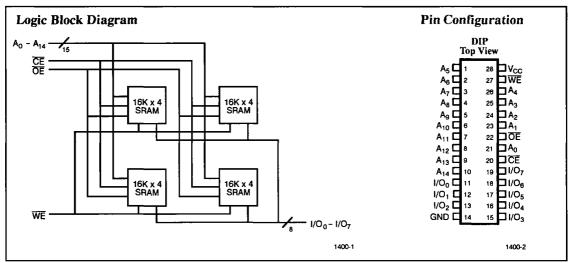
32K x 8 SRAM Module

Features

- Very high speed 256K SRAM module
 Access time of 10 nsec.
- 300-mil-wide hermetic DIP package
- Low active power
 - 2.1W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- On-chip decode for speed and density
- JEDEC pinout—compatible with 7C199 monolithic SRAMs
- Small PCB footprint
 - 0.42 sq. in.


Functional Description

The CYM1400 is an extremely high performance 256-kilobit static RAM module organized as 32,768 words by 8 bits. This module is constructed using four 16K x 4 static RAMs in LCC packages mounted on a 300-mil-wide ceramic substrate. Extremely high speed and density are achieved by using BiCMOS SRAMs containing internal address decoding logic.

Writing to the module is accomplished when the chip enable (\overline{CE}) and write enable (\overline{WE}) inputs are both LOW. Data on the eight input pins (I/O_0) through $I/O_7)$

of the device is written into the memory location specified on the address pins (A₀ through A₁₄).

Reading the device is accomplished by taking the chip enable (\overline{CE}) and output enable (\overline{OE}) LOW, while write enable (\overline{WE}) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins $(A_0$ through A_{14}) will appear on the eight output pins $(I/O_0$ through I/O_7). The data output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable (\overline{WE}) is HIGH.

Selection Guide

	-	1400HD-10	1400HD-12	1400HD-15	1400HD-20
Maximum Access Time (ns)		10	12	15	20
Maximum Operating	Commercial	375	375	375	
Current (mA)	Military		425	425	425
Maximum Standby	Commercial	200	200	200	
Current (mA)	Military		250	250	250

Maximum Ratings

(Above which the useful life may be impaired)

Storage Temperature-65°C to +150°C

Ambient Temperature with
Power Applied-55°C to +125°C

Supply Voltage to Ground Potential-0.5V to +7.0V

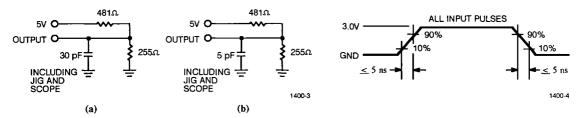
DC Voltage Applied to Outputs
in High Z State-0.5V to +7.0V

Operating Range

Range	Ambient Temperature	v _{CC}		
Commercial	0°C to +70°C	5V ± 10%		
Military	-55°C to +125°C	5V ± 10%		

Electrical Characteristics Over the Operating Range

Do warm of a ser	Description Test Conditions		CYM1220HD				
Parameters Description		Test Conditions	Min.	Max.	Units		
Vон	Output HIGH Voltage	$V_{CC} \approx Min., I_{OH} = -4.0 \text{ mA}$		2.4	·	V	
VOL	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 8.0 \text{ mA}$			0.4	V	
V _{IH}	Input HIGH Voltage			2.2	V _{CC}	V	
V _{IL}	Input LOW Voltage [1]			-0.5	0.8	V	
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-20	+20	μА	
Ioz	Output Leakage Current	GND ≤ V _O ≤ V _{CC} , Output Disabled		-20	+20	μА	
I _{CC}	V _{CC} Operating	V _{CC} = Max., I _{OUT} = 0 mA, Commercial			375		
4.0	Supply Current	CE ≤ V _{IL}	Military		425	mA	
	Automatic CE	$V_{CC} \approx Max., \overline{CE} \geq V_{IH},$	Commercial		200	mA	
I _{SB1}	Power-Down Current	own Current Min. Duty Cycle = 100%			250	11125	
I _{SB2} Automatic CE Power-Down Curre	Automatic CE	$V_{CC} = Max., \overline{CE} \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or}$	Commercial		200		
	Power-Down Current	own Current $V_{\text{IN}} \leq 0.2V$			250	mA	


Capacitance[2]

Parameters	Description	Test Conditions	Max.	Units
C _{IN}	Input Capacitance	$T_A = 25$ °C, $f = 1$ MHz,	25	pF
Cour	Output Capacitance	$V_{CC} = 5.0V$	30	pF

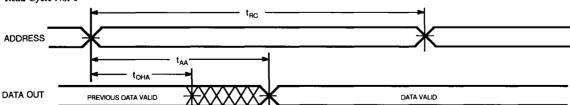
Notes:

2. Tested on a sample basis.

AC Test Loads and Waveforms

^{1.} $V_{IL(MIN)} = -3.0V$ for pulse widths less than 20 ns.

Switching Characteristics Over the Operating Range [3]

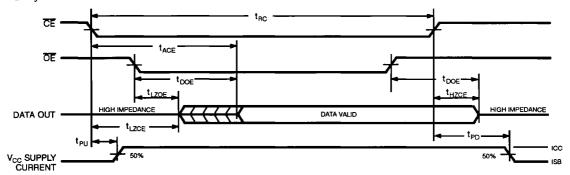

Parameters	Description	1400HD-10		1400HD-12		1400HD-15		1400HD-20		Units
rarameters	Description	Min.	Max.	Min.	Max.	Min.	Max.	MIn.	Max.	Units
READ CYC	READ CYCLE									
t _{RC}	Read Cycle Time	10		12		15		20		ns
tAA	Address to Data Valid		10		12		15		20	ns
to <u>ha</u>	Data Hold from Address Change	2		3		3		3		ns
tACS	CE LOW to Data Valid		10		12		15		20	ns
tDOE	OE LOW to Data Valid		8		10		10		10	ns
t _{L,ZOE}	OE LOW to Low Z	2		2		3		3		ns
tHZOE	OE HIGH to High Z		8		9		9		9	ns
tLZCE	CE LOW to Low Z	2		3		3		3		ns
tHZCE	CE HIGH to High Z ^[4]		6		8		8		8	ns
tpt	CE LOW to Power-Up	0		0		0		0		ns
tPD	tpD		10		12		15		20	ns
WRITE CY	CLE									
twc	Write Cycle Time	10		12		15		20		ns
tSCE	CE LOW to Write End	8		10		12		15		ns
t _{AW}	Address Set-Up to Write End	8		10		12		15		ns
tHA	Address Hold from Write End	1		1		1		1		ns
t _{SA}	Address Set-Up from Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	8		10		12		15		ns
t _{SD}	Data Set-Up to Write End	8		10		10		10		ns
t _{HD}	Data Hold from Write End	1		1		1		1		ns
tLZWE	WE HIGH to Low Z	3		5		5		5		ns
tHZWE	WE LOW to High Z ^[4]	0	5	0	7	0	7	0	10	ns

Notes:

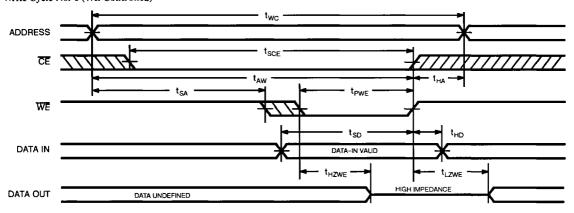
- Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- t_{HZCS} and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady state voltage.
- The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input
- set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 6. WE is HIGH for read cycle.
- 7. Device is continuously selected, $\overline{CE} = V_I$.
- 8. Address valid prior to or coincident with $\overline{\text{CE}}$ transition low.
- If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms

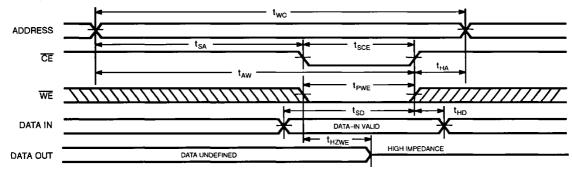
Read Cycle No. 1[6, 7]



1400-5


Switching Waveforms (continued)

Read Cycle No. 2 [6, 8]


1400-6

Write Cycle No. 1 (WE Controlled) [5]

1400-7

Write Cycle No. 2 (CE Controlled)[5,9]

1400-8

Truth Table

CE	WE	ŌĒ	Inputs/Outputs	Mode
Н	Х	X	High Z	Deselect/Power-Down
L	Н	L	Data Out	Read Word
L	L	Х	Data In	Write Word
L	Н	Н	High Z	Deselect

Ordering Information

Speed	Speed Ordering Code		Operating Range		
10	CYM1400HD-10C	HD09	Commercial		
12	CYM1400HD-12C	HD09	Commercial		
	CYM1400HD-12MB		Military		
15	CYM1400HD-15C	HD09	Commercial		
	CYM1400HD-15MB		Military		
20	CYM1400HD-20MB	HD09	Military		

Document #: 38-M-00022-A