NEC

User’s Manual

V850E1

32-bit Microprocessor Core

Architecture

Document No. U14559EJ2VOUMO0O0 (2nd edition)
Date Published March 2001 J CP(K)

© NEC Corporation 1999
Printed in Japan

[MEMO]

2 User's Manual U14559EJ2VOUM

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

SUMMARY OF CONTENTS

GENERAL .o 19
REGISTER SET ..ottt e e s 22
DATA TYPE e 36
ADDRESS SPACE 40
INSTRUGCTION .ottt e e e e e e e 46
INTERRUPT AND EXCEPTION ..oooiiiiiiiiiiiiiiiece e 166
RESET ettt 175
PIPELINE ... e s e e e 177
INSTRUCTION LIST ittt 200
INSTRUCTION OPCODE MAP ...ttt 214
DIFFERENCES WITH ARCHITECTURE OF V850 CPU.......cccooiiiiiiiiiiiiiinieineen 213
INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU....... 221
INDEX .ot 223

User's Manual U14559EJ2VOUM 3

NOTES FOR CMOS DEVICES

@ PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and
ultimately degrade the device operation. Steps must be taken to stop generation of static
electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental
control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid
using insulators that easily build static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work bench and floor should be grounded. The operator should be
grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar
precautions need to be taken for PW boards with semiconductor devices on it.

@ HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided
tothe input pins, itis possible that an internal input level may be generated due to noise, etc., hence
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input
levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each
unused pin should be connected to Voo or GND with a resistor, if it is considered to have a
possibility of being an output pin. All handling related to the unused pins must be judged device
by device and related specifications governing the devices.

® STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS
does not define the initial operation status of the device. Immediately after the power source is
turned ON, the devices with reset function have not yet been initialized. Hence, power-on does
not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until
the reset signal is received. Reset operation must be executed immediately after power-on for
devices having reset function.

V850 Family, V850E/MA1, VB50E/MA2, V850E/IA1, and V850E/IA2 are trademarks of NEC Corporation.
Windows is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or
other countries.

4 User's Manual U14559EJ2VO0UM

The export of these products from Japan is regulated by the Japanese government. The export of some or all of these
products may be prohibited without governmental license. To export or re-export some or all of these products from a
country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

e The information in this document is current as of January, 2001. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or
data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all
products and/or types are available in every country. Please check with an NEC sales representative
for availability and additional information.

®* No part of this document may be copied or reproduced in any form or by any means without prior
written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.

* NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of
third parties by or arising from the use of NEC semiconductor products listed in this document or any other
liability arising from the use of such products. No license, express, implied or otherwise, is granted under any
patents, copyrights or other intellectual property rights of NEC or others.

* Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of customer's equipment shall be done under the full
responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third
parties arising from the use of these circuits, software and information.

* While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize
risks of damage to property or injury (including death) to persons arising from defects in NEC
semiconductor products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment, and anti-failure features.

* NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products

developed based on a customer-designated "quality assurance program" for a specific application. The

recommended applications of a semiconductor product depend on its quality grade, as indicated below.

Customers must check the quality grade of each semiconductor product before using it in a particular

application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's

data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not

intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness
to support a given application.

(Note)

(1) "NEC" as used in this statement means NEC Corporation and also includes its majority-owned subsidiaries.

(2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for

NEC (as defined above).
MS8E 00.4

User’s Manual U14559EJ2VOUM

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

« Device availability
« Ordering information

e Product release schedule

« Availability of related technical literature

« Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

» Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary

from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California

Tel: 408-588-6000
800-366-9782

Fax: 408-588-6130
800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany

Tel: 0211-65 03 02

Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK

Tel: 01908-691-133

Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, ltaly

Tel: 02-66 75 41

Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH
Benelux Office

Eindhoven, The Netherlands

Tel: 040-2445845

Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France

Tel: 01-3067-5800

Fax: 01-3067-5899

NEC Electronics (France) S.A.
Madrid Office

Madrid, Spain

Tel: 091-504-2787

Fax: 091-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office

Taeby, Sweden

Tel: 08-63 80 820

Fax: 08-63 80 388

User's Manual U14559EJ2VOUM

NEC Electronics Hong Kong Ltd.
Hong Kong

Tel: 2886-9318

Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch

Seoul, Korea

Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
Novena Square, Singapore

Tel: 253-8311

Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan

Tel: 02-2719-2377

Fax: 02-2719-5951

NEC do Brasil S.A.
Electron Devices Division
Guarulhos-SP, Brasil
Tel: 11-6462-6810

Fax: 11-6462-6829

Jo1.2

Major Revision in This Edition (1/2)

Page Description

Throughout e« Addition of following products (under development) to target products
NB85ET, NU85E, NUS5ET, uPD703108, 703114, 70F3114, 703116

eDeletion of following product from target products
uPD703117

eChange of following products from “under development” to “developed”
©PD703106, 703107, 70F3107

p.22 Change of Note in Figure 2-1 Registers

p.24 Change of Table 2-2 System Register Numbers

p.27 Addition of Note to Figure 2-6 Program Status Word (PSW)

p.29 Addition of Note to Section 2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)

p.30 Change of Caution in Section 2.2.8 Debug interface register (DIR)

p.32 Change of Caution in Section 2.2.9 Breakpoint control registers 0 and 1 (BPCO0, BPC1)

p.32 Change of Figure 2-11 Breakpoint Control Registers 0 and 1 (BPC0, BPC1)

p.33 Change of Caution in Section 2.2.10 Program ID register (ASID)

p.34 Change of Caution in Section 2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)

p.34 Change of Caution in Section 2.2.12 Breakpoint address mask registers 0 and 1 (BPAMO, BPAM1)

p.35 Change of Caution in Section 2.2.13 Breakpoint data setting registers 0 and 1 (BPDV0, BPDV1)

p.35 Change of Caution in Section 2.2.14 Breakpoint data mask registers 0 and 1 (BPDM0, BPDM1)

p.53 Addition of Caution to Section 5.2 (10) Debug function instructions

p.69 Addition of Caution to DBRET in Section 5.3 Instruction Set

p.70 Addition of Caution to DBTRAP in Section 5.3 Instruction Set

p.161 Change of and adding Note to Table 5-6 List of Number of Instruction Execution Clock Cycles
(NB85E, NB85ET, NUS5E, and NUS5ET)

p.164 Change of Note to Table 5-7 List of Number of Instruction Execution Clock Cycles (V850E/MA1,
V850E/MA2, V850E/IA1, and V850E/IA2)

p.166 Addition of Note to Table 6-1 Interrupt/Exception Codes

p.172 Addition of Caution to Section 6.2.3 Debug trap

p.180 Addition of Remark and Example to Section 8.1.2 2-clock branch

p.181 Addition of Caution to Section 8.1.3 Efficient pipeline processing

p.182 Correction of description in Section 8.2 (2) V850E/MA1, V850E/MA2, V850E/IA1, V850E/IA2

p.182 Correction of description in Section 8.2.1 (2) SLD instructions

p.183 Correction of description in Section 8.2.3 Multiply instructions

p.184 Addition of Remark to Section 8.2.4 (3) Divide instructions

p.187 Correction of description in Section 8.2.8 (2) TST1 instruction

p.188 Addition of Remark to Section 8.2.9 (3) DI, El instructions

p.190 Addition of Caution to Section 8.2.9 (7) NOP instruction

p.193 Addition of Section 8.3 Pipeline Disorder

p.197 Addition of Section 8.4 Additional Items Related to Pipeline

p.201 Addition of Note to Table A-1 Instruction Function List (in Alphabetical Order)

pp.211, 213 Addition of Note to Table A-2 Instruction List (in Format Order)

User's Manual U14559EJ2VOUM

Major Revision in This Edition (2/2)

Page Description
p.214 Correction of Figure in Appendix B (2) 32-bit format instruction
p.215 Addition of Remark to Appendix B [a] Opcode
p.217 Addition of Remark to Appendix B [e] Expansion 1 (sub-opcode)
pp.219, 220 Addition of Note to Appendix C DIFFERENCES WITH ARCHITECTURE OF V850 CPU
p.222 Addition of Note to Table D-1 Instructions Added to V850E1 CPU and V850 CPU Instructions with

Same Instruction Code

The mark x shows major revised points.

User's Manual U14559EJ2VOUM

PREFACE

Target Readers This manual is intended for users who wish to understand the functions of the V850E1
CPU core for designing application systems using the V850E1 CPU core.

® Products incorporating V850E1 CPU core
e NB85E"™, NBS85ET"", NUS5E"", NUSSET""
* V850E/MA1™ : yPD703103"", 703105"", 703106, 703107, 70F3107
* V850E/MA2™ : yPD703108""
® V850E/IA1™ : uPD703116"", 70F3116™"
® V850E/IA2™ : uPD703114"", 70F3114"*

Note Under development

Purpose This manual is intended for users to understand the architecture of the V850E1 CPU
core described in the Organization below.

Organization This manual contains the following information:
* Register set
¢ Data type
¢ Instruction format and instruction set
¢ Interrupt and exception
* Pipeline

How to Use this Manual It is assumed that the reader of this manual has general knowledge in the fields of
electrical engineering, logic circuits, and microcontrollers.

To learn about the hardware functions,
— Read User’s Manual Hardware of each product.

To learn about the functions of a specific instruction in detail,
— Read CHAPTER 5 INSTRUCTION.

Conventions Data significance: Higher digits on the left and lower digits on the right
Active low representation: xxxB (B is appended to pin or signal name)
Note: Footnote for item marked with Note in the text
Caution: Information requiring particular attention
Remark: Supplementary information

Numerical representation: Binary ... xxxx or xxxxB
Decimal ... xxxx
Hexadecimal ... xxxxH
Prefix indicating the power of 2 (address space, memory capacity):
K (Kilo): 21°=1,024
M (Mega): 220 = 1,0242
G (Giga): 2% =1,0243

User's Manual U14559EJ2VO0UM 9

Related Documents The related documents indicated in this publication may include preliminary versions.
However, preliminary versions are not marked as such.

e Device related documents

Document Name Document No.
NB85E User's Manual Hardware A13971E
NB85ET User's Manual Hardware Al14342E
NUB5E User's Manual Hardware Al14874E
NUBSET User's Manual Hardware A15015E
V850E/MA1 User's Manual Hardware U14359E
V850E/MA2 User's Manual Hardware U14980E
V850E/IA1 User's Manual Hardware U14492E
V850E/IA2 User's Manual Hardware U15195E

e Development tool related documents

Document Name Document No.
IE-V850E-MC, |IE-V850E-MC-A (In-Circuit Emulator) U14487E
IE-V850E-MC-EM1-A (Peripheral 1/0O Board for V850E1) To be prepared
IE-V850E-MC-EM1-B, IE-V850E-MC-MM2 (Peripheral I/O Board for V850E1) | U14482E
IE-703107-MC-EM1 (Peripheral /O Board for VB50E/MA1, VB50E/MA2) U14481E
IE-703116-MC-EM1(Peripheral I/O Board for V850E/IA1) To be prepared
IE-703114-MC-EM1(Peripheral I/O Board for V850E/IA2) To be prepared
CA850 (Ver. 2.30 or Later) (C Compiler Package) | Operation U14568E
C Language U14566E
Project Manager U14569E
Assembly Language U14567E
ID850 (Ver. 2.20 or Later) (Integrated Debugger) | Operation Windows™ U14580E
Based
SM850 (Ver. 2.20 or Later) (System Simulator) Operation Windows U14782E
Based

SM850 (Ver. 2.00 or Later) (System Simulator) External Part User Open | U14873E
Interface Specifications

RX850 (Ver. 3.13 or Later) (Real-Time OS) Fundamental U13430E
Installation U13410E
Technical U13431E
RX850 Pro (Ver. 3.13) (Real-Time OS) Fundamental U13773E
Installation U13774E
Technical U13772E
RD850 (Ver. 3.01) (Task Debugger) U13737E
RD850 Pro (Ver. 3.01) (Task Debugger) U13916E
AZ850 (Ver. 3.0) (System Performance Analyzer) U14410E
PG-FP3 (Flash Memory Programmer) U13502E

10 User's Manual U14559EJ2VOUM

CONTENTS

(O 1 e =t ot R] A 19
L1 FRALUIES ittt e e e et e e e e e s s e e e e e s s e e e e e e r e e e e 20
1.2 InterNal CONFIQUIALIONcoi ittt ettt e st e et e e e s saba e e e snbbeeeeaa 21

CHAPTER 2 REGISTER SET .ot e e a e e e 22
2.1 Program ReQISIEIS ..o, 23
2.2 SYSTEIM REGISTEIS .ttt ettt et e et e e s ab b et e s sa b b et e e s abb e e e e aa b bt e e e nnbb e e e s nnnneeas 24

2.2.1 Interrupt status saving registers (EIPC, EIPSW)uuiiiiiiiiiie et 25
2.2.2 NMI status saving registers (FEPC, FEPSW)........ccutiiiiiiiiiiiii ettt 26
2.2.3 Exception cause regiSter (ECR)c.iii ittt e ettt e e e e e e sttt e e e e e e s e nbnereeeaaeaas 26
2.2.4 Program StatUS WOIA (PSW)ueeiiiiiiieiieie ittt et e et sbee e e nanee s 27
2.25 CALLT caller status saving registers (CTPC, CTPSW) ...t 28
2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)cccccceiiiiiiiiiiiiiiie e 29
2.2.7 CALLT Dase POINEI (CTBP) ...ttt ettt e e e e ettt e e e e e e bbb e e e e e e e e s anbneeneaaaeeas 30
2.2.8 Debug interface register (DIR)........ou i iiiieeiiiee ettt e et e e st nnre e e s 30
2.2.9 Breakpoint control registers 0 and 1 (BPCO, BPCL)......cccuiiiiiiiiiiiiieaaiiiiiiiiee et 32
2.2.10 Program ID regiStEr (ASID).....ccuuitiiiiriieiitee ettt ee ettt et st bbbt s 33
2.2.11 Breakpoint address setting registers 0 and 1 (BPAVO, BPAVL)......coooiiiiiiiiiiiiiiniiiieee e 34
2.2.12 Breakpoint address mask registers 0 and 1 (BPAMO, BPAML)......ccccoviiiiiiiiiiiiiee e 34
2.2.13 Breakpoint data setting registers 0 and 1 (BPDVO, BPDV1)cccooiiiiiiiiiiiaeeeiiiiieee e 35
2.2.14 Breakpoint data mask registers 0 and 1 (BPDMO, BPDML)c.ceveiiiiieiiiiiieiiiieee e 35

(O 1 e = o T I N 1 N I 4 36
G B = = o1 1 - | PP U PPTPT 36
3.2 Data REPIESENTALION ..oiiiiiiieiiiiie ettt ettt ettt e e sttt e e sbb e e e s bt et e e abbe e e e aaneeeas 38

3.2.1 L[] (T[] PP 38
I ¥ | o1~ To g T=To BT o1 (=To =T PP P TP TP OPPPPPPP 38
0 B = | OO OO OO S TP P PR UPP PP 38
IR B B -1 = W T Lo a4 L= oL PRSPPI 39

CHAPTER 4 ADDRESS SPA CE ... 40
4.1 MEMOTY MEAPD oottt e e e e e e et e e 41
4.2 AdAreSSING MOAEottt e e s bt e e st e e s a b b e e e ba e e e 42

A R | 41511 £ [ox 1 [o] g = To [0 =11 PP PUPR TP 42
4.2.2 OPEIANA BUUMESSeciieeiee ittt e bt e et e e e b et e e ah b bt e e e bb e e e s bb et e e anbb e e e snre e e e naneee s 44

CHAPTER 5 [INSTRUGCTIONeuuuiiiii s s a s s a e s e s s s an e e s e e e e e e s an e e e e e e anaeanens 46

5.1 INSTIUCTION FOIMAL ..ciiiiiiiii ettt e e s st e s e e s s e e e e s s e e e s nanneees 46

User's Manual U14559EJ2VOUM 11

5.2
5.3

12

Outline of Instructions
Instruction Set

User's Manual U14559EJ2VOUM

54

CHAPTER 6 INTERRUPT AND EXCEPTIONcoiiiiiiiiiiiiiieee sttt 166
6.1 INTEITUPT SEIVICING weeiiiiiiiiiiiiie ettt e e e e e e e e bbbt e e e e e e s e abbbaree e e e e e aanbbneeeaeeas 167
B.1.1 MaASKADIE INMEEITUDLeeieiiteee ettt e ettt e st e e na e e e e et e e e sbneeeennnnee s 167

6.1.2 NON-MASKADIE INTEITUPLcoiiiii et e et e e e e e e e e e e e e nnebeeeas 169

6.2 EXCOPLION PrOCESSING . cuitiiiiiiiiiie ittt e sttt e s a b e e e s it bt e e s aabb e e e s anbbe e e e nneee 170

User’s Manual U14559EJ2VOUM 13

14

6.2.1 SOFtWAIE EXCEPLIONeeeieiie ittt ettt e ettt e e e e e e ot bt et e e e e e s e s bbbe e e e e e e e aannbbeeeeaeeeaannbbeeeeaaeeaann 170

L) (o=T o] (o] g I 1 - |« O PO PP P PP RO OUPPPTTPIN 171

L 20 B B 1= o 10 o £ = T« PP TP UPRTPN 172

6.3 Restoring from Interrupt/EXCeption ProCeSSINGoocuviiiiiiiiieiiiiie it 173
6.3.1 Restoring from interrupt and SOftWare eXCEPLIONoiiiiuiiieiiee et a e 173

6.3.2 Restoring from exception trap and debUg trapoccvviiiiieeeiiiiee e 174

(O 1 e It A] N 175
7.1 Register Status after RESEl ..., 175
A S €V g {1 o T U T PSRRI 176
(O 1 e =t o T | o I | 177
8.l FBAIUIES ..ottt e a e e e s 178
8.1.1 NON-DIOCKING I0BU/SIOTE ...ttt e et e e s b e e nineeeeas 179

8.1.2 2-ClOCK BIraNCh ... 180

8.1.3 Efficient PIPEliNg PrOCESSING ...ccciviiiiiiiiii ittt e st s sttt e e ee s 181

8.2 Pipeline Flow During Execution Of INSTrUCLIONScooiiiiiiiiiiiiiiii e 182
S0 R Mo - To I £51 1 {1 (o3 1o K F PO PO P PP OPPPPTTPI 182

8.2.2 SHOIE INSIIUCTIONSveieeeieii ettt e e et e e et s e e s st et e s ettt e e mr et e e ssn s e e e enne e e e nnn e e e s nnneeeean 183

8.2.3 MUILIPIY INSLIUCHIONS ..ottt ettt e st e e e ettt e e nbe e e e s nanneeean 183

8.2.4 ArithmetiC OPeration INSTIUCTIONS.uueiiiiee ettt e et e e e e e e ettt e e e e e e s anbeeeeaaeeaaan 184

8.2.5 Saturated Operation INSIIUCTIONScoiuuiiiiiiiiie ettt e e s b e e s b e e sbeee s nibeeeeas 185

8.2.6 Logical Operation INSIIUCHIONSccoiiuiiiiiiiie ettt ettt e e e st e e e e e e s et e e e e e e e e anbbeeeeaaeeeaan 185

8.2.7 BranCh INSIIUCTIONSoeiitiiieiiiie ettt etttk e st e e et et e e s b e e st b et e e anbe e e e snr e e e s nnneeeean 185

8.2.8 Bit Manipulation INSIIUCTIONSccoiiiiiiiiiiiie ettt e e st e e e e e e s e e e e e e e e s nnbbeeeeaaeeeaan 187

8.2.9 SPECIAI INSIIUCHIONS ...ceiiitiie ittt et e e ettt e e s e e s eb b et e e abb e e sbr e e e s nnneeeean 187

8.2.10 Debug fUNCLION INSIIUCLIONSeiiiiiiiiiiiiii ettt e e e st e e e e e e s e abe e e e e e e e e e snbbeeeeaaeeeaan 192

R B T o T TN Lol BT o] o [T PP PRSP 193
8.3.1 AlIGNMENT NAZANTeeeieiie ittt e ettt e e e e s bbbt e e e e e e e aab b e e e e e e e e e anbbeeeeaaeeeaan 193

8.3.2 Referencing execution result of 10ad INSTIUCHIONooiiiiiiiiii e 194

8.3.3 Referencing execution result of multiply iNSTIUCLION............cooiiiiiii e 195

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPCccccccciiiiiiiiiinicci, 196

8.3.5 Cautions When Creating PrOgIAMSuueiiiia ittt e e e e ettt e e e e s s aeabeeeeeee e s s aanbbeeeeaeeesansbrneeaeeaaaan 196

8.4 Additional Items Related t0 PiPeliNe ..o 197
8.4.1 Harvard arChItECIUIEooiiiiie ettt e s s e e e st e e s s e e s neneee s 197

8.4.2 SNOIE PALN ... b e et nr e e s 198
APPENDIX A INSTRUCTION LIST i 200
APPENDIX B INSTRUCTION OPCODE MAP ... 214

User's Manual U14559EJ2VOUM

APPENDIX C DIFFERENCES WITH ARCHITECTURE OF V850 CPU

APPENDIX D INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU.......

APPENDIX E INDEX ..ottt

User’s Manual U14559EJ2VOUM

15

LIST OF FIGURES (1/2)

Figure No. Title Page
1-1 Internal Block Diagram Of VB50EL CPUcuutiiiiiiieiiiiee ittt ettt e e st e e e snne s snneeeeatbeeenans 21
b R = (= To 151 1= £ T TP PP POPPRPII
Y S (oo] £ T N o]0 01 (=T o (O3 P PUT T TOTUPPRR
2-3 Interrupt Status Saving Registers (EIPC, EIPSW)

2-4 NMI Status Saving Registers (FEPC, FEPSW) ...ttt ettt a e e ineaeeaae e s
2-5 Exception Cause REGISEr (ECR) ...cciuuiiiiiiiiieiiieee ettt e et e e et e e s
2-6 Program StatuS WO (PSW) ...ttt ettt e e e e ettt e e e e e e ek bbbt e e e e e e e e snee e e e e e e s aanbnraeeaeaeean
2-7 CALLT Caller Status Saving Registers (CTPC, CTPSW)coouiiiiiiiieiiiiiee ittt 29
2-8 Exception/Debug Trap Status Saving Registers (DBPC, DBPSW)c..uuiiiiiiiiiiiiiieee e 29
2-9 CALLT BASE POINTEN (CTBP) ..iiiiiiiieiiitiie ettt ettt ettt e e bt ekt e e eabe e e e s bb e e e e anb bt e e nbeeeesneneee s 30
2-10 Debug Interface REGISIEr (DIR)uiiiiiiieiiiiiii ittt e e e e e e bbb e e e e e e s e aabe e e e e e e e e aabbaneeeeeesaasnebeeeaaaaan 30
2-11 Breakpoint Control Registers 0 and 1 (BPCO, BPC1)

2-12 Program ID Register (ASID)

2-13 Breakpoint Address Setting Registers 0 and 1 (BPAVO, BPAVL).......cooiiiiiiiiiieiiiiee e 34
2-14 Breakpoint Address Mask Registers 0 and 1 (BPAMO, BPAML)cooiiiiiiiiieaiieee e 34
2-15 Breakpoint Data Setting Registers 0 and 1 (BPDVO, BPDV1).....ccccuiiiiiiiiiiiiiie e 35
2-16 Breakpoint Data Mask Registers 0 and 1 (BPDMO, BPDML)ccoiiiiiiiiiiiiiieae et 35
4-1 [T 0 aTo] VY =T o TP PP PPPPPPPPPPPPPPPPPPPPPN 41
4-2 REIAIVE AGAIESSING . ..eeiitiieiitii ettt ettt s b et e e as bt e e e kbt e e e e bt e e e e b et e et r e e e e e e ke e e n bt nnees 42
4-3 Register Addressing (JMP [regl] Instruction)

4-4 Based Addressing (Type 1)

4-5 Based Addressing (Type 2)

G =11 e (o [(=] o o T TP PP P P PTPPPRPPPPPN
6-1 Maskable Interrupt Servicing Format

6-2 Non-Maskable Interrupt Servicing FOIMALc.oooi it e e et e e e e e e 169
6-3 Software EXception ProCeSSING FOMMAL..........ccuuiiiiiiiii ittt e e e st 170
(o R N 11 1=To T= N [0 1S3 (U ot o] ¢ T @ Lo [T PR PRTPRRP 171
6-5 EXCeption Trap ProCeSSING FOIMALccoiiuiiiiiiiiiieiiiie ettt sttt e s e e sttt e ss e e e st e e e s antn e e e nnnees 171
6-6 Debug Trap ProCeSSING FOMMAL..........ciii ittt e e e e e e bb et e e e e e e s e bbb e e e e e e e e aannbaeeeeaeeeaanneneeeas 172
6-7 Restoration from Interrupt/Software Exception Processing FOrMat...........coocveeiiiiieeiniiiiieiiiieee e 173
6-8 Restoration from Exception Trap/Debug Trap Processing FOrmat.............ocoveoiiiiiiiiiiiieeieiiiiieee e 174
8-1 Example of Executing Nine Standard Instructions

e A S o 1= [T o[@fe] o1 (T [N T = L4 o] o PO O PP PP PP PPPPR

e T B \ [g B = [oTod (g To o = o 5] (o] = TP PPRTP PP
8-4 Pipeline Operations with Branch INSIUCHIONSuiiiiiiiiiiiiice e

8-5 Parallel Execution of BranCh INStIUCHIONScoiiiiiiiiiiiii e
8-6 AlIGN HAZAII EXAMPIEeoiiiiieiiiie ettt e e a et e e et e e s a bt e et e et
8-7 Example of Execution Result Of Load INSIFUCLIONcciiiiiiiiiiiiiee et e e

User's Manual U14559EJ2VOUM

LIST OF FIGURES (2/2)

Figure No. Title

8-8
8-9

Example of Execution Result of Multiply Instruction
Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

User’s Manual U14559EJ2VOUM

17

LIST OF TABLES

Table No. Title Page
2-1 Program Registers
2-2 System Register Numbers
5-1 Conventions of Instruction Format
5-2 Conventions of Operation...................
5-3 CONVENLIONS OF OPCOUEeiiiiiiiieiieie ettt oottt e e oo oottt et e e e e e e e e bbe et e e e e e e s e nbbe e e eeee e e e nbbaneeeeeeeaansntaneaaaeeas
5-4 BCONA INSIIUCLIONS ..eoiittiieiiiit ettt etttk e et e e s bt e e aa bt e e e bttt e e eh bt e e aa b bt e e e amb e e e ek b e e e e anbb e e e nbbneeeninree s
L T O] o[0T O oo [TR PR PP
5-6 List of Number of Instruction Execution Clock Cycles (NB85E, NB85ET, NU85E, and NU85ET).................. 158
5-7 List of Number of Instruction Execution Clock Cycles

(VB50E/MA1L, VB50E/MA2, VB50E/IAL, and VB50E/IA2Z)uoviiiiiieiiiiee ettt 162
6-1 INtErrUPY/EXCEPLION COUESoiiiiiiieiiitiie etttk sttt e et e e ettt e e bttt e e e kbt e e e bt et e e esb e e e e st b e e e e antneeennnnes 166
7-1 ReQIStEr SAtUS GftEr RESEL.....cci ittt e et e sttt e s ssb e e e st b e e s antn e e nannes 175
A-1 Instruction Function List (in AlphabetiCal Order)..........coouiiiiiiiiie e e 200
A-2 Instruction List (in FOrMAL OFAEI)eiiiiiiie ittt e e e e e st e e e e e e s e bbb e e e e e e e e aaanbbeneeaaeeeaannns 211
D-1 Instructions Added to V850E1 CPU and V850 CPU Instructions with Same Instruction Codec......... 221

18

User's Manual U14559EJ2VOUM

CHAPTER 1 GENERAL

Real-time control systems are used in a wide range of applications, including:

« office equipment such as HDDs (Hard Disk Drives), PPCs (Plain Paper Copiers), printers, and facsimiles,
« automobile electronics such as engine control systems and ABSs (Antilock Braking Systems), and
« factory automation equipment such as NC (Numerical Control) machine tools and various controllers.

The great majority of these systems conventionally employ 8-bit or 16-bit microcontrollers. However, the
performance level of these microcontrollers has become inadequate in recent years as control operations have risen
in complexity, leading to the development of increasingly complicated instruction sets and hardware design. As a
result, the need has arisen for a new generation of microcontrollers operable at much higher frequencies to achieve
an acceptable level of performance under today’s more demanding requirements.

The V850 Family™ of microcontrollers was developed to satisfy this need. This family uses RISC architecture that
can provide maximum performance with simpler hardware, allowing users to obtain a performance approximately 15
times higher than that of the existing 78K/l Series and 78K/IV Series of CISC single-chip microcontrollers at a lower
total cost.

In addition to the basic instructions of conventional RISC CPUs, the V850 Family is provided with special
instructions such as saturate, bit manipulate, and multiply/divide (executed by a hardware multiplier) instructions,
which are especially suited for digital servo control systems. Moreover, instruction formats are designed for maximum
compiler coding efficiency, allowing the reduction of object code sizes.

The V850E1 CPU is a 32-bit RISC CPU core for ASIC, newly developed as the CPU core central to system LSI in
the current age of system-on-a-chip. This core includes not only the control functions of the V850 CPU, the CPU core
incorporated in the V850 Family, but also supports data processing through its enhanced external bus interface
performance, and the addition of features such as C language switch statement processing, table lookup branching,
stack frame creation/deletion, data conversion, and other high-level language supporting instructions.

In addition, because the instruction codes are upwardly compatible with the V850 CPU at the object code level, the
software resources of systems that incorporate the V850 CPU can be used unchanged.

User's Manual U14559EJ2VOUM 19

CHAPTER 1 GENERAL

1.1 Features

(1) High-performance 32-bit architecture for embedded control
* Number of instructions: 83
» 32-bit general registers: 32
» Load/store instructions in long/short format
« 3-operand instruction
« b-stage pipeline of 1 clock cycle per stage
» Hardware interlock on register/flag hazards
« Memory space Program space: 64 MB linear
Data space: 4 GB linear
(2) Special instructions
« Saturation operation instructions
« Bit manipulation instructions
« Multiply instructions (On-chip hardware multiplier executing multiplication in 1, 2, or 4 clocks)
16 bits x 16 bits — 32 bits
32 hits x 32 bits — 32 bits or 64 bits

20 User's Manual U14559EJ2VOUM

CHAPTER 1 GENERAL

1.2 Internal Configuration

The V850E1 CPU executes almost all instructions such as address calculation, arithmetic and logical operation,
and data transfer in one clock by using a 5-stage pipeline.

It contains dedicated hardware such as a multiplier (32 x 32 bits) and a barrel shifter (32 bits/clock) to execute
complicated instructions at high speeds.
Figure 1-1 shows the internal block diagram.

Figure 1-1. Internal Block Diagram of V850E1 CPU

ROM @

] Instruction

Instruction

queue

Program
counter

:r> Multiplier
(32x32 —>64)]

'\

::> Barrel N
General register shifter —/]
System register ALU —
AN
/1
N\
Data cache

cache

User's Manual U14559EJ2VOUM

21

CHAPTER 2 REGISTER SET

The registers can be classified into two types: program registers that can be used for general programming, and
system registers that can control the execution environment. All the registers are 32 bits wide.

Figure 2-1. Registers

(a) Program registers (b) System registers
31 0 31 0
r0 (Zero register) EIPC (Interrupt status saving register)
r1 (Assembler-reserved register) EIPSW (Interrupt status saving register)
r2
13 (Stack pointer (SP)) FEPC (NMI status saving register)
4 (Global pointer (GP)) FEPSW (NMI status saving register)
5 _(Text pointer (TP)) | ECR (Exception cause register) |
ré
r7 | PSW (Program status word) |
r8
9 CTPC (CALLT caller status saving register)
110 CTPSW (CALLT caller status saving register)
L DBPC (Exception/debug trap status saving register)
r:z DBPSW (Exception/debug trap status saving register)
r
r4 | CTBP (CALLT base pointer) |
r15
16 | DIR (Debug interface register) |
r7
BPCO (Breakpoint control register 0)
8 BPC1 (Breakpoint control register 1)
r19
r20 ASID (Program ID register)
r21
122 BPAVO (Breakpoint address setting register 0)
23 BPAV1 (Breakpoint address setting register 1) Note
24 BPAMO (Breakpoint address mask register 0)
125 BPAM1 (Breakpoint address mask register 1)
r26
BPDVO (Breakpoint data setting register 0)
& BPDV1 (Breakpoint data setting register 1)
:Z BPDMO (Breakpoint data mask register 0)
30 (Element pointer (EP)) BPDM1 (Breakpoint data mask register 1)
131 (Link pointer (LP)) Note These registers are reserved for debug
function. Only the NU85E and NUSSET
PC_(Program counter) can be used. The NB85E, NBS85ET,
V850E/MA1, VB50E/MA2, V850E/IA1, and
V850E/IA2 cannot be used.

22 User's Manual U14559EJ2VOUM

CHAPTER 2 REGISTER SET

2.1 Program Registers

There are general registers (r0 to r31) and program counter (PC) in the program registers.

Table 2-1. Program Registers

Program Register Name Function Description
General register ro Zero register Always holds 0.
r1 Assembler-reserved register | Used as working register for address generation.
r2 Address/data variable register (when the real-time OS to be used is not using r2)
r3 Stack pointer (SP) Used for stack frame generation when function is called.
r4 Global pointer (GP) Used to access global variable in data area.
r5 Text pointer (TP) Used as register for pointing start address of text area (area

where program code is placed)

r6 to r29 Address/data variable registers
r30 Element pointer (EP) Used as base pointer for address generation when memory
is accessed.
r31 Link pointer (LP) Used when compiler calls function.
Program counter PC Holds instruction address during program execution.

Remark For detailed descriptions of r1, r3, r4, r5, and r31 used by assembler and C compiler, refer to the CA850

)

)

(C Compiler Package) User’s Manual Assembly Language.

General registers (r0 to r31)

Thirty-two general registers, r0 to r31, are provided. All these registers can be used for data variable or address
variable. However, r0 and r30 are implicitly used by instructions, and care must be exercised in using these
registers. r0 is a register that always holds 0, and is used for operations and offset 0 addressing. r30 is used as
a base pointer when accessing memory using the SLD and SST instructions. r1, r3, r4, r5, and r31 are implicitly
used by the assembler and C compiler. Before using these registers, therefore, their contents must be saved so
that they are not lost. The contents must be restored to the registers after the registers have been used. r2 is
sometimes used by the real-time OS. When the real-time OS to be used is not using r2, r2 can be used as a
variable register.

Program counter (PC)

This register holds an instruction address during program execution. The lower 26 bits of this register are valid,
and bits 31 to 26 are reserved for future function expansion (fixed to 0). If a carry occurs from bit 25 to bit 26, it
is ignored. Bit 0 is always fixed to 0, and execution cannot branch to an odd address.

Figure 2-2. Program Counter (PC)

31 26 25 10
\

0 Initial value
(Instruction address during execution) 00000000H

User's Manual U14559EJ2VO0UM 23

CHAPTER 2 REGISTER SET

2.2 System Registers

The system registers control the status and holds information on interrupts.
System registers can be read or written by specifying the relevant system register number from the following list
using the LDSR and STSR instructions.

Table 2-2. System Register Numbers

Register Register Name Operand Specifiability
No. LDSR STSR
Instruction | Instruction
0 Interrupt status saving register (EIPC) O O
1 Interrupt status saving register (EIPSW) (@) (@)
2 NMI status saving register (FEPC) O O
3 NMI status saving register (FEPSW) (@) (@)
4 Exception cause register (ECR) X O
5 Program status word (PSW) (@) (@)
6to 15 (Numbers reserved for future function expansion (operation cannot be guaranteed if X X
accessed))
16 CALLT caller status saving register (CTPC) (@) (@)
17 CALLT caller status saving register (CTPSW) O O
18 Exception/debug trap status saving register (DBPC) oMt (@)
19 Exception/debug trap status saving register (DBPSW) onet O
20 CALLT base pointer (CTBP) (@) (@)
*| 21 Debug interface register (DIR) onet ot
22 Breakpoint control registers 0 and 1 (BPCO, BPC1)"*? onet oMt
23 Program ID register (ASID) O O
24 Breakpoint address setting registers 0 and 1 (BPAVO, BPAV1)"*? oMt oMt
25 Breakpoint address mask registers 0 and 1 (BPAMO, BPAM1)"*? ot onet
26 Breakpoint data setting registers 0 and 1 (BPDVO, BPDV1)"*? oMt oMt
27 Breakpoint data mask registers 0 and 1 (BPDMO, BPDM1)""*? onet onet
2810 31 (Numbers reserved for future function expansion (operation cannot be guaranteed if X X
accessed))

* Notes 1. These registers can be accessed only in debug mode of the NUS5E and NUB5ET. Accessing to
these registers of the NB85E, NB85ET, V850E/MAL, VB850E/MA2, V850E/IALl, and V850E/IA2 is
prohibited. If they are accessed, the operation is not guaranteed.

2. The actual register to be accessed is specified by the CS bit of the DIR register.

Caution When returning using the RETI instruction after setting bit 0 of EIPC, FEPC, or CTPC to 1 using
the LDSR instruction, the value of bit 0 is ignored (because bit 0 of the PC is fixed to 0).
Therefore, be sure to set an even number (bit 0 = 0) when setting a value in EIPC, FEPC, or
CTPC.

Remark O: Accessible
x: Inaccessible

24 User's Manual U14559EJ2VOUM

CHAPTER 2 REGISTER SET

2.2.1 Interrupt status saving registers (EIPC, EIPSW)

Two interrupt status saving registers are provided: EIPC and EIPSW.

If a software exception or maskable interrupt occurs, the contents of the program counter (PC) are saved to EIPC,
and the contents of the program status word (PSW) are saved to EIPSW (if a non-maskable interrupt (NMI) occurs,
the contents are saved to NMI status saving registers (FEPC, FEPSW)).

Except for part of instructions, the address of the instruction next to the one executed when the software
exception or maskable interrupt has occurred is saved to the EIPC (see Table 6-1 Interrupt/Exception Codes).

The current value of the PSW is saved to the EIPSW.

Because only one pair of interrupt status saving registers is provided, the contents of these registers must be
saved by program when multiple interrupts are enabled.

Bits 31 to 26 of the EIPC and bits 31 to 12, 10 to 8 of the EIPSW are reserved for future function expansion (fixed
to 0).

Figure 2-3. Interrupt Status Saving Registers (EIPC, EIPSW)

31 26 25 0
\ e rrrrrrrrrr -ttt T T T T 1T T 1T T T/ Initial val
ElPc|o|olo|o|0]|0 nitial value
(Contents of PC) 0XXXXXXXH
(x: Undefined)
31 121110 9 8 0
T
Initial value
EIPSW 00OO\OOO0\0000\0000\0000%&000\ (Contents of PSW) | 00000xexH

(x: Undefined)

Note Contents of SS flag in PSW

User’'s Manual U14559EJ2VOUM 25

CHAPTER 2 REGISTER SET

2.2.2 NMI status saving registers (FEPC, FEPSW)

Two NMI status saving registers are provided: FEPC and FEPSW.

If a non-maskable interrupt (NMI) occurs, the contents of the program counter (PC) are saved to FEPC, and the
contents of the program status word (PSW) are saved to FEPSW.

Except for part of instructions, the address of the instruction next to the one executed when the NMI has occurred
is saved to the FEPC (see Table 6-1 Interrupt/Exception Codes).

The current value of the PSW is saved to the FEPSW.

Because only one pair of NMI status saving registers is provided, the contents of these registers must be saved
by program when multiple interrupts are enabled.

Bits 31 to 26 of the FEPC and bits 31 to 12, 10 to 8 of the FEPSW are reserved for future function expansion
(fixed to 0).

Figure 2-4. NMI Status Saving Registers (FEPC, FEPSW)

31 26 25 0
\\\\\\\\\\\\\\\\\\\\\\\\\In,t,alale
itial valu
FEPC|0 \ 0/0 \ 0j0|0 (Contents of PC) OxxxxxxxH
(x: Undefined)

31 121110 9 8 0

T T T T

Initial value
FEPSW 0\0 0\0 0|00 0\0 0\0 0|00 0\0 0/0|/0|0 N°150~0 0 (Contents of PSW) 00000xxH
(x: Undefined)

Note Contents of SS flag in PSW

2.2.3 Exception cause register (ECR)

The exception cause register (ECR) holds the cause information when an exception or interrupt occurs. The ECR
holds an exception code which identifies each interrupt source (see Table 6-1 Interrupt/Exception Codes). This is
a read-only register, and therefore, no data can be written to it by using the LDSR instruction.

Figure 2-5. Exception Cause Register (ECR)

31 16 15 0
T T Initial value
ECR FECC EICC 00000000H
Bit Position | Bit Name Function
31to 16 FECC Exception code of non-maskable interrupt (NMI)
15t00 EICC Exception code of exception or maskable interrupt

26 User's Manual U14559EJ2VOUM

CHAPTER 2 REGISTER SET

2.2.4 Program status word (PSW)
The program status word (PSW) is a collection of flags that indicate the status of the program (result of instruction
execution) and the status of the CPU.
If the contents of the bits in this register are modified by the LDSR instruction, the PSW will assume the new value
immediately after the LDSR instruction has been executed. In setting the ID flag to 1, however, interrupt requests are
already disabled even while the LDSR instruction is executing.
Bits 31 to 12, 10 to 8 are reserved for future function expansion (fixed to 0).

Figure 2-6. Program Status Word (PSW) (1/2)

31 121110 9 8 7 6 5 4 3 2 1 0
S g
PSW000ooo000ooooooooo\o\o\sooo”E'ACOSz'”""”""""'“e
S PPDITIY|V 00000020H
Bit Position | Flag Name Function
11 ggete! Operates with single-step execution when this flag is set to 1 (debug trap occurs each time
instruction is executed).
This flag is cleared to 0 when branching to the interrupt servicing routine.
When the SE bit of DIR register is 0, this flag is not set (fixed to 0).
7 NP Indicates that non-maskable interrupt (NMI) processing is in progress. This flag is set to 1
when NMI request is acknowledged, and multiple interrupts are disabled.
0: NMI processing is not in progress
1: NMI processing is in progress
6 EP Indicates that exception processing is in progress. This flag is set to 1 when an exception
occurs. Even when this bit is set, interrupt requests can be acknowledged.
0: Exception processing is not in progress
1: Exception processing is in progress
5 D Indicates whether maskable interrupt request can be acknowledged.
0: Interrupt can be acknowledged
1: Interrupt cannot be acknowledged
4 SATNe2 Indicates that an overflow has occurred in a saturate operation and the result is saturated.
This is a cumulative flag. When the result is saturated, the flag is set to 1 and is not cleared
to 0 even if the next result does not saturate. To clear this flag to 0, use the LDSR
instruction. This flag is neither set to 1 nor cleared to 0 by execution of arithmetic operation
instruction.
0: Not saturated
1: Saturated
3 cy Indicates whether carry or borrow occurred as a result of the operation.
0: Carry or borrow did not occur
1: Carry or borrow occurred
2 oVer:? Indicates whether overflow occurred as a result of the operation.
0: Overflow did not occur
1: Overflow occurred

Remark See the following page for an explanation of the Note 2.

Note 1. Only the NU85E and NU85ET can be used. The NB85E, NB85ET, V850E/MA1, VB50E/MA2,
V850E/IA1, and V850E/IA2 cannot be used.

User's Manual U14559EJ2VOUM

27

CHAPTER 2 REGISTER SET

Figure 2-6. Program Status Word (PSW) (2/2)

31 1211109 8 7 6 5 4 3 2 1 0
S e
psw |o|o|o|o0 o\o\o\o olololololololo]o o~o~o~s~o oloNIEITIRIC|O|s|z [nitalvalue
S P PDTIYV 00000020H
Bit Position | Flag Name Function
1 ghere2 Indicates whether the result of the operation is negative.
0: Result is positive or zero
1: Result is negative
0 7 Indicates whether the result of the operation is zero.
0: Result is not zero
1: Resultis zero
Note 2. In the case of saturate instructions, the SAT, S, and OV flags will be set according to the result of

the operation as shown in the table below. Note that the SAT flag is set to 1 only when the OV flag
has been set to 1 during saturate operation.

Status of Operation Status of Flag Operation Result of Saturation
Result SAT oV s Processing
Maximum positive 1 1 0 7FFFFFFFH
value is exceeded
Maximum negative 1 1 1 80000000H
value is exceeded
Positive (Not exceeding | Holds the 0 0 Operation result
maximum value) value before
Negative (Not exceeding| operation 1
maximum value)

2.2.5 CALLT caller status saving registers (CTPC, CTPSW)

Two CALLT caller status saving registers are provided: CTPC and CTPSW.

If a CALLT instruction is executed, the contents of the program counter (PC) are saved to CTPC, and the contents
of the program status word (PSW) are saved to CTPSW.

The contents saved to the CTPC are the address of the instruction next to the CALLT instruction.

The current value of the PSW is saved to the CTPSW.

Bits 31 to 26 of the CTPC and bits 31 to 12, 10 to 8 of the CTPSW are reserved for future function expansion
(fixed to 0).

28 User's Manual U14559EJ2VOUM

CHAPTER 2 REGISTER SET

Figure 2-7. CALLT Caller Status Saving Registers (CTPC, CTPSW)

Initial value
CTPC |0 \ ocjojojoo (Contents of PC) OXXXXXXXH

(x: Undefined)

31 121110 9 8 0

CTPSW o\o ojojojo|ojojolo]|0O o\o 0 0\0 0/0|0 0~Noteo 010! (contents of PSW) 'g(')t(')e:)'(;/alus
XXX

(x: Undefined)

Note Contents of SS flag in PSW

2.2.6 Exception/debug trap status saving registers (DBPC, DBPSW)
Two exception/debug trap status saving registers are provided: DBPC and DBPSW.

If an exception trap or debug trap™**® occurs, the contents of the program counter (PC) are saved to DBPC, and the
contents of the program status word (PSW) are saved to DBPSW.

The contents saved to the DBPC are the address of the instruction next to the one executed when the exception
trap or debug trap has occurred.

The current value of the PSW is saved to the DBPSW.

Bits 31 to 26 of the DBPC and bits 31 to 12, 10 to 8 of the DBPSW are reserved for future function expansion
(fixed to 0).

Note The NB85E and NB85ET do not support debug trap.

Figure 2-8. Exception/Debug Trap Status Saving Registers (DBPC, DBPSW)

31 26 25 0
e rrrrrrrrrr T

Initial value
DBPC|0 |0 0~0 00 (Contents of PC) OXXXXXXXH

(x: Undefined)

31 121110 9 8 0
DBPSWOOO\OOOOOOOOOOOOOOOOONDIEOOO

Initial value
(Contents of PSW) 00000xxxH

(x: Undefined)

Note Contents of SS flag in PSW

User's Manual U14559EJ2VOUM 29

CHAPTER 2 REGISTER SET

2.2.7 CALLT base pointer (CTBP)

The CALLT base pointer (CTBP) is used to specify a table address and to generate a target address (bit 0 is fixed
to 0).

Bits 31 to 26 are reserved for future function expansion (fixed to 0).

Figure 2-9. CALLT Base Pointer (CTBP)

31 26 25 0
\

Initial value
OxxXxXxxxH

(x: Undefined)

CTBP|0[0|0|0(0|0 (Base address)

2.2.8 Debug interface register (DIR)

The debug interface register (DIR) indicates the control and status of the debug function.

The values of the bits in this register can be changed by using the LDSR instruction. Changed values become
valid immediately after execution of this instruction.

This register can only be set in the debug mode (DM bit = 1).

Bits 14 to 8, 6 to 4, 2, and 1 are undefined in the user mode (DM bit = 0).

Bits 31 to 15 and 7 are reserved for future function expansion (fixed to 0).

* Caution Use of the debug interface register (DIR) is possible only for the NU885E or NU8S5ET, not for the
NBB85E, NB85ET, V850E/MA1, VB50E/MA2, V850E/IA1, or V850E/IA2.

Figure 2-10. Debug Interface Register (DIR) (1/2)

31 1514131211109 8 7 6 5 4 3 2 1 0
S R|C|CM|A|S| |I|T|T|C|M| A|D|Inital value
DlRooooooooo\o\o\o\o\ooooQESEAEEoN1OMT~T~M00000040H

Bit Position | Bit Name Function

14 SQ Sets sequential break mode.
0: Normal break mode
1: Sequential break mode

13 RE Sets range break mode.
0: Normal break mode
1: Range break mode

12 CS Sets break register bank.
0: Bank 0 register (channel 0 control register) selected
1: Bank 1 register (channel 1 control register) selected

11 CE Enables/disables COMBO interrupt.

0: COMBO interrupt disabled

1: COMBO interrupt enabled

10 MA Enables/disables misalign access exception detection.
0: Misalign access exception detection disabled

1: Misalign access exception detection enabled

30 User's Manual U14559EJ2VOUM

CHAPTER 2 REGISTER SET

Figure 2-10. Debug Interface Register (DIR) (2/2)

Bit Position | Bit Name Function

9 AE Enables/disables alignment error exception detection.
0: Alignment error exception detection disabled
1: Alignment error exception detection enabled

8 SE Enables/disables writing to SS flag of PSW.
0: Writing to SS flag disabled (SS flag is fixed to 0)
1: Writing to SS flag enabled

6 INMere? Set to 1 by break register reset.

5 T1%! Set to 1 by channel 1 break generation.

4 TO"*! Set to 1 by channel 0 break generation.

3 CMm™? Set to 1 by shift to COMBO interrupt routine or debug monitor routine 2.

2 MT ! Set to 1 by detection of misalign access exception.

1 ATV Set to 1 by detection of alignment error exception.

0 DM"*e? Set to 1 by shift to debug mode.

Notes 1. Can only be cleared to 0 by LDSR instruction.

2. The DM and CM bits change as shown below.

Debug COMBO Debug
Main monitor interrupt monitor DM CM
routine routine 1 roultine routine 2 bit bit
i i i User
| | 0 mode
Debug P . i N e A
trap - i i i 0
i : ! ; Debug
| \ | mode
Maskable/ —» 1 i- X
non-maskable ! i
interrupt | i 0 User
; | ! mode
! | Debug _, Y R RN R .
| | trap
i i Debug
I | 1 1
i ! mode
! : \ S e . A
i E 0 User
! i mode
! \ i A
i . Debug
v i mode
T l__ r 0 _____
i i i 0 User
v | i | mode

User's Manual U14559EJ2VOUM

31

CHAPTER 2 REGISTER SET

2.2.9 Breakpoint control registers 0 and 1 (BPC0, BPC1)

Breakpoint control registers 0 and 1 (BPCO, BPC1) indicate the control and status of the debug function.

One or other of these registers is enabled by the setting of the CS bit of DIR register.

The values of the bits in these registers can be changed by using the LDSR instruction. Changed values become
valid immediately after execution of this instruction.

These registers can only be set in the debug mode (DM bit = 1). In the user mode, bit 0 = 0, and bits 23 to 15, 11
to 7, and 4 to 1 are undefined.

Bits 31 to 24, 14 to 12, 6, and 5 are reserved for future function expansion (fixed to 0).

*x Caution Use of breakpoint control registers 0 and 1 (BPC0O, BPC1) is possible only for the NU85E or
NUBS5ET, not for the NB85E, NB85ET, V850E/MA1, V850E/MA2, V850E/IA1, or V850E/IA2.

Figure 2-11. Breakpoint Control Registers 0 and 1 (BPCO, BPC1) (1/2)

31 24 23 6151413121110 9 8 7 6 5 4 3 2 1 0
T I
| V|iV|M T |B| F|W|R|Initial value
*BPCOOOOOOOO\O BP ASID E0\00 TY DANDOOEEEEE%xxxxxOH
(x: Undefined)
31 24 23 16151413121110 9 8 7 6 5 4 3 2 1 0
T I e
| V|V|M T |B| F|W/| R | Initial value
* | BPC1 0000000\0 BP ASID E0\0 ONTYND ANDOOEEEEE00xxxxx0H
(x: Undefined)
Bit Position | Bit Name Function
2310 16 BP ASID | Sets the program ID that generates a break (valid only when IE bit = 1).
15 IE Sets the comparison of the BP ASID bit and the program ID set in the ASID register.
0: Not compared
1: Compared
11,10 TY Sets the type of access for which a break is detected.

0,0: Access by all data types
0,1: Byte access (including bit manipulation)
1,0: Half-word access
1,1: Word access
Note that the contents set in this register are ignored in the case of an instruction fetch.

9 VD Sets the match condition of the data comparator.
0: Break on a match
1: Break on a mismatch

8 VA Sets the match condition of the address comparator.
0: Break on a match
1: Break on a mismatch

* 7 MD Sets the operation of the data comparator. If this bit is set to 1, the latency of access break is
delay by 1 clock because even an data access break occurs before execution.
0: Break on match of data and condition.
1: Whether data coincides (data comparator) is ignored regardless of setting of VD bit or
BPDVx and BPDMx registers

32 User's Manual U14559EJ2VOUM

CHAPTER 2 REGISTER SET

Figure 2-11. Breakpoint Control Registers 0 and 1 (BPCO, BPC1) (2/2)

Bit Position

Bit Name

Function

4

TE Note

Enables/disables trigger output.
0: Trigger output disabled
1: Trigger output enabled (outputs corresponding trigger before break occurs in channel 0 or

1).

B E Note

Sets whether or not a break in channel 0 or 1 is reported to CPU.
0: Not reported.
1: Reported (break).

FE

Enables/disables break on instruction fetch.
0: Break disabled
1: Break enabled

WE

Enables/disables break on data write.
0: Break disabled
1: Break enabled

RE

Enables/disables break on data read.
0: Break disabled
1: Break enabled

Note Use of TE and BE bits is possible only for the NUS5ET.

2.2.10 Program ID register (ASID)
This register sets the ID of the program currently under execution.
Bits 31 to 8 are reserved for future function expansion (fixed to 0).

Caution Use of the program ID register (ASID) is possible only for the NUS85E or NUS5SET, not for the
NB85E, NB85ET, V850E/MA1, VB50E/MA2, VB50E/IA1, or V850E/IA2.

Figure 2-12. Program ID Register (ASID)

31 8 7 0
T .
ASIDOOOOOOOOOOOOOOO000\0\0\0\000 ASID Initial value
000000xxH
(x: Undefined)
Bit Position | Flag Name Function
7t00 ASID ID of program currently under execution

User's Manual U14559EJ2VOUM

33

CHAPTER 2 REGISTER SET

2.2.11 Breakpoint address setting registers 0 and 1 (BPAV0, BPAV1)
These registers set the breakpoint addresses to be used by the address comparator.
One or other of these registers is enabled by the setting of the CS bit of DIR register.
Bits 31 to 28 are reserved for future function expansion (fixed to 0).

Caution Use of breakpoint address setting registers 0 and 1 (BPAV0, BPAV1) is possible only for the
NUB5E or NUSS5ET, not for the NB85E, NB85ET, V850E/MA1, V850E/MA2, V850E/IA1, or
V850E/IA2.

Figure 2-13. Breakpoint Address Setting Registers 0 and 1 (BPAVO, BPAV1)

31 28 27 0
e rrrrrrrrr-rrtr -ttt T 1T T 1T 1T T 11 Initial value
BPAVO|(O|O|0|O (Breakpoint address) OXXXXXXXH
(x: Undefined)
31 28 27 0
e rrrrrrrrr-rrtr -ttt T 1T T 1T 1T T 11 Initial value
BPAV1|[0|0(0 |0

(Breakpoint address) OXXXXXXXH

(x: Undefined)

2.2.12 Breakpoint address mask registers 0 and 1 (BPAMO, BPAM1)
These registers set the bit mask for address comparison (masked by 1).
One or other of these registers is enabled by the setting of the CS bit of DIR register.
Bits 31 to 28 are reserved for future function expansion (fixed to 0).

Caution Use of breakpoint address mask registers 0 and 1 (BPAMO, BPAM1) is possible only for the
NUS5SE or NUS5ET, not for the NB85E, NB85ET, V850E/MA1, V850E/MA2, V850E/IA1, or
V850E/IA2.

Figure 2-14. Breakpoint Address Mask Registers 0 and 1 (BPAMO, BPAM1)

31 28 27 0

BPAMO|0|0|0 |0 Initial value
OxxxxxxxH

(x: Undefined)

31 28 27 0
e rrrrrrrrrr-r -ttt r T

(Breakpoint address mask)

Initial value
OxxxxxxxH
(x: Undefined)

BPAM1]|0(0|0|0

34 User's Manual U14559EJ2VOUM

CHAPTER 2 REGISTER SET

2.2.13 Breakpoint data setting registers 0 and 1 (BPDVO, BPDV1)
These registers set the breakpoint data to be used by the data comparator.
One or other of these registers is enabled by the setting of the CS bit of DIR register.

Caution Use of breakpoint data setting registers 0 and 1 (BPDVO, BPDV1) is possible only for the NUS5E
or NUB5ET, not for the NB85E, NB85ET, V850E/MA1, VB50E/MA2, V850E/IA1, or VB50E/IA2.

Figure 2-15. Breakpoint Data Setting Registers 0 and 1 (BPDV0, BPDV1)

31 0
L B 1 | " |initial value
BPDVO (Breakpoint data) Undefined
31 0
[[I T .
Initial value
BPDV1 (Breakpoint data) Undefined

2.2.14 Breakpoint data mask registers 0 and 1 (BPDMO0, BPDM1)
These registers set the bit mask for data comparison (masked by 1).
One or other of these registers is enabled by the setting of the CS bit of DIR register.

Caution Use of breakpoint data mask registers 0 and 1 (BPDMO0, BPDM1) is possible only for the NUS5E
or NU85ET, not for the NB85E, NB85ET, V850E/MA1, V850E/MA2, V850E/IA1, or V850E/IA2.

Figure 2-16. Breakpoint Data Mask Registers 0 and 1 (BPDMO0, BPDM1)

31 0
e Initial value
BPDMO (Breakpoint data mask) Undefined
31 0
T 1 T T 1 T t T T] initial value
BPDM1 (Breakpoint data mask) Undefined

User's Manual U14559EJ2VOUM

35

CHAPTER 3 DATA TYPE

3.1 Data Format

The following data types are supported (see 3.2 Data Representation).

* Integer (32, 16, 8 bits)
* Unsigned integer (32, 16, 8 bits)
* Bit

Three types of data lengths: word (32 bits), half-word (16 bits), and byte (8 bits) are supported. Byte 0 of any data
is always the least significant byte (this is called little endian) and shown at the rightmost position in figures
throughout this manual.

The following paragraphs describe the data format where data of fixed length is in memory.

(1) Word
A word is 4-byte (32-bit) contiguous data that starts from any word boundary™*. Each bit is assigned a number
from 0 to 31. The LSB (Least Significant Bit) is bit 0 and the MSB (Most Significant Bit) is bit 31. A word is

Note

Note

specified by its address A (with the 2 lowest bits fixed to 0 when misalign access is disabled
bytes, A, A+1, A+2, and A+3.

), and occupies 4

Note When misalign access is enabled, any byte boundary can be accessed whether access is in half-
word or word units. See 3.3 Data Alignment.

Data

wnZ (@

ownr- |o

A+3 A+2 A+1 A Address

36 User's Manual U14559EJ2VOUM

CHAPTER 3 DATA TYPE

(2) Half-word
A half-word is 2-byte (16-bit) contiguous data that starts from any half-word boundary™". Each bit is assigned a
number from 0 to 15. The LSB is bit 0 and the MSB is bit 15. A half-word is specified by its address A (with the
lowest bit fixed to 0"°)

Note

, and occupies 2 bytes, A and A+1.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in half-
word or word units. See 3.3 Data Alignment.

Data

WnZ o
ownr- |o

A+1 A Address

(3) Byte
A byte is 8-bit contiguous data that starts from any byte boundary™*. Each bit is assigned a number from 0 to 7.
The LSB is bit 0 and the MSB is bit 7. A byte is specified by its address A.

Note

Note When misalign access is enabled, any byte boundary can be accessed whether access is in half-
word or word units. See 3.3 Data Alignment.

Data

ownr- |o

A Address

(4) Bit
A bit is 1-bit data at the nth bit position in 8-bit data that starts from any byte boundary". A bit is specified by its
address A and bit number n.

Note When misalign access is enabled, any byte boundary can be accessed whether access is in half-
word or word units. See 3.3 Data Alignment.

7 n 0 Bit number

Byte of address A ... Data

A Address

User's Manual U14559EJ2V0UM 37

CHAPTER 3 DATA TYPE

3.2 Data Representation

3.2.1 Integer

An integer is expressed as a binary number of 2’s complement and is 32, 16, or 8 bits long. Regardless of its
length, the bit 0 of an integer is the least significant bit. The higher the bit number, the more significant the bit.
Because 2’s complement is used, the most significant bit is used as a sign bit.

The integer range of each data length is as follows.

e Word (32 bits): —2,147,483,648 to +2,147,483,647
e Half-word (16 bits): —32,768 to +32,767
e Byte (8 bits): -128 to +127

3.2.2 Unsigned integer

While an integer is data that can take either a positive or a negative value, an unsigned integer is an integer that
is not negative. Like an integer, an unsigned integer is also expressed as 2’s complement and is 32, 16, or 8 bits
long. Regardless of its length, bit 0 of an unsigned integer is the least significant bit, and the higher the bit number,
the more significant the bit. However, no sign bit is used.

The unsigned integer range of each data length is as follows.

e Word (32 bits): 0 to 4,294,967,295
e Half-word (16 bits): 0 to 65,535
¢ Byte (8 bits): 0to 255

3.2.3 Bit

1-bit data that can take a value of 0 (cleared) or 1 (set) can be handled as a bit data. Bit manipulation can be
performed only to 1-byte data in the memory space in the following four ways:

o Set
Clear

Invert
Test

38 User's Manual U14559EJ2VOUM

CHAPTER 3 DATA TYPE

3.3 Data Alignment

Data to be allocated in memory must be aligned at an appropriate boundary when misalign access is disabled.
Therefore, word data must be aligned at a word boundary (the lower 2 bits of the address are 0), and half-word data
must be aligned at a half-word boundary (the lower 1 bit of the address is 0). If data is not aligned at a boundary and
misalign access disabled, the data is accessed with the lowest bit(s) of the address (lower 2 bits in the case of word
data and lowest 1 bit in the case of half-word data) automatically masked. This will cause loss of data and truncation
of the least significant bytes.

When misalign access is enabled, it is possible to place word or half-word data at any address, but if data is not
aligned at a boundary, one or more bus cycles is generated, which lowers the bus efficiency.

User's Manual U14559EJ2VOUM 39

The V850E1 CPU supports a 4 GB linear address space. Both memory and I/O are mapped to this address
space (memory-mapped 1/0). The V850E1 CPU (NB85E) outputs 32-bit addresses to the memory and I/O. The

maximum address is 232-1.

CHAPTER 4 ADDRESS SPACE

is defined to have the MSB (little endian).

shown on the right and the higher address on the left.

Data consisting of 2 bytes is called a half-word, and 4-byte data is called a word.
In this User’s Manual, data consisting of 2 or more bytes is illustrated as shown below, with the lower address

Byte data allocated at each address is defined with bit 0 as LSB and bit 7 as MSB. In regards to multiple-byte
data, the byte with the lowest address value is defined to have the LSB and the byte with the highest address value

Word at
address A

Half-word at
address A

Byte at
address A

A+3

A+2

A+1

A+1

Data

Address

Data

Address

Data
Address

40

User's Manual U14559EJ2VOUM

CHAPTER 4 ADDRESS SPACE

4.1 Memory Map

The V850E1 CPU employs a 32-bit architecture and supports a linear address space (data area) of up to 4 GB for
operand addressing (data access).

It supports a linear address space (program area) of up to 64 MB for instruction addressing.

Figure 4-1 shows the memory map.

Figure 4-1. Memory Map

(a) Address space (b) Program area
FFFFFFFFH A 3FFFFFFH Peripheral /O
3FFFoo0H | area (4 KB)
3FFEFFFH
RAM area
Data area
(4 GB linear)
External memory, 64 MB
area
04000000H
03FFFFFFH A
Program area ROM area
(64 MB linear)
00000000H Yy 0000000H A

User's Manual U14559EJ2VOUM 41

CHAPTER 4 ADDRESS SPACE

4.2 Addressing Mode

operations; and operand addresses used for data access.

4.2.1 Instruction address

incremented (+2) according to the number of bytes of an instruction to be fetched each time an instruction has been
executed. When a branch instruction is executed, the branch destination address is loaded into the PC using one of

the following two addressing modes:

(1) Relative addressing (PC relative)

Figure 4-2. Relative Addressing (1/2)

The CPU generates two types of addresses: instruction addresses used for instruction fetch and branch

An instruction address is determined by the contents of the program counter (PC), and is automatically

The signed 9- or 22-bit data of an instruction code (displacement: dispx) is added to the value of the program
counter (PC). At this time, the displacement is treated as 2’s complement data with bits 8 and 21 serving as sign
bits (S).
This addressing is used for JARL disp22, reg2, JR disp22, and Bcond disp9 instructions.

(@) JARL disp22, reg2 instruction, JR disp22 instruction

31 26 25

T T T 1 T
oooooo\

T

31

22 21

T
Sign extension

\\\\\
S

31 26 25

T T T 1 T
oooooo\

T

Memory to be manipulated

42

User's Manual U14559EJ2VOUM

CHAPTER 4 ADDRESS SPACE

Figure 4-2. Relative Addressing (2/2)

(b) Bcond disp9 instruction

31 26 25 0
T e rrrrrr-rrrrr -ttt T

0 00O0O00O PC 0

+

31 9 8 0
ottt T

Sign extension S disp9 0

31 26 25 ¢ 0
T e rrrrrr-rrrrr -ttt T

0 00O0O00O PC 0

Memory to be manipulated

(2) Register addressing (register indirect)
The contents of a general register (regl) specified by an instruction are transferred to the program counter (PC).
This addressing is applied to the JIMP [reg1] instruction.

Figure 4-3. Register Addressing (JMP [reg1] Instruction)

31 0
rrrrrrrrrrrrrrrrrrrr T T T
regl
31 26 25 ¢ 0
T T T T T T T
0 00O0OO00O PC 0

Memory to be manipulated

User's Manual U14559EJ2VOUM 43

CHAPTER 4 ADDRESS SPACE

4.2.2 Operand address
When an instruction is executed, the register or memory area to be accessed is specified in one of the following

four addressing modes:

(1)

)

@)

Register addressing

The general register or system register specified in the general register specification field is accessed as
operand.

This addressing mode applies to instructions using the operand format reg1, reg2, reg3, or regID.

Immediate addressing
The 5-bit or 16-bit data for manipulation is contained in the instruction code.
This addressing mode applies to instructions using the operand format imm5, imm16, vector, or cccc.

Remark vector: Operand that is 5-bit immediate data to specify trap vector (00H to 1FH), and is used in
TRAP instruction.
cccc: Operand consisting of 4-bit data used in CMOV, SASF, and SETF instructions to specify
condition code. Assigned as part of instruction code as 5-bit immediate data by appending 1-
bit 0 above highest bit.

Based addressing
The following two types of based addressing are supported:

(a) Type i
The address of the data memory location to be accessed is determined by adding the value in the specified
general register (reg1) to the 16-bit displacement value (disp16) contained in the instruction code.
This addressing mode applies to instructions using the operand format disp16 [reg1].

Figure 4-4. Based Addressing (Type 1)

31 0
e rrrrrrrrrrrrrr Tt
regi
+
31 16 15 0
T ottt

Sign extension disp16

Memory to be manipulated

44

User's Manual U14559EJ2VOUM

CHAPTER 4 ADDRESS SPACE

(b) Type 2
The address of the data memory location to be accessed is determined by adding the value in the element
pointer (r30) to the 7- or 8-bit displacement value (disp7, disp8).
This addressing mode applies to SLD and SST instructions.

Figure 4-5. Based Addressing (Type 2)

e rrrrrrrrrrrrrr Tt
r30 (element pointer)

+

e rrrrrrtrrrrrrrr 1t Tttt T
0 (Zero extension) disp8 or disp7

Memory to be manipulated

Remark Byte access: disp7
Half-word access and word access: disp8

(4) Bit addressing
This addressing is used to access 1 bit (specified with bit#3 of 3-bit data) among 1 byte of the memory space to
be manipulated by using an operand address which is the sum of the contents of a general register (reg1) and a
16-bit displacement (disp16) sign-extended to a word length.
This addressing mode applies only to bit manipulate instructions.

Figure 4-6. Bit Addressing

31 0
T
regi
+
31 16 15 0
T T
Sign extension disp16

Memory to be manipulated

n

[
|

Remark n: Bit position specified with 3-bit data (bit#3) (n =0 to 7)

User's Manual U14559EJ2VO0UM 45

5.1 Instruction Format

There are two types of instruction formats: 16-bit and 32-bit.

CHAPTER 5 INSTRUCTION

The 16-bit format instructions include binary

operation, control, and conditional branch instructions, and the 32-bit format instructions include load/store, jump,

and instructions that handle 16-bit immediate data.

An instruction is actually stored in memory as follows:

¢ Lower bytes of instruction (including bit 0)
« Higher bytes of instruction (including bit 15 or bit 31) — higher address

— lower address

Caution Some instructions have an unused field (RFU). This field is reserved for future expansion and

must be fixed to 0.

(1) reg-reg instruction (Format I)

A 16-bit instruction format having a 6-bit opcode field and two general register specification fields.

(2) imm-reg instruction (Format II)

A 16-bit instruction format having a 6-bit opcode field, 5-bit immediate field, and a general register specification

field.

User's Manual U14559EJ2VOUM

46

CHAPTER 5 INSTRUCTION

(3) Conditional branch instruction (Format IlI)
A 16-bit instruction format having a 4-bit opcode field, 4-bit condition code field, and an 8-bit displacement field.

disp opcode disp cond

(4) 16-bit load/store instruction (Format IV)
A 16-bit instruction format having a 4-bit opcode field, a general register specification field, and a 7-bit
displacement field (or 6-bit displacement field + 1-bit sub-opcode field).

reg2 opcode disp ‘

L disp/sub-opcode

A 16-bit instruction format having a 7-bit opcode field, a general register specification field, and a 4-bit
displacement field.

reg2 opcode disp

(5) Jump instruction (Format V)
A 32-bit instruction format having a 5-bit opcode field, a general register specification field, and a 22-bit
displacement field.

User's Manual U14559EJ2V0UM 47

CHAPTER 5 INSTRUCTION

(6) 3-operand instruction (Format VI)

A 32-bit instruction format having a 6-bit opcode field, two general register specification fields, and a 16-bit

immediate field.

opcode

(7) 32-bit load/store instruction (Format VII)

A 32-bit instruction format having a 6-bit opcode field, two general register specification fields, and a 16-bit

displacement field (or 15-bit displacement field + 1-bit sub-opcode field).

17 16

disp/sub-opcode J

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format having a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit specification field, a

general register specification field, and a 16-bit displacement field.

151413

1110

sub

bit #

(9) Extended instruction format 1 (Format IX)
A 32-bit instruction format having a 6-bit opcode field, 6-bit sub-opcode field, and two general register
specification fields (one field may be register number field (regID) or condition code field (cond)).

2120

1716

regl/reglD/cond

sub-opcode

RFU

48

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

(10) Extended instruction format 2 (Format X)
A 32-bit instruction format having a 6-bit opcode field and 6-bit sub-opcode field.

15 13121110 5 4 0 31 27 26 21 20 17 16
ey ettt

‘ RFU opcode RFU/imm/vector RFU sub-opcode RFU 0

L

RFU/sub-opcode

(11) Extended instruction format 3 (Format XI)
A 32-bit instruction format having a 6-bit opcode field, 6-bit and 1-bit sub-opcode field, and three general register
specification fields.

15 1110 5 4 0 31 27 26 2120 181716

reg2 opcode regl reg3 sub-opcode RFU ‘ 0

sub-opcode J

(12) Extended instruction format 4 (Format XII)
A 32-bit instruction format having a 6-bit opcode field, 4-bit and 1-bit sub-opcode field, 10-bit immediate field,
and two general register specification fields.

15 1110 5 4 0 31 27 26 2322 1817 16

reg2 opcode imm (low) reg3 sub-opcode| imm (high) ‘ 0

sub-opcode J

(13) Stack manipulation instruction 1 (Format XIlII)
A 32-bit instruction format having a 5-bit opcode field, 5-bit immediate field, 12-bit register list field, and one
general register specification field (or 5-bit sub-opcode field).

15 1110 6 5 1 031 2120 16

RFU opcode imm list reg2/sub-opcode

User's Manual U14559EJ2VOUM 49

CHAPTER 5 INSTRUCTION

5.2 Outline of Instructions

(1) Load instructions
Transfer data from memory to a register. The following instructions (mnemonics) are provided.

(&) LD instructions

e LD.B: Load byte

e LD.BU: Load byte unsigned

e LD.H: Load half-word

e LD.HU: Load half-word unsigned
e LD.W: Load word

(b) SLD instructions

e SLD.B: Short format load byte
e SLD.BU: Short format load byte unsigned
e SLD.H: Short format load half-word

e SLD.HU: Short format load half-word unsigned
e SLD.W: Short format load word

(2) Store instructions
Transfer data from register to a memory. The following instructions (mnemonics) are provided.

(@) ST instructions

e ST.B: Store byte
e ST.H: Store half-word
e ST.W: Store word

(b) SST instructions

e SST.B: Short format store byte
e SST.H: Short format store half-word
e SST.W: Short format store word

(3) Multiply instructions
Execute multiply processing in 1 to 2 clocks with on-chip hardware multiplier. The following instructions
(mnemonics) are provided.

e MUL: Multiply word

e MULH: Multiply half-word

e MULHI: Multiply half-word immediate
e MULU: Multiply word unsigned

50 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

(4) Arithmetic operation instructions

®)

(6)

Add, subtract, divide, transfer, or compare data between registers.

are provided.

e ADD:
e ADDI:
e CMOV:
e CMP:
e DIV:

e DIVH:
e DIVHU:
e DIVU:
e MOV:
¢ MOVEA:
e MOVHI:
e SASF:
o SETF:
e SUB:
e SUBR:

Add

Add immediate
Conditional move
Compare

Divide word

Divide half-word

Divide half-word unsigned
Divide word unsigned
Move

Move effective address
Move high half-word

Shift and set flag condition
Set flag condition
Subtract

Subtract reverse

Saturated operation instructions

Execute saturation addition and subtraction.

The following instructions (mnemonics)

If the result of the operation exceeds the maximum positive

value (7FFFFFFFH), 7FFFFFFFH is returned. If the result of the operation exceeds the maximum negative

value (80000000H), B0000000H is returned. The following instructions (mnemonics) are provided.

e SATADD:
e SATSUB:
e SATSUBI:
e SATSUBR:

Saturated add

Saturated subtract

Saturated subtract immediate
Saturated subtract reverse

Logical operation instructions

These instructions include logical operation and shift instructions. The shift instructions include arithmetic

shift and logical shift instructions. Operands can be shifted by two or more bit positions in one clock cycle by

the on-chip barrel shifter. The following instructions (mnemonics) are provided.

e AND:
e ANDI:
e BSH:
e BSW:
e HSW:
e NOT:
e OR:

e ORI

e SAR:
e SHL:
e SHR:
e SXB:
e SXH:

AND

AND immediate

Byte swap half-word
Byte swap word
Half-word swap word
NOT

OR

OR immediate

Shift arithmetic right
Shift logical left

Shift logical right
Sign extend byte
Sign extend half-word

User's Manual U14559EJ2VOUM

51

CHAPTER 5 INSTRUCTION

52

™

®

©

e TST:
e XOR:
e XORI:
e ZXB:
o ZXH:

Test

Exclusive OR

Exclusive OR immediate
Zero extend byte

Zero extend half-word

Branch instructions

These instructions include unconditional branch instructions (JARL, JMP, JR) and conditional branch

instruction (Bcond) which alters the control depending on the status of flags.

transferred to the address specified by a branch instruction.

provided.

Program control can be
The following instructions (mnemonics) are

e Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV, BNZ, BP, BR, BSA, BV,

BZ):
e JARL:
o JMP:
e JR:

Branch on condition code
Jump and register link
Jump register

Jump relative

Bit manipulation instructions

Execute a logical operation to bit data in memory. Only a specified bit is affected. The following instructions

(mnemonics) are provided.

CLR1:
e NOTI:
SET1:
e TSTI:

Clear bit
Not bit
Set bit
Test bit

Special instructions

These instructions are instructions not included in the categories of instructions described above.

following instructions (mnemonics) are provided.

e CALLT:

e CTRET:

e DI:

e DISPOSE:
e EI

o HALT:

e LDSR:

e NOP:

¢ PREPARE:

e RETI

e STSR:

e SWITCH:
e TRAP:

Call with table look up
Return from CALLT
Disable interrupt
Function dispose
Enable interrupt

Halt

Load system register
No operation

Function prepare
Return from trap or interrupt
Store system register
Jump with table look up
Trap

User's Manual U14559EJ2VOUM

The

CHAPTER 5 INSTRUCTION

(10)Debug function instructions
These instructions are instructions reserved for debug function. The following instructions (mnemonics) are
provided.

e DBRET: Return from debug trap
e DBTRAP: Debug trap

Caution The NB85E and NB85ET do not support debug function instructions.

User's Manual U14559EJ2VOUM 53

CHAPTER 5 INSTRUCTION

5.3 Instruction Set

In this section, mnemonic of each instruction is described divided into the following items.

o |Instruction format: Indicates the description and operand of the instruction (for symbols, see Table 5-1).

e Operation:
e Format:
e Opcode:
e Flag:

e Explanation:

Indicates the function of the instruction (for symbols, see Table 5-2).

Indicates the instruction format (see 5.1 Instruction Format).

Indicates the bit field of the instruction opcode (for symbols, see Table 5-3).
Indicates the operation of the flag which is altered after executing the instruction.
0 indicates clear (reset), 1 indicates set, and — indicates no change.

Explains the operation of the instruction.

e Remark: Explains the supplementary information of the instruction.
¢ Caution: Indicates the cautions.
Table 5-1. Conventions of Instruction Format
Symbol Meaning
regi General register (used as source register)
reg2 General register (mainly used as destination register. Some are also used as source registers)
reg3 General register (mainly used as remainder of division results or higher 32 bits of multiply results)
bit#3 3-bit data for specifying bit number
immx x-bit immediate data
dispx x-bit displacement data
reglD System register number
vector 5-bit data for trap vector (00H to1FH) specification
ccee 4-bit data for condition code specification
sp Stack pointer (r3)
ep Element pointer (r30)
listx Lists of registers (x is a maximum number of registers)
Table 5-2. Conventions of Operation (1/2)
Symbol Meaning
«— Assignment
GR[] General register
SR[] System register

zero-extend (n)

Zero-extends n to word

sign-extend (n)

Sign-extends n to word

load-memory (a, b)

Reads data of size b from address a

store-memory (a, b, c)

Writes data b of size ¢ to address a

load-memory-bit (a, b)

Reads bit b from address a

store-memory-bit (a, b, c)

Writes c to bit b of address a

54

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

Table 5-2. Conventions of Operation (2/2)

Symbol

Meaning

saturated (n)

Performs saturation processing of n.
If n > 7FFFFFFFH as result of calculation, n = 7FFFFFFFH.
If n < 80000000H as result of calculation, n = 80000000H.

result Reflects result on flag
Byte Byte (8 bits)
Half-word Half-word (16 bits)
Word Word (32 bits)

+ Add

- Subtract

Il Bit concatenation

X Multiply

- Divide

% Remainder of division results
AND And

OR Or

XOR Exclusive Or

NOT Logical negate

logically shift left by

Logical left shift

logically shift right by

Logical right shift

arithmetically shift right by

Arithmetic right shift

Table 5-3. Conventions of Opcode

Symbol Meaning
R 1-bit data of code specifying regl or reglD
r 1-bit data of code specifying reg2
w 1-bit data of code specifying reg3
d 1-bit data of displacement
| 1-bit data of immediate (indicates higher bits of immediate)
i 1-bit data of immediate
ccee 4-bit data for condition code specification
CCCC 4-bit data for condition code specification of Bcond instruction
bbb 3-bit data for bit number specification
L 1-bit data of code specifying program register in register list

User's Manual U14559EJ2VOUM

55

CHAPTER 5 INSTRUCTION

<Arithmetic operation

instruction>

ADD

Add register/immediate

Add

Instruction format

Operation

Format

Opcode

Flag

Explanation

56

@
@

@
@

@
@

1)

CYy
ov

ADD regl, reg2
ADD immb5, reg2

GR [reg2] « GR [reg2] + GR [regl]
GR [reg2] < GR [reg?2] + sign-extend (imm5)

Format |
Format Il

15 0

| rrrrr001110RRRRR |

15 0

1 if a carry occurs from MSB; otherwise, 0.

1 if overflow occurs; otherwise, 0.

1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise 0.

SAT -

@

@

Adds the word data of general register regl to the word data of general register reg2, and
stores the result to general register reg2. The data of general register regl is not affected.
Adds 5-bit immediate data, sign-extended to word length, to the word data of general
register reg2, and stores the result to general register reg2.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Add immediate

ADDI

Add Immediate

Instruction format ADDI imm16, regl, reg2

Operation GR [reg2] « GR [regl] + sign-extend (imm16)
Format Format VI
Opcode 15 0 31 16

rrrrr110000RRRRR iiiiiiiiiiiiiidii

Flag CY 1 if a carry occurs from MSB; otherwise, 0.
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise 0.
SAT -
Explanation Adds 16-bit immediate data, sign-extended to word length, to the word data of general register

regl, and stores the result to general register reg2. The data of general register regl is not
affected.

User's Manual U14559EJ2VO0UM 57

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

AND

AND

And

Instruction format

Operation

Format

Opcode

Flag

Explanation

58

AND regl, reg2

GR [reg2] « GR [reg2] AND GR [regl]

Format |

15 0

rrrrr001010RRRRR

CY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
4 1 if the result of an operation is 0; otherwise 0.

SAT -

ANDs the word data of general register reg2 with the word data of general register regl, and
stores the result to general register reg2. The data of general register regl is not affected.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

ANDI

AND immediate

And Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

ANDI imm16, regl, reg2

GR [reg2] < GR [regl] AND zero-extend (imm16)

Format VI

15 0 31 16

rrrrr110110RRRRR iiiiiiiiiiiiiidii

CY -
ov o0
S 0
4 1 if the result of an operation is 0; otherwise 0.
SAT -

ANDs the word data of general register reg1 with the value of the 16-bit immediate data, zero-
extended to word length, and stores the result to general register reg2. The data of general
register regl is not affected.

User's Manual U14559EJ2VOUM 59

CHAPTER 5 INSTRUCTION

<Branch instruction>

Branch on condition code with 9-bit displacement

Bcond

Branch on Condition Code

Instruction format Bcond disp9

Operation if conditions are satisfied
then PC « PC + sign-extend (disp9)

Format Format Il
Opcode 15 0
dddddilolildddcccc

dddddddad is the higher 8 bits of disp9.

Flag CcY -
ov -
S —
Z —
SAT -

Explanation Tests each flag of PSW specified by the instruction. Branches if a specified condition is
satisfied; otherwise, executes the next instruction. The branch destination PC holds the sum
of the current PC value and 9-bit displacement, which is 8-bit immediate shifted 1 bit and sign-
extended to word length.

Remark Bit 0 of the 9-bit displacement is masked to 0. The current PC value used for calculation is the

address of the first byte of this instruction. If the displacement value is 0, therefore, the branch
destination is this instruction itself.

60 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

Table 5-4. Bcond Instructions

Instruction Condition Code Status of Flag Branch Condition
(ccco)
Signed BGE 1110 (Sxor0oVv)=0 Greater than or equal signed
integer BGT 1111 ((SxorOV)orz)=0 Greater than signed
BLE 0111 ((SxorOV)orz)=1 Less than or equal signed
BLT 0110 (Sxorov)=1 Less than signed
Unsigned BH 1011 (Cyorz)=0 Higher (Greater than)
integer BL 0001 Cy=1 Lower (Less than)
BNH 0011 (CYorz)y=1 Not higher (Less than or equal)
BNL 1001 Cy=0 Not lower (Greater than or equal)
Common BE 0010 zZ=1 Equal
BNE 1010 Z=0 Not equal
Others BC 0001 Cy=1 Carry
BN 0100 S=1 Negative
BNC 1001 Cy=0 No carry
BNV 1000 ov=0 No overflow
BNZ 1010 Z=0 Not zero
BP 1100 S=0 Positive
BR 0101 - Always (unconditional)
BSA 1101 SAT=1 Saturated
BV 0000 ov=1 Overflow
BZ 0010 Z=1 Zero
Caution If executing a conditional branch instruction of a signed integer (BGE, BGT, BLE, or BLT)

when the SAT flag is set to 1 as a result of executing a saturated operation instruction, the
branch condition loses its meaning. In ordinary operations, if an overflow occurs, the S flag is
inverted (0 - 1 or 1 — 0). This is because the result is a negative value if it exceeds the
maximum positive value and it is a positive value if it exceeds the maximum negative value.
However, when a saturated operation instruction is executed, and if the result exceeds the
maximum positive value, the result is saturated with a positive value; if the result exceeds the
maximum negative value, the result is saturated with a negative value. Unlike the ordinary
operation, therefore, the S flag is not inverted even if an overflow occurs. Hence, the S flag is
affected differently when the instruction is a saturate operation, as opposed to an ordinary
operation. A branch condition which is an XOR of S and OV flags will therefore have no
meaning.

User's Manual U14559EJ2VOUM 61

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Byte swap half-word

BSH

Byte Swap Half-word

Instruction format BSH reg2, reg3

Operation GR [reg3] « GR [reg2] (23:16) || GR [reg2] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)
Format Format Xl
Opcode 15 0 31 16

rrrrr11111100000 wwwww01101000010

Flag CcY 1 if one or more bytes in result half-word is 0; otherwise 0.
ov 0
S 1 if the result of the operation is negative; otherwise, 0.
4 1 if the result of the operation is 0; otherwise, 0.
SAT -
Explanation Endian translation.

62 User's Manual U14559EJ2V0UM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Byte swap word

BSW

Byte Swap Word

Instruction format BSW reg2, reg3

Operation GR [reg3] « GR [reg2] (7:0) || GR [reg2] (15:8) || GR [reg2] (23:16) || GR [reg2] (31:24)
Format Format Xl
Opcode 15 0 31 16

rrrrr11111100000 wwwww01101000000

Flag CcY 1 if one or more bytes in result word is 0; otherwise O.
ov 0
S 1 if the result of the operation is negative; otherwise, 0.
4 1 if the result of the operation is 0; otherwise, 0.
SAT -

Explanation Endian translation.

User's Manual U14559EJ2VOUM 63

CHAPTER 5 INSTRUCTION

<Special instruction>

CALLT

Call with table look up

Call with Table Look Up

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

64

CALLT imm6

CTPC « PC + 2 (return PC)

CTPSW « PSW

adr « CTBP + zero-extend (immé6 logically shift left by 1)
PC « CTBP + zero-extend (Load-memory (adr, Half-word))

Format Il

15 0

CYy -
ov -
S -
d -
SAT -

Saves the restore PC and PSW to CTPC and CTPSW. Adds the CTBP and data of imm6,
logically shifted left by 1 and zero-extended to word length, to generate a 32-bit table entry
address. Then load the half-word entry data, zero-extended to word length, and adds the data
and CTBP to generate a 32-bit target address. Then jump to a target address.

If an interrupt is generated during instruction execution, the execution of that instruction may

stop after the end of the read/write cycle. Execution is resumed after returning from the
interrupt.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

CLR1

Clear bit

Clear Bit

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

(1) CLR1 bit#3, displ6 [regl]
(2) CLR1 reg2, [regl]

(1) adr « GR [regl] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 0)

(2) adr « GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 0)

(1) Format VIlI
(2) Format IX

15 0 31 16
(2) | 10bbb111110RRRRR | dddddddddddddddd |

15 0 31 16

(2) |rrrrrllllllRRRRR |OOOOOOOOlllOOlOO |

CY -
ov -
S —
4 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -

(1) Adds the data of general register regl to the 16-bit displacement, sign-extended to word
length, to generate a 32-bit address. Then clears the bit, specified by the bit number of 3
bits, of the byte data referenced by the generated address. Bit not specified is not
affected.

(2) Reads the data of general register regl to generate a 32-bit address. Then clears the bit,
specified by the data of lower 3 bits of reg2, of the byte data referenced by the generated
address. Bit not specified is not affected.

The Z flag of the PSW indicates whether the specified bit was a 0 or 1 before this instruction is

executed. It does not indicate the content of the specified bit after this instruction has been
executed.

User's Manual U14559EJ2VOUM 65

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

CMOV

Conditional move

Conditional Move

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

66

(1)
)

(1)

(1)

)

CcY
ov
S

z
SAT

(1)

See

CMOV cccc, regl, reg2, reg3
CMOV cccc, immb5, reg2, reg3

if conditions are satisfied

then GR [reg3] « GR [reg1]

else GR [reg3] « GR [reg2]

if conditions are satisfied

then GR [reg3] « sign-extend (imm5)
else GR [reg3] « GR [reg2]

Format Xl
Format XII

15 0 31 16

|rrrrr111111RRRRR |wwwww01lOOlccccO |

15 0 31 16

The general register reg3 is set to the data of general register reg1 if a condition specified
by condition code “cccc” is satisfied; otherwise, set to the data of general register reg2.
One of the codes shown in Table 5-5 Condition Codes should be specified as the
condition code “cccc”.

The general register reg3 is set to the data of 5-bit immediate, sign-extended to word
length, if a condition specified by condition code “cccc” is satisfied; otherwise, set to the
data of general register reg2. One of the codes shown in Table 5-5 Condition Codes
should be specified as the condition code “cccc”.

SETF instruction.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Compare register/immediate (5-bit)

CMP

Compare

Instruction format (1) CMP regl, reg2
(2) CMP immb, reg2

Operation (1) result « GR [reg2] — GR [regl]
(2) result « GR [reg2] — sign-extend (immb5)

Format (1) Format|
(2) Format

Opcode 15 0

(1) |rrrrr001111RRRRR |

15 0

Flag CY 1 if a borrow to MSB occurs; otherwise, 0.
ov 1 if overflow occurs; otherwise O.
S 1 if the result of the operation is negative; otherwise, 0.
4 1 if the result of the operation is 0; otherwise, 0.
SAT -

Explanation (1) Compares the word data of general register reg2 with the word data of general register
regl, and indicates the result by using the flags of PSW. To compare, the contents of
general register regl are subtracted from the word data of general register reg2. The data
of general registers regl and reg2 are not affected.

(2) Compares the word data of general register reg2 with 5-bit immediate data, sign-extended
to word length, and indicates the result by using the flags of PSW. To compare, the
contents of the sign-extended immediate data is subtracted from the word data of general
register reg2. The data of general register reg2 is not affected.

User's Manual U14559EJ2VOUM 67

CHAPTER 5 INSTRUCTION

<Special instruction>

CTRET

Return from CALLT

Return from CALLT

Instruction format

Operation

Format

Opcode

Flag

Explanation

68

CTRET

PC « CTPC
PSW « CTPSW

Format X

15 0 31 16

0000011111100000 0000000101000100

CYy Value read from CTPSW is restored.
ov Value read from CTPSW is restored.
S Value read from CTPSW is restored.
4 Value read from CTPSW is restored.
SAT Value read from CTPSW is restored.

Fetches the restore PC and PSW from the appropriate system register and returns from a
routine called by CALLT instruction. The operations of this instruction are as follows:

(1) The restore PC and PSW are read from the CTPC and CTPSW.

(2) Once the PC and PSW are restored to the return values, control is transferred to the
return address.

User's Manual U14559EJ2VO0UM

CHAPTER 5 INSTRUCTION

<Debug function instruction>

Return from debug trap

DBRET

Return from debug trap

Instruction format DBRET

Operation PC « DBPC
PSW « DBPSW

Format Format X

Opcode 15 0 31 16

0000011111100000 0000000101000110

Flag CY Value read from DBPSW is restored.
ov Value read from DBPSW is restored.
S Value read from DBPSW is restored.
z Value read from DBPSW is restored.
SAT Value read from DBPSW is restored.

Explanation Fetches the restore PC and PSW from the appropriate system register and returns from debug
mode.
Caution (1) Because the DBRET instruction is for debugging, it is essentially used by debug tools.

When a debug tool is using this instruction, therefore, use of it in the application may
cause a malfunction.
(2) The NB85E and NB85ET do not support the DBRET instruction.

User's Manual U14559EJ2VOUM 69

CHAPTER 5 INSTRUCTION

<Debug function instruction>

Debug trap

DBTRAP

Debug trap

Instruction format DBTRAP

Operation DBPC « PC + 2 (restore PC)
DBPSW « PSW
PSW.NP « 1
PSW.EP « 1
PSW.ID « 1
PC « 00000060H

Format Format |

Opcode 15 0

1111100001000000

Flag CcY -
ov -
S —
Z —
SAT -

Explanation Saves the contents of the restore PC (address of the instruction following the DBTRAP
instruction) and the PSW to the DBPC and DBPSW, respectively, and sets the NP, EP, and ID
flags of PSW to 1.
Next, the handler address (00000060H) of the exception trap is set to the PC, and control
shifts to the PC. PSW flags other than NP, EP, and ID flags are unaffected.
Note that the value saved to the DBPC is the address of the instruction following the DBTRAP
instruction.

Caution (1) Because the DBTRAP instruction is for debugging, it is essentially used by debug tools.
When a debug tool is using this instruction, therefore, use of it in the application may
cause a malfunction.

(2) The NB85E and NB85ET do not support the DBTRAP instruction.

70 User's Manual U14559EJ2V0UM

CHAPTER 5 INSTRUCTION

<Special instruction>

Disable interrupt

DI

Disable Interrupt

Instruction format DI

Operation PSW.ID « 1 (Disables maskable interrupt)
Format Format X
Opcode 15 0 31 16

0000011111100000 0000000101100000

Flag CcY -
ov -
S —
Z —
SAT -
ID 1

Explanation Sets the ID flag of the PSW to 1 to disable the acknowledgement of maskable interrupts during
execution of this instruction.

Remark Interrupts are not sampled during execution of this instruction. The PSW flag actually
becomes valid at the start of the next instruction. But because interrupts are not sampled
during instruction execution, interrupts are immediately disabled. Non-maskable interrupts
(NMI) are not affected by this instruction.

User's Manual U14559EJ2V0UM 71

CHAPTER 5 INSTRUCTION

<Special instruction>

DISPOSE

Function dispose

Function Dispose

Instruction format

Operation

Format

Opcode

Flag

Explanation

72

(1) DISPOSE immb, list12
(2) DISPOSE immb, list12, [reg1]

(1) sp < sp + zero-extend (immb5 logically shift left by 2)
GR [reg in list12] « Load-memory (sp, Word)
sp«<sp+4

repeat 2 steps above until all regs in list12 are loaded

(2) sp < sp + zero-extend (immb5 logically shift left by 2)
GR [reg in list12] « Load-memory (sp, Word)
sp«<sp+4

repeat 2 states above until all regs in list12 are loaded
PC « GR [reg1]

Format XIllI

15 0 31 16

RRRRR must not be 00000.

LLLLLLLLLLLL shows a register in list12. Bit assignment of list12 is below.

15 0 31 2827 2423 21

16

I 3122222222223 - -
STt m T mmmm s == m - 0145670123891 - -

CcY -
ov -
S -
Z -
SAT -

(1) Adds the data of 5-bit immediate immb5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pop (load data from the address specified by sp and adds 4 to

sp) general registers listed in list12. Bit 0 of the address is masked to 0.

(2) Adds the data of 5-bit immediate immb5, logically shifted left by 2 and zero-extended to
word length, to sp. Then pop (load data from the address specified by sp and adds 4 to
sp) general registers listed in list12, transfers control to the address specified by general

register reg1. Bit 0 of the address is masked to 0.

User's Manual U14559EJ2VO0UM

CHAPTER 5 INSTRUCTION

Remark

Caution

General registers in list12 are loaded in the downward direction. (r31, r30, ... r20)

The 5-bit immediate immb5 is used to restore a stack frame for auto variables and temporary
data.

The lower 2-bit of address specified by sp is always masked to 0 even if misaligned access is
enabled.

If an interrupt occurs before updating the sp, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction (sp will retain their original values
prior to the start of execution).

If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are
complete. Execution is resumed after returning from the interrupt.

User's Manual U14559EJ2VOUM 73

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Divide word
Divide Word
Instruction format DIV regl, reg2, reg3
Operation GR [reg2] < GR [reg2] + GR [regl]
GR [reg3] < GR [reg2] % GR [regl]
Format Format Xl
Opcode 15 0 31 16
rrrrrl1l1l1111RRRRR wwwww01011000000
Flag CcY -
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Divides the word data of general register reg2 by the word data of general register regl, and

stores the quotient to general register reg2, and the remainder to general register reg3. If the
data is divided by 0, overflow occurs, and the quotient is undefined. The data of general
register regl is not affected.

Remark Overflow occurs when the maximum negative value (80000000H) is divided by —1 (in which
case the quotient is 80000000H) and when data is divided by 0 (in which case the quotient is
undefined).

If an interrupt occurs while this instruction is executed, execution is aborted, and the interrupt
is processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction. Also, general registers regl and
reg2 will retain their original values prior to the start of execution.

If the address of reg2 is the same as the address of reg3, the remainder is stored to reg2

(= reg3).

74 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

DIVH

Divide half-word

Divide Half-word

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

(1)
)

(1)
)

(1)
)

(1)

@)

CcY
ov
S

Y4
SAT

(1)

DIVH reg1, reg2
DIVH reg1, reg2, reg3

GR [reg2] < GR [reg2] + GR [reg1]
GR [reg2] < GR [reg2] + GR [reg1]
GR [reg3] « GR [reg2] % GR [reg1]

Format |
Format Xl
15 0
| rrrrr000010RRRRR |
15 0 31 16

| rrrrr111111RRRRR | wwwww01010000000

1 if overflow occurs; otherwise, 0.
1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

Divides the word data of general register reg2 by the lower half-word data of general
register reg1, and stores the quotient to general register reg2. If the data is divided by 0,
overflow occurs, and the quotient is undefined. The data of general register reg1 is not
affected.

Divides the word data of general register reg2 by the lower half-word data of general
register reg1, and stores the quotient to general register reg2, the remainder to general
register reg3. If the data is divided by 0, overflow occurs, and the quotient is undefined.
The data of general register reg1 is not affected.

The remainder is not stored. Overflow occurs when the maximum negative value
(80000000H) is divided by —1 (in which case the quotient is 80000000H) and when data is
divided by 0 (in which case the quotient is undefined). If an interrupt occurs while this
instruction is executed, execution is aborted, and the interrupt is processed. Upon
returning from the interrupt, the execution is restarted from the beginning, with the return
address being the address of this instruction. Also, general registers reg1 and reg2 will
retain their original values prior to the start of execution.

Do not specify r0 as the destination register reg2.

The higher 16 bits of general register reg1 are ignored when division is executed.

User's Manual U14559EJ2V0UM 75

CHAPTER 5 INSTRUCTION

76

(2) Overflow occurs when the maximum negative value (80000000H) is divided by —1 (in
which case the quotient is 80000000H) and when data is divided by O (in which case the
quotient is undefined).

If an interrupt occurs while this instruction is executed, execution is aborted, and the
interrupt is processed. Upon returning from the interrupt, the execution is restarted from
the beginning, with the return address being the address of this instruction. Also, general
registers regl and reg2 will retain their original values prior to the start of execution.

The higher 16 bits of general register regl are ignored when division is executed.

If the address of reg2 is the same as the address of reg3, the remainder is stored to reg2

(= reg3).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

DIVHU

Divide half-word unsigned

Divide Half-word Unsigned

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

DIVHU regl, reg2, reg3

GR [reg2] « GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format XI

15 0 31 16

rrrrrl1l11111RRRRR wwwww01010000010

CY -

ov 1 if overflow occurs; otherwise, 0.

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

Divides the word data of general register reg2 by the lower half-word data of general register
regl, and stores the quotient to general register reg2, and the remainder to general register
reg3. If the data is divided by 0, overflow occurs, and the quotient is undefined. The data of
general register regl is not affected.

Overflow occurs when data is divided by 0 (in which case the quotient is undefined).

If an interrupt occurs while this instruction is executed, execution is aborted, and the interrupt
is processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction. Also, general registers regl and
reg2 will retain their original values prior to the start of execution.

If the address of reg2 is the same as the address of reg3, the remainder is stored to reg2

(= reg3).

User's Manual U14559EJ2V0UM 77

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Divide word unsigned

DIVU

Divide Word Unsigned

Instruction format DIVU regl, reg2, reg3

Operation GR [reg2] < GR [reg2] + GR [regl]
GR [reg3] « GR [reg2] % GR [regl]

Format Format XI

Opcode 15 0 31 16

rrrrrl1l1l1111RRRRR wwwww01011000010

Flag CcY -
ov 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Divides the word data of general register reg2 by the word data of general register regl, and

stores the quotient to general register reg2, and the remainder to general register reg3. If the
data is divided by 0, overflow occurs, and the quotient is undefined. The data of general
register regl is not affected.

Remark Overflow occurs when data is divided by 0 (in which case the quotient is undefined).
If an interrupt occurs while this instruction is executed, execution is aborted, and the interrupt
is processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction. Also, general registers regl and
reg2 will retain their original values prior to the start of execution.
If the address of reg2 is the same as the address of reg3, the remainder is stored to reg2

(= reg3).

78 User's Manual U14559EJ2V0UM

CHAPTER 5 INSTRUCTION

<Special instruction>

El

Enable interrupt

Enable Interrupt

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

El

PSW.ID « 0 (enables maskable interrupt)

Format X

15 0 31 16

1000011111100000 0000000101100000

CY -
ov -
S -
Z -
SAT -
ID 0

Clears the ID flag of the PSW to 0 and enables the acknowledgement of maskable interrupts
beginning at the next instruction.

Interrupts are not sampled during instruction execution.

User's Manual U14559EJ2VOUM 79

CHAPTER 5 INSTRUCTION

<Special instruction>

Halt

HALT

Halt

Instruction format HALT

Operation Halts
Format Format X
Opcode 15 0 31 16

0000011111100000 0000000100100000

Flag CYy -
ov -
S —
V4 —
SAT -

Explanation Stops the operating clock of the CPU and places the CPU in the HALT mode.
Remark The HALT mode is exited by any of the following three events:

¢ Reset input

* Non-maskable interrupt request (NMI input)

¢ Maskable interrupt request (when ID of PSW = 0)

If an interrupt is acknowledged during the HALT mode, the address of the following instruction
is stored to EIPC or FEPC.

80 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

HSW

Half-word swap word

Half-word Swap Word

Instruction format

Operation

Format

Opcode

Flag

Explanation

HSW reg2, reg3

GR [reg3] « GR [reg2] (15:0) || GR [reg2] (31:16)

Format Xl

15 0 31 16

rrrrr11111100000 wwwww01101000100

CY 1 if one or more half-words in result word is 0; otherwise 0.

ov 0

S 1 if the result of the operation is negative; otherwise, 0.
4 1 if the result of the operation is 0; otherwise, 0.

SAT -

Endian translation.

User's Manual U14559EJ2VOUM 81

CHAPTER 5 INSTRUCTION

<Branch instruction>

Jump and register link

JARL

Jump and Register Link

Instruction format JARL disp22, reg2

Operation GR [reg2] <« PC +4
PC « PC + sign-extend (disp22)

Format Format V

Opcode 15 0 31 16

rrrrrllllodddddd dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CcY -
ov -
S —
Z —
SAT -

Explanation Saves the current PC value plus 4 to general register reg2, adds the current PC value and 22-
bit displacement, sign-extended to word length, and transfers control to that PC. Bit O of the
22-bit displacement is masked to 0.

Remark The current PC value used for calculation is the address of the first byte of this instruction. If
the displacement value is 0, the branch destination is this instruction itself.
This instruction is equivalent to a call subroutine instruction, and saves the restore PC address
to general register reg2. The JMP instruction, which is equivalent to a subroutine-return
instruction, can be used to specify as regl the general register containing the return address
saved during the JARL subroutine-call instruction, to restore the program counter.

82 User's Manual U14559EJ2V0UM

CHAPTER 5 INSTRUCTION

<Branch instruction>

Jump register

JMP

Jump Register

Instruction format JMP [regl]

Operation PC < GR [regl]
Format Format |
Opcode 15 0
00000000011RRRRR
Flag CcY -
ov -
S —
Z —
SAT -
Explanation Transfers control to the address specified by general register regl. Bit 0 of the address is
masked to 0.
Remark When using this instruction as the subroutine-return instruction, specify the general register

containing the return address saved during the JARL subroutine-call instruction, to restore the
program counter. When using the JARL instruction, which is equivalent to the subroutine-call
instruction, store the PC return address in general register reg2.

User's Manual U14559EJ2VOUM 83

CHAPTER 5 INSTRUCTION

<Branch instruction>

Jump relative

JR

Jump Relative

Instruction format JR disp22

Operation PC « PC + sign-extend (disp22)
Format Format V
Opcode 15 0 31 16

0000011110dddddd dddddddddddddddo

ddddddddddddddddddddd is the higher 21 bits of disp22.

Flag CcYy -
ov -
S —
Z —
SAT -

Explanation Adds the 22-bit displacement, sign-extended to word length, to the current PC value and
stores the value in the PC, and then transfers control to that PC. Bit 0 of the 22-bit

displacement is masked to O.

Remark The current PC value used for the calculation is the address of the first byte of this instruction
itself. Therefore, if the displacement value is 0, the jump destination is this instruction.

84 User's Manual U14559EJ2V0UM

CHAPTER 5 INSTRUCTION

<Load instruction>

Load byte
Load
Instruction format LD.B displ6 [regl], reg2
Operation adr < GR [regl] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Byte))
Format Format VII
Opcode 15 0 31 16
rrrrr111000RRRRR dddddddddddddddd
Flag CcY -
ov -
S —
Z —
SAT -
Explanation Adds the data of general register regl to a 16-bit displacement sign-extended to word length

to generate a 32-bit address. Byte data is read from the generated address, sign-extended to
word length, and stored to general register reg2.

Caution The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(half-word, word), and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 85

CHAPTER 5 INSTRUCTION

Remark

86

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For VB50E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NU85E, NUS5SET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

LD.BU

Load byte unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

LD.BU disp16 [regl], reg2

adr < GR [regl] + sign-extend (disp16)
GR [reg2] « zero-extend (Load-memory (adr, Byte))

Format VII

15 0 31 16
rrrrrl11110bRRRRR dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16. b is the bit O of disp16.

CYy -
ov -
S -
z -
SAT -

Adds the data of general register regl to a 16-bit displacement sign-extended to word length
to generate a 32-bit address. Byte data is read from the generated address, zero-extended to
word length, and stored to general register reg2.

The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed

(half-word, word), and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is

disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 87

CHAPTER 5 INSTRUCTION

Remark

88

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For VB50E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NU85E, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

LD.H

Load half-word

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

LD.H displ6 [regl], reg2

adr < GR [regl] + sign-extend (disp16)
GR [reg2] « sign-extend (Load-memory (adr, Half-word))

Format VII

15 0 31 16
rrrrr111001RRRRR dddddddddddddddo

ddddddddddddddd is the higher 15 bits of disp16.

CYy -
ov -
S -
Z -
SAT -

Adds the data of general register regl to a 16-bit displacement sign-extended to word length
to generate a 32-bit address. Half-word data is read from this 32-bit address with its bit 0
masked to 0, sign-extended to word length, and stored to general register reg2.

The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(half-word, word), and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 89

CHAPTER 5 INSTRUCTION

Remark

90

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For VB50E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NU85E, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

LD.HU

Load half-word unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Caution

LD.HU disp16 [regl], reg2

adr < GR [regl] + sign-extend (disp16)
GR [reg2] « zero-extend (Load-memory (adr, Half-word))

Format VII

15 0 31 16
rrrrr111111RRRRR dddddddddddddddl

ddddddddddddddd is the higher 15 bits of disp16.

CYy -
ov -
S -
z -
SAT -

Adds the data of general register regl to a 16-bit displacement sign-extended to word length
to generate a 32-bit address. Half-word data is read from this 32-bit address with its bit 0
masked to 0, zero-extended to word length, and stored to general register reg2.

The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(half-word, word), and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 91

CHAPTER 5 INSTRUCTION

Remark

92

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For VB50E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NU85E, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

Load word
Load
Instruction format LD.W disp16 [regl], reg2
Operation adr < GR [regl] + sign-extend (disp16)
GR [reg2] « Load-memory (adr, Word)
Format Format VII
Opcode 15 0 31 16
rrrrr111001RRRRR dddddddddddddddl
ddddddddddddddd is the higher 15 bits of disp16.
Flag CcY -
ov -
S —
Z —
SAT -
Explanation Adds the data of general register regl to a 16-bit displacement sign-extended to word length

to generate a 32-bit address. Word data is read from this 32-bit address with bits 0 and 1
masked to 0, and stored to general register reg2.

Caution The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(half-word, word), and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 93

CHAPTER 5 INSTRUCTION

Remark

94

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For VB50E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
1/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NU85E, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

LDSR

Load to system register

Load to System Register

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

LDSR reg2, reglD

SR [regID] « GR [reg2]

Format IX

15 0 31 16

rrrrr111111RRRRR 0000000000100000

Caution The source register in this instruction is represented by reg2 for
convenience of describing its mnemonic . In the opcode, however, the reg1
field is used for the source register. Unlike other instructions therefore, the
register specified in the mnemonic description has a different meaning in the
opcode.

rrrrr: reglD specification
RRRRR: reg2 specification

cYy — (See Remark below.)
OV —(See Remark below.)
S — (See Remark below.)
z — (See Remark below.)
SAT — (See Remark below.)

Loads the word data of general register reg2 to a system register specified by the system
register number (reglD). The data of general register reg2 is not affected.

If the system register number (reglD) is equal to 5 (PSW register), the values of the
corresponding bits of the PSW are set according to the contents of reg2. Also, interrupts are
not sampled when the PSW is being written with a new value. If the ID flag is enabled with this
instruction, interrupt disabling begins at the start of execution, even though the ID flag does
not become valid until the beginning of the next instruction.

The system register number reglD is a number which identifies a system register. Accessing

system registers which are reserved or write-prohibited is prohibited and will lead to undefined
results.

User's Manual U14559EJ2VO0UM 95

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Move register/immediate (5-bit)/immediate (32-bit)

MOV

Move

Instruction format (1) MOV regl, reg2
(2) MOV immb5, reg2
(3) MOV imm32, reg1

Operation (1) GR[reg2] « GR [regl]
(2) GR [reg2] « sign-extend (imm5)
(3) GR[regl1] « imm32

Format (1) Format|
(2) Formatll

(3) Format VI

Opcode 15 0

(1) |rrrrrOOOOOORRRRR |

15 0

@) |rrrrrOlOOOOiiiii |

15 0 31 16 47 32

3) |OOOOOllOOOlRRRRR |iiiiiiiiiiiiiiii ITIIITIIIIIIIIIIT

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.
I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

Flag CY -

SAT -

Explanation (1) Transfers the word data of general register reg1 to general register reg2.
The data of general register reg1 is not affected.
(2) Transfers the value of a 5-bit immediate data, sign-extended to word length, to general
register reg2.
Do not specify r0 as the destination register reg2.
(3) Transfers the value of a 32-bit immediate data to general register reg1.

96 User's Manual U14559EJ2VO0UM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Move effective address

MOVEA

Move Effective Address

Instruction format MOVEA imm16, regl, reg2

Operation GR [reg2] « GR [regl] + sign-extend (imm16)
Format Format VI
Opcode 15 0 31 16

rrrrr110001RRRRR 1111311113111131111

Flag CcY -
ov -
S —
Z —
SAT -

Explanation Adds the 16-bit immediate data, sign-extended to word length, to the word data of general
register regl, and stores the result to general register reg2. The data of general register regl
is not affected. The flags are not affected by the addition.

Do not specify r0 as the destination register reg2.

Remark This instruction calculates a 32-bit address and stores the result without affecting the PSW
flags.

User's Manual U14559EJ2VOUM 97

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

Move high half-word

MOVHI

Move High Half-word

Instruction format MOVHI imm16, reg1, reg2

Operation GR [reg2] « GR [reg1] + (imm16 Il 016)
Format Format VI
Opcode 15 0 31 16

rrrrr110010RRRRR 111111313131311311111

Flag CYy -
ov -
S —
V4 —
SAT -

Explanation Adds a word data, whose higher 16 bits are specified by the 16-bit immediate data and lower
16 bits are 0, to the word data of general register reg1 and stores the result in general register
reg2. The data of general register reg1 is not affected.

The flags are not affected by the addition.
Do not specify r0 as the destination register reg2.

Remark This instruction is used to generate the higher 16 bits of a 32-bit address.

98 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Multiply instruction>

MUL

Multiply word by register/immediate (9-bit)

Multiply Word

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

(1)

(1)

@)

cY
ov
S
Z

MUL reg1, reg2, reg3
MUL imm9, reg2, reg3

GR [reg3] Il GR [reg2] <« GR [reg2] x GR [reg1]
GR [reg3] Il GR [reg2] « GR [reg2] x sign-extend (imm9)

Format Xl
Format XIlI

15 0 31 16

|rrrrrllllllRRRRR |wwwwwOlOOOlOOOOO |

15 0 31 16

III1I is the higher 4 bits of 9-bit immediate data.

SAT -

(1)

)

Multiplies the word data of general register reg2 by the word data of general register reg1,
and stores the result to general register reg2 and reg3 as double word data. The data of
general register reg1 is not affected.

Multiplies the word data of general register reg2 by a 9-bit immediate data, sign-extended
to word length, and stores the result to general registers reg2 and reg3.

The higher 32 bits of the result are stored to general register reg3.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are

stored to reg2 (= reg3).

User's Manual U14559EJ2VOUM 99

CHAPTER 5 INSTRUCTION

<Multiply instruction>

Multiply half-word by register/immediate (5-bit)

MULH

Multiply Half-word

Instruction format (1) MULH reg1, reg2
(2) MULH imm5, reg2

Operation (1) GR[reg2] (32) « GR [reg2] (16) x GR [reg1] (16)
(2) GR[reg2] « GR [reg2] x sign-extend (immb)

Format (1) Formatl
(2) Formatll
Opcode 15 0

(1) |rrrrrOOOlllRRRRR |

15 0

2) |rrrrr010111iiiii |

Flag CcY -
ov -
S —
Z —
SAT -

Explanation (1) Multiplies the lower half-word data of general register reg2 by the half-word data of
general register reg1, and stores the result to general register reg2 as word data.
The data of general register reg1 is not affected.
Do not specify r0 as the destination register reg2.
(2) Multiplies the lower half-word data of general register reg2 by a 5-bit immediate data, sign-
extended to half-word length, and stores the result to general register reg2.
Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general registers reg1 and reg2 are ignored in this operation.

100 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Multiply instruction>

Multiply half-word by immediate (16-bit)

MULHI

Multiply Half-word Immediate

Instruction format MULHI imm16, regl, reg2

Operation GR [reg2] « GR [regl] x imm16
Format Format VI
Opcode 15 0 31 16

rrrrr110111RRRRR 1111311113111131111

Flag CcY -
ov -
S —
Z —
SAT -

Explanation Multiplies the lower half-word data of general register regl by the 16-bit immediate data, and
stores the result to general register reg2. The data of general register regl is not affected.

Do not specify r0 as the destination register reg2.

Remark The higher 16 bits of general register regl are ignored in this operation.

User's Manual U14559EJ2VOUM 101

CHAPTER 5 INSTRUCTION

<Multiply instruction>

MULU

Multiply word by register/immediate (9-bit)

Multiply Word Unsigned

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

102

(1)
@)

(1)
)

(1)
@)

(1)

cY
ov
S

z
SAT

(1)

@)

The

MULU reg1, reg2, reg3
MULU imma9, reg2, reg3

GR [reg3] Il GR [reg2] < GR [reg2] x GR [reg1]
GR [reg3] Il GR [reg2] <« GR [reg2] x zero-extend (imm9)

Format XI
Format XII

15 0 31 16

|rrrrrllllllRRRRR |wwwww01000100010 |

15 0 31 16

IIII is the higher 4 bits of 9-bit immediate data.

Multiplies the word data of general register reg2 by the word data of general register regi,
and stores the result to general registers reg2 and reg3 as double word data.

The data of general register reg1 is not affected.

Multiplies the word data of general register reg2 by a 9-bit immediate data, zero-extended
to word length, and stores the result to general registers reg2 and reg3.

higher 32 bits of the result are stored to general register reg3.

If the address of reg2 is the same as the address of reg3, the higher 32 bits of the result are
stored to reg2 (= reg3).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

No operation

NOP

No Operation

Instruction format NOP

Operation Executes nothing and consumes at least one clock.
Format Format |
Opcode 15 0
0000000000000000
Flag CY -
ov -
S —
Z —
SAT -
Explanation Executes nothing and consumes at least one clock cycle.
Remark The contents of the PC are incremented by two. The opcode is the same as that of MOV r0,
ro.

User's Manual U14559EJ2VOUM 103

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

NOT

NOT

Not

Instruction format

Operation

Format

Opcode

Flag

Explanation

104

NOT regl, reg2

GR [reg2] « NOT (GR [regl])

Format |

15 0

rrrrr000001RRRRR

CY -

oV 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

Logically negates (takes the 1's complement of) the word data of general register regl, and
stores the result to general register reg2. The data of general register regl is not affected.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

NOT bit
Not Bit
Instruction format (1) NOT1 bit#3, disp16 [regl]
(2) NOT1 reg2, [regl]
Operation (1) adr « GR [regl] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, Z flag)
(2) adr « GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, Z flag)
Format (1) Format VI
(2) Format IX
Opcode 15 0 31 16
6N} | 01bbb111110RRRRR | dddddddddddddddd |
15 0 31 16
2 | rrrrr111111RRRRR | 0000000011100010 |
Flag CY -
ov -
S —
z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -
Explanation (1) Adds the data of general register regl to a 16-bit displacement, sign-extended to word

length to generate a 32-bit address. The bit, specified by the 3-bit bit number, is inverted
(0 > 1 or 1 — 0) at the byte data location referenced by the generated address. The bits
other than the specified bit are not affected.

(2) Reads the data of general register regl to generate a 32-bit address. The bit, specified by
the data of lower 3 bits of reg2 is inverted (0 — 1 or 1 — 0) at the byte data location
referenced by the generated address. The bits other than the specified bit are not
affected.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

User's Manual U14559EJ2VOUM 105

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

OR

OR

Instruction format

Operation

Format

Opcode

Flag

Explanation

106

OR regl, reg2

GR [reg2] « GR [reg2] OR GR [regl]

Format |

15 0

rrrrr001000RRRRR

CY -

oV 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

ORs the word data of general register reg2 with the word data of general register regl, and
stores the result to general register reg2. The data of general register regl is not affected.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

ORI

OR immediate (16-bit)

Or Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

ORI imm16, regl, reg2

GR [reg2] « GR [regl] OR zero-extend (imm16)

Format VI

15 0 31 16
rrrrr110100RRRRR iiidiiiiiiiididididii

CY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

ORs the word data of general register regl with the value of the 16-bit immediate data, zero-
extended to word length, and stores the result to general register reg2. The data of general
register regl is not affected.

User's Manual U14559EJ2VOUM 107

CHAPTER 5 INSTRUCTION

<Special instruction>

Function prepare

PREPARE

Function Prepare

Instruction format (1) PREPARE list12, imm5
(2) PREPARE list12, imm5, sp/imm"*

Note sp/imm is specified by sub-opcode bits 20 and 19.

Operation (1) Store-memory (sp — 4, GR [reg in list12], Word) sp < sp -4
repeat 1 step above until all regs in list12 is stored
sp « sp — zero-extend (imm5)
(2) Store-memory (sp — 4, GR [reg in list12], Word) sp < sp —4
repeat 1 step above until all regs in list12 is stored
sp « sp — zero-extend (immb5)
ep « sp/imm

Format Format Xl

Opcode 15 0 31 16

15 0 31 16 Optional(47 to 32 or 63 to 32)
@) |OOOOOllllOiiiiiL |LLLLLLLLLLLff01l | immlé / imm32 |

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32, bits
63 to 48 are the higher 16 bits of imm32.

ff = 00: load sp toep

f£f = 01: load 16-bit immediate data (bits 47 to 32), sign-extended, to ep

ff = 10: load 16-bit immediate data (bits 47 to 32), logically shifted left by 16, to ep
ff = 11: load 32-bit immediate data (bits 63 to 32) to ep

LLLLLLLLLLLL shows a register in list12. Bit assignment of list12 is below.
15 0 31 2827 2423 21 16

--------------- 3(22222222223-----
--------------- 045670123891 -----

Flag CcY -
ov -

SAT -

108 User’'s Manual U14559EJ2V0UM

CHAPTER 5 INSTRUCTION

Explanation

Remark

Caution

(1) Push (subtract 4 from sp and store the data to that address) general registers listed in
list12. Then subtract the data of 5-bit immediate immb5, logically shifted left by 2 and zero-
extended to word length, from sp.

(2) Push (subtract 4 from sp and store the data to that address) general registers listed in
list1l2. Then subtract the data of 5-bit immediate immb5, logically shifted left by 2 and zero-
extended to word length, from sp.

Next, load the data specified by 3rd operand (sp/imm) to ep.

General registers in listl2 is stored on the upward direction. (r20, r21, ... r31)

The 5-bit immediate imm5 is used to make a stack frame for auto variables and temporary
data.

The lower 2 bits of the address specified by sp are always masked to 0 even if misaligned
access is enabled.

If an interrupt occurs before updating the sp, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction (sp and ep will retain their original
values prior to the start of execution).

If an interrupt is generated during instruction execution, due to manipulation of the stack, the

execution of that instruction may stop after the read/write cycle and register value rewriting are
complete.

User's Manual U14559EJ2VOUM 109

CHAPTER 5 INSTRUCTION

<Special instruction>

RETI

Return from trap or interrupt

Return from Trap or Interrupt

Instruction format

Operation

Format

Opcode

Flag

Explanation

110

RETI

if PSW.EP =1
then PC <« EIPC

PSW « EIPSW
else if PSW.NP =1

then PC <« FEPC

PSW « FEPSW
else PC <« EIPC
PSW « EIPSW
Format X
15 0 31 16

0000011111100000 0000000101000000

CY Value read from FEPSW or EIPSW is restored.
ov Value read from FEPSW or EIPSW is restored.
S Value read from FEPSW or EIPSW is restored.
4 Value read from FEPSW or EIPSW is restored.
SAT Value read from FEPSW or EIPSW is restored.

This instruction reads the restore PC and PSW from the appropriate system register, and
operation returns from a software exception or interrupt routine. The operations of this
instruction are as follows:

(1) If the EP flag of the PSW is 1, the restore PC and PSW are read from the EIPC and
EIPSW, regardless of the status of the NP flag of the PSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restore PC and PSW
are read from the FEPC and FEPSW.
If the EP flag of the PSW is 0 and the NP flag of the PSW is 0, the restore PC and PSW
are read from the EIPC and EIPSW.

(2) Once the restore PC and PSW values are set to the PC and PSW, the operation returns to
the address immediately before the trap or interrupt occurred.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

Caution When returning from a non-maskable interrupt or software exception routine using the RETI
instruction, the NP and EP flags of PSW must be set accordingly to restore the PC and PSW:

* When returning from non-maskable interrupt routine using the RETI instruction:
NP =1and EP =0

* When returning from a software exception routine using the RETI instruction:
EP =1

Use the LDSR instruction for setting the flags.

Interrupts are not accepted in the latter half of the ID stage during LDSR execution because of
the operation of the interrupt controller.

User's Manual U14559EJ2V0UM 111

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SAR

Shift arithmetic right by register/immediate (5-bit)

Shift Arithmetic Right

Instruction format

Operation

Format

Opcode

Flag

Explanation

112

1)
@)

1)
)

1)
@)

@

CY
ov
S

z
SAT

1)

)

SAR regl, reg2
SAR immb5, reg2

GR [reg2] « GR [reg?2] arithmetically shift right by GR [reg1]
GR [reg2] « GR [reg2] arithmetically shift right by zero-extend

Format IX
Format Il

15 0 31 16

| rrrrr111111RRRRR | 0000000010100000

15 0

1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0, the result is 0.

0

1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

Arithmetically shifts the word data of general register reg2 to the right by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the lower 5 bits of general register regl
(after the shift, the MSB prior to shift execution is copied and set as the new MSB value),
and then writes the result to general register reg2. If the number of shifts is 0, general
register reg2 retains the same value prior to instruction execution. The data of general
register regl is not affected.

Arithmetically shifts the word data of general register reg2 to the right by ‘n’ positions,
where ‘n’ is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to
word length (after the shift, the MSB prior to shift execution is copied and set as the new
MSB value), and then writes the result to general register reg2. If the number of shifts is
0, general register reg2 retains the same value prior to instruction execution.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SASF

Shift and set flag condition

Shift and Set Flag Condition

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SASF cccc, reg2

if conditions are satisfied

then GR [reg2] « (GR [reg2] Logically shift left by 1) OR 00000001H
else GR [reg2] « (GR [reg2] Logically shift left by 1) OR 00000000H

Format IX

15 0 31 16

rrrrrl1ll11l11l0cccc 0000001000000000

CcY -
ov -
S -
Z -
SAT -

The general register reg2 is logically shifted left by 1, and its LSB is set to 1 if a condition
specified by condition code “cccc” is satisfied; otherwise, the general register reg2 is logically
shifted left by 1, and its LSB is set to 0.

One of the codes shown in Table 5-5 Condition Codes should be specified as the condition
code “cccc”.

See SETF instruction.

User's Manual U14559EJ2V0UM 113

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

SATADD

Saturated add register/immediate (5-bit)

Saturated Add

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

114

1)
)

1)
)

1)
)

@

CY
ov
S

z
SAT

)

)

The

SATADD regl, reg2
SATADD immb5, reg2

GR [reg2] « saturated (GR [reg2] + GR [regl])
GR [reg2] « saturated (GR [reg2] + sign-extend (immb5))

Format |
Format Il

15 0

| rrrrr000110RRRRR |

15 0

1if a carry occurs from MSB; otherwise, 0.

1 if overflow occurs; otherwise, 0.

1 if the result of the saturated operation is negative; otherwise, 0.
1 if the result of the saturated operation is 0; otherwise, 0.

1if OV = 1; otherwise, not affected.

Adds the word data of general register regl to the word data of general register reg2, and
stores the result to general register reg2. However, if the result exceeds the maximum
positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result exceeds the
maximum negative value 80000000H, 80000000H is stored to reg2. The SAT flag is set
to 1. The data of general register regl is not affected.

Do not specify r0 as the destination register reg2.

Adds a 5-bit immediate data, sign-extended to word length, to the word data of general
register reg2, and stores the result to general register reg2. However, if the result exceeds
the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result
exceeds the maximum negative value 80000000H, 80000000H is stored to reg2. The
SAT flag is set to 1.

Do not specify r0 as the destination register reg2.

SAT flag is a cumulative flag. Once the result of the saturated operation instruction has

been saturated, this flag is set to 1 and is not cleared to O even if the result of the subsequent

oper

ation is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

To ¢

lear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

SATSUB

Saturated subtract

Saturated Subtract

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

Caution

SATSUB regl, reg2

GR [reg2] « saturated (GR [reg2] — GR [regl])

Format |

15 0

rrrrr000101RRRRR

CY 1 if a borrow to MSB occurs; otherwise, 0.

oV 1 if overflow occurs; otherwise, 0.

S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV =1, otherwise, not affected.

Subtracts the word data of general register regl from the word data of general register reg2,
and stores the result to general register reg2. However, if the result exceeds the maximum
positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result exceeds the maximum
negative value 80000000H, 80000000H is stored to reg2. The SAT flag is set to 1. The data
of general register regl is not affected.

Do not specify r0 as the destination register reg2.

The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U14559EJ2VOUM 115

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

Saturated subtract immediate

SATSUBI

Saturated Subtract Immediate

Instruction format SATSUBI imm16, regl, reg2

Operation GR [reg2] « saturated (GR [regl] — sign-extend (imm16))
Format Format VI
Opcode 15 0 31 16
rrrrr110011RRRRR iiiiiiidiidiidiiiii
Flag CY 1if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of
general register regl, and stores the result to general register reg2. However, if the result
exceeds the maximum positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result
exceeds the maximum negative value 80000000H, 80000000H is stored to reg2. The SAT
flag is setto 1. The data of general register regl is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

116 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Saturated operation instruction>

Saturated subtract reverse

SATSUBR

Saturated Subtract Reverse

Instruction format SATSUBR regl, reg2

Operation GR [reg2] « saturated (GR [regl] — GR [reg2])
Format Format |
Opcode 15 0
rrrrr000100RRRRR
Flag CY 1if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of the saturated operation is negative; otherwise, 0.
Z 1 if the result of the saturated operation is 0; otherwise, 0.

SAT 1if OV = 1; otherwise, not affected.

Explanation Subtracts the word data of general register reg2 from the word data of general register reg1l,
and stores the result to general register reg2. However, if the result exceeds the maximum
positive value 7FFFFFFFH, 7FFFFFFFH is stored to reg2; if the result exceeds the maximum
negative value 80000000H, 80000000H is stored to reg2. The SAT flag is set to 1. The data
of general register regl is not affected.

Do not specify r0 as the destination register reg2.

Remark The SAT flag is a cumulative flag. Once the result of the operation of the saturated operation
instruction has been saturated, this flag is set to 1 and is not cleared to 0 even if the result of
the subsequent operations is not saturated.

Even if the SAT flag is set to 1, the saturated operation instruction is executed normally.

Caution To clear the SAT flag to 0, load data to the PSW by using the LDSR instruction.

User's Manual U14559EJ2VOUM 117

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

Set bit
Set Bit
Instruction format (1) SET1 bit#3, displ6 [regl]
(2) SET1 reg2, [regl]
Operation (1) adr « GR [regl] + sign-extend (disp16)
Z flag < Not (Load-memory-bit (adr, bit#3))
Store-memory-bit (adr, bit#3, 1)
(2) adr « GR [regl]
Z flag < Not (Load-memory-bit (adr, reg2))
Store-memory-bit (adr, reg2, 1)
Format (1) Format VI
(2) Format IX
Opcode 15 0 31 16
6N} | 00bbb111110RRRRR | dddddddddddddddd |
15 0 31 16
2 | rrrrr111111RRRRR | 0000000011100000 |
Flag CY -
ov -
S —
z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -
Explanation (1) Adds the 16-bit displacement, sign-extended to word length, to the data of general register

regl to generate a 32-bit address. The bit, specified by the 3-bit bit number, is set at the
byte data location referenced by the generated address. The bits other than the specified
bit are not affected.

(2) Reads the data of general register regl to generate a 32-bit address. The bit, specified by
the data of lower 3 bits of reg2, is set at the byte data location referenced by the
generated address. The bits other than the specified bit are not affected.

Remark The Z flag of the PSW indicates whether the specified bit was 0 or 1 before this instruction is

executed, and does not indicate the content of the specified bit after this instruction has been
executed.

118 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Arithmetic operation instruction>

SETF

Set flag condition

Set Flag Condition

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SET

F cccc, reg2

if conditions are satisfied

then
else

GR [reg2] < 00000001H
GR [reg2] < 00000000H

Format IX

15

0 31 16

rrrrrll111110cccc 0000000000000000

CcY
ov
S

Y4
SAT

The

general register reg2 is set to 1 if a condition specified by condition code “cccc” is

satisfied; otherwise, 0 are stored to the register. One of the codes shown in Table 5-5

Con

dition Codes should be specified as the condition code “cccc”.

Here are some examples of using this instruction:

(1)

)

Translation of two or more condition clauses

If A of statement if (A) in C language consists of two or more condition clauses (a1, a2, as,
and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object
code executes “conditional branch” by checking the result of evaluation equivalent to an.
Since a pipeline processor takes more time to execute “condition judgment” + “branch”
than to execute an ordinary operation, the result of evaluating each condition clause if (an)
is stored to register Ra. By performing a logical operation to Ran after all the condition
clauses have been evaluated, the delay due to the pipeline can be prevented.

Double-length operation

To execute a double-length operation such as Add with Carry, the result of the CY flag
can be stored to general register reg2. Therefore, a carry from the lower bits can be
expressed as a humeric value.

User's Manual U14559EJ2V0UM 119

CHAPTER 5

INSTRUCTION

120

Table 5-5. Condition Codes

Condition Code

Condition Name

Condition Expression

(ccee)
0000 \Y, ov=1
1000 NV ov=0
0001 CIL Cy=1
1001 NC/NL CY=0
0010 z Z=1
1010 NZ Z=0
0011 NH (CYorz)=1
1011 H (CYorz)=0
0100 SIN S=1
1100 NS/P S=0
0101 T always (unconditional)
1101 SA SAT=1
0110 LT (Sxorov)=1
1110 GE (S xor OV) =0
0111 LE ((SxorOV)orz)=1
1111 GT ((SxorOV)orz)=0

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SHL

Shift logical left by register/immediate (5-bit)

Shift Logical Left

Instruction format

Operation

Format

Opcode

Flag

Explanation

1)
@)

1)
)

1)
@)

@

CY
ov
S

z
SAT

1)

@)

SHL regl, reg2
SHL immb5, reg2

GR [reg2] « GR [reg?2] logically shift left by GR [reg1]
GR [reg2] « GR [reg2] logically shift left by zero-extend (immb5)

Format IX
Format Il
15 0 31 16
| rrrrr111111RRRRR | 0000000011000000
15 0
| rrrrr010110iiiii |
1 if the bit shifted out last is 1; otherwise, 0.
However, if the number of shifts is 0, the result is 0.
0
1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.
Logically shifts the word data of general register reg2 to the left by ‘n’ positions, where ‘n’

is a value from 0 to +31, specified by the lower 5 bits of general register regl (0 is shifted
to the LSB side), and then writes the result to general register reg2. If the number of shifts
is 0, general register reg2 retains the same value prior to instruction execution. The data
of general register regl is not affected.

Logically shifts the word data of general register reg2 to the left by ‘n’ positions, where ‘n’
is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to word
length (O is shifted to the LSB side), and then writes the result to general register reg2. |If
the number of shifts is 0, general register reg2 retains the value prior to instruction
execution.

User's Manual U14559EJ2VOUM 121

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

SHR

Shift logical right by register/immediate (5-bit)

Shift Logical Right

Instruction format

Operation

Format

Opcode

Flag

Explanation

122

)
@)

1)
)

1)
@)

@

CY
ov
S

z
SAT

)

@)

SHR reg1l, reg2
SHR immb5, reg2

GR [reg2] « GR [reg?2] logically shift right by GR [reg1]
GR [reg2] « GR [reg?2] logically shift right by zero-extend (immb5)

Format IX
Format Il

15 0 31 16

| rrrrr111111RRRRR | 0000000010000000

15 0

1 if the bit shifted out last is 1; otherwise, 0.

However, if the number of shifts is 0, the result is 0.

0

1 if the result of an operation is negative; otherwise, 0.
1 if the result of an operation is 0; otherwise, 0.

Logically shifts the word data of general register reg2 to the right by ‘n’ positions where ‘n’
is a value from 0 to +31, specified by the lower 5 bits of general register regl (0 is shifted
to the MSB side). This instruction then writes the result to general register reg2. If the
number of shifts is 0, general register reg2 retains the same value prior to instruction
execution. The data of general register regl is not affected.

Logically shifts the word data of general register reg2 to the right by ‘n’ positions, where ‘n’
is a value from 0 to +31, specified by the 5-bit immediate data, zero-extended to word
length (0 is shifted to the MSB side). This instruction then writes the result to general
register reg2. If the number of shifts is 0, general register reg2 retains the same value
prior to instruction execution.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

SLD.B

Short format load byte

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SLD.B disp7 [ep], reg2

adr « ep + zero-extend (disp7)
GR [reg2] « sign-extend (Load-memory (adr, Byte))

Format IV

15 0
rrrrr0110ddddddd

CY -
ov -
S —
Z -
SAT -

Adds the 7-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Byte data is read from the generated address, sign-extended to word
length, and stored to reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM 123

CHAPTER 5 INSTRUCTION

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word) and
the misaligned mode setting.

* Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed after
returning from the interrupt. Therefore, except in cases when clearly no interrupt is generated,
the LD instruction should be used for accessing 1/0, FIFO types, or other resources whose
status is changed by the read cycle (the bus cycle is not re-executed even if an interrupt is
generated while the LD or store instruction is being executed).

124 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

SLD.BU

Short format load byte unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SLD.BU disp4 [ep], reg2

adr « ep + zero-extend (disp4)
GR [reg2] « zero-extend (Load-memory (adr, Byte))

Format IV

15 0

rrrrr0000110dddd

rrrrr must not be 00000.

CY -
ov -
S —
Z -
SAT -

Adds the 4-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Byte data is read from the generated address, zero-extended to word
length, and stored to reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM 125

CHAPTER 5 INSTRUCTION

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word) and
the misaligned mode setting.

* Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed after
returning from the interrupt. Therefore, except in cases when clearly no interrupt is generated,
the LD instruction should be used for accessing 1/0, FIFO types, or other resources whose
status is changed by the read cycle (the bus cycle is not re-executed even if an interrupt is
generated while the LD or store instruction is being executed).

126 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

SLD.H

Short format load half-word

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SLD.H disp8 [ep], reg2

adr « ep + zero-extend (disp8)
GR [reg2] « sign-extend (Load-memory (adr, Half-word))

Format IV

15 0
rrrrr1000ddddddd

ddddddd is the higher 7 bits of disp8.

CY -
ov -
S —
Z -
SAT -

Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Half-word data is read from this 32-bit address with bit 0 masked to 0, sign-
extended to word length, and stored to reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM 127

CHAPTER 5 INSTRUCTION

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word) and
the misaligned mode setting.

* Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed after
returning from the interrupt. Therefore, except in cases when clearly no interrupt is generated,
the LD instruction should be used for accessing 1/0, FIFO types, or other resources whose
status is changed by the read cycle (the bus cycle is not re-executed even if an interrupt is
generated while the LD or store instruction is being executed).

128 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

SLD.HU

Short format load half-word unsigned

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SLD.HU disp5 [ep], reg2

adr « ep + zero-extend (disp5)
GR [reg2] « zero-extend (Load-memory (adr, Half-word))

Format IV

15 0
rrrrr0000111dddd

dddd is the higher 4 bits of disp5. rrrrr must not be 00000.

CY -
ov -
S —
Z -
SAT -

Adds the 5-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Half-word data is read from this 32-bit address with bit 0 masked to 0, zero-
extended to word length, and stored to reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM 129

CHAPTER 5 INSTRUCTION

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word) and
the misaligned mode setting.

* Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed after
returning from the interrupt. Therefore, except in cases when clearly no interrupt is generated,
the LD instruction should be used for accessing 1/0, FIFO types, or other resources whose
status is changed by the read cycle (the bus cycle is not re-executed even if an interrupt is
generated while the LD or store instruction is being executed).

130 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Load instruction>

SLD.W

Short format load word

Load

Instruction format

Operation

Format

Opcode

Flag

Explanation

Remark

SLD.W disp8 [ep], reg2

adr « ep + zero-extend (disp8)
GR [reg2] « Load-memory (adr, Word)

Format IV

15 0
rrrrr1010ddddddo

dddddd is the higher 6 bits of disp8.

CY -
ov -
S —
Z -
SAT -

Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate
a 32-bit address. Word data is read from this 32-bit address with bits 0 and 1 masked to 0,
and stored to reg2.

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM 131

CHAPTER 5 INSTRUCTION

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word) and
the misaligned mode setting.

* Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

Also, if an interrupt is generated during instruction execution, the execution of that instruction
may stop after the end of the read/write cycle. In this case, the instruction is re-executed after
returning from the interrupt. Therefore, except in cases when clearly no interrupt is generated,
the LD instruction should be used for accessing 1/0, FIFO types, or other resources whose
status is changed by the read cycle (the bus cycle is not re-executed even if an interrupt is
generated while the LD or store instruction is being executed).

132 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Short format store byte

SST.B

Store
Instruction format SST.B reg2, disp7 [ep]
Operation adr « ep + zero-extend (disp7)
Store-memory (adr, GR [reg2], Byte)
Format Format IV
Opcode 15 0
rrrrr0111ddddddd
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds the 7-bit displacement, zero-extended to word length, to the element pointer to generate

a 32-bit address, and stores the data of the lowest byte of reg2 to the generated address.

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word)
and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

« Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, VB50E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 133

CHAPTER 5 INSTRUCTION

Remark

134

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Short format store half-word

SST.H

Store
Instruction format SST.H reg2, disp8 [ep]
Operation adr « ep + zero-extend (disp8)
Store-memory (adr, GR [reg2], Half-word)
Format Format IV
Opcode 15 0
rrrrr1001ddddddd
ddddddd is the higher 7 bits of disp8.
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate

a 32-bit address, and stores the lower half-word data of reg2 to the generated 32-bit address
with bit 0 masked to 0.

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word)
and the misaligned mode setting.

* Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 135

CHAPTER 5 INSTRUCTION

Remark

136

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Short format store word

SST.W

Store

Instruction format SST.W reg2, disp8 [ep]
Operation adr « ep + zero-extend (disp8)

Store-memory (adr, GR [reg2], Word)
Format Format IV
Opcode 15 0

rrrrr1010ddddddl

dddddd is the higher 6 bits of disp8.
Flag cYy -

ov -

S —

Z —

SAT -
Explanation Adds the 8-bit displacement, zero-extended to word length, to the element pointer to generate

a 32-bit address, and stores the word data of reg2 to the generated 32-bit address with bits 0
and 1 masked to O.

Caution The result of adding the element pointer and the 8-bit displacement zero-extended to word
length can be of two types depending on the type of data to be accessed (half-word, word)
and the misaligned mode setting.

* Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 137

CHAPTER 5 INSTRUCTION

Remark

138

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Store byte
Store
Instruction format ST.B reg2, disp16 [regl]
Operation adr « GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Byte)
Format Format VII
Opcode 15 0 31 16
rrrrr111010RRRRR dddddddddddddddd
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general register

regl to generate a 32-bit address, and stores the lowest byte data of general register reg2 to
the generated address.

Caution The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(half-word, word), and the misaligned mode setting.

* Lower bits are masked to O and address is generated (when misaligned access is
disabled)

* Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, V850E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2VOUM 139

CHAPTER 5 INSTRUCTION

Remark

140

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Store half-word

ST.H

Store

Instruction format ST.H reg2, disp16 [regl]
Operation adr « GR [regl] + sign-extend (disp16)

Store-memory (adr, GR [reg2], Half-word)
Format Format VII
Opcode 15 0 31 16

rrrrr111011RRRRR dddddddddddddddo

ddddddddddddddd is the higher 15 bits of disp16.
Flag cYy -

ov -

S —

Z —

SAT -
Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general register

regl to generate a 32-bit address, and stores the lower half-word data of general register reg2
to the generated 32-bit address with bit 0 masked to 0. Therefore, stored data is
automatically aligned on a half-word boundary.

Caution The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(half-word, word), and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

e Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, VB50E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2V0UM 141

CHAPTER 5 INSTRUCTION

Remark

142

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Store instruction>

Store word
Store
Instruction format ~ ST.W reg2, disp16 [regl]
Operation adr « GR [regl] + sign-extend (disp16)
Store-memory (adr, GR [reg2], Word)
Format Format VII
Opcode 15 0 31 16
rrrrr111011RRRRR dddddddddddddddl
ddddddddddddddd is the higher 15 bits of disp16.
Flag cYy -
ov -
S —
Z —
SAT -
Explanation Adds the 16-bit displacement, sign-extended to word length, to the data of general register

regl to generate a 32-bit address, and stores the word data of general register reg2 to the
generated 32-bit address with bits 0 and 1 masked to 0. Therefore, stored data is
automatically aligned on a word boundary.

Caution The result of adding the data of general register regl and the 16-bit displacement sign-
extended to word length can be of two types depending on the type of data to be accessed
(half-word, word), and the misaligned mode setting.

« Lower bits are masked to 0 and address is generated (when misaligned access is
disabled)

e Lower bits are not masked and address is generated (when misaligned access is
enabled)
(when misaligned access is enabled for the V850E/MA1, V850E/MA2, VB50E/IAL, or
V850E/IA2)

For details on misaligned access, see 3.3 Data Alignment.

User's Manual U14559EJ2V0UM 143

CHAPTER 5 INSTRUCTION

Remark

144

If an interrupt occurs during instruction execution, execution is aborted, and the interrupt is
processed. Upon returning from the interrupt, the execution is restarted from the beginning,
with the return address being the address of this instruction.

[For V850E/MA1, V850E/MA2, V850E/IAL, or V850E/IA2]

Depending on the resource to be accessed (internal ROM, internal RAM, on-chip peripheral
I/0, external memory), the bus cycle may be switched (this will not occur if the same resource
is accessed).

[For NB85E, NB85ET, NUSSE, or NUS5ET]

The bus cycle sequence for accessing the different resources connected to each bus (VFB,
VDB, VSB, NPB, instruction cache bus, data cache bus) may be switched (this will not occur if
the same bus is accessed).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

Store contents of system register

STSR

Store Contents of System Register

Instruction format STSR regID, reg2

Operation GR [reg2] « SR [regID]
Format Format IX
Opcode 15 0 31 16

rrrrr111111RRRRR 0000000001000000

Flag CY -
ov -
S —
Z —
SAT -

Explanation Stores the contents of a system register specified by system register number (reglD) to
general register reg2. The contents of the system register are not affected.

Caution The system register number regID is a number which identifies a system register. Accessing a
system register which is reserved is prohibited and will lead to undefined results.

User's Manual U14559EJ2V0UM 145

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Subtract
Subtract
Instruction format SUB regl, reg2
Operation GR [reg2] « GR [reg2] — GR [regl]
Format Format |
Opcode 15 0
rrrrr001101RRRRR
Flag CY 1if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Subtracts the word data of general register regl from the word data of general register reg2,

and stores the result to general register reg2. The data of general register regl is not affected.

146 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Subtract reverse
SUBR

Subtract Reverse

Instruction format SUBR regl, reg2

Operation GR [reg2] « GR [regl] — GR [reg2]
Format Format |
Opcode 15 0
rrrrr001100RRRRR
Flag CY 1if a borrow to MSB occurs; otherwise, 0.
oV 1 if overflow occurs; otherwise, 0.
S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.
SAT -
Explanation Subtracts the word data of general register reg2 from the word data of general register reg1l,

and stores the result to general register reg2. The data of general register regl is not affected.

User's Manual U14559EJ2V0UM 147

CHAPTER 5 INSTRUCTION

<Special instruction>

Jump with table look up

SWITCH

Jump with Table Look Up

Instruction format SWITCH regl

Operation adr « (PC + 2) + (GR [reg1] logically shift left by 1)
PC « (PC + 2) + (sign-extend (Load-memory (adr, Half-word))) logically shift left by 1

Format Format |

Opcode 15 0
00000000010RRRRR

Flag CY -
ov -
S —
Z —
SAT -

Explanation <1> Adds the table entry address (address following SWITCH instruction) and data of
general register regl logically shifted left by 1, and generates 32-bit table entry address.
<2> Loads half-word data pointed by address generated in <1>.
<3> Sign-extends the loaded half-word data to word length, and adds the table entry
address after logically shifts it left by 1 bit (next address following SWITCH instruction)
to generate a 32-bit target address.
<4> Then jumps to the target address generated in <3>.

148 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Sign extend byte

SXB

Sign Extend Byte

Instruction format SXB regl

Operation GR [regl] « sign-extend (GR [reg1] (7:0))
Format Format |
Opcode 15 0
00000000101RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Sign-extends the lowest byte of general register regl to word length.

User's Manual U14559EJ2V0UM 149

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Sign extend half-word

SXH

Sign Extend Half-word

Instruction format SXH regl

Operation GR [regl] « sign-extend (GR [regl] (15:0))
Format Format |
Opcode 15 0
00000000111RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Sign-extends the lower half-word of general register regl to word length.

150 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Special instruction>

TRAP

Trap

Trap

Instruction format

Operation

Format

Opcode

Flag

Explanation

TRAP vector

EIPC « PC + 4 (restore PC)

EIPSW « PSW

ECR.EICC « interrupt code

PSW.EP « 1

PSW.ID « 1

PC < 00000040H (vector = 00H to OFH)
00000050H (vector = 10H to 1FH)

Format X

15 0 31 16

000001111113iiiii 0000000100000000

CcY -
ov -
S -
Z -
SAT -

Saves the restore PC and PSW to EIPC and EIPSW, respectively; sets the exception code
(EICC of ECR) and the flags of the PSW (sets EP and ID flags to 1); jumps to the handler
address corresponding to the trap vector (00H to 1FH) specified by vector, and starts
exception processing.

The flags of PSW other than EP and ID flags are not affected.

The restore PC is the address of the instruction following the TRAP instruction.

User's Manual U14559EJ2V0UM 151

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

TST

Test

Test

Instruction format

Operation

Format

Opcode

Flag

Explanation

152

TST regl, reg2

result < GR [reg2] AND GR [regl]

Format |

15 0

rrrrr001011RRRRR

CY -

oV 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

ANDs the word data of general register reg2 with the word data of general register regl. The
result is not stored, and only the flags are changed. The data of general registers regl and
reg2 are not affected.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Bit manipulation instruction>

TST1

Test bit

Test Bit

Instruction format

Operation

Format

Opcode

Flag

Explanation

(1) TST1 bit#3, displ6 [regl]
(2) TST1 reg2, [regl]

(1) adr « GR [regl] + sign-extend (disp16)

Z flag < Not (Load-memory-bit (adr, bit#3))
(2) adr < GR [regl]

Z flag < Not (Load-memory-bit (adr, reg2))

(1) Format VI
(2) Format IX

15 0 31 16
(1) | 11bbbl111110RRRRR | dddddddddddddddd |

15 0 31 16

) |rrrrr111111RRRRR |0000000011100110 |

CcY -
ov -
S —
z 1 if bit specified by operands = 0, 0 if bit specified by operands = 1
SAT -

(1) Adds the data of general register regl to a 16-bit displacement, sign-extended to word
length, to generate a 32-bit address. Performs the test on the bit, specified by the 3-bit bit
number, at the byte data location referenced by the generated address. If the specified bit
is 0, the Z flag of PSW is set to 1, if the bit is 1, the Z flag is cleared to 0. The byte data,
including the specified bit, is not affected.

(2) Reads the data of general register regl to generate a 32-bit address. Performs the test on
the bit, specified by the lower 3-bits of reg2, at the byte data location referenced by the
generated address. If the specified bit is 0, the Z flag of PSW is set to 1; if the bit is 1, the
Z flag is cleared to 0. The byte data, including the specified bit, is not affected.

User's Manual U14559EJ2VOUM 153

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

XOR

Exclusive OR

Exclusive Or

Instruction format

Operation

Format

Opcode

Flag

Explanation

154

XOR regl, reg2

GR [reg2] « GR [reg2] XOR GR [regl]

Format |

15 0

rrrrr001001RRRRR

CY -

oV 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

Exclusively ORs the word data of general register reg2 with the word data of general register
regl, and stores the result to general register reg2. The data of general register regl is not
affected.

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

XORI

Exclusive OR immediate (16-bit)

Exclusive Or Immediate

Instruction format

Operation

Format

Opcode

Flag

Explanation

XORI imm16, regl, reg2

GR [reg2] <« GR [regl] XOR zero-extend (imm16)

Format VI

15 0 31 16
rrrrr110101RRRRR iiidiiiiiiiididididii

CY -

ov 0

S 1 if the result of an operation is negative; otherwise, 0.
Z 1 if the result of an operation is 0; otherwise, 0.

SAT -

Exclusively ORs the word data of general register regl with a 16-bit immediate data, zero-
extended to word length, and stores the result to general register reg2. The data of general
register regl is not affected.

User's Manual U14559EJ2VOUM 155

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Zero extend byte

ZXB

Zero Extend Byte

Instruction format ZXB regl

Operation GR [regl] « zero-extend (GR [regl] (7:0))
Format Format |
Opcode 15 0
00000000100RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Zero-extends the lowest byte of general register regl to word length.

156 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

<Logical operation instruction>

Zero extend half-word

ZXH

Zero Extend Half-word

Instruction format ZXH regl

Operation GR [regl] « zero-extend (GR [regl] (15:0))
Format Format |
Opcode 15 0
0O0000000110RRRRR
Flag CY -
ov -
S —
Z —
SAT -
Explanation Zero-extends the lower half-word of general register regl to word length.

User's Manual U14559EJ2VOUM 157

CHAPTER 5 INSTRUCTION

5.4 Number of Instruction Execution Clock Cycles

A list of the number of instruction execution clocks when the internal ROM or internal RAM is used is shown
below. The number of instruction execution clock cycles differ depending on the combination of instructions. For
details, see CHAPTER 8 PIPELINE.

The number of instruction execution clock cycles differ in the case of the NB85E, NB85ET, NU8S5E, NUS5SET and
the V850E/MA1, VB50E/MA2, V850E/IA1, V850E/IA2. Table 5-6 shows the number of instruction execution clock
cycles in the case of the NB85E, NB85ET, NUB5E, NUS5ET and Table 5-7 shows the case of the V850E/MA1,
V850E/MA2, V850E/IA1, VB50E/IA2.

Table 5-6. List of Number of Instruction Execution Clock Cycles (NB85E, NB85ET, NU85E, and NU85ET) (1/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Load LD.B disp16 [reg1], reg2 4 1 1 Note 1
instructions LD.H disp16 [reg1] , reg2 4 1 1 Note 1

LD.W disp16 [reg1], reg2 4 1 1 Note 1
LD.BU disp16 [reg1], reg2 4 1 1 Note 1
LD.HU disp16 [reg1], reg2 4 1 1 Note 1
SLD.B disp7 [ep] , reg2 2 1 1 Note 2
SLD.BU disp4 [ep] , reg2 2 1 1 Note 2
SLD.H disp8 [ep] , reg2 2 1 1 Note 2
SLD.HU disp5 [ep] , reg2 2 1 1 Note 2
SLD.W disp8 [ep] , reg2 2 1 1 Note 2
Store ST.B reg2, disp16 [reg1] 4 1 1 1
instructions STH reg2, disp16 [reg1] 4 1 1 1
ST.W reg2, disp16 [reg1] 4 1 1 1
SST.B reg2, disp7 [ep] 2 1 1 1
SST.H reg2, disp8 [ep] 2 1 1 1
SST.W reg2, disp8 [ep] 2 1 1 1
Multiply MUL reg1, reg2, reg3 4 1 oneres 2
instructions MUL imma9, reg2, reg3 4 1 onetes 2
MULH regl, reg2 2 1 1 2
MULH immb5, reg2 2 1 1 2
MULHI imm16, reg1, reg2 4 1 1 2
MULU regi, reg2, reg3 4 1 onetes 2
MULU imm9, reg2, reg3 4 1 oneres 2
Arithmetic ADD reg1, reg2 2 1 1 1
operation ADD imm5, reg2 2 1 1 1
instructions ADDI imm16, reg1, reg2 4 1 1 1
CMOV ccece, regi, reg2, reg3 4 1 1 1
CMOV ccce, immb, reg2, reg3 4 1 1 1
CMP regi, reg2 2 1 1 1
CMP immb5, reg2 2 1 1 1

158 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

Table 5-6. List of Number of Instruction Execution Clock Cycles (NB85E, NB85ET, NU85E, and NU85ET) (2/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i r |
Arithmetic DIV regl, reg2, reg3 4 35 35 35
operation DIVH regl, reg2 2 35 35 35
nstructions DIVH regl, reg2, reg3 4 35 35 35
DIVHU regl, reg2, reg3 4 34 34 34
DIvU regl, reg2, reg3 4 34 34 34
MOV regl, reg2 2 1 1 1
MOV immb5, reg2 2 1 1 1
MOV imm32, regl 6 2 2 2
MOVEA imm16, regl, reg2 4 1 1 1
MOVHI imm16, regl, reg2 4 1 1 1
SASF cccce, reg2 4 1 1 1
SETF cccce, reg2 4 1 1 1
SUB regl, reg2 2 1 1 1
SUBR regl, reg2 2 1 1 1
Saturated SATADD regl, reg2 2 1 1 1
operation SATADD imms, reg2 2 1 1 1
instructions SATSUB regl, reg2 2 1 1 1
SATSUBI imm16, regl, reg2 4 1 1 1
SATSUBR regl, reg2 2 1 1 1
Logical AND regl, reg2 2 1 1 1
operation ANDI imm16, regl, reg2 4 1 1 1
nstructions BSH reg2, reg3 4 1 1 1
BSW reg2, reg3 4 1 1 1
HSW reg2, reg3 4 1 1 1
NOT regl, reg2 2 1 1 1
OR regl, reg2 2 1 1 1
ORI imm16, regl, reg2 4 1 1 1
SAR regl, reg2 4 1 1 1
SAR immb5, reg2 2 1 1 1
SHL regl, reg2 4 1 1 1
SHL immb5, reg2 2 1 1 1
SHR regl, reg2 4 1 1 1
SHR immb5, reg2 2 1 1 1
SXB regl 2 1 1 1
SXH regl 2 1 1 1
TST regl, reg2 2 1 1 1
XOR regl, reg2 2 1 1 1
XORI imm16, regl, reg2 4 1 1 1
ZXB regl 2 1 1 1
ZXH regl 2 1 1 1

User's Manual U14559EJ2VOUM

159

CHAPTER 5 INSTRUCTION

Table 5-6. List of Number of Instruction Execution Clock Cycles (NB85E, NB85ET, NU85E, and NU85ET) (3/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i r |
Branch Bcond disp9 (When condition is 2 oMt et oMt
instructions satisfied)
disp9 (When condition is not 2 1 1 1
satisfied)
JARL disp22, reg2 4 2 2 2
JMP [regl] 2 3 3 3
JR disp22 4 2 2 2
Bit manipulation | CLR1 bit#3, disp16 [regl] 4 3hes 3hes 3hes
instructions CLR1 reg2, [regl] 4 s ghotes Qetes
NOT1 bit#3, disp16 [regl] 4 3hes 3hes 3hes
NOT1 reg2, [regl] 4 3hes Kok 3hwes
SET1 bit#3, disp16 [regl] 4 3hes 3hes 3hes
SET1 reg2, [regl] 4 3twes Kok 3hes
TST1 bit#3, disp16 [regl] 4 3hes 3hes 3hes
TST1 reg2, [regl] 4 3hwes Ko 3hes
Special CALLT imm6 2 4 4 4
instructions CTRET _ 4 3 3 3
DI — 4 1 1 1
DISPOSE immb5, list12 4 n+1"ee n+1"e° n+1"ee
DISPOSE immb5, list12, [regl] 4 n+3"ee n+3"° n+3"e’
El - 4 1 1 1
HALT — 4 1 1 1
LDSR reg2, reglD 4 1 1 1
NOP - 2 1 1 1
PREPARE list12, imm5 4 n+1"ee n+1"e° n+1"ee
PREPARE list12, imm5, sp 4 n+2"® n+2Me® n+2"e®
PREPARE list12, imm5, imm16 6 n+2"ee n+2"e° n+2"ee
PREPARE list12, imm5, imm32 8 n+3"e® n+3"e° n+3"e®
RETI - 4 3 3 3
STSR reglD, reg2 4 1 1 1
SWITCH regl 2 5 5 5
TRAP vector 4 3 3 3
Debug function DBRET - 4 3 3 3
instructions™®’ DBTRAP _ 5 3 3 3
Undefined instruction code 4 3 3 3

160 User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

Notes 1. Depends on the number of wait states (2 if no wait states).

2. Depends on the number of wait states (1 if no wait states).

3. 1 clock shortened if reg2 = reg3 (lower 32 bits of results are not written to register) or reg3 = r0
(higher 32 bits of results are not written to register).

4. 2 if there is an instruction rewriting the PSW contents immediately before.

5. In case of no wait states (3 + number of read access wait states).

6. nis the total number of cycles to load registers in list12 (Depends on the number of wait states, n is
the number of registers in list12 if no wait states. The operation when n = 0 is the same as when n =
1).

7. The NB85E and NB85ET do not support instructions for the debug function.

Remarks 1. Operand convention

Symbol Meaning
regl General register (used as source register)
reg2 General register (mainly used as destination register. Some are also used as source
registers.)
reg3 General register (mainly used as remainder of division results or higher 32 bits of

multiply results)

bit#3 3-bit data for bit number specification

immx x-bit immediate data

dispx x-bit displacement data

regiD System register number

vector 5-bit data for trap vector (00H to 1FH) specification
ccee 4-bit data condition code specification

sp Stack pointer (r3)

ep Element pointer (r30)

listx List of registers (x is a maximum number of registers)

2. Execution clock convention

Symbol Meaning

i When other instruction is executed immediately after executing an instruction (issue)

r When the same instruction is repeatedly executed immediately after the instruction has
been executed (repeat)

When a subsequent instruction uses the result of execution of the preceding instruction
immediately after its execution (latency)

User's Manual U14559EJ2VOUM 161

CHAPTER 5 INSTRUCTION

Table 5-7. List of Number of Instruction Execution Clock Cycles

(V850E/MAL1, V850E/MA2, V850E/IAL, and V850E/IA2) (1/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Load LD.B disp16 [regl], reg2 4 1 1 Note 1
instructions LD.H disp16 [regl] , reg2 4 1 1 Note 1

LD.W disp16 [regl], reg2 4 1 1 Note 1
LD.BU disp16 [regl], reg2 4 1 1 Note 1
LD.HU displ6 [regl] , reg2 4 1 1 Note 1
SLD.B disp7 [ep] , reg2 2 1 1 Note 2
SLD.BU disp4 [ep] , reg2 2 1 1 Note 2
SLD.H disp8 [ep] , reg2 2 1 1 Note 2
SLD.HU disp5 [ep] , reg2 2 1 1 Note 2
SLD.W disp8 [ep] , reg2 2 1 1 Note 2
Store ST.B reg2, displ16 [regl] 4 1 1 1
instructions STH reg2, disp16 [regl] 4 1 1 1
ST.W reg2, displ16 [regl] 4 1 1 1
SST.B reg2, disp7 [ep] 2 1 1 1
SST.H reg2, disp8 [ep] 2 1 1 1
SST.W reg2, disp8 [ep] 2 1 1 1
Multiply MUL regl, reg2, reg3 4 1 noes 2
instructions MUL imm9, reg2, reg3 4 1 Qheres 2
MULH regl, reg2 2 1 1 2
MULH immb5, reg2 2 1 1 2
MULHI imm16, regl, reg2 4 1 1 2
MULU regl, reg2, reg3 4 1 nes 2
MULU imm9, reg2, reg3 4 1 M 2
Arithmetic ADD regl, reg2 2 1 1 1
operation ADD imms, reg2 2 1 1 1
instructions ADDI imm16, regl, reg2 4 1 1 1
CMOV cccece, regl, reg2, reg3 4 1 1 1
CMOV ccce, immb, reg2, reg3 4 1 1 1
CMP regl, reg2 2 1 1 1
CMP immb5, reg2 2 1 1 1
DIV regl, reg2, reg3 4 35 35 35
DIVH regl, reg2 2 35 35 35
DIVH regl, reg2, reg3 4 35 35 35
DIVHU regl, reg2, reg3 4 34 34 34
DIVU regl, reg2, reg3 4 34 34 34
MOV regl, reg2 2 1 1 1
MOV immb5, reg2 2 1 1 1
MOV imm32, regl 6 2 2 2
MOVEA imm16, regl, reg2 4 1 1 1

162

User's Manual U14559EJ2VOUM

CHAPTER 5

INSTRUCTION

Table 5-7. List of Number of Instruction Execution Clock Cycles
(V850E/MA1, V850E/MA2, VB50E/IA1, and V850E/IA2) (2/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Arithmetic MOVHI imm16, regl, reg2 4 1 1 1
.operatic.)n SASF ccece, reg2 4 1 1 1
nstructions SETF cccce, reg2 4 1 1 1
SUB regl, reg2 2 1 1 1
SUBR regl, reg2 2 1 1 1
Saturated SATADD regl, reg2 2 1 1 1
operation SATADD imms, reg2 2 1 1 1
nstructions SATSUB regl, reg2 2 1 1 1
SATSUBI imm16, regl, reg2 4 1 1 1
SATSUBR regl, reg2 2 1 1 1
Logical AND regl, reg2 2 1 1 1
operation ANDI imm16, regl, reg2 4 1 1 1
nstructions BSH reg2, reg3 4 1 1 1
BSW reg2, reg3 4 1 1 1
HSW reg2, reg3 4 1 1 1
NOT regl, reg2 2 1 1 1
OR regl, reg2 2 1 1 1
ORI imm16, regl, reg2 4 1 1 1
SAR regl, reg2 4 1 1 1
SAR immb5, reg2 2 1 1 1
SHL regl, reg2 4 1 1 1
SHL immb5, reg2 2 1 1 1
SHR regl, reg2 4 1 1 1
SHR immb5, reg2 2 1 1 1
SXB regl 2 1 1 1
SXH regl 2 1 1 1
TST regl, reg2 2 1 1 1
XOR regl, reg2 2 1 1 1
XORI imm16, regl, reg2 4 1 1 1
ZXB regl 2 1 1 1
ZXH regl 2 1 1 1
Branch Bcond disp9 (When condition is satisfied) | 2 3hores 3hoees 3hores
instructions disp9 (When condition is not 2 1 1 1
satisfied)
JARL disp22, reg2 4 3 3 3
JMP [regl] 2 4 4 4
JR disp22 4 3 3 3

User's Manual U14559EJ2VOUM

163

CHAPTER 5 INSTRUCTION

Table 5-7. List of Number of Instruction Execution Clock Cycles
(V850E/MA1, V850E/MA2, VB50E/IA1, and V850E/IA2) (3/3)

Type of Mnemonic Operand Byte Number of Execution Clocks
Instruction i ; |
Bit manipulation | CLR1 bit#3, disp16 [regl] 4 3hes 3hes 3hes
instructions CLR1 reg2, [regl] 4 s ghotes Qetes
NOT1 bit#3, disp16 [regl] 4 3hes 3hes 3hes
NOT1 reg2, [regl] 4 3hwes Ko 3hes
SET1 bit#3, disp16 [regl] 4 3hoes 3hes 3hoes
SET1 reg2, [regl] 4 3hes 3hes 3hwes
TST1 bit#3, disp16 [regl] 4 3hes 3hes 3hes
TST1 reg2, [regl] 4 3hes Kok 3hes
Special CALLT imm6 2 5 5 5
instructions CTRET _ 4 4 4 4
DI — 4 1 1 1
DISPOSE immb5, list12 4 n+1"ee n+1"e° n+1"ee
DISPOSE immb5, list12, [regl] 4 n+3"ee n+3"° n+3"e’
El - 4 1 1 1
HALT — 4 1 1 1
LDSR reg2, reglD 4 1 1 1
NOP - 2 1 1 1
PREPARE list12, imm5 4 n+1"ee n+1"e° n+1"ee
PREPARE list12, imm5, sp 4 n+2"e® n+2"e® n+2"e®
PREPARE list12, imm5, imm16 6 n+2"ee n+2"e° n+2"ee
PREPARE list12, imm5, imm32 8 n+3"e® n+3"e° n+3"e®
RETI - 4 4 4 4
STSR reglD, reg2 4 1 1 1
SWITCH regl 2 5 5 5
TRAP vector 4 4 4 4
Debug function DBRET - 4 4 4 4
instructions DBTRAP _ 2 4 4 4
Undefined instruction code 4 3 3 3

Notes 1.
2.
3.

Depends on the number of wait states (2 if no wait states).
Depends on the number of wait states (1 if no wait states).

1 clock shortened if reg2 = reg3 (lower 32 bits of results are not written to register) or reg3 = r0

(higher 32 bits of results are not written to register).

4. 2 if there is an instruction rewriting the PSW contents immediately before.

In case of no wait states (3 + number of read access wait states).

n is the total number of cycles to load registers in list12 (Depends on the number of wait states, n is

the number of registers in list12 if no wait states. The operation when n = 0 is the same as when n =

164

1).

User's Manual U14559EJ2VOUM

CHAPTER 5 INSTRUCTION

Remarks 1. Operand convention

Symbol Meaning
regl General register (used as source register)
reg2 General register (mainly used as destination register. Some are also used as source
registers.)
reg3 General register (mainly used as remainder of division results or higher 32 bits of

multiply results)

bit#3 3-bit data for bit number specification

immx x-bit immediate data

dispx x-bit displacement data

reglD System register number

vector 5-bit data for trap vector (O0H to 1FH) specification
ccee 4-bit data condition code specification

sp Stack pointer (r3)

ep Element pointer (r30)

listx List of registers (x is a maximum number of registers)

2. Execution clock convention

Symbol Meaning

i When other instruction is executed immediately after executing an instruction (issue)

r When the same instruction is repeatedly executed immediately after the instruction has
been executed (repeat)

When a subsequent instruction uses the result of execution of the preceding instruction
immediately after its execution (latency)

User's Manual U14559EJ2VOUM 165

CHAPTER 6 INTERRUPT AND EXCEPTION

Interrupts are events that occur independently of the program execution and are divided into two types: maskable
interrupts and non-maskable interrupts (NMI). In contrast, exceptions are events whose occurrence is dependent on
the program execution and are divided into three types: software exception, exception trap, and debug trap.

When an interrupt or exception occurs, control is transferred to a handler whose address is determined by the
source of the interrupt or exception. The source of the interrupt/exception is specified by the exception code that is
stored in the exception cause register (ECR). Each handler analyzes the ECR register and performs appropriate
interrupt servicing or exception processing. The restore PC and restore PSW are written to the status saving
registers (EIPC, EIPSW or FEPC, FEPSW).

To restore execution from interrupt or software exception processing, use the RETI instruction.
execution from exception trap or debug trap, use the DBRET instruction. Read the restore PC and restore PSW from
the status saving register, and transfer control to the restore PC.

To restore

Table 6-1. Interrupt/Exception Codes

Interrupt/Exception Source Classification | Exception Handler Restore PC
Name Trigger Code Address
Non-maskable interrupt (NMI)"*" NMIO input Interrupt 0010H 00000010H [next PC"***
NMI1 input Interrupt 0020H 00000020H | next PC"*=*?
NMI2 input*** Interrupt 0030H 00000030H | next PC"*=*?
Maskable interrupt Note 5 Interrupt Note 5 Note 6 next PC"*?
Software exception | TRAPOn (n =0to FH) [TRAP instruction Exception 004nH 00000040H next PC
TRAP1n (n=0to FH) | TRAP instruction | Exception 005nH 00000050H next PC
Exception trap (ILGOP) lllegal instruction | Exception 0060H 00000060H next PC"*”
code
Debug trap"**® DBTRAP Exception 0060H 00000060H | next PC
instruction"**
Notes 1. NMIO input is the only generation source for the V850E/MA1, V850E/MA2, V850E/IA1, or VB50E/IA2.
2. Except when an interrupt is acknowledged during execution of the one of the instructions listed below
(if an interrupt is acknowledged during instruction execution, execution is stopped, and then resumed
after the completion of interrupt servicing).
e Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W), divide instructions (DIV, DIVH,
DIVU, DIVHU)
¢ PREPARE, DISPOSE instruction (only if an interrupt is generated before the stack pointer is
updated)
3. The PC cannot be restored by the RETI instruction. Perform a system reset after interrupt servicing.
4. Acknowledged even if the NP flag of PSW is set to 1.
5. Differs depending on the type of the interrupts.
6. Higher 16 bits are 0000H and lower 16 bits are the same value as the exception code.
7. The execution address of the illegal instruction is obtained by “Restore PC — 4”.
8. Not supported in the NB85E and NB85ET

Remark

166

Restore PC: PC value saved to the EIPC or FEPC when interrupt/exception processing is started
next PC: PC value that starts processing after interrupt/exception processing

User's Manual U14559EJ2VOUM

CHAPTER 6 INTERRUPT AND EXCEPTION

6.1 Interrupt Servicing

6.1.1 Maskable interrupt

The maskable interrupt can be masked by the interrupt control register of the interrupt controller (INTC).

The INTC issues an interrupt request to the CPU, based on the acknowledged interrupt with the highest priority.

If a maskable interrupt occurs due to interrupt request input (INT input), the CPU performs the following steps, and
transfers control to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower half-word of ECR (EICC).

(4) Sets ID flag of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for each interrupt to PC and transfers control.

The EIPC and EIPSW are used as the status saving registers. INT inputs are held pending in the interrupt
controller (INTC) when one of the following two conditions occur: when the INT input is masked by its interrupt
controller, or when an interrupt service routine is currently being executed (when the NP flag of the PSW is 1 or when
the ID flag of the PSW is 1). Interrupts are enabled by clearing the mask condition or by setting the NP and ID flags
of the PSW to 0 with the LDSR instruction, which will be enabling new maskable interrupt servicing by a pending INT
input.

The EIPC and EIPSW registers must be saved by program to enable nesting of interrupts because there is only
one set of EIPC and EIPSW is provided.

Maskable interrupt servicing format is shown below.

User's Manual U14559EJ2VOUM 167

CHAPTER 6 INTERRUPT AND EXCEPTION

Figure 6-1. Maskable Interrupt Servicing Format

. Interrupt request input
(INT input)

INTC processing

Interrupt request?

No

Is the interrupt
mask released?

Priority higher than No
that of interrupt currently

serviced?

Priority higher
than that of other interrupt
request?

No

ighest default
priority of interrupt requests
with the same priority?

T CMaskabIe interrupt request) C Interrupt request pending)

No

No

CPU processing

PSW.NP =0

No

EIPC -«— Restore PC
EIPSW -— PSW
ECR.EICC -— Exception code
PSW.EP =0

PSW.ID =1

PC -+— Handler address

C Interrupt servicing) Clnterrupt servicing pending)

168 User's Manual U14559EJ2VOUM

CHAPTER 6 INTERRUPT AND EXCEPTION

6.1.2 Non-maskable interrupt

The non-maskable interrupt cannot be disabled by an instruction and therefore can always be acknowledged. The
non-maskable interrupt is generated by the NMI input.

When the non-maskable interrupt is generated, the CPU performs the following steps, and transfers control to the
handler routine.

(1) Saves restore PC to FEPC.

(2) Saves current PSW to FEPSW.

(3) Writes exception code (0010H) to higher half-word of ECR (FECC).

(4) Sets NP and ID flags of PSW to 1 and clears EP flag to 0.

(5) Sets handler address for the non-maskable interrupt to PC and transfers control.

The FEPC and FEPSW are used as the status saving registers.

Non-maskable interrupts are held pending in the interrupt controller when another non-maskable interrupt is
currently being executed (when the NP flag of the PSW is 1). Non-maskable interrupts are enabled by setting the NP
flag of the PSW to 0 with the RETI and LDSR instructions, which will be enabling new non-maskable interrupt
servicing by a pending non-maskable interrupt request.

In the case of NB85E, NB85ET, NUBS5E, or NU85ET, only when the NMI2 is generated during the interrupt
servicing of NMIO and NMI1, NMI2 servicing is executed regardless of the value of NP flag.

Non-maskable interrupt servicing format is shown below.

Figure 6-2. Non-Maskable Interrupt Servicing Format

- (NMI input)

X Non-maskable interrupt request

INTC acknowledgement

CPU processing
No

PSW.NP =0

Yes

FEPC -+— Restore PC
FEPSW ~-— PSW
ECR.FECC -— Exception code
PSWNP =1

PSW.EP =—0

PSW.ID -1

PC -— Handler address

(Interrupt servicing) (Interrupt request pending)

User's Manual U14559EJ2VOUM 169

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2 Exception Processing

6.2.1 Software exception
A software exception is generated when the TRAP instruction is executed and is always acknowledged.
If a software exception occurs, the CPU performs the following steps, and transfers control to the handler routine.

(1) Saves restore PC to EIPC.

(2) Saves current PSW to EIPSW.

(3) Writes exception code to lower 16 bits (EICC) of ECR (interrupt source).

(4) Sets EP and ID flags of PSW to 1.

(5) Sets handler address (00000040H or 00000050H) for software exception to PC and transfers control.

Software exception processing format is shown below.

Figure 6-3. Software Exception Processing Format

€ (TRAP instruction)

CPU processing

EIPC < Restore PC
EIPSW «— PSW
ECR.EICC < Exception code
PSW.EP «— 1

PSW.ID — 1

PC < Handler address

(Exception processing)

170 User's Manual U14559EJ2VOUM

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2.2 Exception trap

An exception trap is an exception requested when an instruction is illegally executed. The illegal opcode trap
(ILGOP) is the exception trap.

An illegal opcode instruction has an instruction code with an opcode (bits 10 through 5) of 111111B and a sub-
opcode (bits 26 through 23) of 0111B through 1111B and a sub-opcode (bit 16) of OB. When this kind of an illegal
opcode instruction is executed, an exception trap occurs.

Figure 6-4. lllegal Instruction Code

15 13 12 11 10 5 4 0 31 27 26 23 22 21 20 17 16
I \ T T T 1 T T 1 T T 1 L — T T T
01 11
X X XX X1 1 1 1 1 1|[X X X X X[X X X X X to X X|x x x x|[0
1111

Remark x: don't care, []: opcode/sub-opcode

If an exception trap occurs, the CPU performs the following steps, and transfers control to the handler routine.
(1) Saves restore PC to DBPC.
(2) Saves current PSW to DBPSW.
(3) Sets NP, EP, and ID flags of PSW to 1.
(4) Sets handler address (00000060H) for exception trap to PC and transfers control.

Exception trap processing format is shown below.

Figure 6-5. Exception Trap Processing Format

o Exception trap
(ILGOP) occurs

CPU processing

DBPC < Restore PC
DBPSW «— PSW
PSW.NP — 1
PSW.EP «— 1

PSW.ID «— 1

PC < 00000060H

(Exception processing)

Caution The operation when executing the instruction not defined as an instruction or illegal instruction
is not guaranteed.

Remark The execution address of the illegal instruction is obtained by “Restore PC — 4".

User's Manual U14559EJ2VOUM 171

CHAPTER 6 INTERRUPT AND EXCEPTION

6.2.3 Debug trap
A debug trap is generated when the DBTRAP instruction is executed and is always acknowledged.
If a debug trap occurs, the CPU performs the following steps.

(1) Saves restore PC to DBPC.

(2) Saves current PSW to DBPSW.

(3) Sets NP, EP, and ID flags of PSW to 1.

(4) Sets DM flag of DIR to 1 when a debug trap occurs.

(5) Sets handler address (00000060H) for debug trap to PC and transfers control.
Caution The NB85E and NB85ET do not support debug trap.

Debug trap processing format is shown below.

Figure 6-6. Debug Trap Processing Format

- (DBTRAP instruction)

CPU processing

DBPC < Restore PC
DBPSW «— PSW
PSW.NP « 1
PSW.EP < 1

PSW.ID «~ 1

DIR.DM «~ 1

PC < 00000060H

(Debug monitor routine processing)

172 User's Manual U14559EJ2VOUM

CHAPTER 6 INTERRUPT AND EXCEPTION

6.3 Restoring from Interrupt/Exception Processing

6.3.1 Restoring from interrupt and software exception

All restoration from interrupt servicing and software exception is executed by the RETI instruction.

With the RETI instruction, the CPU performs the following steps, and transfers control to the address of the restore
PC.

(1) If the EP flag of the PSW is 0 and the NP flag of the PSW is 1, the restore PC and PSW are read from the
FEPC and FEPSW. Otherwise, the restore PC and PSW are read from the EIPC and EIPSW.
(2) Control is transferred to the address of the restored PC and PSW.

When execution has returned from each interrupt servicing, the NP and EP flags of the PSW must be set to the
following values by using the LDSR instruction immediately before the RETI instruction, in order to restore the PC
and PSW normally:

e To restore from non-maskable interrupt servicing*: NP flag of PSW =1, EP flag = 0

e To restore from maskable interrupt servicing: NP flag of PSW =0, EP flag = 0

e To restore from exception processing: EP flag of PSW =1

Note In the case of NB85E, NB85ET, NU85E, or NUS5ET, NMI1 and NMI2 cannot be restored by the RETI
instruction. Execute the system reset after the interrupt servicing. NMI2 can be acknowledged even if the
NP flag of PSW is set to 1.

Restoration from interrupt/exception processing format is shown below.

Figure 6-7. Restoration from Interrupt/Software Exception Processing Format

(RET]I instruction >

<Restore from
software exception> No

No <Restore from non-maskable interrupt>

PSW.NP =0

Yes
»| <Restore from maskable interrupt>

PC <~ EIPC PC < FEPC
PSW <« EIPSW PSW <« FEPSW

-« ‘
-

Jump to address of
restore PC

User's Manual U14559EJ2VOUM 173

CHAPTER 6 INTERRUPT AND EXCEPTION

6.3.2 Restoring from exception trap and debug trap

Restoration from exception trap and debug trap is executed by the DBRET instruction.

With the DBRET instruction, the CPU performs the following steps, and transfers control to the address of the
restore PC.

(1) The restore PC and PSW are read from the DBPC and DBPSW.
(2) Control is transferred to the address of the restored PC and PSW.
(3) If restored from exception trap or debug trap, DM flag of DIR is cleared to O.

Restoration from exception trap/debug trap processing format is shown below.

Figure 6-8. Restoration from Exception Trap/Debug Trap Processing Format

(DBRET instruction)

PC -— DBPC
PSW -— DBPSW
DIR.DM -—0

(Jump to address of restore PC)

174 User's Manual U14559EJ2VOUM

CHAPTER 7 RESET

7.1 Register Status after Reset

When a low-level signal is input to the reset pin, the system is reset, and program registers and system registers

are set in the status shown in Table 7-1. When the reset signal goes high, the reset status is cleared, and program
execution begins. If necessary, initialize the contents of each register by program control.

Table 7-1. Register Status after Reset

Register

Status after Reset (Initial Value)

Program registers

General register (r0)

00000000H (Fixed)

General register (rl to r31) Undefined
Program counter (PC) 00000000H
System registers Interrupt status saving register (EIPC) OXXXXXXXH
Interrupt status saving register (EIPSW) 00000xxxH
NMI status saving register (FEPC) OXXXXXXXH
NMI status saving register (FEPSW) 00000xxxH
Exception cause register (ECR) 00000000H
Program status word (PSW) 00000020H
CALLT caller status saving register (CTPC) OXXXXXXXH
CALLT caller status saving register (CTPSW) 00000xxxH
Exception/debug trap status saving register (DBPC) OXXXXXXXH
Exception/debug trap status saving register (DBPSW) 00000xxxH
CALLT base pointer (CTBP) OXXXXXXXH
Debug interface register (DIR) 00000040H
Breakpoint control register 0 (BPCO) 00xxxxx0H
Breakpoint control register 1 (BPC1) 00xxxxx0H
Program ID register (ASID) 000000xxH
Breakpoint address setting register 0 (BPAV0) OXXXXXXXH
Breakpoint address setting register 1 (BPAV1) OXXXXXXXH
Breakpoint address mask register 0 (BPAMO) OXXXXXXXH
Breakpoint address mask register 1 (BPAM1) OXXXXXXXH
Breakpoint data setting register 0 (BPDVO) Undefined
Breakpoint data setting register 1 (BPDV1) Undefined
Breakpoint data mask register 0 (BPDMO) Undefined
Breakpoint data mask register 1 (BPDM1) Undefined

Remark x: Undefined

User's Manual U14559EJ2VOUM

175

CHAPTER 7 RESET

7.2 Starting Up

The CPU begins program execution from address 00000000H after it has been reset.
After reset, no immediate interrupt requests are acknowledged. To enable interrupts by program, clear the ID flag
of the PSW to 0.

176 User's Manual U14559EJ2VOUM

CHAPTER 8 PIPELINE

The V850E1 CPU is based on the RISC architecture and executes almost all the instructions in one clock cycle
under control of a 5-stage pipeline. The instruction execution sequence usually consists of five stages including
fetch (IF) to write back (WB) stages. The execution time of each stage differs depending on the type of the
instruction and the type of the memory to be accessed. As an example of pipeline operation, Figure 8-1 shows the
processing of the CPU when 9 standard instructions are executed in succession.

Figure 8-1. Example of Executing Nine Standard Instructions

o
-

Time flow (state)

Internalsystemclock|||||||||||||||||||||||||||

Processing CPU performs

simultaneously <1> | <2> | <3> 1 <4> 1 <5> ! <6> | <7> | <8> | <9> |<10>!<11>!<12>!<13>|
| | | 1 1 1 1 1
Instruction 1 IF ID | EX |[MEM| WB | | | | | | | i
INStrUCtON 2 ..cooceveaee IF | ID | EX |MEM| WB i i
1 1
INSIUCHON 3 ..vvoveecrree e IF | ID | EX |MEM| WB . . | | |
INSHUCHON 4 ..o IF | ID | EX |MEM| WB
1 1
INSEIUCLION 5 - vieeeeeeiiie e e e IF ID EX |MEM| WB ! E E E
1 1 1
INSEIUCLION 6 +oeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e e IF ID EX |MEM| WB | i i
1 1
1 1 1
INSErUCtiON 7 .ooooviiiiiiiiic Foveereenns b IF ID EX [MEM| WB | i
| i
INSEFUCHON 8 +vevvvvseereermeiriniiisssiccs e frvvneens berenns IF ID | EX |MEM| WB i
|
Y INSIUCHON 9 ovvvvvvivinniniinninisisisinns TSR S SRR RS IF | ID | EX |MEM| WB
i |
EEnd of (Endof {Endof |Endof !Endof !Endof !Endof !End of !End of
:instruc-:instruc-linstruc- instruc- |instruc- |instruc- |instruc- | instruc- |instruc-
ltion1 !tion 2 !tion 3 ition4 tion5 ition6 tion7 ition8 ition9
Executes instruction every 1 clock cycle
IF (instruction fetch): Instruction is fetched and fetch pointer is incremented.
ID (instruction decode): Instruction is decoded, immediate data is generated, and register is read.
EX (execution of ALU, multiplier, and barrel shifter): The decoded instruction is executed.
MEM (memory access): The memory at specified address is accessed.
WB (write back): The result of execution is written to register.

<1> through <13> in the figure above indicate the states of the CPU. In each state, write back (WB) of instruction
n, memory access (MEM) of instruction n+1, execution (EX) of instruction n+2, decoding (ID) of instruction n+3, and
fetching (IF) of instruction n+4 are simultaneously performed. It takes five clock cycles to process a standard
instruction, including IF stage to WB stage. Because five instructions can be processed at the same time, however,
a standard instruction can be executed in 1 clock on the average.

User's Manual U14559EJ2VOUM 177

CHAPTER 8 PIPELINE

8.1 Features
The V850E1 CPU, by optimizing the pipeline, improves the CPI (Cycle per instruction) rate over the previous V850
CPU.

The pipeline configuration of the V850E1 CPU is shown in Figure 8-2.

Figure 8-2. Pipeline Configuration

Master pipeline (V850 CPU compatible)

ID EX DF WB

Asynchronous WB pipeline

Bcond/SLD
Pipeline EEE—— MEM WB
ID —

Address calculation stage Load, store buffer (1 stage each)

Remark DF (data fetch): Execution data is transferred to the WB stage.

178 User's Manual U14559EJ2VOUM

CHAPTER 8 PIPELINE

8.1.1 Non-blocking load/store
As the pipeline does not stop during external memory access, efficient processing is possible.

For example, Figure 8-3 shows a comparison of pipeline operations between the V850 CPU and the V850E1 CPU

when an ADD instruction is executed after the execution of a load instruction for external memory.

Figure 8-3. Non-Blocking Load/Store

(a) Previous version (V850 CPU): Pipeline is stopped until MEM stage is complete

MEM (external memory)"**
i i IF ID EX WB
Load instruction T | To | T3
ADD instruction IF ID EX (MEM) WB
Next instruction IF ID EX MEM WB

Note The basic bus cycle for the external memory is 3 clocks.

(b) V850E1 CPU: Efficient pipeline processing through use of asynchronous WB pipeline

. . IE D EX MEM (external memory)"°* WB
Load instruction - | T2
ADD instruction IF ID EX DF wB
Next instruction IF ID EX MEM WB

Note The basic bus cycle for the external memory of MEMC is 2 clocks.

M

)

V850 CPU
The EX stage of the ADD instruction is usually executed in 1 clock. However, a wait time is generated in the
EX stage of the ADD instruction during execution of the MEM stage of the previous load instruction. This is
because the same stage of the 5 instructions on the pipeline cannot be executed in the same internal clock
interval. This also causes a wait time to be generated in the ID stage of the next instruction after the ADD
instruction.

V850E1 CPU

An asynchronous WB pipeline for the instructions that are necessary for the MEM stage is provided in
addition to the master pipeline. The MEM stage of the load instruction is therefore processed on this
asynchronous WB pipeline. Because the ADD instruction is processed on the master pipeline, a wait time is
not generated, making it possible to execute instructions efficiently as shown in Figure 8-3.

User's Manual U14559EJ2V0UM 179

CHAPTER 8 PIPELINE

8.1.2 2-clock branch

When executing a branch instruction, the branch destination is decided in the ID stage.

In the case of the conventional V850 CPU, the branch destination of when the branch instruction is executed was
decided after execution of the EX stage, but in the case of the V850E1 CPU, due to the addition of a address

calculation stage for branch/SLD instruction, the branch destination is decided in the ID stage.

possible to fetch the branch destination instruction 1 clock faster than in the conventional V850 CPU.

Figure 8-4 shows a comparison between the V850 CPU and the V850E1 CPU of pipeline operations with branch

instructions.

Figure 8-4. Pipeline Operations with Branch Instructions

(a) Previous version (V850 CPU)

ﬁBranch destination decided in EX stage

Branch instruction IF

ID EX

Branch destination
instruction

X

MEM

WB

3 clocks |

(b) V850E1 CPU

*‘Branch destination decided in ID stage

Branch instruction IF

ID

Branch destination
instruction

MEM WB

2 clocks

Remark The V850E/MA1, V850E/IA1, and V850E/IA2 executes interleave access to the internal flash memory
or internal mask ROM. Therefore, it takes two clocks to an instruction fetch immediately after an
interrupt has occurred or after a branch destination instruction has been executed. Consequently, it

takes three clocks to execute the ID stage of the branch destination instruction.

Example
Interleave
access
1
Instruction 1 IF IF ID EX MEM WB
Instruction 2 IF IF ID EX MEM wB
Instruction 3 IF IF ID EX MEM WB |
Branch instruction IF IF ID
Branch destination instruction IF ‘ IF ‘ ID ‘ EX ‘MEM‘ WB|
3 clocks

180

User's Manual U14559EJ2VOUM

Therefore, it is

CHAPTER 8 PIPELINE

8.1.3 Efficient pipeline processing

Because the V850E1 CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master
pipeline, it is possible to perform efficient pipeline processing.

Figure 8-5 shows an example of a pipeline operation where the next branch instruction was fetched in the IF stage
of the ADD instruction (Instruction fetch from the ROM directly connected to the dedicated bus is performed in 32-bit
units. Both ADD instructions and branch instructions in Figure 8-5 use a 16-bit format instruction).

Figure 8-5. Parallel Execution of Branch Instructions

(a) Previous version (V850 CPU)

ADD instruction IF ID EX (MEM) WB

Branch instruction R ID EX | MEM | wB |

Branch destination instruction IF ID EX MEM
[5 clocks
I o

(b) V850E1 CPU

ADD instruction IF ID EX DF WB
Branch instruction! IF ID EX MEM wB |
Branch destination instruction IF ID EX MEM WB

| 3 clocks

(1) v850 CPU
Although the instruction codes up to the next branch instruction are fetched in the IF stage of the ADD
instruction, the ID stage of the ADD instruction and the ID stage of the branch instruction cannot execute

together within the same clock. Therefore, it takes 5 clocks from the branch instruction fetch to the branch
destination instruction fetch.

(2) V850E1 CPU
Because V850E1 CPU has an ID stage for branch/SLD instructions in addition to the ID stage on the master
pipeline, the parallel execution of the ID stage of the ADD instruction and the ID stage of the branch
instruction within the same clock is possible. Therefore, it takes only 3 clocks from the branch instruction
fetch start to the branch destination instruction completion.

Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed
simultaneously, the NOP instruction may keep the delay time from being generated.

User's Manual U14559EJ2VOUM 181

*

CHAPTER 8 PIPELINE

8.2 Pipeline Flow During Execution of Instructions

This section explains the pipeline flow during the execution of instructions.

In pipeline processing, the CPU is already processing the next instruction when the memory or 1/O write cycle is
generated. As a result, I/O manipulations and interrupt request masking will be reflected later than next instructions
are issued (ID stage).

(1) NBS85E, NB85ET, NUS5E, NUSSET
When a dedicated interrupt controller (INTC) is connected to the NPB (NEC peripheral bus), maskable
interrupt acknowledgement is disabled from the next instruction because the CPU detects access to the
INTC and performs interrupt request mask processing.

(2) V850E/MA1, VB50E/MA2, VB50E/IA1, VB50E/IA2
When an interrupt mask manipulation is performed, maskable interrupt acknowledged is disabled from the
instruction immediately after an instruction because the CPU detects access to the internal INTC (ID stage)
and performs interrupt request mask processing.

8.2.1 Load instructions
Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the
MEM stages. However, when accessing the peripheral I/O area, blocking control is effected,
making it possible to wait for the end of the bus cycle at the MEM stage.
For the NB85E, NB85ET, NU85SE, or NUB5ET, non-blocking control is used for access to the
programmable peripheral I/O area.

(1) LD instructions

[Instructions] LD.B, LD.BU, LD.H, LD.HU, LD.W

[Pipeline] <1> <2> <3> <4> <5> <6>
LD instruction IF ID EX MEM |wWB
Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. If an instruction using the
execution result is placed immediately after the LD instruction, data wait time occurs.

(2) SLD instructions

[Instructions] SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W

[Pipeline] <1> <2> <3> <4> <5> <6>
SLD instruction IF ID MEM |WB
Next instruction IF ID EX MEM |WB |
[Description] The pipeline consists of 4 stages, IF, ID, MEM, and WB. If an instruction using the execution

result is placed immediately after the SLD instruction, data wait time occurs.

182 User's Manual U14559EJ2VOUM

CHAPTER 8 PIPELINE

8.2.2 Store instructions

Caution Due to non-blocking control, there is no guarantee that the bus cycle is complete between the

MEM stages.

However, when accessing the peripheral /O area, blocking control is effected,

making it possible to wait for the end of the bus cycle at the MEM stage.
For the NB85E, NB85ET, NU85E, or NUB5ET, non-blocking control is used for access to the

programmable peripheral I/O area.

[Instructions]

[Pipeline]

[Description]

ST.B, ST.H, ST.W, SST.B, SST.H, SST.W

<1> <2> <3> <4> <5> <6>
|
Store instruction IF ID EX MEM |wB |
Next instruction IF ID EX MEM |WB

The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the WB stage, because no data is written to registers.

8.2.3 Multiply instructions

[Instructions]

[Pipeline]

[Description]

MUL, MULH, MULHI, MULU

(&) When next instruction is not multiply instruction

Multiply instruction

Next instruction

(b) When next instruction is multiply instruction

Multiply instruction 1

Multiply instruction 2

<1> <2> <3> <4> <5> <6>
IF ID EX1 JEX2 |wWB
IF ID EX MEM |WB
<1> <2> <3> <4> <5> <6>
IF ID EX1 JEX2 |wWB
IF ID EX1 [EX2 |WB

The pipeline consists of 5 stages, IF, ID, EX1, EX2, and WB. The EX stage takes 2 clocks

because it is executed by a multiplier.

EX1 and EX2 stages (different from the normal EX

stage) can operate independently. Therefore, the number of clocks for instruction execution is

always 1 clock, even if several multiply instructions are executed in a row. However, if an

instruction using the execution result is placed immediately after a multiply instruction, data

wait time occurs.

User’s Manual U14559EJ2VOUM

183

CHAPTER 8 PIPELINE

8.2.4 Arithmetic operation instructions
(1) Instructions other than divide/move word instructions

[Instructions] ADD, ADDI, CMOV, CMP, MOV, MOVEA, MOVHI, SASF, SETF, SUB, SUBR

<1> <2> <3> <4> <5> <6>

. . Arithmetic operation
[Pipeline] instruction IF ID EX DF WB
Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.
(2) Move word instruction

[Instructions] MOV imm32

<1> <2> <3> <4> <5> <6> <7>

. . Arithmetic operation
[Pipeline] instruction IF ID EX1 |EX2 |DF WB
Next instruction IF — ID EX MEM |WB

—: Idle inserted for wait
[Description] The pipeline consists of 6 stages, IF, ID, EX1, EX2 (normal EX stage), DF, and WB.
(3) Divide instructions

[Instructions] DIV, DIVH, DIVHU, DIVU

[Pipeline] (&) DIV, DIVH instructions
<1> 2> <3> <4> 5(<35> <36> <37> <38> <39> <40> <41>

?

Divide instruction IF 1D EX1 JEX2 5(EX33 |EX34 |EX35 |DF WB
7/

Next instruction IF — - 5(— - D EX [MEM [wB
?

Next to next instruction IF ID EX MEM |WB

—: ldle inserted for wait

(b) DIVHU, DIVU instructions
<1> <2> <3> <4> 5(<35> <36> <37> <38> <39> <40>

7
Divide instruction IF 1D EX1 JEX2 5(EX33 JEX34 |DF JWB

7/
Next instruction IF — - 5(— ID EX |MEM [wB

?
Next to next instruction IF ID EX MEM |WB |

—: ldle inserted for wait

[Description] The pipeline consists of 39 stages, IF, ID, EX1 to EX35 (hormal EX stage), DF, and WB for
DIV and DIVH instructions. The pipeline consists of 38 stages, IF, ID, EX1 to EX34 (normal
EX stage), DF, and WB for DIVHU and DIVU instructions.

* [Remark] If an interrupt occurs while a division instruction is executed, execution of the instruction is
stopped, and the interrupt is processed, assuming that the return address is the first address
of that instruction. After interrupt processing has been completed, the division instruction is
executed again. In this case, general-purpose registers regl and reg2 hold the value before
the instruction is executed.

184 User's Manual U14559EJ2VOUM

CHAPTER 8 PIPELINE

8.2.5 Saturated operation instructions

[Instructions] SATADD, SATSUB, SATSUBI, SATSUBR

<1> <2> <3>

<4> <5> <6>
. . Saturated operation
[Pipeline] instruction ID EX DF WB
Next instruction IF 1D EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

8.2.6 Logical operation instructions

[Instructions] AND, ANDI, BSH, BSW, HSW, NOT, OR, ORI, SAR, SHL, SHR, SXB, SXH, TST, XOR, XOR],
ZXB, ZXH

<1> <2> <3> <4> <5> <6>
. . Logical operation
[Pipeline] instruction IF

ID EX DF WB

Next instruction

IF ID EX MEM [wWB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB.

8.2.7 Branch instructions

(1) Conditional branch instructions (except BR instruction)

[Instructions] Bcond instructions (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV,
BNz, BP, BSA, BV, BZ)
[Pipeline] (@) When the condition is not satisfied

<1> <2> <3>

Conditional branch
instruction

ID EX MEM \WB

IF ID |EX |MEM |WB |

Next instruction

(b) When the condition is satisfied

<1> <2> <3>

<4> <5> <6> <7>
Conditional branch coTTamTeTR T
instruction ID EX__JMEM ,WB__,
Next instruction (IF)

Branch destination instruction

IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

User's Manual U14559EJ2V0UM 185

CHAPTER 8 PIPELINE

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage.

(@) When the condition is not satisfied
The number of execution clocks for the branch instruction is 1.

(b) When the condition is satisfied
The number of execution clocks for the branch instruction is 2. IF stage of the next
instruction of the branch instruction is not executed.
If an instruction overwriting the contents of PSW occurs immediately before, the number
of execution clocks is 3 because of flag hazard occurrence.

(2) BR instruction, unconditional branch instructions (except JMP instruction)

[Instructions] BR, JARL, JR

[Pipeline] <1> <2> <3> <4> <5> <6> <7>
BR instruction, unconditional TTTTATTTTATTTT !
branch instruction IF 1D EX__'MEM 'WB* !
Next instruction (IF)
Branch destination instruction IF | ID | EX | MEM |WB |

(IF): Instruction fetch that is not executed

WB*: No operation is performed in the case of the JR and BR instructions
but in the case of the JARL instruction, data is written to the restore
PC.

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage. However, in the case of the JARL instruction, data is written to the restore PC in the
WB stage. Also, the IF stage of the next instruction of the branch instruction is not executed.

(3) JMP instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7>
JMP instruction I !
IF__Jib__|ex__!vEm ws__!
Next instruction (IF)
Branch destination instruction IF | ID | EX | MEM |WB |

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage.

186 User's Manual U14559EJ2V0UM

CHAPTER 8 PIPELINE

8.2.8 Bit manipulation instructions

(1) CLR1, NOT1, SET1 instructions

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
Bit manipulation ST
instruction IF ID EX1 |MEM JEX2 |MEM |JWB
Next instruction IF - - ID EX MEM |WB
Next to next instruction IF 1D EX MEM |WB

—: ldle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.
However, no operation is performed in the WB stage, because no data is written to registers.
In the case of these instructions, the memory access is read modify write, the EX stage
requires a total of 2 clocks, and the MEM stage requires a total of 2 cycles.

(2) TST1 instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
Bit manipulation CooTreTT
instruction IF ID EX1 JMEM |EX2 |MEM ,WB
Next instruction IF - - ID EX MEM [WB
Next to next instruction IF 1D EX MEM |WB

—: ldle inserted for wait

[Description] The pipeline consists of 7 stages, IF, ID, EX1, MEM, EX2 (normal stage), MEM, and WB.
However, no operation is performed in the second MEM and WB stages, because there is no
second memory access nor data write to registers.

In all, this instruction requires 2 clocks.

8.2.9 Special instructions

(1) CALLT instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7> <8> <9>
TTTTTTT T
CALLT instruction IF ID MEM |EX |MI§I_/I_ WB_
Next instruction (IF)
Branch destination instruction | IF | ID IEX |MEM |WB |

(IF): Instruction fetch that is not executed
[Description] The pipeline consists of 6 stages, IF, ID, MEM, EX, MEM, and WB. However, no operation is

performed in the second MEM and WB stages, because there is no memory access and no
data is written to registers.

User's Manual U14559EJ2V0UM 187

CHAPTER 8 PIPELINE

(2) CTRET instruction

[Pipeline] <1> <2> <3> <4> <5> <6> <7>
e T T |
CTRET instruction |IF ID EX _IMEM WB
Next instruction (IF)
Branch destination instruction IF | ID | EX | MEM |WB |

(IF): Instruction fetch that is not executed

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is
performed in the EX, MEM, and WB stages, because the branch destination is decided in the
ID stage.

(3) DI, El instructions

[Pipeline] DI, El instruction IF ID EX__|MEM_ h{V_B_ _ :
Next instruction IF ID EX]MEM WB
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the MEM and WB stages, because memory is not accessed and data is not
written to registers.

* [Remark] Both the DI and El instructions do not sample an interrupt request. An interrupt is sampled as
follows while these instructions are executed.

Instruction immediately before |IF 1D EX MEM |WB__ l -,

DI, El instruction IF D |Ex |MEM wB |

Instruction immediately after IF ID EX | MEM |WB |
Last sampling of First sampling of
interrupt before interrupt after
execution of El or DI execution of El or DI
instruction instruction

188 User's Manual U14559EJ2V0UM

CHAPTER 8 PIPELINE

(4) DISPOSE instruction

[Pipeline] (a) When branch is not executed
<1> <2> <3> <4> 5(<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>
DISPOSE instruction |IF ID EX MEM 5 ; MEM |MEM |MEM |WB
Next instruction IF - - 5; - ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB

—: Idle inserted for wait

(b) When branch is executed

<1> <2> <3> <4> 5(<n+2> <n+3> <n+4> <n+5> <n+6> <n+7>
?
DISPOSE instruction |IF ID EX |MEM | 5; |MEM |MEM |MEM |WB |
Next instruction (IF)

Branch destination instruction | IF | ID | EX

(IF): Instruction fetch that is not executed
- Idle inserted for wait

[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM,
and WB. The MEM stage requires n + 1 cycles.

(5) HALT instruction

[Pipeline]
<1> <2> <3> <4> <5> <6> HALT mode release
HALT TSI '
instruction IF 1D EX MEM 'WB ! 5]
?
Next instruction IF = = = = | 5 ; I— ID EX MEM |WB
Next to next instruction IF 1D EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM and WB. No operation is performed in the
MEM and WB stages, because memory is not accessed and no data is written to registers.
Also, for the next instruction, the ID stage is delayed until the HALT mode is released.

(6) LDSR, STSR instructions

<1> <2> <3> <4> <5> <6>

. . LDSR, STSR
[Pipeline] instruction IF ID EX DF WB
Next instruction IF ID EX MEM |WB

[Description] The pipeline consists of 5 stages, IF, ID, EX, DF, and WB. If the STSR instruction using the
EIPC and FEPC system registers is placed immediately after the LDSR instruction setting
these registers, data wait time occurs.

User's Manual U14559EJ2V0UM 189

CHAPTER 8 PIPELINE

(7) NOP instruction

e T A |
[Pipeline] NOP instruction IF ID EX MEM ,WB
Next instruction IF ID EX MEM |WB
[Description] The pipeline consists of 5 stages, IF, ID, EX, MEM, and WB. However, no operation is

performed in the EX, MEM, and WB stages, because no operation and no memory access is
executed, and no data is written to registers.

* Caution Be aware that the SLD and Bcond instructions are sometimes executed at the same time as

other 16-bit format instructions. For example, if the SLD and NOP instructions are executed
simultaneously, the NOP instruction may keep the delay time from being generated.

(8) PREPARE instruction

[Pipeline] <1> <2> <3> <4> 5; <n+2> <n+3> <n+4> <n+5> <n+6> <n+7>
PREPARE instruction | IF ID EX MEM 55 MEM |MEM |MEM |WB
Next instruction IF - - 5; - ID EX MEM (WB
Next to next instruction IF ID EX MEM |WB

—: ldle inserted for wait

[Description] The pipeline consists of n + 5 stages (n: register list number), IF, ID, EX, n + 1 times MEM,
and WB. The MEM stage requires n + 1 cycles.

(9) RETI instruction

<1> <2> <3> <4> <5> <6> <7> <8>

[Pipeline] RETI instruction IF ID1 ID2 |EX |l_/|§|y|_ iW_B__,:
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed
ID1: Register selection
ID2: Read EIPC/FEPC

[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is
performed in the MEM and WB stages, because memory is not accessed and no data is
written to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction
and next to next instruction are not executed.

190 User's Manual U14559EJ2V0UM

CHAPTER 8 PIPELINE

(10) SWITCH instruction

[Pipeline]

[Description]

<1>

<2> <3> <4> <5> <6> <7> <8> <9> <10>

SWITCH instruction |IF

Next instruction

Branch destination instruction

(IF)

ID EX1 |MEM |EX2 |MEM ‘we !

|ID |EX |MEM |WB |

(IF): Instruction fetch that is not executed

The pipeline consists of 7 stages, IF, ID, EX1 (normal EX stage), MEM, EX2, MEM, and WB.
However, no operation is performed in the second MEM and WB stages, because there is no

memory access and no data is written to registers.

(11) TRAP instruction

[Pipeline]

[Description]

<1>

<2> <3> <4> <5>

<6> <7> <8>

TRAP instruction IF

D1 |iD2 |EX |DF |WB |

Next instruction
Next to next instruction

Jump destination instruction

(IF):

ID2:

The pipeline consists

executed.

(IF)

(IF)

IF |ID |EX |MEM |WB |

Instruction fetch that is not executed
ID1: Exception code (004nH, 005nH) detection (n = 0 to FH)

Address generation

of 6 stages, IF, ID1, ID2, EX, DF, and WB. The ID stage requires 2
clocks. Also, the IF stages of the next instruction and next to next instruction are not

User's Manual U14559EJ2VOUM

191

CHAPTER 8 PIPELINE

8.2.10 Debug function instructions

(1) DBRET instruction

<1> <2> <3> <4> <5> <6> <7> <8>
g .
[Pipeline] DBRET instruction | IF ID1__|ID2 |EX MEM_,WB_ |
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |
(IF): Instruction fetch that is not executed
ID1: Register selection
ID2: Read DBPC
[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. However, no operation is

performed in the MEM and WB stages, because the memory is not accessed and no data is
written to registers. The ID stage requires 2 clocks. Also, the IF stages of the next instruction

and next to next instruction are not executed.

(2) DBTRAP instruction

<1> <2> <3> <4> <5> <6> <7> <8>
[Pipeline] DBTRAP instruction |IF ID1 ID2 |EX |DF |WB |
Next instruction (IF)
Next to next instruction (IF)
Jump destination instruction IF |ID |EX |MEM |WB |
(IF): Instruction fetch that is not executed
ID1: Exception code (0060H) detection
ID2: Address generation
[Description] The pipeline consists of 6 stages, IF, ID1, ID2, EX, MEM, and WB. The ID stage requires 2
clocks. Also, the IF stages of the next instruction and next to next instruction are not
executed.

192

User's Manual U14559EJ2VOUM

CHAPTER 8 PIPELINE

8.3 Pipeline Disorder

The pipeline consists of 5 stages from IF (Instruction Fetch) to WB (Write Back). Each stage basically requires 1
clock for processing, but the pipeline may become disordered, causing the number of execution clocks to increase.
This section describes the main causes of pipeline disorder.

8.3.1 Alignment hazard

If the branch destination instruction address is not word aligned (A1=1, A0=0) and is 4 bytes in length, it is
necessary to repeat IF twice in order to align instructions in word units. This is called an align hazard.

For example, the instructions a to e are placed from address XOH, and that instruction b consists of 4 bytes, and
the other instructions each consist of 2 bytes. In this case, instruction b is placed at X2H (A1=A0=0), and is not word
aligned (A1=0, A0=0). Therefore, when this instruction b becomes the branch destination instruction, an align hazard
occurs. When an align hazard occurs, the number of execution clocks of the branch instruction becomes 4.

Figure 8-6. Align Hazard Example

(a) Memory map (b) Pipeline
~<— 32 bits —» <1> <2> <3> <4> <5> <6> <7> <8> <9>
Instruc- | Instruc- Branch instruction [IF ID EX__|[MEM !wB
XgH |tiond tione Next instruction IF x
Instruc- | Instruc- Branch destination instruction (instruction b) [IF1 |IF2 ID EX MEM |[WB
X4H Jtionb |Jtionc Branch destination's next instruction (instruction c) IF ID EX MEM |WB
Instruc- | Instruc-
XOH |[tiona |[tionb

IF x: Instruction fetch that is not executed

IF1: First instruction fetch that occurs during align hazard. It is a 2-byte

fr‘,‘i?r[,e;isoﬂfﬁ,{:‘ﬂﬁ&%ﬂ;‘a“"” fetch that fetches the 2 bytes on the lower address of instruction b.

IF2: Second instruction fetch that occurs during align hazard. It is
normally a 4-byte fetch that fetches the 2 bytes on the upper address

of instruction b in addition to instruction c (2-byte length).

Align hazards can be prevented through the following handling in order to obtain faster instruction execution.

e Use 2-byte branch destination instruction.
e Use 4-byte instructions placed at word boundaries (A1=0, A0=0) for branch destination instructions.

User’'s Manual U14559EJ2VOUM 193

CHAPTER 8 PIPELINE

8.3.2 Referencing execution result of load instruction

For load instructions (LD, SLD), data read in the MEM stage is saved during the WB stage. Therefore, if the
contents of the same register are used by the instruction immediately after the load instruction, it is necessary to
delay the use of the register by this later instruction until the load instruction has ended using that register. This is
called a hazard.

The V850E1 CPU has an interlock function to automatically handle this hazard by delaying the ID stage of the
next instruction.

The VB850E1 CPU also has a short path that allows the data read during the MEM stage to be used in the ID stage
of the next instruction. This short path allows data to be read with the load instruction during the MEM stage and the
use of this data in the ID stage of the next instruction with the same timing.

As a result of the above, when using the execution result in the instruction following immediately after, the number
of execution clocks of the load instruction is 2.

Figure 8-7. Example of Execution Result of Load Instruction

<1> <2> <3> <4> <5> <6> <7> <8> <9>
Load instruction 1
(LD [R4], R6) [iF D [Ex__[MEM, |wB
Instruction 2 (ADD 2, R6) IF IL D ¥ |EX MEM [WB
Instruction 3 IF - ID EX MEM |WB
Instruction 4 IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function
Idle inserted for wait
Short path

As shown in Figure 8-7, when an instruction placed immediately after a load instruction uses its execution result, a
data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in execution speed
can be avoided by placing instructions that use the execution result of a load instruction at least 2 instructions after
the load instruction.

194 User's Manual U14559EJ2V0UM

CHAPTER 8 PIPELINE

8.3.3 Referencing execution result of multiply instruction

For multiply instructions (MULH, MULHI), the operation result is saved to the register in the WB stage. Therefore,
if the contents of the same register are used by the instruction immediately after the multiply instruction, it is
necessary to delay the use of the register by this later instruction until the multiply instruction has ended using that
register (occurrence of hazard).

The V850E1 CPU'’s interlock function delays the ID stage of the instruction following immediately after. A short
path is also provided that allows the EX2 stage of the multiply instruction and the multiply instruction’s operation
result to be used in the ID stage of the instruction following immediately after with the same timing.

Figure 8-8. Example of Execution Result of Multiply Instruction

<1> <2> <3> <4> <5> <6> <7> <8> <9>
Multiply instruction 1
(MULH 3, R6) [ID EX1 |Ex2, [wB
Instruction 2 (ADD 2, R6) IF IL D ¥ |EX MEM |WB
Instruction 3 IF - ID EX MEM |WB
Instruction 4 IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function
-: ldle inserted for wait
Short path

As shown in Figure 8-8, when an instruction placed immediately after a multiply instruction uses its execution
result, a data wait time occurs due to the interlock function, and the execution speed is lowered. This drop in
execution speed can be avoided by placing instructions that use the execution result of a multiply instruction at least
2 instructions after the multiply instruction.

User’'s Manual U14559EJ2VOUM 195

CHAPTER 8 PIPELINE

8.3.4 Referencing execution result of LDSR instruction for EIPC and FEPC

When using the LDSR instruction to set the data of the EIPC and FEPC system registers, and immediately after
referencing the same system registers with the STSR instruction, the use of the system registers for the STSR
instruction is delayed until the setting of the system registers with the LDSR instruction is completed (occurrence of
hazard).

The V850E1 CPU’s interlock function delays the ID stage of the STSR instruction immediately after.

As a result of the above, when using the execution result of the LDSR instruction for EIPC and FEPC for an STSR
instruction following immediately after, the number of execution clocks of the LDSR instruction becomes 3.

Figure 8-9. Example of Referencing Execution Result of LDSR Instruction for EIPC and FEPC

. . <1> <2> <3> <4> <5> <6> <7> <8> <9> <10>
LDSR instruction
(LDSR R6, 0) Nete [ID EX __|MEM [wB
(SSTTSSF‘R'g?tgug“N%,g F_ | IL D |EX__|MEM |wB
Next instruction IF - - ID EX MEM |WB
Next to next instruction IF ID EX MEM (WB

IL: Idle inserted for data wait by interlock function

- Idle inserted for wait

Note System register 0 used for the LDSR and STSR instructions designates EIPC.

As shown in Figure 8-9, when an STSR instruction is placed immediately after an LDSR instruction that uses the
operand EIPC or FEPC, and that STSR instruction uses the LDSR instruction execution result, the interlock function
causes a data wait time to occur, and the execution speed is lowered. This drop in execution speed can be avoided
by placing STSR instructions that reference the execution result of the preceding LDSR instruction at least 3
instructions after the LDSR instruction.

8.3.5 Cautions when creating programs
When creating programs, pipeline disorder can be avoided and instruction execution speed can be raised by
observing the following cautions.

¢ Place instructions that use the execution result of load instructions (LD, SLD) at least 2 instructions after the
load instruction.

e Place instructions that use the execution result of multiply instructions (MULH, MULHI) at least 2 instructions
after the multiply instruction.

e If using the STSR instruction to read the setting results written to the EIPC or FEPC registers with the LDSR
instruction, place the STSR instruction at least 3 instructions after the LDSR instruction.

e For the first branch destination instruction, use a 2-byte instruction, or a 4-byte instruction placed at the word
boundary.

196 User's Manual U14559EJ2VOUM

CHAPTER 8 PIPELINE

8.4 Additional Iltems Related to Pipeline

8.4.1 Harvard architecture

The V850E1 CPU uses the Harvard architecture to operate an instruction fetch path from internal ROM and a

memory access path to internal RAM independently. This eliminates path arbitration conflicts between the IF and
MEM stages and allows orderly pipeline operation.

(1) V850E1 CPU (Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, as well as the MEM stage of instruction 2 and
the IF stage of instruction 5 can be executed simultaneously with orderly pipeline operation.

Instruction 1
Instruction 2
Instruction 3
Instruction 4
Instruction 5

<1> <2> <3> <4> <5> <6> <7> <8> <9>
IF ID EX MEM |WB
IF ID EX MEM |WB
IF ID EX MEM |WB
IF ID EX MEM |WB
IF ID EX MEM [(WB

(2) Not V850E1 CPU (Other than Harvard architecture)

The MEM stage of instruction 1 and the IF stage of instruction 4, in addition to the MEM stage of instruction 2

and the IF stage of instruction 5 are in contention, causing path waiting to occur and slower execution time due
to disorderly pipeline operation.

<1> <2> <3>

Instruction 1

Instruction 2
Instruction 3

Instruction 4
Instruction 5

<4> <5> <6> <7> <8> <9> <10> <11>
IF ID EX MEM |WB
IF 1D - EX MEM |WB
IF - ID - EX MEM |WB
IF - ID EX MEM [(WB
IF ID EX MEM |WB

. ldle inserted for wait

User's Manual U14559EJ2VOUM

197

CHAPTER 8 PIPELINE

8.4.2 Short path
The V850E1 CPU provides on chip a short path that allows the use of the execution result of the preceding
instruction by the following instruction before write back (WB) is completed for the previous instruction.

Example 1. Execution result of arithmetic operation instruction and logical operation used by instruction
following immediately after

e V850E1 CPU (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the result is out (EX stage), without having to wait for
write back to be completed.

<1> <2> <3> <4> <5> <6>
ADD 2, R6 [IF ID EX | [MEM |wB
MOV R6, R7 IF 1D * EX MEM |WB

¢ Not V850E1 CPU (No short path)
The ID stage of the instruction following immediately after is delayed until write back of the
previous instruction is completed.

<1> <2> <3> <4> <5> <6> <7> <8>

ADD 2, R6 IF ID EX |MEM |wB
MOV R6, R7 IF - - ID EX |MEM |wB |

-: Idle inserted for wait
Short path

198 User's Manual U14559EJ2VOUM

CHAPTER 8 PIPELINE

Example 2. Data read from memory by the load instruction used by instruction following immediately after

e V850E1 CPU (on-chip short path)
The execution result of the preceding instruction can be used for the ID stage of the instruction
following immediately after as soon as the result is out (MEM stage), without having to wait for
write back to be completed.

<1> <2> <3> <4> <5> <6> <7> <8> <9>
LD [R4], R6 IF 1D EX MEM | (WB
ADD 2, R6 IF IL D V[EX MEM |WB
Next instruction IF - ID EX MEM |(WB
Next to next instruction IF ID EX MEM |WB

¢ Not V850E1 CPU (No short path)
The ID stage of the instruction following immediately after is delayed until write back of the
previous instruction is completed.

<1> <2> <3> <4> <5> <6> <7> <8> <9> <10>
LD [R4], R6 IF 1D EX MEM |WB
ADD 2, R6 IF - - 1D EX MEM [(WB
Next instruction IF ID EX MEM |WB
Next to next instruction IF ID EX MEM |WB

IL: Idle inserted for data wait by interlock function

-: Idle inserted for wait

Short path

User's Manual U14559EJ2VOUM

199

APPENDIX A

INSTRUCTION LIST

The instruction function list in alphabetical order is shown in Table A-1, and instruction list in format order is shown

in Table A-2.

Table A-1. Instruction Function List (in Alphabetical Order) (1/11)

Mnemonic

Operand

Format

Flag

CY | ov

S

SAT

Instruction Function

ADD

regi, reg2

| 01 01

01

01

Add. Adds the word data of reg1 to the word
data of reg2, and stores the result to reg2.

ADD

immb5, reg2

Il 01 01

01

01

Add. Adds the 5-bit immediate data, sign-
extended to word length, to the word data of
reg2, and stores the result to reg2.

ADDI

imm16, regi, reg2

\ 01 01

01

01

Add Immediate. Adds the 16-bit immediate
data, sign-extended to word length, to the
word data of reg1, and stores the result to
reg2.

AND

regl, reg2

01

01

And. ANDs the word data of reg2 with the
word data of reg1, and stores the result to
reg2.

ANDI

imm16, reg1, reg2

\ - 0

01

01

And. ANDs the word data of reg1 with the 16-
bit immediate data, zero-extended to word
length, and stores the result to reg2.

Bcond

disp9

Branch on Condition Code. Tests a condition
flag specified by an instruction. Branches if a
specified condition is satisfied; otherwise,
executes the next instruction. The branch
destination PC holds the sum of the current
PC value and 9-bit displacement which is the
8-bit immediate shifted 1 bit and sign-
extended to word length.

BSH

reg2, reg3

Xl 01 0

01

0N

Byte Swap Half-word. Performs endian

conversion.

BSW

reg2, reg3

Xl 01 0

01

01

Byte Swap Word. Performs endian

conversion.

CALLT

imm6

Call with Table Look Up. Based on CTBP
contents, updates PC value and transfers
control.

CLR1

bit#3, disp16 [reg1]

Vil - -

01

Clear Bit. Adds the data of regl to a 16-bit
displacement, sign-extended to word length,
to generate a 32-bit address. Then clears the
bit, specified by the instruction bit field, of the
byte data referenced by the generated
address.

200

User’s Manual U14559EJ2V0UM

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (2/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

CLR1

reg2 [regl]

0/1

Clear Bit. First, reads the data of regl to
generate a 32-bit address. Then clears the bit,
specified by the data of lower 3 bits of reg2 of
the byte data referenced by the generated
address.

CMOV

cccee, regl, reg2,
reg3

Xl

Conditional Move. reg3 is set to regl if a
condition specified by condition code “cccc” is
satisfied; otherwise, set to the data of reg2.

CMOV

ccec, immb, reg2,
reg3

XIl

Conditional Move. reg3 is set to the data of 5-
immediate, sign-extended to word length, if a
condition specified by condition code “cccc” is
satisfied; otherwise, set to the data of reg2.

CMP

regl, reg2

0/1

0/1

0/1

0/1

Compare. Compares the word data of reg2
with the word data of regl, and indicates the
result by using the PSW flags. To compare,
the contents of regl are subtracted from the
word data of reg2.

CMP

immb5, reg2

0/1

0/1

0/1

0/1

Compare. Compares the word data of reg2
with the 5-bit immediate data, sign-extended
to word length, and indicates the result by
using the PSW flags. To compare, the
contents of the sign-extended immediate data
are subtracted from the word data of reg2.

CTRET

(None)

0/1

0/1

0/1

0/1

0/1

Restore from CALLT. Restores the restore PC
and PSW from the appropriate system register
and restores from a routine called by CALLT.

DBRET"*

(None)

0/1

0/1

0/1

0/1

0/1

Return from debug trap. Restores the restore
PC and PSW from the appropriate system
register and restores from a debug monitor
routine.

DBTRAP"*

(None)

Debug trap. Saves the restore PC and PSW
to the appropriate system register and
transfers control by setting the PC to handler
address (00000060H).

DI

(None)

Disables Interrupt. Sets the ID flag of the PSW
to 1 to disable the acknowledgement of
maskable interrupts from acceptance;
interrupts are immediately disabled at the start
of this instruction execution.

DISPOSE

immb5, list12

XMl

Function Dispose. Adds the data of 5-bit
immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pop
(load data from the address specified by sp
and adds 4 to sp) general registers listed in
list12.

Note Not supported in the NB85E and NB85ET

User's Manual U14559EJ2VOUM

201

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (3/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

DISPOSE

immb5, list12, [regl]

Xl

Function Dispose. Adds the data of 5-bit
immediate immb5, logically shifted left by 2 and
zero-extended to word length, to sp. Then pop
(load data from the address specified by sp
and adds 4 to sp) general registers listed in
listl2, transfers control to the address
specified by regl.

DIv

regl, reg2, reg3

Xl

0/1

0/1

0/1

Divide Word. Divides the word data of reg2 by
the word data of regl, and stores the quotient
to reg2 and the remainder to reg3.

DIVH

regl, reg2

0/1

0/1

0/1

Divide Half-word. Divides the word data of
reg2 by the lower half-word data of regl, and
stores the quotient to reg2.

DIVH

regl, reg2, reg3

Xl

0/1

0/1

0/1

Divide Half-word. Divides word data of reg2 by
lower half-word data of regl, and stores the
quotient to reg2 and the remainder to reg3.

DIVHU

regl, reg2, reg3

XI

0/1

0/1

0/1

Divide Half-word Unsigned. Divides word data
of reg2 by lower half-word data of regl, and
stores the quotient to reg2 and the remainder
to reg3.

DIvU

regl, reg2, reg3

Xl

0/1

0/1

0/1

Divide Word Unsigned. Divides the word data
of reg2 by the word data of regl, and stores
the quotient to reg2 and the remainder to
reg3.

El

(None)

Enable Interrupt. Clears the ID flag of the
PSW to 0 and enables the acknowledgement
of maskable interrupts at the beginning of next
instruction.

HALT

(None)

Halt. Stops the operating clock of the CPU
and places the CPU in the HALT mode.

HSW

reg2, reg3

XIl

0/1

0/1

0/1

Half-word Swap Word. Performs endian
conversion.

JARL

disp22, reg2

Jump and Register Link. Saves the current PC
value plus 4 to general register reg2, adds a
22-bit displacement, sign-extended to word
length, to the current PC value, and transfers
control to the PC. Bit 0 of the 22-bit
displacement is masked to 0.

JMP

[regl]

Jump Register. Transfers control to the
address specified by regl. Bit O of the address
is masked to 0.

JR

disp22

Jump Relative. Adds a 22-bit displacement,
sign-extended to word length, to the current
PC value, and transfers control to the PC. Bit
0 of the 22-bit displacement is masked to 0.

202

User's Manual U14559EJ2V0OUM

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (4/11)

Mnemonic

Operand

Format

Flag

Cy | ov S z

SAT

Instruction Function

LD.B

disp16 [regl], reg2

Vil

Byte Load. Adds the data of regl to a 16-bit
displacement, sign-extended to word length,
to generate a 32-bit address. Byte data is read
from the generated address, sign-extended to
word length, and then stored to reg2.

LD.BU

disp16 [regl], reg2

Vil

Unsigned Byte Load. Adds the data of regl
and the 16-bit displacement sign-extended to
word length, and generates a 32-bit address.
Then reads the byte data from the generated
address, zero-extends it to word length, and
stores it to reg2.

LD.H

disp16 [regl], reg2

Vil

Half-word Load. Adds the data of regl to a 16-
bit displacement, sign-extended to word
length, to generate a 32-bit address. Half-word
data is read from this 32-bit address with bit 0
masked to 0, sign-extended to word length,
and stored to reg?2.

LD.HU

disp16 [regl], reg2

Vil

Unsigned Half-word Load. Adds the data of
regl and the 16-bit displacement sign-
extended to word length to generate a 32-bit
address. Reads the half-word data from the
address masking bit 0 of this 32-bit address to
0, zero-extends it to word length, and stores it
to reg2.

LD.W

disp16 [regl], reg2

Vil

Word Load. Adds the data of regl to a 16-bit
displacement, sign-extended to word length,
to generate a 32-bit address. Word data is
read from this 32-bit address with bits 0 and 1
masked to 0, and stored to reg2.

LDSR

reg2, reglD

Load to System Register. Set the word data of
reg2 to a system register specified by regID. If
regID is PSW, the values of the corresponding
bits of reg2 are set to the respective flags of
the PSW.

MOV

regl, reg2

Move. Transfers the word data of regl to reg2.

MOV

immb5, reg2

Move. Transfers the value of a 5-bit
immediate data, sign-extended to word length,

to reg2.

MOV

imm32, regl

Vi

Move. Transfers the 32-bit immediate data to
regl.

MOVEA

imm16, regl, reg2

Vi

Move Effective Address. Adds a 16-bit
immediate data, sign-extended to word length,
to the word data of regl, and stores the result
to reg2.

User's Manual U14559EJ2VOUM

203

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (5/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S z SAT

Instruction Function

MOVHI

imm16, regl, reg2

Vi

Move High Half-word. Adds word data, in
which the higher 16 bits are defined by the 16-
bit immediate data while the lower 16 bits are
set to 0, to the word data of regl and stores
the result to reg2.

MUL

regl, reg2, reg3

Xl

Multiply Word. Multiplies the word data of reg2
by the word data of regl, and stores the result
to reg2 and reg3 as double-word data.

MUL

imm9, reg2, reg3

XIl

Multiply Word. Multiplies the word data of reg2
by the 9-bit immediate data sign-extended to
word length, and stores the result to reg2 and
reg3.

MULH

regl, reg2

Multiply Half-word. Multiplies the lower half-
word data of reg2 by the lower half-word data
of regl, and stores the result to reg2 as word
data.

MULH

immb5, reg2

Multiply Half-word. Multiplies the lower half-
word data of reg2 by a 5-bit immediate data,
sign-extended to half-word length, and stores
the result to reg2 as word data.

MULHI

imm16, regl, reg2

Vi

Multiply Half-word Immediate. Multiplies the
lower half-word data of regl by a 16-bit
immediate data, and stores the result to reg2.

MULU

regl, reg2, reg3

XI

Multiply Word Unsigned. Multiplies the word
data of reg2 by the word data of regl, and
stores the result to reg2 and reg3 as double-
word data. regl is not affected.

MULU

imm9, reg2, reg3

Xl

Multiply Word Unsigned. Multiplies the word
data of reg2 by the 9-bit immediate data sign-
extended to word length, and store the result
to reg2 and reg3.

NOP

(None)

No Operation.

NOT

regl, reg2

0/1 | o/1 -

Not. Logically negates (takes 1's complement
of) the word data of regl, and stores the result
to reg2.

NOT1

bit#3, disp16 [regl]

VIl

- 0/1 -

Not Bit. First, adds the data of regl to a 16-bit
displacement, sign-extended to word length,
to generate a 32-bit address. The bit specified
by the 3-bit bit number is inverted at the byte
data location referenced by the generated
address.

NOT1

reg2, [regl]

- 0/1 -

Not Bit. First, reads regl to generate a 32-bit
address. The bit specified by the lower 3 bits
of reg2 of the byte data of the generated
address is inverted.

204

User's Manual U14559EJ2V0OUM

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (6/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

OR

regl, reg2

0/1

0/1

Or. ORs the word data of reg2 with the word
data of regl, and stores the result to reg2.

ORI

imm16, regl, reg2

Vi

0/1

0/1

Or Immediate. ORs the word data of regl with
the 16-bit immediate data, zero-extended to
word length, and stores the result to reg2.

PREPARE

listl2, imm5

XMl

Function Prepare. The general register
displayed in list12 is saved (4 is subtracted
from sp, and the data is stored to that
address). Next, the data is logically shifted 2
bits to the left, and the 5-bit immediate data
zero-extended to word length is subtracted
from sp.

PREPARE

list12, immb5,
sp/imm

XMl

Function Prepare. The general register
displayed in list12 is saved (4 is subtracted
from sp, and the data is stored to that
address). Next, the data is logically shifted 2
bits to the left, and the 5-bit immediate data
zero-extended to word length is subtracted
from sp. Then, the data specified by the third
operand is loaded to ep.

RETI

(None)

0/1

0/1

0/1

0/1

0/1

Return from Trap or Interrupt. Reads the
restore PC and PSW from the appropriate
system register, and restores from interrupt or
exception processing routine.

SAR

regl, reg2

0/1

0/1

0/1

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions,
where ‘n’ is specified by the lower 5 bits of
regl (the MSB prior to shift execution is
copied and set as the new MSB), and then
writes the result to reg2.

SAR

immb5, reg2

0/1

0/1

0/1

Shift Arithmetic Right. Arithmetically shifts the
word data of reg2 to the right by ‘n’ positions
specified by the lower 5-bit immediate data,
zero-extended to word length (the MSB prior
to shift execution is copied and set as the new
MSB), and then writes the result to reg2.

SASF

cccce, reg2

Shift and Set Flag Condition. reg2 is logically
shifted left by 1, and its LSB is set to 1 in a
condition specified by condition code “cccc” is
satisfied; otherwise, LSB is set to 0.

User's Manual U14559EJ2VOUM

205

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (7/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SATADD

regl, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Add. Adds the word data of regl to
the word data of reg2, and stores the result to
reg2. However, if the result exceeds the
maximum positive value, the maximum
positive value is stored to reg2; if the result
exceeds the maximum negative value, the
maximum negative value is stored to reg?2.
The SAT flag is set to 1.

SATADD

immb5, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Add. Adds the 5-bit immediate data,
sign-extended to word length, to the word data
of reg2, and stores the result to reg2.
However, if the result exceeds the maximum
positive value, the maximum positive value is
stored to reg2; if the result exceeds the
maximum negative value, the maximum
negative value is stored to reg2. The SAT flag
issetto 1.

SATSUB

regl, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Subtract. Subtracts the word data of
regl from the word data of reg2, and stores
the result to reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored to reg2; if
the result exceeds the maximum negative
value, the maximum negative value is stored
to reg2. The SAT flag is set to 1.

SATSUBI

imm16, regl, reg2

Vi

0/1

0/1

0/1

0/1

0/1

Saturated Subtract Immediate. Subtracts a
16-bit immediate data, sign-extended to word
length, from the word data of regl, and stores
the result to reg2. However, if the result
exceeds the maximum positive value, the
maximum positive value is stored to reg2; if
the result exceeds the maximum negative
value, the maximum negative value is stored
to reg2. The SAT flag is set to 1.

SATSUBR

regl, reg2

0/1

0/1

0/1

0/1

0/1

Saturated Subtract Reverse. Subtracts the
word data of reg2 from the word data of reg1l,
and stores the result to reg2. However, if the
result exceeds the maximum positive value,
the maximum positive value is stored to reg2;
if the result exceeds the maximum negative
value, the maximum negative value is stored
to reg2. The SAT flag is set to 1.

SET1

bit#3, disp16 [regl]

VIl

0/1

Set Bit. First, adds a 16-bit displacement,
sign-extended to word length, to the data of
regl to generate a 32-bit address. The bits,
specified by the 3-bit bit number, are set at the
byte data location specified by the generated
address.

206

User's Manual U14559EJ2V0OUM

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (8/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SET1

reg2, [regl]

0/1

Set Bit. First, reads the data of general
register regl to generate a 32-bit address.
The bit, specified by the data of lower 3 bits of
reg2, is set at the byte data location
referenced by the generated address.

SETF

cccc, reg2

Set Flag Condition. The reg2 is set to 1 if a
condition specified by condition code "cccc"” is
satisfied; otherwise, a 0 is stored to reg2.

SHL

regl, reg2

0/1

0/1

0/1

Shift Logical Left. Logically shifts the word
data of reg2 to the left by ‘n’ positions (0 is
shifted to the LSB side), where ‘n’ is specified
by the lower 5 bits of regl, and then writes the
result to reg2.

SHL

immb5, reg2

0/1

0/1

0/1

Shift Logical Left. Logically shifts the word
data of reg2 to the left by ‘n’ positions (0 is
shifted to the LSB side), where ‘n’ is specified
by a 5-bit immediate data, zero-extended to
word length, and then writes the result to reg2.

SHR

regl, reg2

0/1

0/1

0/1

Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by the lower 5 bits of regl, and then writes the
result to reg2.

SHR

immb5, reg2

0/1

0/1

0/1

Shift Logical Right. Logically shifts the word
data of reg2 to the right by ‘n’ positions (0 is
shifted to the MSB side), where ‘n’ is specified
by a 5-bit immediate data, zero-extended to
word length, and then writes the result to reg2.

SLD.B

disp7 [ep], reg2

Byte Load. Adds the 7-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address. Byte data
is read from the generated address, sign-
extended to word length, and then stored to
reg2.

SLD.BU

disp4 [ep], reg2

Unsigned Byte Load. Adds the 4-bit
displacement, zero-extended to word length,
to the element pointer to generate a 32-bit
address. Byte data is read from the generated
address, zero-extended to word length, and
stored to reg2.

SLD.H

disp8 [ep], reg2

Half-word Load. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address. Half-word
data is read from this 32-bit address with bit 0
masked to 0, sign-extended to word length,
and stored to reg?2.

User's Manual U14559EJ2VOUM

207

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (9/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SLD.HU

disp5 [ep], reg2

Unsigned Half-word Load. Adds the 5-bit
displacement, zero-extended to word length,
to the element pointer to generate a 32-bit
address. Half-word data is read from this 32-
bit address with bit 0 masked to O, zero-
extended to word length, and stored to reg2.

SLD.W

disp8 [ep], reg2

Word Load. Adds the 8-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address. Word
data is read from this 32-bit address with bits
0 and 1 masked to 0, and stored to reg2.

SST.B

reg2, disp7 [ep]

Byte Store. Adds the 7-bit displacement, zero-
extended to word length, to the element
pointer to generate a 32-bit address, and
stores the data of the lowest byte of reg2 to
the generated address.

SST.H

reg2, disp8 [ep]

Half-word Store. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address, and
stores the lower half-word of reg2 to the
generated 32-bit address with bit 0 masked to
0.

SST.W

reg2, disp8 [ep]

Word Store. Adds the 8-bit displacement,
zero-extended to word length, to the element
pointer to generate a 32-bit address, and
stores the word data of reg2 to the generated
32-bit address with bits 0 and 1 masked to 0.

ST.B

reg2, displ6 [regl]

Vil

Byte Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
regl to generate a 32-bit address, and stores
the lowest byte data of reg2 to the generated
address.

ST.H

reg2, disp16 [regl]

Vil

Half-word Store. Adds the 16-bit
displacement, sign-extended to word length,
to the data of regl to generate a 32-bit
address, and stores the lower half-word of
reg2 to the generated 32-bit address with bit 0
masked to 0.

ST.W

reg2, displ6 [regl]

Vil

Word Store. Adds the 16-bit displacement,
sign-extended to word length, to the data of
regl to generate a 32-bit address, and stores
the word data of reg2 to the generated 32-bit
address with bits 0 and 1 masked to 0.

STSR

reglD, reg2

Store Contents of System Register. Stores the
contents of a system register specified by
reglD to reg2.

208

User's Manual U14559EJ2V0OUM

APPENDIX A

INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (10/11)

Mnemonic

Operand

Format

Flag

CYy

ov

S

SAT

Instruction Function

SUB

regl, reg2

0/1

0/1

0/1

0/1

Subtract. Subtracts the word data of regl from
the word data of reg2, and stores the result to
reg2.

SUBR

regl, reg2

0/1

0/1

0/1

0/1

Subtract Reverse. Subtracts the word data of
reg2 from the word data of regl, and stores
the result to reg2.

SWITCH

regl

Jump with Table Look Up. Adds the table
entry address (address following SWITCH
instruction) and data of regl logically shifted
to the left by 1 bit, and loads the half-word
entry data specified by the table entry
address. Next, logically shifts to the left by 1
bit the loaded data, and after sign-extending it
to word length, branches to the target address
added to the table entry address (instruction
following SWITCH instruction).

SXB

regl

Sign Extend Byte. Sign-extends the lowermost
byte of regl to word length.

SXH

regl

Sign Extend Half-word. Sign-extends lower
half-word of reg1 to word length.

TRAP

vector

Trap. Saves the restore PC and PSW; sets
the exception code and the flags of the PSW;
jumps to the address of the trap handler
corresponding to the trap vector specified by
vector, and starts exception processing.

TST

regl, reg2

0/1

0/1

Test. ANDs the word data of reg2 with the
word data of regl. The result is not stored,
and only the flags are changed.

TST1

bit#3, disp16 [regl]

VIl

0/1

Test Bit. Adds the data of regl to a 16-bit
displacement, sign-extended to word length,
to generate a 32-bit address. Performs the
test on the bit, specified by the 3-bit bit
number, at the byte data location referenced
by the generated address. If the specified bit
is 0, the Z flag is set to 1; if the bit is 1, the Z
flag is cleared to 0.

TST1

reg2, [regl]

0/1

Test Bit. First, reads the data of regl to
generate a 32-bit address. If the bits indicated
by the lower 3 bits of reg2 of the byte data of
the generated address are 0, the Z flag is set
to 1, and if they are 1, the Z flag is cleared to
0.

XOR

regl, reg2

0/1

0/1

Exclusive Or. Exclusively ORs the word data
of reg2 with the word data of regl, and stores
the result to reg2.

User's Manual

U14559EJ2VOUM

209

APPENDIX A INSTRUCTION LIST

Table A-1. Instruction Function List (in Alphabetical Order) (11/11)

Mnemonic Operand Format Flag Instruction Function
CY (0)Y] S z SAT

XORI imm16, regl, reg2 VI - 0 0/1 | 01 - Exclusive Or Immediate. Exclusively ORs the
word data of regl with a 16-bit immediate
data, zero-extended to word length, and
stores the result to reg2.

ZXB regl | - - - - - Zero Extend Byte. Zero-extends to word
length the lowest byte of regl.

ZXH regl | - - - - - Zero Extend Half-word. Zero-extends to word
length the lower half-word of reg1.

210 User's Manual U14559EJ2VOUM

APPENDIX A

INSTRUCTION LIST

Table A-2. Instruction List (in Format Order) (1/3)

Format Opcode Mnemonic Operand

15 0] 31 16

| 00000000000C0000OO - NOP -
rrrrr000000RRRRR - MOV regl, reg2
rrrrr000001RRRRR - NOT regl, reg2
rrrrr000010RRRRR - DIVH regl, reg2
OOOOO0OO0O00010RRRRR - SWITCH regl
00000000011RRRRR - IMP [regl]
rrrrr000100RRRRR - SATSUBR regl, reg2
rrrrr000101RRRRR - SATSUB regl, reg2
rrrrr000110RRRRR - SATADD regl, reg2
rrrrr000111RRRRR - MULH regl, reg2
OOOOO0OO0O00100RRRRR - ZXB regl
O0OO0OO0O0000101RRRRR — SXB regl
OOOO0OO0O000110RRRRR - ZXH regl
0O0O0O0O0000111RRRRR — SXH regl
rrrrr001000RRRRR - OR regl, reg2
rrrrr001001RRRRR - XOR regl, reg2
rrrrr0O01010RRRRR - AND regl, reg2
rrrrr001011RRRRR - TST regl, reg2
rrrrr001100RRRRR - SUBR regl, reg2
rrrrr001101RRRRR - SUB regl, reg2
rrrrr0O01110RRRRR - ADD regl, reg2
rrrrr001111RRRRR - CMP regl, reg2
1111100001000000 — DBTRAP"* -

Il rrrrr010000iiiii - MOV immb5, reg2
rrrrr010001iiiii - SATADD immb5, reg2
rrrrr010010iiiii - ADD immb5, reg2
rrrrr010011iiiii - CMP immb5, reg2
0000001000iiidiii — CALLT imm6
rrrrr010100iiiii - SHR immb5, reg2
rrrrr010101iiiii - SAR immb5, reg2
rrrrr010110iiiii - SHL imm5, reg2
rrrrr010111iiiii - MULH immb5, reg2

1} dddddio01lidddcccc - Bcond disp9

Note Not supported in the NB85E and NB85ET

User's Manual U14559EJ2VOUM

211

APPENDIX A

INSTRUCTION LIST

Table A-2. Instruction List (in Format Order) (2/3)

Format Opcode Mnemonic Operand

15 0] 31 16

\Y; rrrrr0000110dddd - SLD.BU disp4 [ep], reg2
rrrrr0000111dddd - SLD.HU disp5 [ep], reg2
rrrrr0110ddddddd - SLD.B disp7 [ep], reg2
rrrrr0111lddddddd - SST.B reg2, disp7 [ep]
rrrrr1000ddddddd - SLD.H disp8 [ep], reg2
rrrrrl1001ddddddd - SST.H reg2, disp8 [ep]
rrrrr1010ddddddo - SLD.W disp8 [ep], reg2
rrrrrl1010ddddddl - SST.W reg2, disp8 [ep]

\Y; rrrrr11110dddddd | dddddddddddddddo |[JARL disp22, reg2
0000011110dddddd | dddddddddddddddo |JR disp22

VI rrrrr110000RRRRR | 1iiiiiiiiiiiiiii |ADDI imm16, regl, reg2
rrrrr110001RRRRR | iiiiiiiiiiiiiiii |MOVEA imm16, regl, reg2
rrrrr110010RRRRR iiiiiiiiiiiiiiii [MOVHI imm16, regl, reg2
rrrrr110011RRRRR [iiiiiiiiiiiiiiii |SATSUBI imm16, regl, reg2
0O0000110001RRRRR Note MOV imm32, regl
rrrrr110100RRRRR [iiiiiiiiiiiiiiii |ORI imm16, regl, reg2
rrrrr110101RRRRR iiiiiiiiiiiiiiii [XORI imm16, regl, reg2
rrrrr110110RRRRR | iiiiiiiiiiiiiiii |ANDI imm16, regl, reg2
rrrrr1l10111RRRRR iiiiiiiiiiiiiiii [MULHI imm16, regl, reg2

Vi rrrrrl111000RRRRR | dddddddddddddddd |LD.B disp16 [regl], reg2
rrrrrl111001RRRRR | dddddddddddddddo |LD.H disp16 [regl], reg2
rrrrr111001RRRRR | dddddddddddddddl |LD.W disp16 [regl], reg2
rrrrr111010RRRRR | dddddddddddddddd |ST.B reg2, disp16 [regl]
rrrrr111011RRRRR | dddddddddddddddo |ST.H reg2, disp16 [regl]
rrrrr111011RRRRR | dddddddddddddddl |ST.W reg2, disp16 [regl]
rrrrrl11110bRRRRR | dddddddddddddddl |LD.BU disp16 [regl], reg2
rrrrr111111RRRRR | dddddddddddddddl |LD.HU disp16 [regl], reg2

Vil 00bbb111110RRRRR | dddddddddddddddd |[SET1 bit#3, disp16 [regl]
01lbbb111110RRRRR | dddddddddddddddd |NOT1 bit#3, disp16 [regl]
10bbb111110RRRRR | dddddddddddddddd |CLR1 bit#3, disp16 [reg1]
11bbb111110RRRRR | dddddddddddddddd |TST1 bit#3, disp16 [regl]

Note 32-bit immediate data. The higher 32 bits (bits 16 to 47) are as follows.

16 | 47

32

1111111111111111

IIIITIITITIITIIIIIII

212

User's Manual U14559EJ2V0OUM

APPENDIX A

INSTRUCTION LIST

Table A-2. Instruction List (in Format Order) (3/3)

Format Opcode Mnemonic Operand
15 0] 31 16

IX rrrrrl1lll1lll0cccc 0000000000000000 |[SETF cccc, reg2
rrrrr111111RRRRR | 0000000000100000 |LDSR reg2, reglD
rrrrr111111RRRRR 0000000001000000 [STSR reglD, reg2
rrrrr111111RRRRR | 0000000010000000 |SHR regl, reg2
rrrrr1l11111RRRRR 0000000010100000 [SAR regl, reg2
rrrrr111111RRRRR [0000000011000000 |SHL regl, reg2
rrrrr111111RRRRR 0000000011100000 [SET1 reg2, [regl]
rrrrrl111111RRRRR | 0000000011100010 [NOT1 reg2, [regl]
rrrrr111111RRRRR 0000000011100100 |CLR1 reg2, [regl]
rrrrr111111RRRRR [0000000011100110 |TST1 reg2, [regl]
rrrrrl1lllll0cccc 0000001000000000 |[SASF cccce, reg2

X 000001111114iiiii | 0000000100000000 [TRAP vector
0000011111100000 0000000100100000 [HALT -
0000011111100000 | 0000000101000000 |[RETI -
0000011111100000 0000000101000100 |CTRET -
0000011111100000 | 0000000101000110 |DBRET"* -
0000011111100000 0000000101100000 |DI -
1000011111100000 | 0000000101100000 [EI -

Xl rrrrr111111RRRRR wwwww01000100000 |MUL regl, reg2, reg3
rrrrr111111RRRRR | wwwww01000100010 |MULU regl, reg2, reg3
rrrrr111111RRRRR | wwwww01010000000 |DIVH regl, reg2, reg3
rrrrr111111RRRRR | wwwww01010000010 |DIVHU regl, reg2, reg3
rrrrr111111RRRRR | wwwww(01011000000 |DIV regl, reg2, reg3
rrrrr111111RRRRR | wwwww01011000010 |DIVU regl, reg2, reg3
rrrrrl111111RRRRR | wwwww011001lccccO |CMOV cccec, regl, reg2, reg3

XII rrrrr111111iiiii | wwwwwO0O1l001IIIIOO |MUL imm9, reg2, reg3
rrrrr111111iiiii | wwwww01l001IIII10 |MULU imm9, reg2, reg3
rrrrr111111iiiii | wwwww011000ccccO |CMOV cccc, immb5, reg2, reg3
rrrrr11111100000 | wwwww01101000000 |BSW reg2, reg3
rrrrr11111100000 | wwwww01101000010 |BSH reg2, reg3
rrrrr11111100000 | wwwww01101000100 |HSW reg2, reg3

Xl 0000011001iiiiilL | LLLLLLLLLLLRRRRR |[DISPOSE immb, list12, [regl]
0000011001iiiiiL | LLLLLLLLLLLOOOOO |[DISPOSE immb5, list12
00000111104iiiidiL LLLLLLLLLLLOOOO1 [PREPARE listl2, imm5
00000111104iiiiiL | LLLLLLLLLLLEffO011 |[PREPARE list12, imm5, sp/imm

Note Not supported in the NB85E and NB85ET

User's Manual U14559EJ2VOUM

213

APPENDIX B INSTRUCTION OPCODE MAP

This chapter shows the opcode map for the instruction code shown below.

(1) 16-bit format instruction

15 11 10 5 4 0
I

(chode
(see [a])

—

Sub-opcode (see [b])

* (2) 32-bit format instruction

15 14 13 12 11 10 5 4 0 31 27 26 21 20 19 18 17 16
T T 1 T T T 1 1T T 1 1T T 1 T 1T T T 1 T T
Opcode Sub-opcode
| | (see [a]) (see [e]) | |

L

Sub-opcode (see [h]) Sub-opcode
Sub-opcode (see [d], [h]) (see [c])

Sub-opcode
(see [f], [g], [1])
Remark Operand convention
Symbol Meaning
R reg1: General register (used as source register)
r reg2: General register (mainly used as destination register. Some are also used as source
registers.)
w reg3: General register (mainly used as remainder of division results or higher 32 bits of

multiply results)

bit#3 3-bit data for bit number specification
immx x-bit immediate data

dispx x-bit displacement data

ccee 4-bit data condition code specification

214 User’'s Manual U14559EJ2VOUM

APPENDIX B INSTRUCTION OPCODE MAP
[a] Opcode
Bit Bit Bit Bit Bits 6, 5 Format
10 9 8 7 0,0 0,1 1,0 1,1
0 0 0 0 MOV R, r NOT DIVH JMphet I, IV
NOP"*' SWITCH"™"? SLD.BU""®
DBTRAP SLD.HU""*®
Undefined"**
0 0 0 1 SATSUBR SATSUB SATADD R, r MULH
ZXBNole4 SXBNO(EA ZXHNo(eA SXHNoteA
0 0 1 0 OR XOR AND TST
0 0 1 1 SUBR SUB ADD R, r CMP R, r
0 1 0 0 MOV imm5, r SATADD imm5, r ADD immb5, r CMP immb5, r 1]
CALLTNoteA
0 1 0 1 SHR imm5, r SAR immb5, r SHL imm5, r MULH immb5, r
Undefined"**
0 1 1 0 SLD.B v
0 1 1 1 SST.B
1 0 0 0 SLD.H
1 0 0 1 SST.H
1 0 1 0 |SLD.W™*7
SST.W'*?
1 0 1 1 Bcond 1
1 1 0 0 ADDI MOVEA MOVHI SATSUBI VI, Xl
B Note4 |- - - - - - -~~~ ~-~--~----°-T°-°-°-=°=-=°7°77%
MOV |mm32, R DISPOSENMe4
1 1 0 1 ORI XORI ANDI MULHI Vi
Undefined"**
1 1 1 0 LD.B LD.H""*® ST.B ST.H"*® Vi
LD-WNotes ST.WNMEE
1 1 1 1 |JR Bit manipulation 1"°°°| LD.HU""" Vv, VII,
JARL Undefined"*" VI, Xl
LD.BU" "™ Expansion 1" "
PREPARE""*"
Notes 1. If R (reg1) =r0 and r (reg2) = r0 (instruction without reg1 and reg2)
2. IfR(reg1) #r0 and r (reg2) = r0 (instruction with reg1 and without reg2)
3. If R (reg1) =r0 and r (reg2) = r0 (instruction without reg1 and with reg2)
4. If R (reg2) = r0 (instruction without reg2)
5. Ifbit4 =0 and r (reg2) = r0 (instruction with reg2)
6. Ifbit4 =1 andr (reg2) # r0 (instruction with reg2)
7. See|[b]
8. See|[c]
9. See|[d]

10. If bit 16 = 1 and r (reg2) # r0 (instruction with reg2)
11. If bit 16 = 1 and r (reg2) = r0 (instruction without reg2)
12. See [e]

Remark The NB85E and NB85ET do not support the DBTRAP instruction.

User's Manual U14559EJ2VOUM

215

APPENDIX B INSTRUCTION OPCODE MAP

[b] Short format load/store instruction (displacement/sub-opcode)

Bit 10| Bit9 | Bit8 | Bit7 Bit 0
0 1
0 1 1 0 |[SLD.B
0 1 1 1 |SST.B
1 0 0 0 [SLD.H
1 0 0 1 |SSTH
1 0 1 0 [SLD.W SST.W

[c] Load/store instruction (displacement/sub-opcode)

Bit 6 Bit 5 Bit 16
0 1
0 0 LD.B
0 1 LD.H LD.W
1 0 ST.B
1 1 ST.H ST.W

[d] Bit manipulation instruction 1 (sub-opcode)

Bit 15 Bit 14
0 1
0 SET1 bit#3, disp16 [R] NOT1 bit#3, disp16 [R]
1 CLR1 bit#3, disp16 [R] TST1 bit#3, disp16 [R]

216

User's Manual U14559EJ2VOUM

APPENDIX B INSTRUCTION OPCODE MAP
[e] Expansion 1 (sub-opcode)
Bit 26 | Bit 25 | Bit 24 | Bit 23 Bits 22, 21 Format
0,0 0,1 1,0 1,1
0 0 0 0 SETF LDSR STSR Undefined IX
0 0 0 1 | SHR SAR SHL Bit manipulation 2"*"
0 0 1 0 TRAP HALT RETI""*? EI"e? X
CTRETNMEZ DIthea
DBRET""? Undefined
Undefined
0 0 1 1 Undefined Undefined -
0 1 0 0 SASF MUL R, r,w MUL imm9, r, w IX, XI, XII
MULU R, r, w*** MULU imm9, r, w"**
0 1 0 1 DIVH DIV Xl
DIVHUNoted DIVUNO(EA
0 1 1 0 CMOV CMOV BSW"** Undefined X1, X1
ccee, immb5, r, w ccee, R, r, w BSH""**
stNo(ES
0 1 1 1 lllegal instruction -
1 X X X
Notes 1. See [f]
2. Seeld]
3. See[h]
4. Ifbit17 =1
5. Seeli]
Remark The NB85E and NB85ET do not support the DBRET instruction.

[f] Bit manipulation instruction 2 (sub-opcode)

Bit 18 Bit 17
0 1
SET1 1, [R] NOT1 1, [R]
CLR1 1, [R] TST1 1, [R]
[g] Return instruction (sub-opcode)
Bit 18 Bit 17
0 1
RETI Undefined
CTRET DBRET

User's Manual U14559EJ2VOUM

217

APPENDIX B

INSTRUCTION OPCODE MAP

[h] PSW operation instruction (sub-opcode)

Bit 15 Bit 14 Bits 13, 12, 11
0,0,0 0,0,1 0,1,0 0,11 1,0,0 1,0,1 1,1,0 1,11
0 0 DI Undefined
0 1 Undefined
1 0 El Undefined
1 1 Undefined

[[] Endian conversion instruction (sub-opcode)

Bit 18 Bit 17
0 1
0 BSW BSH
1 HSW Undefined

218

User's Manual U14559EJ2VOUM

APPENDIX C DIFFERENCES WITH ARCHITECTURE OF V850 CPU

(1/2)

Item

V850E1 CPU

V850 CPU

Instructions
(including operand)

BSH reg2, reg3

BSW reg2, reg3

CALLT imm6

CLR1 reg2, [regl]

CMOV cccc, immb5, reg2, reg3

CMOV cccc, regl, reg2, reg3

CTRET

DBRET""

DBTRAP"™*

DISPOSE immb5, list12

DISPOSE immb5, list12 [regl]

DIV regl, reg2, reg3

DIVH regl, reg2, reg3

DIVHU regl, reg2, reg3

DIVU reql, reg2, reg3

HSW reg2, reg3

LD.BU disp16 [regl], reg2

LD.HU disp16 [regl], reg2

MOV imm32, regl

MUL immo9, reg2, reg3

MUL regl, reg2, reg3

MULU regl, reg2, reg3

MULU imm9, reg2, reg3

NOT1 reg2, [regl]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SASF cccc, reg2

SET1 reg2, [regl]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

SWITCH regl

SXB regl

SXH regl

TST1 reg2, [regl]

ZXB regl

ZXH regl

Provided

Not provided

Note Not supported in the NB85E and NB85ET

User's Manual U14559EJ2VOUM

219

APPENDIX C DIFFERENCES WITH ARCHITECTURE OF V850 CPU

*
*

(212)
Item V850E1 CPU V850 CPU
Instruction format Format IV Format is different for some instructions.
Format XI Provided Not provided
Format XII
Format XIlII

Instruction execution clocks

Value differs for some instructions.

Program space

64 MB linear

16 MB linear

Valid bits of program counter (PC)

Lower 26 bits

Lower 24 bits

System register CALLT execution status saving registers

(CTPC, CTPSW)

Exception/debug trap status saving
registers (DBPC, DBPSW)

CALLT base pointer (CTBP)

Note 1

Debug interface register (DIR)

Breakpoint control registers 0 and 1
(BPCO, BPC1)™"*

Note 1

Program ID register (ASID)

Breakpoint address setting registers 0
and 1 (BPAVO, BPAV1)™**

Breakpoint address mask registers 0 and
1 (BPAMO, BPAMZ)"**

Breakpoint data setting registers 0 and 1
(BPDVO, BPDV1)™"*

Breakpoint data mask registers 0 and 1
(BPDMO, BPDM1)""*

Provided

Not provided

Exception trap status saving registers

DBPC, DBPSW

EIPC, EIPSW

lllegal instruction code

Instruction code areas differ.

Misaligned access enable/disable setting

Can be set depending on
product

Cannot be set. (misaligned
access disabled)

Non-maskable interrupt Input 3 (NB85E, NB85ET, 1
(NMI) NUSSE, NUS5SET)
1 (V850E/MAL, VB50E/MA2,
V850E/IAL, V850E/IA2)
Exception code 0010H, 0020H, 0030H 0010H
Handler address 00000010H, 00000020H, 00000010H
00000030H
Debug trap™**? Provided Not provided
Pipeline At next instruction, pipeline flow differs.
¢ Arithmetic operation instruction
e Branch instruction
¢ Bit manipulation instruction
e Special instruction (TRAP, RETI)
Notes 1. Used only for the NUS5E and NUS5ET

2. Not supported in the NB85E and NB85ET

220

User's Manual U14559EJ2V0OUM

APPENDIX D

INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU

Compared with the instruction codes of the V850 CPU, the instruction codes of the V850E1 CPU are upward
compatible at the object code level. In the case of the V850E1 CPU, instructions that even if executed have no
meaning in the case of the V850 CPU (mainly instructions performing write to the rO register) are extended as

additional instructions.

The following table shows the V850 CPU instructions corresponding to the instruction codes added in the V850E1
CPU. See the table when switching from products that incorporate the V850 CPU to products that incorporate the

V850E1 CPU.

Table D-1. Instructions Added to V850E1 CPU and V850 CPU Instructions with Same Instruction Code (1/2)

Instructions Added in VB50E1 CPU

V850 CPU Instructions with Same Instruction

Code as V850E1 CPU

CALLT imm6

MOV imm5, r0 or SATADD immb5, r0

DISPOSE imm5, list12

MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, r0

DISPOSE immb5, list12 [reg1]

MOVHI imm16, reg1, r0 or SATSUBI imm16, reg1, r0

MOV imm32, reg1

MOVEA imm16, reg1, rO

SWITCH reg1 DIVH reg1, r0

SXB reg1 SATSUB regf, r0

SXH reg1 MULH reg1, rO

ZXB reg1 SATSUBR regt, r0
ZXH reg1 SATADD regi, r0
(RFU) MULH imm5, r0

(RFU) MULHI imm186, reg1, r0

BSH reg2, reg3

lllegal instruction

BSW reg2, reg3

CMOV cccce, immb5, reg2, reg3

CMOV ccce, regt, reg2, reg3

CTRET

DIV reg1, reg2, reg3

DIVH regi, reg2, reg3

DIVHU reg1, reg2, reg3

DIVU regi, reg2, reg3

HSW reg2, reg3

MUL imm9, reg2, reg3

MUL reg1, reg2, reg3

MULU regt, reg2, reg3

MULU imm9, reg2, reg3

SASF cccc, reg2

User’s Manual

U14559EJ2V0UM

221

*

APPENDIX D

INSTRUCTIONS ADDED FOR V850E1 CPU COMPARED WITH V850 CPU

Table D-1. Instructions Added to V850E1 CPU and V850 CPU Instructions with Same Instruction Code (2/2)

Instructions Added in V850E1 CPU

V850 CPU Instructions with Same Instruction

Code as V850E1 CPU

CLR1 reg2, [regl]

DBRET™"*

DBTRAP"*

LD.BU disp16 [regl], reg2

LD.HU disp16 [regl], reg2

NOT1 reg2, [regl]

PREPARE list12, imm5

PREPARE list12, imm5, sp/imm

SET1 reg2, [regl]

SLD.BU disp4 [ep], reg2

SLD.HU disp5 [ep], reg2

TST1 reg2, [regl]

Undefined

Note Not supported in the NB85E and NB85ET

222

User's Manual U14559EJ2VOUM

APPENDIX E

[Numeral]

16-bit format iNStructionccccceeeeeiieiiiiiiieeeens 214
16-bit load/store instruction formatccccvveeeee 47
2-clock branchccccocoeiiiiiiiii e, 180
3-operand instruction formatcccccceeeeeiiiiinns 48
32-bit format iNStructionccoeeeviiiiiiiiiiieeeeeeens 214
32-bit load/store instruction formatcee.... 48
[A]

ADD oo 56
ADDI o 57
Additional items related to pipelineccee.... 197
AdAreSS SPACE ...ocovveiieiiiieeeeiie e

Addressing mode
Alignment hazard
AND

ANDI

Arithmetic operation instructions

Arithmetic operation instructions (pipeline) 184
ASID s 33
[B]

Based addressingccccoovveeeeiniiiienniie e 44
BCONG ..o 60
Bl oot 37,38
Bit @ddreSSingocoovvveieiiiiiie e 45
Bit manipulation instruction formatccc.ccceene 48
Bit manipulation inStructionscccccovcveveiiiineeen. 52
Bit manipulation instructions (pipeling) 187
BPAMO ..ottt 34
BPAML ..ottt 34
BPAVO ..ottt e 33
BPAVL ..ot 33
BPCO ittt 31
BPCL it 31
BPDIMO ..ottt 35
BPDIML ..ottt 35
BPDVO ..ottt 34
BPDVL ..ottt 34
BR instruction (pipeling)ccccoviiiiiiiiieeniiieen. 186
Branch instructionscccccooviiveiniiiiciniece e 52
Branch instructions (pipeling)cccccovevveeriineenn. 185
Breakpoint address mask registers0Oand 1 34
Breakpoint address setting registers 0O and 1 33
Breakpoint control registers0and 1c..ceeee.. 31
Breakpoint data mask registers0Oand 1 35
Breakpoint data setting registers 0 and 1 34
BSH e 62

INDEX

By i 37
[C]

CALLT ittt 64
CALLT base pointerccooceveeriieeeeiiiee e 29
CALLT caller status saving registersc...co....... 28
CALLT instruction (pipeline)cccccovivviiiiiieennns 187
Cautions when creating programscccccceeeene 196
CLRL oot 65
CLR1 instruction (pipeling)cccccevviiiiiiniiieennns 187
CMOV e s 66
CMP e 67
Conditional branch instruction format 47
CTBP e 29
CTPC .28
CTPSW .28
CTRET ... 68
CTRET instruction (pipeline) 188
(D]

Data alignmentccccooviieeiiiiieiie e 39
Data formatcoooviiviiiiieeeiee e 36
Data represSentationccccocveeeviiiienniiieeenniieennne 38
Data tyPe ..o 36
DBPC ..ottt 29
DBPSW ittt 29
[D]2] = 4 S PP TPR RPN 69
DBRET instruction (pipelin€)ccccvviivveiiniennn. 192
DBTRAP .ttt 70
DBTRAP instruction (pipeling)cccoocvverinenenne 192
Debug function instructionsccccccceevivvieieenennnnn. 53
Debug function instructions (pipeling) 192
Debug interface registercccovcvieriiieeeiiieeenns 30
DEDbUQG trap ..vveeiiieeeiiiiie e 172
Dl et 71
Dl instruction (PIipeling)coceeevviveeiriieeeniiieenn 188
DIR oottt 30
DISPOSEooiitiiiiieiiiee ettt 72
DISPOSE instruction (pipeling)cccccocvveviieeenn. 189
DIV ettt 74
DIVH ot 75
DIVHU .ot 77
Divide instructions (pipeling)ccccccovvveiiiienen. 184
DIVU ittt 78
(E]

ECR oot 26
Efficient pipeline processing 181
Bl e 79

User's Manual U14559EJ2VOUM 223

APPENDIX E INDEX

EIPC s 25
EIPSW L. 25
El instruction (pipeling)cccceeeveeiiiiiiiiiiiieee e 188
Exception cause registercccooviiieiieiiiiniiiinnnns 26
Exception/debug trap status saving registers 29
Exception processingccccveeeeeeeiiiiiiinnieeeeeeenee 170
EXception trapcccoceeeviiiiir 171
Extended instruction format 1ccccoeiiiiiinnneenn. 48
Extended instruction format 2ccccoevieiennneenn. 49
Extended instruction format 3ccceoviiiinnieenn. 49
Extended instruction format 4ccccceeviiiinnneenn. 49
[F]

FEPC e e 26
FEPSW L.t 26
Format | ... 46
Format Il ... 46
Format 1 ... 47
Format IV ... 47
Format IX ... 48
Format V ... 47
Format VI ... 48
Format VIl ... 48
Format VI ..o 48
FOrmat X ..oooiei e 49
Format X1 ..o 49
Format X1l ..o 49
Format XII ..o 49
[G]

General registers ... 23
[H]

HaIf-WOrd ..o 37
HALT e e 80
HALT instruction (pipeling)cccccceevviiiviieneeeneenne 189
Harvard architecturecccccceeiiiiiiiiieeeee 197
HSW e 81
[

imm-reg instruction formatcccooiiiiiienneenn. 46
Immediate addressingccccccoveiiiieeieei e 44
Instruction addresscccccceeiiiiiiiiieieee e 42
Instruction formatc.oocoeiiiiiii e 46
Instruction opcode Mapccevvvevevvvvevevevevererenennnnn 214
INSTrUCLION St ...oeiiiiiiiie e 54
INTEOET e 38
Internal configurationccccceeeiiiiieiniiee e 21
Interrupt SErvicingcoccveeeeeieiiieeee e 167
Interrupt status saving registersccccceviieeenne 25

[J]

JARL e s 82
IMP 83
JMP instruction (pipeling)ccccccevveeiieiiciiiiiieeeee, 186
IR 84
Jump instruction formatcccoeciiiiin 47
[L]

LD inStruCtionscooiiiiiiiiiieiiieieeeeee e 50
LD instructions (pPipeling)ccccccoeviiiiiieeeeeeiieinins 182
LD.B it 85
LD.BU ..ottt e 87
LD H e 89
LD.HU e 91
LD.W e 93
LDSR i 95
LDSR instruction (pipeling)ccceccvvveeeeeeiieinnns 189
Load inStruCtionScooveieeiniiieeeeeee e 50
Load instructions (pipeling)cccccivieeeeeeiieiinnns 182
Logical operation instructionscccocceeeeviieeenn. 51
Logical operation instructions (pipeline) 185
[M]

Maskable interrupt ... 167
MemOry Map ..o 41
MOV e 96
MOVEA .o 97
Move word instruction (pipeling)cccccceeeeviennnns 184
MOVHI .o 98
MUL o 99
MULH . 100
MULHI e 101
Multiply inStruCtionscccceviieeiiiien e 50
Multiply instructions (pipeling)ccccoevviieeernnnen. 183
MULU e e 102
[N]

NMI status saving registersccccccveeeeeiicineneennn. 26
Non-blocking l0ad/storecccceeeviiviiiiiiee e, 179
Non-maskable interruptccccociiiiiiiiiiiinn, 169
NOP s 103
NOP instruction (pipeling)ccccoevecviiieereeeiiciinns 190
NOT e s 104
NOTT s 105
NOT1 instruction (pipeling)ccccevieeeeeeiiiiinns 187
[O]

Operand addressccccccoeveciiiieeieeeeeeciieeeee e 44
OR s 106
ORI e 107

224 User’'s Manual U14559EJ2VOUM

APPENDIX E INDEX

[P]

P 23
Pipeline ..o 177
Pipeline disorderccceveieiiiiiiiiieee e 193
Pipeline flow during execution of instructions 182
PREPARE.......oiiiiiieieee e 108
PREPARE instruction (pipeline)c.ccccooeuvveee.n. 190
Program COUNETuuvuviiiiiiiiiiiiiiiiiiiiiiiiieee 23
Program ID regiStercccccceeieiiiiiiiieeeeee e 33
Program registerscccveeveeeiiniiiiiiieee e 23
Program status Wordccccevviiiiiiiieneeeniiiiieeeen. 27
PSW e 27
[R]

FOTO I3 oo 23
reg-reg instruction formatcccoooiiiiieiiiininiinns 46
Register addressingcccceeiiiiiiiieieeeeeeniieeeenn 44
Register addressing (register indirect) 43
Register Setuuvvvveiiiiiiiiiieeee e

Register status after resetc.c....

Relative addressing (PC relative)
RESEL .o

Restoring from exception trap and debug trap 174
Restoring from interrupt/exception processing 173
RET] oo

RETI instruction (pipeline)

[S]

SAR 112
SASF 113
SATADD ..ot 114
SATSUB oot 115
SATSUBI it 116
SATSUBR ...ooiiiiiiiiieee e 117
Saturated operation inStructionscccccceeveienene 51
Saturated operation instructions (pipeline) 185
SETL oo 118
SET1 instruction (PIipeling)coooiiiiieeiieeiinniins 187
SETF o 119
SHL e 121
Short path ... 198
SHR 122
SLD.B i 123
SLD.BU ..ot 125
SLDH e 127
SLD.HU oo 129
SLD.W o 131
SLD INStIUCLIONSoeeiiiiiiiiiiieirreee e 50
SLD instructions (Pipeling)cccoooiciiiieiiiiniiiiiines 182
Software exceptionccccceeeeiiiiiiiieeieee s 170
Special iINSruCtionSccvvvieiiiiiiiieee s 52
Special instructions (pipeling)cccccceeeeiiiiiinnns 187
SST.B i 133
SSTH 135

Stack manipulation instruction format 1
Starting up ..eeeeeeeeiiiiiieeeees

Store instructions
Store instructions (pipeline) ...
STSR ot

STSR instruction (pipeling)cccccooviiiiiieineennnn.
SUB .ttt
SUBR .ottt
SWITCH oot
SWITCH instruction (pipeline)cccoocovveeeeeennnnn.
SXB it
SXH e
SYSIEM FEQISLEIS ...evviiiiiiiiiiiiieieee e
[T]
TRAP e 151
TRAP instruction (pipelin€)ccccccovniiiiiiennennnn. 191
TS T e 152
TSTL e 153
TST1 instruction (pipeling)cccceeviiiiiiiieeneennn. 187
(U]
Unconditional branch instructions 186
Unsigned iNtEOErcooiieiiiiiiieeeiiiieeee e 38
(W]
WOTD oo 36
(X]
XOR i 154
155
[Z]
ZXB .o 156
ZXH e 157

User's Manual U14559EJ2VOUM 225

[MEMO]

226 User's Manual U14559EJ2VOUM

NEC

Although NEC has taken all possible steps
essage to ensure that the documentation supplied
to our customers is complete, bug free

and up-to-date, we readily accept that

From: ;
errors may occur. Despite all the care and
precautions we've taken, you may
Name encounter problems inthe documentation.
Please complete this form whenever
ou'd like to report errors or suggest
Company y
improvements to us.
Tel. FAX
Address
Thank you for your kind support.
North America Hong Kong, Philippines, Oceania Asian Nations except Philippines
NEC Electronics Inc. NEC Electronics Hong Kong Ltd. NEC Electronics Singapore Pte. Ltd.
Corporate Communications Dept. Fax: +852-2886-9022/9044 Fax: +65-250-3583

Fax: +1-800-729-9288
+1-408-588-6130

Europe Korea Japan
: NEC Electronics Hong Kong Ltd. NEC Semiconductor Technical Hotline
NEC El E H
C Electronics (Europe) GmbH o g o Fax: +81- 44-435-9608

Technical Documentation Dept.

Fax: +49-211-6503-274 Fax: +82-2-528-4411

South America Taiwan
NEC do Brasil S.A. NEC Electronics Taiwan Ltd.
Fax: +55-11-6462-6829 Fax: +886-2-2719-5951

| would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

If possible, please fax the referenced page or drawing.

Document Rating Excellent Good Acceptable Poor
Clarity a a a a
Technical Accuracy a a a a
Organization a a Qa a

CS 01.2

