MSM8V512CB - 015/020 Issue 1.0 July 2001 ### **Description** The MSM8V512CB is a 3.3V 512K x 8 SRAM monolithic device available in Chip Size BGA (Ball Grid Array) package, with access times of 15 and 20ns. The device is available to commercial and industrial temperature grades. The Chip Size BGA provides an ultra high density memory packaging solution. The Chip Size BGA occupies less than 50% of the board area of conventional SOP, SOJ and TSOP II packages. #### **Features** - Access times of 15/20 ns. - •3V <u>+</u> 10% - Commercial & Industrial temperature grades - · Chip Size BGA. - 48 ball 6x8 matrix, 1mm pad pitch. - Eutectic 63/67 solder ball attach. - Low Power Dissipation. Operating 1 W (max) Standby (CMOS) 61mW (max) - · Completely Static Operation. - 2 layer BT substrate. - Pinout and footprint will remain the same in the event of a die shrink. ### **Package Details** 48D - 48 Ball, 1mm pitch Chip Size BGA Max. Dimensions (mm) - $10.00 \times 8.00 \times 1.40$ ### **Block Diagram** ### **Pin Definition** See page 2. ### **Pin Functions** | Description | Signal | |-------------------|-----------------| | Address Input | A0~A18 | | Data Input/Output | D0~D7 | | Chip Select | /CS | | Write Enable | /WE | | Output Enable | /OE | | No Connect | NC | | Power | V _{cc} | | Ground | GND | # Pinout (Top View) Note: Pinout shows top view, balls facing down. PAGE 2 Issue 1.0 July 2001 ## Absolute Maximum Ratings(1) | Parameter | Symbol | Min | | Max | Unit | |--|------------------|------|----|------|------| | Voltage on any pin relative to V _{SS} | V _T | -0.5 | to | 4.6 | V | | Power Dissipation | P _T | | 1 | | W | | Storage Temperature | T _{STG} | -55 | to | +150 | °С | Notes: (1) Stresses above those listed may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability ## **Recommended Operating Conditions** | Parameter | Symbol | Min | Тур | Max | Unit | | |-----------------------|-----------------|------|-----|---------|------|------------| | Supply Voltage | V _{cc} | 3.0 | 3.3 | 3.6 | ٧ | | | Input High Voltage | V _{IH} | 2.0 | - | Vcc+0.3 | V | | | Input Low Voltage | V _{IL} | -0.3 | - | 0.8 | V | | | Operating Temperature | T _A | 0 | - | 70 | оС | | | | T _{AI} | -40 | - | 85 | оС | (I Suffix) | ### **DC Electrical Characteristics** $(V_{CC} = 3.3V \pm 10\%, T_A = -40^{\circ}C \text{ to } 85^{\circ}C)$ | Parameter | Symbol | Test Condition | Min | Тур | Max | Unit | |--------------------------|------------------|--|-----|-----|-----|------| | Input Leakage Current | ILI | V _{IN} =V _{SS} to V _{CC} | -2 | - | 2 | μΑ | | Output Leakage Current | I _{LO} | /CS=V _{IH} or /OE=V _{IH} or /WE=V _{IL} , V_{OUT} =V _{SS} to V _{CC} | -2 | - | 2 | μΑ | | Operating Supply Current | I _{CC1} | Min. Cycle, 100% Duty
/CS=V _{IL} , V _{IN} =V _{IH} or V _{IL} , I _{OUT} =0mA | - | - | 170 | mA | | Standby Supply Current | I _{SB} | Min. Cycle, /CS=V _{IH} | - | - | 60 | mA | | | I _{SB1} | f=0MHz, CS≥V _{CC} -0.2V,
V _{IN} ≥V _{CC} -0.2V or V _{IN} ≤0.2V | - | - | 15 | mA | | Output Voltage | V _{OL} | I _{OL} =8.0mA | - | - | 0.4 | V | | | V _{OH} | I _{OH} =-4.0mA | 2.4 | - | - | V | PAGE 3 Issue 1.0 July 2001 ## Capacitance $(V_{cc} = 3.3V \pm 10\% T_A = 0^{\circ}C \text{ to } 70^{\circ}C)$ | Parameter | Symbol | Test Condition | Тур | max | Unit | |-------------------|------------------|----------------------|-----|-----|------| | Input Capacitance | C _{IN} | V _{IN} =0V | - | 10 | pF | | I/O Capacitance | C _{I/O} | V _{I/O} =0V | - | 10 | рF | ## **Test Conditions** Input pulse levels: 0V to 3.0VInput rise and fall times: 3ns • Input and Output timing reference levels : 1.5V • Output Load : See Load Diagram. • V_{CC} = 3.3V<u>+</u>10% ## **Output Load** ## **Functional Description** | /CS | /WE | /OE | Mode | I/O Pin | Supply Current | |-----|-----|-----|----------------|------------------|------------------| | Н | X | Х | Not Select | High-Z | I_{SB},I_{SB1} | | L | Н | Н | Output Disable | High-Z | Icc | | L | Н | L | Read | D _{OUT} | Icc | | L | L | X | Write | D _{IN} | Icc | Note : X = Don't Care PAGE 4 Issue 1.0 July 2001 # **Read Cycle** | | | 1 | 5 | 2 | 0 | | |---------------------------------|------------------|-----|-----|-----|-----|-------| | Parameter | Symbol | Min | Max | Min | Max | Units | | Read Cycle Time | t _{RC} | 15 | | 20 | - | ns | | Address Access Time | t _{AA} | - | 15 | - | 20 | ns | | Chip Select to Output | t _{CO} | - | 15 | - | 20 | ns | | Output Enable to Valid Output | t _{OE} | - | 7 | - | 9 | ns | | Chip Enable to Low-Z Output | t _{LZ} | 3 | - | 3 | - | ns | | Output Enable to Low-Z Output | t _{OLZ} | 0 | - | 0 | - | ns | | Chip Disable to High-Z Output | t _{HZ} | 0 | 7 | 0 | 9 | ns | | Output Disable to High-Z Output | t _{OHZ} | 0 | 7 | 0 | 9 | ns | | Output Hold from Address Change | t _{OH} | 3 | - | 3 | - | ns | # Write Cycle | | | 1 | 5 | 2 | :0 | | |-------------------------------|------------------|----|---|-----|-----|-------| | Parameter | Symbol | | | Min | Max | Units | | Write Cycle Time | t _{WC} | 15 | - | 20 | - | ns | | Chip Select to End of Write | t _{CW} | 12 | - | 14 | - | ns | | Address Set-up Time | t _{AS} | 0 | - | 0 | - | ns | | Address Valid to End of Write | t _{AW} | 12 | - | 14 | - | ns | | Write Pulse Width (/OE High) | t _{WP} | 12 | - | 14 | - | ns | | Write Recovery Time | t _{WR} | 0 | - | 0 | - | ns | | Write to Output High-Z | t _{WHZ} | 0 | 7 | 0 | 9 | ns | | Data to Write Time Overlap | t _{DW} | 7 | - | 9 | - | ns | | Data Hold from Write Time | t _{DH} | 0 | - | 0 | - | ns | | End Write to Output Low-Z | t _{OW} | 3 | - | 3 | - | ns | PAGE 5 1.0 July 2001 ### Read Cycle 1 (Address Controlled, $/CS=/OE=V_{IL}$, $/WE=V_{IH}$) ### Read Cycle 2 $$(/WE = V_{IH})$$ ### NOTES(READ CYCLE) - WE is high for read cycle. All read cycle timing is referenced from the last valid address to the first transition address. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V_{OH} or V_{OL} levels. - 4. At any given temperature and voltage condition, $t_{HZ}(Max.)$ is less than $t_{LZ}(Min.)$ both for a given device and from device to device. - 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested. - 6. Device is continuously selected with /CS=V_{IL}. - 7. Address valid prior to coincident with /CS transition low. - 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. Issue 1.0 July 2001 PAGE 6 ### Write Cycle 1 (/OE = Clock) ### NOTES(WRITE CYCLE) - 1. All write cycle timing is referenced from the last valid address to the first transition address. - A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low; A write ends at the earliest transition /CS going high or /WE going high. t_{WP} is measured from the beginning of write to the end of write - 3. t_{cw} is measured from the later of /CS going low to end of write. - 4. t_{AS} is measured from the address valid to the beginning of write. - 5. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as /CS or /WE going high. - 6. If /OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur. - 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. - 8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state. - 9. Dout is the read data of the new address. - 10. When /CS is low I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied. PAGE 7 Issue 1.0 July 2001 ### Write Cycle 2 (/OE = Low Fixed) ### NOTES(WRITE CYCLE) - 1. All write cycle timing is referenced from the last valid address to the first transition address. - 2. A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low; A write ends at the earliest transition /CS going high or /WE going high. t_{WP} is measured from the beginning of write to the end of write. - 3. t_{CW} is measured from the later of /CS going low to end of write. - 4. t_{AS} is measured from the address valid to the beginning of write. - 5. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as /CS or /WE going high. - 6. If /OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur. - 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. - 8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state. - 9. Dout is the read data of the new address. - 10. When /CS is low I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied. PAGE 8 Issue 1.0 July 2001 ### Write Cycle 3 (/CS = Controlled) #### NOTES(WRITE CYCLE) - 1. All write cycle timing is referenced from the last valid address to the first transition address. - A write occurs during the overlap of a low /CS and /WE. A write begins at the latest transition /CS going low and /WE going low; A write ends at the earliest transition /CS going high or /WE going high. t_{WP} is measured from the beginning of write to the end of write. - 3. $t_{\text{\tiny CW}}$ is measured from the later of /CS going low to end of write. - 4. t_{AS} is measured from the address valid to the beginning of write. - 5. t_{WR} is measured from the end of write to the address change. t_{WR} applied in case a write ends as /CS or /WE going high. - 6. If /OE, /CS and /WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur. - 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. - 8. If /CS goes low simultaneously with /WE going or after /WE going low, the outputs remain high impedance state. - 9. Dout is the read data of the new address. - 10.When /CS is low: I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied. PAGE 9 Issue 1.0 July 2001 ## Chip Size BGA - 48 pad | General Reliability Data | | | | | |-------------------------------------|---|--|--|--| | High Temperature Operating Life | 125 ^o C / 6V / 1000hrs | | | | | High Temperature Storage Life | 150 ^o C / 1000hrs | | | | | Autoclave | 121 ⁰ C / 100% RH / 168hrs | | | | | Temperature Cycling | -55 ~ 125 ^O C / 1000 cycles | | | | | Moisture Sensitivity | JEDEC Level 3 30 ⁰ C / 60% RH / 192hrs | | | | | ^O JA Thermal Performance | 30 ~ 45 ^o C/Watt | | | | PAGE 10 Issue 1.0 July 2001 ### **Ordering Information** #### Note Although this data is believed to be accurate the information contained herein is not intended to and does not create any warranty of merchantibility or fitness for a particular purpose. Our products are subject to a constant process of development. Data may be changed without notice. Products are not authorised for use as critical components in life support devices without the express written approval of a company director. PAGE 11 Issue 1.0 July 2001