

A Schlumberger Company

MIL-STD-883 July 1986—Rev 1⁵

Description

The μ A715QB is a high speed, high gain, monolithic operational amplifier constructed using the Fairchild Planar Epitaxial process. It is intended for use in a wide range of applications where fast signal acquisition or wide bandwidth is required. The μ A715QB features fast settling time, high slew rate, low offsets and high output swing for large signal applications. In addition, the device displays excellent temperature stability and will operate over a wide range of supply voltages. The μ A715QB is ideally suited for use in A/D and D/A converters, active filters, deflection amplifiers, video amplifiers, phase-locked loops, multiplexed analog gates, precision comparators, sample-and-holds, and general feedback applications requiring DC wide bandwidth operation.

- High Slew Rate
- Fast Settling Time
- Wide Bandwidth
- Wide Operating Supply Range
- Wide Input Voltage Ranges

μΑ715QB High Speed Operational Amplifier

Aerospace and Defense Data Sheet Linear Products

Connection Diagram 10-Lead Can (Top View)

Lead 5 connected to case.

Order Information

Part No. Case/

μA715HMQB IC

Package Code Mil-M-38510, Appendix C

A-2 10-Lead Can

μ**A715QB**

Absolute Maximum Ratings

Storage Temperature Range -65°C to +175°C Operating Temperature Range -55°C to +125°C Lead Temperature (soldering, 60 s) 300°C Internal Power Dissipation9 Can 350 mW Supply Voltage ± 18 V

± 15 V

± 15 V

Processing: MIL-STD-883, Method 5004

Burn-In: Method 1015, Condition A, PDA calculated using Method 5005, Subgroup 1

Quality Conformance Inspection: MIL-STD-883,

Method 5005

Group A Electrical Tests Subgroups:

- 1. Static tests at 25°C
- 2. Static tests at 125°C
- 3. Static tests at -55°C
- 4. Dynamic tests at 25°C
- 5. Dynamic tests at 125°C 6. Dynamic tests at -55°C
- 9. AC tests at 25°C

Group C and D Endpoints: Group A, Subgroup 1

Notes

1. 100% Test and Group A

Differential Input Voltage

Input Voltage 10

- 2. Group A
- 3. Periodic tests, Group C
- 4. Guaranteed but not tested
- 5. When changes occur, FSC will make data sheet revisions available. Contact local sales representative for the latest revision.
- 6. For more information on device function, refer to the Fairchild Linear Data Book Commercial Section.
- 7. P_c is guaranteed by I_{CC} : $P_c = 30 I_{CC}$.
- 8. VIR is guaranteed by the CMR test.
- 9. Rating applies to ambient temperatures up to 125°C. Above 125°C ambient, derate linearly at 140°C/W.
- 10. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

μ A715QB

 μ A715QB Electrical Characteristics $V_{CC} = \pm 15$ V, unless otherwise specified.

Symbol	Characteris	stic	Condition	Min	Max	Unit	Note	Subgrp
V _{1O}	Input Offset Voltage		$R_S = 50 \Omega$, $V_{CM} = 0 V$		5.0	mV	1	1
					7.5	mV	1	2,3
I _{IO}	Input Offset Current		V _{CM} = 0 V		250	nA	1	1,2
					800	nA	1	3
I _{IB}	Input Bias Current		V _{CM} = 0 V		750	nA	1	1,2
					4.0	μΑ	1	3
loc	Supply Current				7.0	mA	1	1
Pc	Power Consumption ⁷				210	mW	1	1
CMR	Common Mode Rejection		$V_{CM} = \pm 10 \text{ V}, R_S = 10 \text{ k}\Omega$	74		dB	1	1,2,3
V _{IR}	Input Voltage Range ⁸			± 10		٧	1	1,2,3
PSRR	Power Supply Rejection Ratio		\pm 7.0 V \leq V _{CC} \leq \pm 18 V, R _S = 10 k Ω		300	μV/V	1	1,2,3
A _{VS}	Large Signal Voltage Gain		$V_O = \pm 10$ V, $R_L = 2.0$ k Ω	15		V/mV	1	4
				10		V/mV	1	5,6
V _{OP}	Output Voltage Swing		$R_L = 2.0 \text{ k}\Omega$	± 10		V	1	4,5,6
TR(t _r)	Response	Rise Time	V _I = 400 mV, A _V = 1.0		60	ns	2	9
TR(o _s)		Overshoot			40	%	2	9
SR	Slew Rate		$A_V = 1.0$	15		V/μs	2	9

Primary Burn-In Circuit

Equivalent Circuit

.....