BYW95 series #### **FEATURES** - · Glass passivated - High maximum operating temperature - · Low leakage current - Excellent stability - Guaranteed avalanche energy absorption capability - Available in ammo-pack - Also available with preformed leads for easy insertion. ### **DESCRIPTION** Rugged glass SOD64 package, using a high temperature alloyed construction. This package is hermetically sealed and fatigue free as coefficients of expansion of all used parts are matched. ### **LIMITING VALUES** In accordance with the Absolute Maximum Rating System (IEC 134). | SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT | |--------------------|--|---|------|------|------| | V _{RRM} | repetitive peak reverse voltage | · | | | | | | BYW95A | · | _ | 200 | v | | | BYW95B | | _ | 400 | v | | | BYW95C | | _ | 600 | v | | V _R | continuous reverse voltage | | | | | | | BYW95A | | - | 200 | v | | | BYW95B | | - | 400 | v | | | BYW95C | | _ | 600 | v | | I _{F(AV)} | average forward current | T _{tp} = 60 °C; lead length = 10 mm
see Fig.2;
averaged over any 20 ms period;
see also Fig.6 | _ | 3.00 | A | | | | T _{amb} = 65 °C; PCB mounting (see Fig.11); see Fig.3; averaged over any 20 ms period; see also Fig.6 | _ | 1.25 | A | | I _{FRM} | repetitive peak forward current | T _{tp} = 60 °C; see Fig.4 | | 30 | Α | | | | T _{amb} = 65 °C; see Fig.5 | _ | 13 | Α | | I _{FSM} | non-repetitive peak forward current | t = 10 ms half sine wave; $T_j = T_{j \text{ max}} \text{ prior to surge;}$ $V_R = V_{RRMmax}$ | | 70 | A | | E _{RSM} | non-repetitive peak reverse avalanche energy | L = 120 mH; $T_j = T_{j \text{ max}}$ prior to surge; inductive load switched off | _ | 10 | mJ | | T _{stg} | storage temperature | | -65 | +175 | °C | | T _i | junction temperature | see Fig.7 | -65 | +175 | °C | Separate of the th # Fast soft-recovery controlled avalanche rectifiers BYW95 series ### **ELECTRICAL CHARACTERISTICS** T_i = 25 °C unless otherwise specified. | SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT | |--------------------|---|--|------|------|------|------| | V _F | forward voltage | $I_F = 5 \text{ A}$; $T_j = T_{j \text{ max}}$; see Fig.8 | | - | 1.25 | ٧ | | | | I _F = 5 A; see Fig.8 | - | - | 1.50 | ν | | V _{(BR)R} | reverse avalanche
breakdown voltage | I _R = 0.1 mA | | | | | | | BYW95A | | 300 | _ | - | V | | | BYW95B | | 500 | - | _ | V | | | BYW95C | | 700 | _ | _ | V | | I _R | reverse current | V _R = V _{RRMmax} ;
see Fig.9 | _ | - | 1 | μА | | | | V _R = V _{RRMmax} ; T _j = 165 °C;
see Fig.9 | - | - | 150 | μА | | t _{rr} | reverse recovery time | when switched from $I_F = 0.5$ A to $I_R = 1$ A; measured at $I_R = 0.25$ A; see Fig.12 | - | - | 250 | ns | | C _d | diode capacitance | f = 1 MHz; V _R = 0 V; see Fig.10 | - | 85 | | pF | | dl _R | maximum slope of reverse recovery current | when switched from $I_F = 1$ A to $V_R \ge 30$ V and $dI_F/dt = -1$ A/ μ s; see Fig.13 | _ | | 7 | A/μs | #### THERMAL CHARACTERISTICS | SYMBOL | PARAMETER | CONDITIONS | VALUE | UNIT | |----------------------|---|---------------------|-------|------| | R _{th j-tp} | thermal resistance from junction to tie-point | lead length = 10 mm | 25 | K/W | | R _{th j-a} | thermal resistance from junction to ambient | note 1 | 75 | K/W | ### Note 1. Device mounted on an epoxy-glass printed-circuit board, 1.5 mm thick; thickness of Cu-layer ≥40 μm, see Fig.11. For more information please refer to the *'General Part of Handbook SC01.'* ## BYW95 series #### **GRAPHICAL DATA** $a=1.42;\ V_{R}=V_{RRMmax};\ \delta=0.5.$ Switched mode application. Fig.2 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage). a = 1.42; V_R = V_{RRMmax}; δ = 0.5. Device mounted as shown in Fig.11. Switched mode application. Fig.3 Maximum permissible average forward current as a function of ambient temperature (including losses due to reverse leakage). T_{tp} = 60 °C; $R_{th \mid -tp}$ = 25 K/W. V_{RRMmax} during 1 – δ ; curves include denating for $T_{j max}$ at $V_{RRM} = 600 \text{ V}$. Fig.4 Maximum repetitive peak forward current as a function of pulse time (square pulse) and duty factor. 11 - 209 BYW95 series excluding switching losses) as a function of average forward current. ## BYW95 series Dotted line: $T_j = 175$ °C. Solid line: $T_j = 25$ °C. Fig.8 Forward current as a function of forward voltage; maximum values. Fig.10 Diode capacitance as a function of reverse voltage; typical values. ## BYW95 series