OFFSET < 255
GENERAL FLOW

==

TABLE 10 — RELATIVE MODE CYCLE-BY-CYCLE OPERATION

Cycle | VMA R/W
Line Address Bus Line Data Bus
1 1 | Op Code Address 1 |Op Code
2 1 |Op Code Address + 1 1 |Branch Offset
3 0 |Op Code Address + 2 1 |irrelevant Data (Note 1)
4 0 |Branch Address 1 |lrrelevant Data {Note 1)
1 1 |Op Code Address 1 |Op Code
2 1 }Op Code Address + 1 1 |Branch Offset
3 0 |Return Address of Main Program 1]lrrelevant Data (Note 1)
8 4 1 |[Stack Pointer 0 |Return Address (Low Order Byte)
5 1 | Stack Pointer — 1 0 |Return Address (High Order Byte)
6 0 |Stack Pointer — 2 1 [Irrelevant Data (Note 1}
7 0 |Return Address of Main Program 1 |Irrelevant Data (Note 1}
8 0 |Subroutine Address 1 |lrrelevant Data (Note 1)

Note 1.

If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

@ MOTOROLA

22

Semiconductor Products Inc.

TABLE 11 — INDEXED MODE CYCLE-BY-CYCLE

Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
INDEXED
Jmp 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data {Note 1)
4 0 Index Register Pius Offset (w/o Carry) 1 Irrelevant Data (Note 1)
ADC EOR 1 1 Op Code Address 1 Op Code
283 (IS%;: 2 1 Op Code Address + 1 1 Offset
BIT SBC 5 3 0 Index Register 1 frrelevant Data (Not
CMP SUB 4 0 Index Register Plus Offset (w/o Carry) 1 rrelevant Data (
5 1 Index Register Plus Offset 1 Operand Dat
CPX 1 1 Op Code Address 1 Op Code
tg)s(2 1 Op Code Address + 1 1 Offset
6 3 4] Index Register 1 Irr Data (Note 1)
4 o] Index Register Plus Offset {w/o Carry) 1 't Data (Note 1)
5 1 Index Register Plus Offset 1 Data (High Order Byte)
6 1 Index Register Plus Offset + 1 1 and Data (Low Order Byte)
STA 1 1 Op Code Address Op Code
2 1 Op Code Address + 1 Offset
6 3 0 Index Register 1 Irrefevant Data (Note 1)
4 0 Index Register Plus Offset {w/o 1 Irrelevant Data {Note 1)
5 0 Index Register Plus Offset 1 trrelevant Data (Note 1)
6 1 index Register Plus Of 4] Operand Data
ASL LSR 1 1 Op Code Address 1 Op Code
éﬁg ggGL 2 1 Op Code Addres 1 Offset
g(é)gl ?SO‘IB 7 3 0 Index Regusfter 1 Irrelevant Data (Note 1)
INC 4 0 er Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
5 1 Plus Offset 1 Current Operand Data
6 0 In ter Plus Offset 1 Irretevant Data (Note 1)
7 1/0 gister Plus Offset 0 New Operand Data (Note 2)
(Note g
2)
STS p Code Address 1 Op Code
STX Op Code Address + 1 1 Offset
7 Index Register 1 Irrelevant Data (Note 1)
0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
0 Index Register Plus Offset 1 Irretevant Data (Note 1)
6 1 Index Register Plus Offset 0 Operand Data {High Order Byte)
7 1 Index Register Plus Offset + 1 0 Operand Data {Low QOrder Byte)
1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 o] Index Register 1 Irrelevant Data (Note 1)
4 1 Stack Pointer ¢} Return Address {Low Order Byte)
5 1 Stack Pointer — 1 o] Return Address (High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data (Note 1)
7 0 index Register 1 Irrelevant Data (Note 1}
8 0 Index Register Plus Offset (w/o Carry) 1 irrelevant Data (Note 1)

Note 1.

Note 2.

1f device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

MOTOROLA Semiconductor Products Inc.

For TST, VMA = 0 and Operand data does not change.

30

—

PACKAGE DIMENSIONS

hﬁﬁhﬁhhﬂ(\ﬁhﬁﬁﬁﬁhl"!ﬂa
I

20
VU N U U U U U U Oy

A

T

N .j L: o

f CASE 734-04
, {CERDIP)
L
C
N ! MILLIMETERS| _ INGHES
2 DiM[MIN | MAX | MIN | MAX NGTES
= _f_- A [51.31| 53.24 | 2.020 | 2.096 1. DI,
1 J B [12.70] 1549 | 0.600 | 0.610 5
K ~J T | 406 | 580 | 0.180 | 0.230
aa) M D | 038 | 056 | 0.018 | 0.022
F | 127 | 165 | 0.050 | 0.085
6 | 25485C 0,100 BSC ORMED PARALLEL.
J | 020 | 030] 0.008] 001 IMENSIONS A AND B INCLUDE
k[aa] 406 0125 |G 6 gfw?‘sliglljghms AND TOLERANGING
L 15.24 8SC 0.600.85 .
T [T PER ANSI Y145, 1973.
N | 051 | 1.27 | Du20

Qﬁﬁﬁﬁﬁﬁhhﬁhhﬁﬁhhﬁhﬁ;“l

D CASE 711-03
(PLASTIC)
‘O 20
U U U U U OV U YUY UL
: A
|
l | MILLIMETERS] INCHES
n j_$ oM MIN_| MAX | WIN | MAX
A |"51.69 | 52.45 | 2.035 | Z.065 NOTES:
U4 \{ B 11 .) 1. POSITIONAL TOLERANCE OF LEADS (),
il el . F _“wD \ K T SHALL BE WITHIN 0.26 mm (0.010) AT
- SEATING D MAXIMUM MATERIAL CONDITION, IN
BLAN RELATION TQ SEATING PLANE AND
. EACH OTHER,
T65 | 218 | 0.065 | 0,085 2. DIMENSION L TO CENTER OF LEADS
020 | 0.38 [0.008 [0015 WHEN- FORMED PARALLEL.
297 343 [0.115] 013p 3. DIMENSION B DOES NOT INCLUDE
L 15.24 BSC 0.500 8SC MOLD FLASH,
M [@ 1180 [150
N | 051 | 1.02 [0.020 | 0,040
CASE 715-05
{(CERAMIC)
MILLIMETERS| INCHES NOTES:
OIM [MIN | MAX | MIN | MAX 1. DIMENSIONCAD 1S DATUM,
980 | 2.020 | 2. POSITIONAL TOLERANGE FOR LEADS:
576 | 0610
110 0170 | [0.26 (0.010) @] TIAG]
015170021 2] —
030] 0.060 3. [T15 SEATING PLANE.
0.700 BSC 4. DIMENSION “L" TO CENTER QF LEADS
M n.un_g_ﬂa_ WHEN FORMEQ PARALLEL.
— 3’%(7 gé?g 5. DIMENSIONING AND TOLERANCING
R PER ANSI Y14.5, 1973,
0.046] 0080

- Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

31

MOTOROLA Semiconductor Products Inc.

Wy, S

L Y

1

()

— MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 » A SUBSIDIARY OF MOTOROLA INC.

Al1532-4 PRINTED IN US4 3-34 INPERTAL LITHO C20204 18,000 DS4TLR2

