

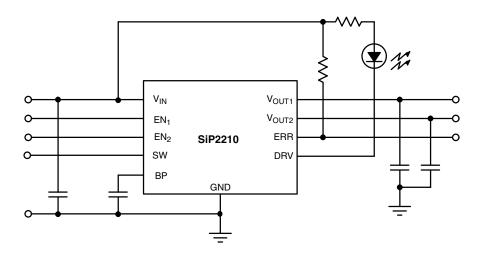
Dual Output 150/300-mA Low Dropout Regulator

DESCRIPTION

SiP2210 is a dual output low dropout regulator capable of supplying 150 mA from output 1 and 300 mA from output 2. The SiP2210 has the outputs independently enabled. In addition to the LDOs, an open drain output has been included, which is capable of sinking 150 mA. SiP2210 offers a low dropout, low ground current and extremely low noise with the addition of a bypass capacitor.

Protection features include ERR, undervoltage lockout, output current limit, and thermal shutdown.

The fixed output version of SiP2210 is available in a lead (Pb)-free MLP33-10 PowerPAK package and the adjustable version is available in a lead (Pb)-free MLP44-16 PowerPAK package. Both packages ares specified to operate over the range of - 40 °C to 85 °C.


FEATURES

- 2.25 V to 5.5 V input voltage range
- Two outputs 150 mA and 300 mA
- Low ground current of 48 µA
- Open drain driver output sinking 150 mA
- Low dropout voltage of 65 mV at 100 mA
- ERR
- Current limit
- Thermal shutdown
- MLP33-10 PowerPAK[®] package (fixed output)
 MLP44-16 PowerPAK[®] package (adjustable output)
- MIC2210 pin-for-pin replacement

APPLICATIONS

- Cellular phones
- Wireless modems
- **PDAs**

TYPICAL APPLICATION CIRCUIT

SiP2210

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS				
Parameter V _{IN} , V _{EN} , to GND		Limit	Unit	
		- 0.3 to 7	V	
Power Dissipation	MLP33-10 PowerPAK ^b	1600	mW	
	MLP44-16 PowerPAK ^c	1880	11100	
Storage Temperature		- 55 to 150	°C	
Thermal Resistance (MLP10 PowerPAK)		50	°C/W	

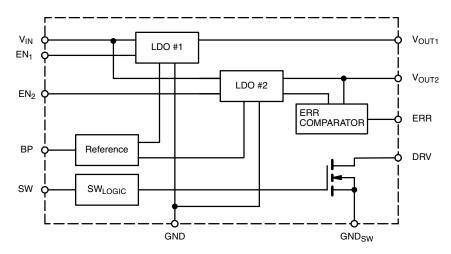
Notes:

- a. Device mounted with all leads soldered or welded to PC board.
 b. Derate 20 mW/°C above 70 °C.
- c. Derate 23.5 mW/°C above 70 °C.

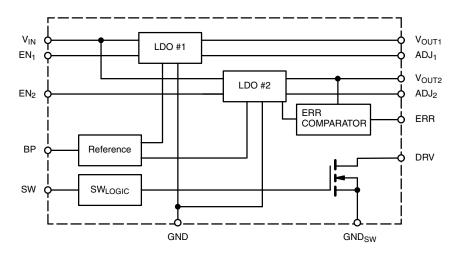
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE		
Parameter	Limit	Unit
Input Voltage Range	2.25 to 5.5	V
Enable Voltage Range	0 to 5.5	V
Operating Temperature Range T _A	- 40 to 85	°C
Operating Temperature Range T _J	- 40 to 125	C

SPECIFICATIONS							
		Test Conditions Unless Specified			Limits		
Parameter	Symbol	$V_{IN} = V_{OUT} + 1 V^{e}, C_{OUT} = 1 \mu F, I_{OUT} = 100 \mu A,$ $T_{A} = 25 °C$	Temp.a	Min.b	Typ.c	Max.b	Unit
Regulators						ı	
Outside Mallagrand Agreement		From Nominal V _{OUT}	Room	- 1		1	0/
Output Voltage Accuracy			Full	- 2		2	%
Output Voltage Temperature Coefficient			Room		40		ppm/°C
Line Deculation®		V _{IN} = V _{OLIT} + 1 V to 5.5 V	Room	- 0.3	0.2	0.3	
Line Regulation ^e		VIN = VOUT + 1 V to 5.5 V	Full	- 0.6		0.6	%
Load Regulation		I _{OUT} = 100 μA to 150 mA (LDO 1 and 2)	Room		0.2	1.0	/0
Load Hegulation		$I_{OUT} = 100 \mu A \text{ to } 300 \text{ mA (LDO 2)}$	Room			1.5	
		I _{OUT} = 150 mA (LDO 1 and 2)	Room		120	190	- mV
Dropout Voltage ^f	V_{DROP}	,	Full			250	
	* DROP	I _{OUT} = 300 mA (LDO 2)	Room		240	340	
		1001 = 000 HIA (EDO 2)	Full			420	
		$I_{OUT1} = I_{OUT2} = 0 \mu A$	Room		48	65	
Ground Pin Current	l _G	$I_{OUT1} = I_{OUT2} = 0 \mu A$	Full			80	μΑ
Ground I III Guirent	·G	I _{OUT1} = 150 mA, I _{OUT2} = 300 mA	Room		60		
		V _{EN} < 0.4 V	Full			2.0	
Sequence Time Delay ^d	t _{SEQ}		Room		70		μs
Output Voltage Noise		$C_{BP} = 0.01 \mu F$			30		μVrms
Ripple Rejection		$f = 1 \text{ kHz}, C_{OUT} = 1 \mu F, C_{BP} = 10 \text{ nF}$	Room		60		dB
Tupple Hejection		$f = 20 \text{ kHz}, C_{OUT} = 1 \mu\text{F}, C_{BP} = 10 \text{ nF}$	Room		40		uБ
Inputs							
EN, SW Input Voltage	V_{IL}	Logic Low	Full			0.6	V
Err, err input voltage	V _{IH}	Logic High	Full	1.8			•
EN, SW Input Current	I _{IL}	V _{IL} < 0.6 V	Room	- 1	0.01	1	μΑ
= 1, 517 input Gairoin	I _{IH}	V _{IH} > 1.8 V	Room	- 1	0.01	1	
SET Pin Threshold Voltage	V _{TH} (set)	POR = High	Room		1.25		V
SET Pin Current Source		V _{SET} = 0 V	Room	0.75	1.25	1.75	μΑ

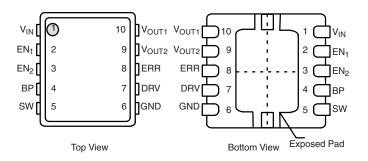

SPECIFICATIONS							
		Test Conditions Unless Specified			Limits		
		$V_{IN} = V_{OUT} + 1 V^{e}, C_{OUT} = 1 \mu F, I_{OUT} = 100 \mu A,$					
Parameter	Symbol	T _A = 25 °C	Temp.a	Min.b	Typ.c	Max.b	Unit
Error Flag Output (ERR)							
Threshold	V_{THL}	% of Nominal V _{OUT2}	Room	90			%
Threshold	V _{THH}	76 OF NOTHINAL VOUT2	Room			96	%
Output Voltage	V _{OL}	I _L = 250 μA	Room		0.02	0.1	V
Leakage Current	I _{ERR}	ERR = High	Room	- 1	0.01	1	μΑ
Driver (DRV) Output							
Output Voltage	V _{OL}	I _L = 150 mA	Full		0.2	0.6	V
Leakage Current		I _{DRV} = 0 mA, V _{DRV} = 5.5 V, SW = 0 V	Room	- 1	0.01	1	μΑ
Protection							
Current Limit	1	V _{OUT1} = 0 V	Room	150	280	460	mA
	IIL	V _{OUT1} = 0 V	Room	300	450	700	IIIA
Thermal Shutdown Temperature		· ·			165		°C
Thermal Hysteresis			Room		25		C

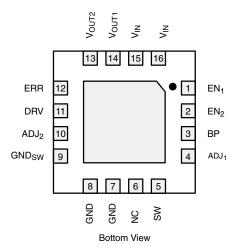
Notes:


- a. Room = 25 °C, Full = 40 °C to 85 °C.
- b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.
- c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- d. Timing is measured from 90 % of LDO #1's final value to 90 % of LDO #2's final value.
- e. For higher output of the regulator pair.
- f. Dropout voltage is defined as the input to output differential voltage at which the output voltage drops 2 % below the output voltage measured with a 1 V differential, provided that V_{IN} does not drop below 2.25 V. When V_{OUT(nom)} is less than 2.25 V, the output will be in regulation when 2.25 V V_{OUT(nom)} is greater than the dropout voltage specified.

FUNCTIONAL BLOCK DIAGRAM

Fixed Voltage Version


Adjustable Voltage Version



PIN CONFIGURATION AND ORDERING INFORMATION

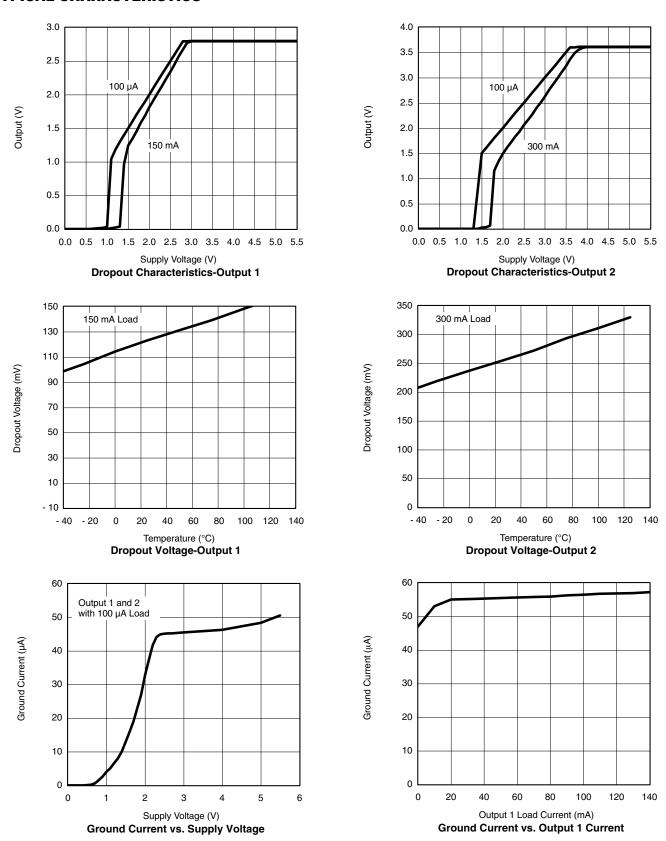
PowerPAK MLP33-10 with Large Pad

PowerPAK MLP44-16

VOLTAGE OPTIONS	
Voltage	Code (x, z)
Adj	A
1.5	F
1.6	W
1.8	G
1.85	D
1.9	Y
2.0	Н
2.1	E
2.5	J
2.6	К
2.7	L
2.8	M
2.85	N
2.9	0
3.0	Р
3.1	Q
3.2	R
3.3	S
3.4	Т
3.5	U
3.6	V

ORDERING INFORMATION				
Part Number	Temp. Range	Package	Marking	
SiP2210DMP-XZ-E3	- 40 °C to 85 °C -	PowerPAK MLP33-10	10XZ	
SiP2210DLP-AA-E3	- 40 0 10 83 0	PowerPAK MLP44-16	10AA	

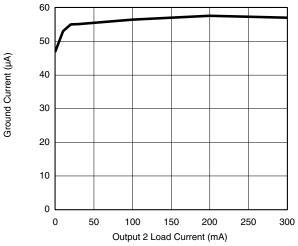
X: Output 1 voltage code.

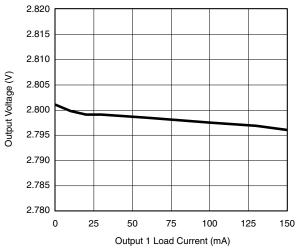

Z: Output 2 voltage code.

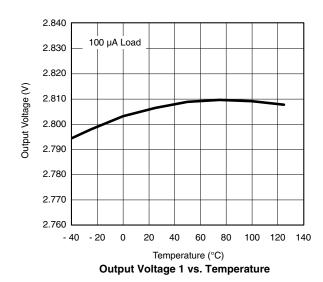
Pin Number	Nama	Franklan			
MLP33-10	MLP44-16	Name	Function	Function	
1	15, 16	V _{IN}	Input voltage for the power MOSFETs and their gate drive		
2	1	EN ₁	Enables LDO #1 output.		
	6	NC	No Connect		
3	2	EN ₂	Enables LDO #2 output.		
4	3	BP	Bypass for noise reduction		
	4	ADJ ₁	Feedback connection for LDO #1		
5	5	SW	Control for open drain output		
6	7, 8	GND	Ground		
	9	GND _{SW}	Ground for the internal N-channel MOSFET switch		
	10	ADJ ₂	Feedback connection for LDO #2		
7	11	DRV	Open drain output		
8	12	ERR	ERROR flag output		
9	13	V _{OUT2}	Output of LDO #2 - 300 mA		
10	14	V _{OUT1}	Output of LDO #1 - 150 mA		

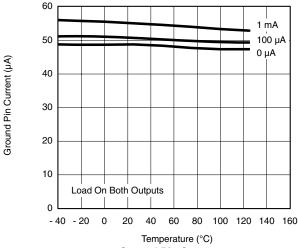
The exposed pad on both packages must be connected externally to the GND pin.

VISHAY.

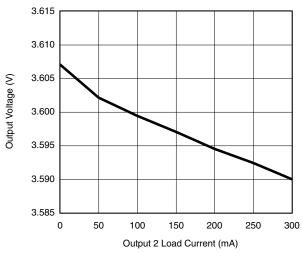

TYPICAL CHARACTERISTICS



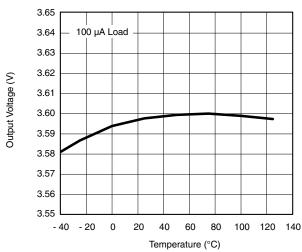

TYPICAL CHARACTERISTICS

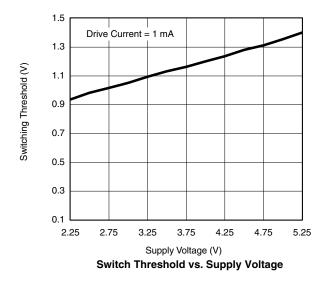


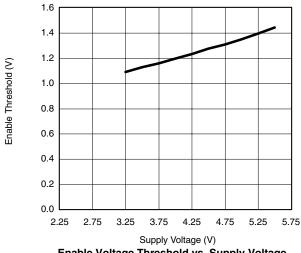
Ground Current vs. Output 2 Current



Output Voltage vs. Load Current-Output 1

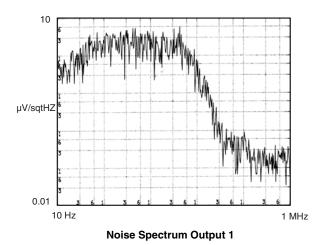


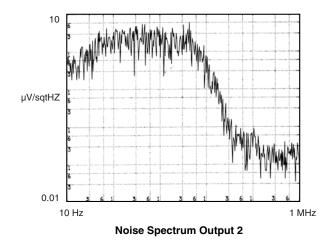


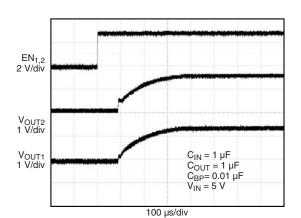

Output Voltage vs. Load Current-Output 2

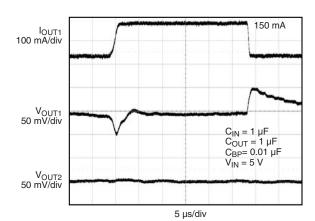
Output Voltage 2 vs. Temperature

TYPICAL CHARACTERISTICS

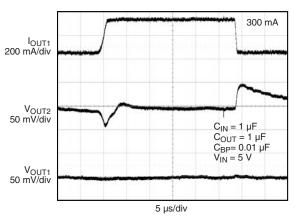





Enable Voltage Threshold vs. Supply Voltage



TYPICAL WAVEFORMS



Enable Sequence

Load Transient Response LDO1

Load Transient Response LDO2

DETAILED OPERATION

The SiP2210 is a low dropout, low quiescent current monolithic dual linear regulator, with power-on reset and open drain driver output features. With output voltage range from 1.25 V to 5 V, the first regulator can source 150 mA and the second regulator can source 300 mA. The open drain driver has the capability to drive LED's for backlighting applications.

V_{IN}

 V_{IN} is the input supply pin for both LDO's. The bypass capacitor for this pin is not critical as long as the input supply has low enough source impedance. For practical circuits, a 1.0 μ F or larger ceramic capacitor is recommended. When the source impedance is not low enough and/or the source is several inches from the SiP2210, then a larger input bypass capacitor is needed. When the source impedance, wire and trace impedance are unknown, it is recommended that an input bypass capacitor be used of a value that is equal to or greater than the output capacitor.

V_{OUT1,2} (LDO Outputs)

The V_{OUT} is the output voltage of the regulator. Connect a bypass capacitor from V_{OUTx} to ground. The output capacitor can be any value from 1.0 μ F to 10.0 μ F. A ceramic capacitor with X5R or X7R dielectric type is recommended for best output noise, line transient, and load transient performance.

Enable

The EN1 and EN2 pins control the turning on and off of their respective regulators in the SiP2210. V_{OUT} of both outputs are guaranteed to be on when the Enable pin voltage is equal or greater than 1.8 V. V_{OUT} is guaranteed to be off when the Enable pin voltage equals or is less than 0.6 V. To automatically turn on V_{OUT} whenever the input is applied, tie the Enable pin to V_{IN} .

ERROR Flag Output (ERR)

The ERR is an open drain output that goes low when V_{OUT2} is less than 5 % of its nominal value. As with any open drain output, an external pull up resistor is needed. The ERR pin is disconnected if not used.

OPEN-Drain Driver (DRV)

The SW pin a logic level input put that controls the DRV pin. The switch pin is an active high input and should not be left floating. The drive pin is an open drain output able to sink 150 mA of current.

Bypass Capacitor

For low noise application and/or increase in power supply rejection ration (PSRR) connect a high frequency ceramic capacitor from BP to ground. A 0.01 μF X5R or X7R ceramic capacitor is recommended.

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?73441.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08