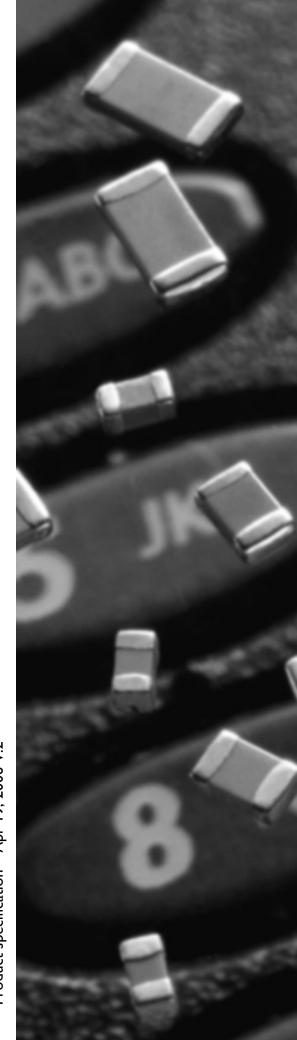


DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

Ultra small: NPO/X5R/X7R/Y5V (Pb Free & RoHS compliant)


6.3 V TO 50 V

YAGEO

SCOPE

This specification describes ultra small NP0/X5R/X7R/Y5V series chip capacitors with lead-free terminations.

APPLICATIONS

- Mobile phones
- Digital cameras
- Camcorders
- Tuners

FEATURES

- High capacitance per unit volume
- Supplied in bulk case or in tape on reel.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing style, TC material, rated voltage and capacitance value.

YAGEO ORDERING CODE

CC <u>xxxx x x x xxx x B x xxx</u> (1) (2) (3) (4) (5)

(I) SIZE - INCH BASED (METRIC)

0201 (0603)

(2) TOLERANCE

 $C = \pm 0.25 \text{ pF}$

 $D = \pm 0.50 pF$

 $| = \pm 5\%$

 $K = \pm 10\%$

 $M = \pm 20\%$

Z = -20/+80%

(3) PACKING STYLE

R = 7" paper tape

(4) TC MATERIAL

NPO

X5R

X7R

Y5V

(5) RATED VOLTAGE

5 = 6.3 V

6 = 10 V

7 = 16 V

8 = 25 V

9 = 50 V

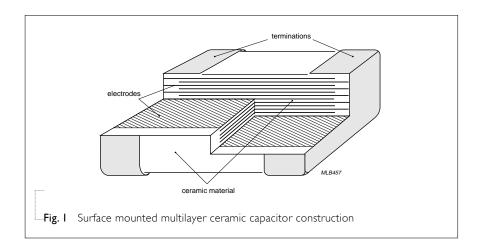
(6) PROCESS

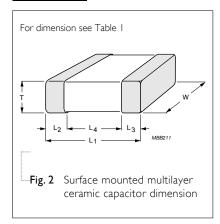
B = BME

N = NME

(7) CAPACITANCE VALUE:

First two for significant figures and 3rd for number of zero


Letter "R" for decimal point


CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

DIMENSION

Table I						
TYPE	L _I (mm)	W (mm)	T (mm)	L ₂ /L ₃ (1	mm)	L ₄ (mm)
				min.	max.	min.
CC0201	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.10	0.20	0.20

CAPACITANCE RANGE & THICKNESS FOR SIZE 0201 OF NPO 25/50 V

Table 2		
CAPACITANCE	0201	0201
(pF)	25 V	50 V
1.0		0.3 ±0.03
1.2		
1.5		
1.8		
2.2		
2.7		
3.3		
3.9		
4.7		
5.6		
6.8		
8.2		
10		
12		
15		
18		
22		
27	0.3 ±0.03	
33		
39		
47		
56		
68		
82		
100		

NOTE

- 1. Values in shaded cells indicate thickness class in mm.
- 2. Capacitance range < I pF is on request.

CAPACITANCE RANGE & THICKNESS FOR SIZE 0201 OF X5R/X7R/Y5V/ 6.3/10/16/25/50 V

Table 3						
CAPACITANCE	X5R	X7R				Y5V
(nF)	6.3 V	10 V	16 V	25 V	50 V	6.3 V
0.047					0.3 ±0.03	
0.068						
0.10						
0.15						
0.22						
0.33						
0.47						
0.68				0.3 ±0.03		
1.0		0.3 ±0.03	0.3 ±0.03			
1.5						
2.2						
3.3						
4.7						
6.8						
10						
15						
22						
33						
47						
68						
100	0.3 ±0.03					0.3 ±0.03

NOTE

1. Values in shaded cells indicate thickness class in mm.

THICKNESS CLASSES AND PACKING QUANTITY

Table 4 DESCRIPTION	SIZE	THICKNESS	0 mm TAD	E WIDTU	MOLINIT I	DED DEEL	12 mm TAPE WIDTH	AMOUNT
DESCRIPTION		CLASSIFICATION	8 mm TAPE WIDTH/AMOUN Ø180 mm, 7" Ø3			mm, 13"	/AMOUNT PER REEL	PER
		(mm)	Paper	Blister	Paper	Blister	Ø180 mm, 7" Blister	BULK CASE
	0201	0.3 ±0.03	15,000		50,000			
	0402	0.5 ±0.05	10,000		50,000			50,000
	0603	0.8 ±0.07	4,000		15,000			15,000
	0805	0.6 ±0.10	4,000		20,000			10,000
		0.85 ±0.1	4,000		15,000			8,000
		1.25 ±0.10		3,000		10,000		5,000
	1206	0.6 ±0.10	4,000		20,000			
		0.85 ±0.10	4,000		15,000			
		1.00 / 1.15 ±0.10		3,000		10,000		
		1.6 ±0.15		2 500		10,000		
		1.6 ±0.20		2,000		10,000		
	1210	0.6 / 0.7 ±0.10		4,000		15,000		
. .		0.85 ±0.10		4,000		10,000		
Discrete capacitors		1.15 ±0.10		3,000		10,000		
capacitors		1.15 ±0.15		3,000		10,000		
	•	1.5 ±0.10		2,000				
		1.6 / 1.9 ±0.20		2,000				
		2.5 ±0.20		1,000				
	1808	1.15 ±0.15					I 500	
		1.35 ±0.15					1,000	
		1.5 ±0.10					1,000	
	1812	0.6 / 0.85 ±0.10					2,000	
		1.15 ±0.10					1,500	
		1.15 ±0.15					1,500	
	•	1.35 ±0.15					1,000	
		1.5 ±0.1					1,000	
		1.6 ±0.2					1,000	
	0508	0.6 ±0.10	4,000					
Λυμανία		0.85 ±0.10	4,000					
Arrays	0612	0.8 ±0.10	4,000					
		1.2 ±0.10		3,000				

NOTE

1. For bulk case, tape and reel specification/dimensions, please see the special data sheet "Packing" document.

ELECTRICAL CHARACTERISTICS

NP0/X5R/X7R/Y5V DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise stated all electrical values apply at an ambient temperature of 20 ± 1 °C, an atmospheric pressure of 86 to 106 kPa, and a relative humidity of 63 to 67%.

Table 5	
DESCRIPTION	VALUE
Capacitance range (I):	
NP0	I pF to 100 pF
X5R/Y5V	100 nF
X7R	47 pF to 10 nF
RATED VOLTAGE U _r (DC):	
NP0	25/50 V
X5R/Y5V	6.3 V
X7R	10/16/25/50 V
Capacitance tolerance (1):	
NP0	$C < 10 \text{ pF: } \pm 0.25 \text{ pF, } \pm 0.50 \text{ pF; } C \ge 10 \text{ pF: } \pm 5\%$
X5R	±10%
X7R	±10%
Y5V	-20% ~ +80%
Dissipation factor (D.F.) (1) (max.):	
NP0	C ≤10 pF: D.F.= $\frac{30+7C}{100-6}$ or 0.3%; whichever is smallest; C >10 pF: 0.1%
X5R	100×C
X7R	10%
Y5V	10 V: 5%; 16 V: 3.5%; 25/50 V: 2.5%
	15%
Insulation resistance after I minute at Ur (DC)	$R_{ins} \ge 10 \text{ G}\Omega$ or $R_{ins} \times C \ge 500$ seconds whichever is less
Maximum capacitance change as a function of	
temperature (temperature	
characteristic/coefficient):	±30 ppm/°C
NP0	±15%
X5R/X7R	+22% ~ -82%
Y5V	TZZ/0~~-0Z/0
Operating temperature range:	
NP0/X7R	_55 °C to +125 °C
X5R	_55 °C to +85 °C
Y5V	-30 °C to +85 °C

NOTE

1. f=1 KHz for C \leq 10 μ F; measuring at voltage 1 V_{rms} ; f=120 Hz for C > 10 μ F; measuring at voltage 0.5 V_{rms} .

TESTS AND REQUIREMENTS

Table 6 Test condition, procedure and requirements

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual inspection and dimension check		4.4	Any applicable method using × 10 magnification	In accordance with specification	
Capacitance 4.5.1		4.5.1	NP0: $f = 1 \text{ MHz for } C \leq 1 \text{ nF, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C;} \\ f = 1 \text{ KHz for } C > 1 \text{ nF, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C} \\ \times 5R/X7R/Y5V: \\ f = 1 \text{ KHz for } C \leq 10 \mu\text{F, measuring at voltage } I \text{ V}_{rms} \text{ at } 20 \text{ °C}$	Within specified tolerance	
f = 1 KHz for C > 1 nF, measuring $\times 5 \text{R/X/7R/Y5V}$:		$f = 1$ MHz for C \leq 1 nF, measuring at voltage 1 V_{rms} at 20 °C; $f = 1$ KHz for C $>$ 1 nF, measuring at voltage 1 V_{rms} at 20 °C	In accordance with specification		
Insulation resistance			At U _r (DC) for I minute	In accordance with specification	
$U_r \le 100 \text{ V: } 200 \text{ V: } 200 \text{ V: } 100 V: $		4.5.4.2	Test voltage (DC) applied for 1 minute $U_r \leq 100 \text{ V: } 2.5 \times U_r \text{ applied to NP0/X5R/X7R/Y5V series} \\ 100 \text{ V} < U_r \leq 200 \text{ V: } 1.5 \times U_r + 100 \text{ V applied to NP0/X7R series} \\ 200 \text{ V} < U_r \leq 500 \text{ V: } 1.3 \times U_r + 100 \text{ V applied to NP0/X7R series} \\ U_r > 500 \text{ V: } 1.3 \times U_r \text{ applied to NP0/X7R series} \\ \text{I: } 7.5 \text{ mA} \\$	No breakdown or flashover	
Temperature 4.6 Between minimum and maximum temperature characteristic		NP0: ΔC/C: ±30 ppm/°C X5R/X7R: ΔC/C: ±15% Y5V: ΔC/C: +22%~ -82%			
Adhesion	A force applied for 10 seconds to the line joining the termination and in a plane parallel to the substrate for size ≥ 0603: a force of 5 N applied for size 0402: a force of 2.5 N applied for size 0201: a force of 1 N applied		No visible damage		

Table 6 Test condition, procedure and requirements (continued)

ΓEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Bond strength of plating on	IEC 60384- 21/22	4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
end face			Conditions: bending I mm at a rate of I mm/s, radius jig 340 mm	NP0: Δ C/Cl: \leq 1% or 0.5 pF whichever is greater X5R/X7R/Y5V: Δ C/Cl: \leq 10%
Resistance to soldering heat		4.9	Precondition: $150 \pm 0/-10$ °C for I hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 to 150 °C for I minute Preheating: for size ≥ 1206 : 100 to 120 °C for I minute and 170 to 200 °C for I minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours.	The termination shall be well tinned NP0: $ \Delta C/C $: $\leq 0.5\%$ or 0.5 pF whichever is greater X5R/X7R: $ \Delta C/C $: $\leq 10\%$ Y5V: $ \Delta C/C $: $\leq 20\%$ D.F.: within initial specified value R_{ins} : within initial specified value
Solderability		4.10	Unmounted chips completely immersed in a solder bath at 235 \pm 5 °C Dipping time: 2 \pm 0.5 seconds Depth of immersion: 10 mm	The termination shall be well tinned.
Rapid change of temperature		4.11	Preconditioning; 150 +0/ $-$ 10 °C for 1 hour, then keep for 24 \pm 1 hours at room temperature	No visual damage NP0: IΔC/Cl: ≤ 1% or 1 pF whichever is greater
			5 cycles with following detail: 30 minutes at lower category temperature; 30 minutes at upper category temperature	X5R/X7R: $ \Delta C/C $: $\leq 15\%$ Y5V: $ \Delta C/C $: $\leq 20\%$ D.F.: within initial specified value
			Recovery time 24 ±2 hours.	R _{ins} : within initial specified value
Damp heat, with U _r load		4.13	Initial measurements; after 150 +0/-10 °C for 1 hour, then keep for 24 \pm 1 hours at room temperature Duration and conditions: 500 \pm 12 hours at 40 \pm 2 °C; 90 to 95% RH; U_r applied	NP0: IΔC/Cl: ≤ 2% or 1 pF whichever is greater X5R/X7R: IΔC/Cl: ≤ 20% Y5V: IΔC/Cl: ≤ 30%
			Final measurement: perform a heat treatment at $150 \pm 0/-10$ °C for 1 hour, final measurements shall be carried out 24 ± 1 hours after recovery at room	NP0/X5R/X7R/Y5V: D.F.: 2 × initial value max.
			temperature without load.	NP0: $R_{ins} \ge 2,500 \text{ M}\Omega$ or $R_{ins} \times C_r$ ≥ 25 seconds, whichever is less X5R/X7R/Y5V: $R_{ins} \ge 500 \text{ M}\Omega$ or $R_{ins} \times C_r \ge 25$ seconds, whichever is less

Table 6 Test condition, procedure and requirements (continued)

1					
TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS	
Endurance	IEC 60384- 21/22	4.14	Preconditioning; Initial measurements; after 150 +0/-10 $^{\circ}$ C for 1 hour, then keep for 24 \pm 1 hours at room temperature	NP0: I∆C/Cl: ≤ 2% or 1 pF whichever is greater X5R/X7R: I∆C/Cl: ≤ 20%	
			Duration and conditions: $1,000 \pm 12$ hours at upper category temperature with $1.5 \times U_r$ voltage applied Final measurement: perform a heat treatment at $150 \pm 0/-10$ °C for 1 hour, final measurements shall be carried out 24 ± 1 hours after recovery at room temperature without load.	Y5V: I Δ C/CI: \leq 30% NP0/X5R/X7R/Y5V: D.F.: 2 × initial value max. NP0: R _{ins} \geq 4,000 M Ω or R _{ins} × C _r \geq 40 seconds, whichever is less X5R/X7R/Y5V: R _{ins} \geq 1,000 M Ω or	
				$R_{ins} \times C_r \ge 50$ seconds, whichever is less	

YAGEO

Surface-Mount Ceramic Multilayer Capacitors | Ultra small | NP0/X5R/X7R/Y5V | 6.3 V to 50 V

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 2	Apr 19, 2006	-	- New datasheet for ultra small NP0/X5R/X7R/Y5V series chip capacitors with lead-free terminations.