Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

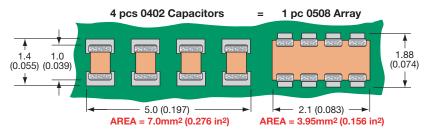
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

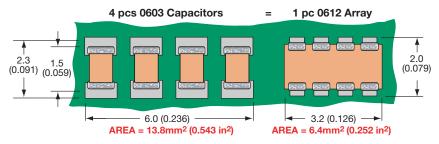
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

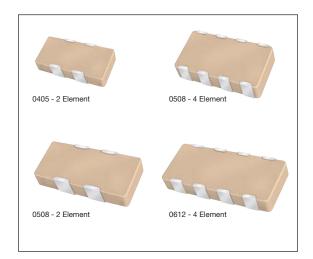
During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

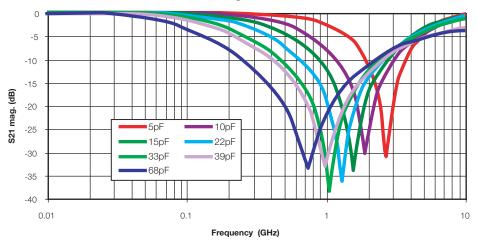
The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

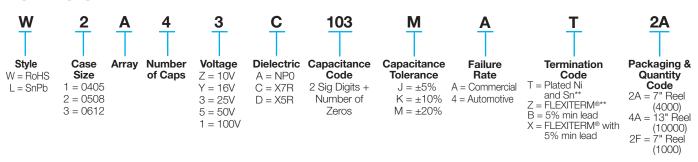


The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

Capacitor Array (IPC)


GENERAL DESCRIPTION

AVX is the market leader in the development and manufacture of capacitor arrays. The smallest array option available from AVX, the 0405 2-element device, has been an enormous success in the Telecommunications market. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.


AVX capacitor arrays are available in X5R, X7R and NPO (COG) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).

Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude

HOW TO ORDER

**RoHS compliant

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

Capacitance Range – NP0/C0G

SIZE				0405			05	08			050	08		0612					
# Elements					2				4			4							
	Soldering			Reflow Only				/Wave		F	Reflow	Wave		Reflow/Wave					
Pac	ckaging				All Pa	aper		Pa	per/En	nbosse	d	Paper/Embossed							
Length	Length mm (in.)		1.00 ± 0.15 (0.039 ± 0.006)					± 0.15 ± 0.006	5)		1.30 ± .051 ±	0.15 0.006)		1.60 ± 0.150 (0.063 ± 0.006)					
Width	Width mm (in.)		(0.0			± 0.15 ± 0.006	5)		2.10 ± .083 ±	0.15 0.006)		3.20 ± 0.20 (0.126 ± 0.008)							
Max. mm			0.66				94			0.9			1.35						
Thicknes		(in.)		(0.026)				037)			(0.0				<u> </u>	053)			
1R0	WVDC Cap	1.0	16	25	50	16	25	50	100	16	25	50	100	16	25	50	100		
1R2 1R5	(pF)	1.2 1.5																	
1R8		1.8																	
2R2 2R7		2.2 2.7																	
3R3 3R9		3.3 3.9																	
4R7		3.9 4.7																	
5R6		5.6																	
6R8 8R2		6.8 8.2																	
100		10																	
120 150		12 15																	
180		18																	
220 270		22 27																	
330		33																	
390 470		39 47																	
560		56																	
680 820		68 82																	
101		100																	
121 151		120 150																	
181		180																	
221		220																	
271 331		270 330																	
391		390																	
471		470																	
561 681		560 680																	
821		820																	
102	1	000																	
122 152		1200 1500																	
182		1800				\vdash	_			\vdash						 	\vdash		
222	2	2200																	
272		2700								_				_					
332 392		3300 3900																	
472		1700																	
562		600																	
682 822		8800 3200																	
022) <u>_</u> UU		<u> </u>				<u> </u>				l			<u> </u>				

Capacitance Range - X7R/X5R

SIZE # Elements		0306 4				0405					0508						0508						0612					
						\vdash	2				2						4						4					
Solderir		Reflow Only				Reflow Only				Reflow/Wave						Reflow/Wave						Reflow/Wave						
Packagi				aper		┞	All Paper				All Paper						_			nboss			_	Pa	per/En	nboss	ed	
Length	mm (in.)		1.60 ± 0.15 (0.063 ± 0.006)				1.00 ± 0.15 (0.039 ± 0.006)				1.30 ± 0.15 (0.051 ± 0.006)						1.30 ± 0.15 (0.051 ± 0.006)								1.60 ±			
\/\/idth	Width mm			0.81 ± 0.15			1.37 ± 0.15				2.10 ± 0.15						2.10 ± 0.15								3.20 ±		-,	
(in.) (0.03			0.032 :		06)	(0.054 ± 0.006)				(0.083 ± 0.006)						(0		0.00	6)		(0.126 ± 0.008)							
Max. mm Thickness (in.)		0.50 (0.020)			0.66 (0.026)				0.94 (0.037)						0.94 (0.037)						1.35 (0.053)							
WVDC	. ,	6	10	16	25	6	10	16	25	50	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
101 Cap	100																											
121 (µF) 151	120 150																											
181	180																											
221	220																											
271 331	270 330																											
331	330																											
471	470																											
561	560																											
681 821	680 820																											
102	1000																											
122	1200																											
152 182	1500 1800																											
222	2200																											
272	2700																											
332 392	3300 3900																											
472	4700																											
562	5600																											
682 822	6800 8200																											
103 Cap	0.010																											
123 (µF) 153	0.012 0.015																											
183	0.018	\vdash																										
223	0.022																			////								
273 333	0.027																											
393	0.033																											
473	0.047																											
563 683	0.056 0.068																											
823	0.082	L	L	L																		L						
104	0.10					///					///	////					///						111	///	///			
124 154	0.12 0.15											////																
184	0.18																						///					
224 274	0.22 0.27																											
334	0.27					77/																						
474	0.47																											
564 684	0.56	\vdash				\vdash			-							-												
824	0.68																											
105	1.0					_					///							_										
125 155	1.2 1.5																											
185	1.8	L		L		L			L							L	L	L				L						
225	2.2										///																	
335 475	3.3 4.7																											
106	10																											
226 476	22																											
107	47 100																											
	100				<u> </u>					L		1			L												1	

= Currently available X7R

= Currently available X5R

= Under development X7R, contact factory for advance samples

= Under development X5R, contact factory for advance samples

