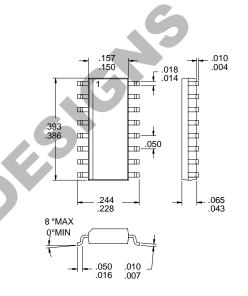
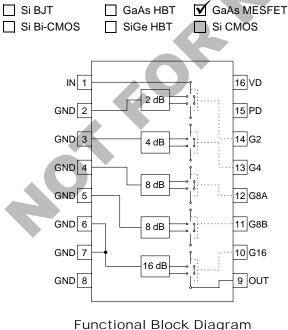


UHF PROGRAMMABLE ATTENUATOR


RF2410

Typical Applications


- Power Control in Communication Systems Commercial and Consumer Systems
- CMOS Compatible Programmable Attenuators
- Portable Battery-Powered Equipment

Product Description

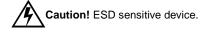
The RF2410 is a multistage monolithic programmable attenuator. The device is built using a Gallium Arsenide process technology and has an attenuation programmability over a 38dB range in 2dB steps. The attenuation is set by five bits of digital data. The input and output of the device have a low VSWR 50 $\!\Omega$ match. The RF output can drive up to +10dBm. This unit is intended for use in systems that require RF transmit power control by digital means. A typical application is in dual mode IS-54/55 compatible cellular transceivers. No negative supply voltages are required, and the unit has a power down feature which reduces the current consumption to less than 0.5mA.

Optimum Technology Matching® Applied

Package Style: SOP-16

Features

- Single 5V Supply
- 0dB to 38dB Attenuation Range
- 4 dB Insertion Loss
- 5-bit Digitally Controlled Attenuation
- Digitally Controlled Power Down Mode
- 500MHz to 2100MHz Operation

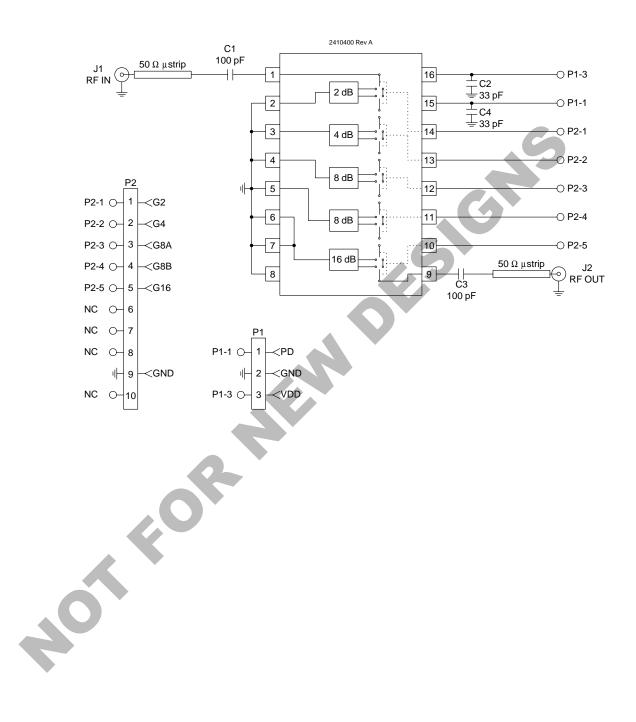

Ordering Information UHF Programmable Attenuator RF2410 RF2410 PCBA Fully Assembled Evaluation Board

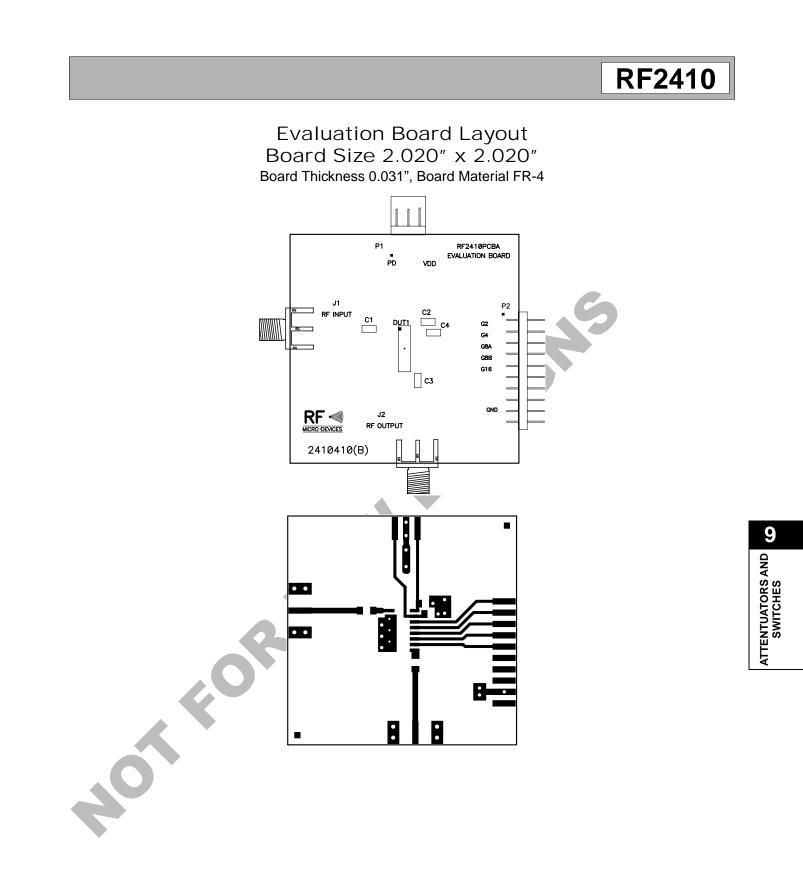
RF Micro Devices, Inc. 7625 Thorndike Road Greensboro, NC 27409, USA

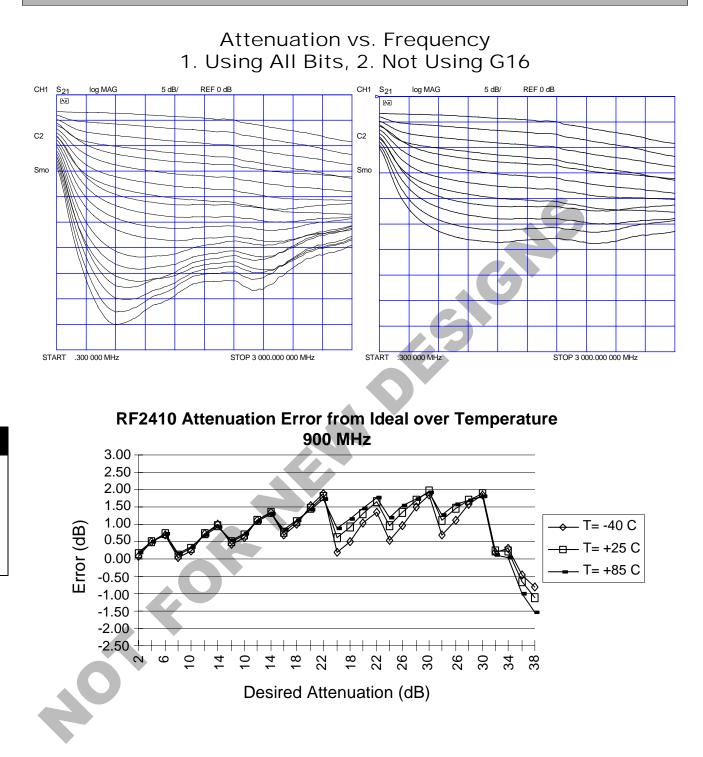
Tel (336) 664 1233 Fax (336) 664 0454 http://www.rfmd.com

Absolute Maximum Ratings

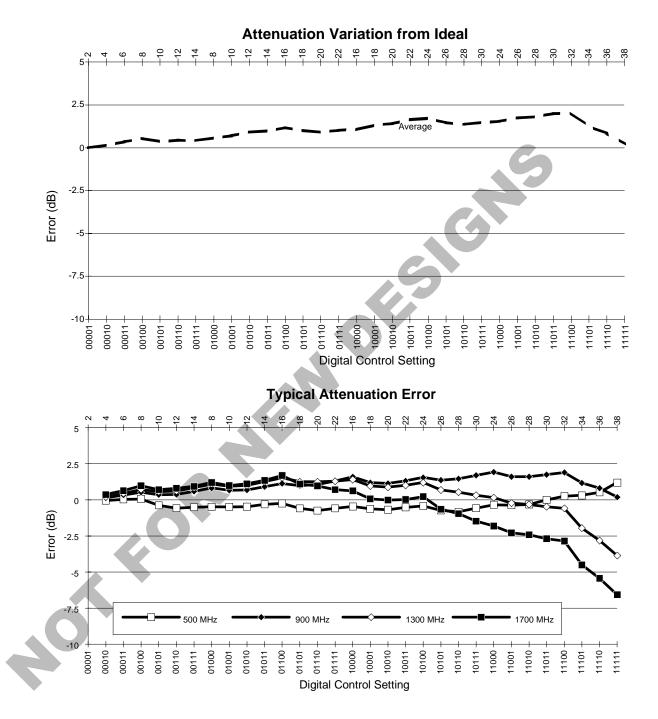
Parameter	Rating	Unit
Supply Voltage	-0.5 to +7.0	V _{DC}
Power Down Voltage	-0.5 to V _{DD} +0.4	V _{DC}
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C

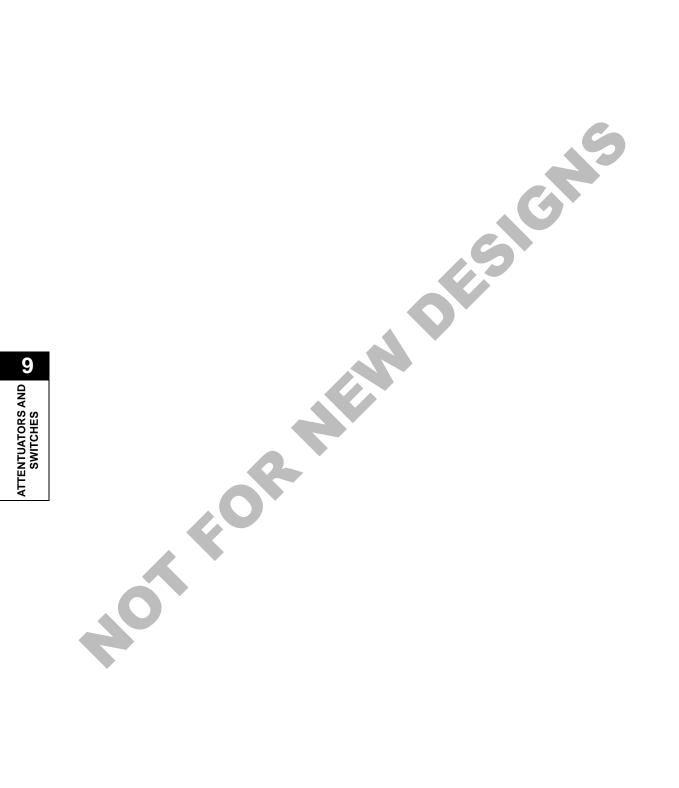



RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).


Deremeter	Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
Overall					T=25°C and 5V at 900MHz	
Frequency Range		500 to 1000		MHz	0dB to 38dB Attenuation Range	
Frequency Range		500 to 2100		MHz	0dB to 20dB Attenuation Range	
Insertion Loss		4	5.5	dB		
Attenuation Range		0 to 38		dB		
Gain Flatness		0.25		dB	In any 50MHz band	
Input						
Input Impedance		50		Ω		
Input VSWR		1.3:1				
Input 1dB Compression	10	14		dBm		
Attenuation						
Attenuation Settings		2, 4, 8, 8, 16		dB	CMOS Level, 5 bits	
Accuracy	1.0	2.0	3.2	dB	2dB Step	
	2.9	4.0	5.4	dB	4dB Step	
	6.7	8.0	9.8	dB	8dB Step (A)	
	6.4	8.0	10.5	dB	8dB Step (B)	
	14.1	16.0	19.3	dB	16dB Step	
	35.0	38.0	42.0	dB	All bits on	
Attenuation Control						
Attenuation "ON" Voltage	2.5	V _{DD}		V	Voltage Supplied to input	
Attenuation "OFF" Voltage			0.3	V	Voltage Supplied to input	
Current		0.4	1.0	mA	Into each control line	
Response Time		<10		ns		
Output						
IM3	-30			dBc	With 0dBm output in each of 2 tones	
Harmonic Output	-40			dBc		
Output Impedance		50		Ω		
Output VSWR		1.3:1				
Power Supply						
Voltage		5		V	Specifications	
		4.5 to 6.0		V	Operating Limits	
Current		6	12	mA	Operating	
		0.4	0.75	mA	Power Down	
Power Down						
Power "ON" Voltage	2.5	V _{DD}		V	Voltage supplied to input; device is "ON"	
Power "OFF" Voltage			0.3	V	Voltage supplied to input; device is "OFF"	

Pin	Function	Description	Interface Schematic
1	RF IN	RF Input. This pin is not DC blocked, and an external blocking capacitor is recommended. The value depends on the frequency used.	
2	GND	Ground connection. Keep traces physically short and connect immedi- ately to the ground plane for best performance. Each ground pin should be connected to the ground plane individually, rather than using one trace and/or via for all ground pins. This will give better step accuracy.	
3	GND	Same as pin 2.	
4	GND	Same as pin 2.	
5	GND	Same as pin 2.	
6	GND	Same as pin 2.	
7	GND	Same as pin 2.	
8 9	GND	Same as pin 2. RF Output. This pin is not DC blocked, and an external blocking capac-	
		itor is recommended. The value depends on the frequency used.	
10	G16	Control pin for the 16dB attenuator. This pin has an internal pull-down resistor, so when the pin is not connected the attenuator will be turned off. For operating frequencies above 1GHz this bit should always be left "off".	Gxx O₩
11	G8B	Control pin for the 8dB attenuator. This pin has an internal pull-down resistor, so when the pin is not connected the attenuator will be turned off.	Same as pin 10.
12	G8A	Control pin for the 8dB attenuator. This pin has an internal pull-down resistor, so when the pin is not connected the attenuator will be turned off.	Same as pin 10.
13	G4	Control pin for the 4dB attenuator. This pin has an internal pull-down resistor, so when the pin is not connected the attenuator will be turned off.	Same as pin 10.
14	G2	Control pin for the 2dB attenuator. This pin has an internal pull-down resistor, so when the pin is not connected the attenuator will be turned off.	Same as pin 10.
15	PD	Power Down control pin. This pin has an internal pull-up resistor to VDD of $10 k\Omega$. When this pin is "low" the circuits are turned off. A "low" means as close to 0V as possible, to ensure minimum current consumption when turned off.	PD O
16	VDD	Power supply pin. An external RF bypass capacitor is recommended.	


Evaluation Board Schematic (Download <u>Bill of Materials</u> from www.rfmd.com.)



Typical Characteristics at 900MHz

