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i860™ XR 64-BIT MICROPROCESSOR

Parallei Architecture that Supports Up

to Three Operations per Clock

— One Integer or Control Instruction
per Clock

— Up to Two Floating-Point Results per
Clock

High Performance Design

- 25/33.3/40 MHz Clock Rates

— 80 Peak Single Precision MFLOPs

— 60 Peak Double Precision MFLOPs
— 64-Bit External Data Bus

— 64-Bit Internal Instruction Cache Bus
— 128-Bit Internal Data Cache Bus

High Level of Integration on One Chip

— 32-Bit Iinteger and Control Unit

— 32/64-Bit Pipelined Floating-Point
Adder and Multiplier Units

— 64-Bit 3-D Graphics Unit

— Paging Unit with Translation

" Lookaside Buffer

— 4 Kbyte Instruction Cache

— 8 Kbyte Data Cache

Compatible with Industry Standards

— ANSV/IEEE Standard 754-1985 for
Binary Floating-Point Arithmetic

— Intel386™ /486 Microprocessor Data
Formats and Page Table Entries

— JEDEC 168-pin Ceramic Pin Grid
Array Package (see Packaging
Outlines and Dimensions, order
#231369)

Easy to Use

— On-Chip Debug Register

-— Assembiler, Linker, Simulator,
Debugger, C and FORTRAN
Compilers, FORTRAN Vectorizer,
Scalar and Vector Math Libraries for
both 0S$/2* and UNIX* Environments

The Intel i860™ XR Microprocessor {order codes AB0860XR-25, A8B0860XR-33 and AB0860XR-40) delivers
supercomputing performance in a single VLS| component. The 64-bit design of the i860 XR microprocessor
balances integer, floating point, and graphics performance for applications such as engineering workstations,
scientific computing, 3-D graphics workstations, and muitiuser systems. Its paraliel architecture achieves high
throughput with RISC design techniques, pipelined processing units, wide data paths, large on-chip caches,
million-transistor design, and fast one-micron CHMOS IV silicon technology.
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1.0 FUNCTIONAL DESCRIPTION

As shown by the block diagram on the front page,
the i860 XR microprocessor consists of 9 units:

. Core Execution Unit

. Floating-Point Control Unit

. Floating-Point Adder Unit

. Floating-Point Multiplier Unit
. Graphics Unit

. Paging Unit

. Instruction Cache

. Data Cache

. Bus and Cache Control Unit

OCONOON L WN

The core execution unit controls overall operation of
the i860 XR microprocessor. The core unit executes
load, store, integer, bit, and control-transfer opera-
tions, and fetches instructions for the floating-point
unit as well. A set of 32 x 32-bit general-purpose
registers are provided for the manipulation of integer
data. Load and store instructions move 8-, 16-, and
32-bit data to and from these registers. Its full set of
integer, logical, and control-transfer instructions give
the core unit the ability to execute complete systems
software and applications programs. A trap mecha-
nism provides rapid response to exceptions and ex-
ternal interrupts. Debugging is supported by the abili-
ty to trap on data or instruction reference.

The floating-point hardware is connected to a sepa-
rate set of floating-point registers, which can be
accessed as 16 x 64-bit registers, or 32 x 32-bit reg-
isters. Special load and store instructions can also
access these same registers as 8 x 128-bit registers.
All floating-point instructions use these registers as
their source and destination operands.

The floating-point control unit controls both the float-
ing-point adder and the floating-point muitiplier, issu-
ing instructions, handling all source and result
exceptions, and updating status bits in the floating-
point status register. The adder and multiplier can
operate in parallel, producing up to two results per
clock. The floating-point data types, floating-point in-
structions, and exception handling all support the
IEEE Standard for Binary Floating-Point Arithmetic
(ANSI/IEEE Std 754-1985).

The floating-point adder performs addition, subtrac-
tion, comparison, and conversions on 64- and 32-bit
floating-point values. An adder instruction executes
in three clocks; however, in pipelined mode, a new
result is generated every clock.

The floating-point multiplier performs floating-point
and integer multiply and floating-point reciprocal op-
erations on 64- and 32-bit floating-point values. A
multiplier instruction executes in three to four clocks;

I PRELIMINARY
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however, in pipelined mode, a new result can be
generated every clock for singie-precision and every
other clock for double precision.

The graphics unit has special integer logic that sup-
ports three-dimensional drawing in a graphics frame
buffer, with color intensity shading and hidden sur-
face elimination via the Z-buffer algorithm. The
graphics unit recognizes the pixel as an 8-, 16-, or
32-bit data type. It can compute individual red, blue,
and green color intensity values within a pixel; but it
does so with parallel operations that take advantage
of the 64-bit internal word size and 64-bit external
bus. The graphics features of the i860 XR micro-
processor assume that the surface of a solid object
is drawn with polygon patches whose shapes ap-
proximate the original object. The color intensities of
the vertices of the polygon and their distances from
the viewer are known, but the distances and intensi-
ties of the other points must be calculated by inter-
polation. The graphics instructions of the i860 XR
microprocessor directly aid such interpolation.

The paging unit implements protected, paged, virtual
memory via a 64-entry, four-way set-associative
memory called the TLB (Translation Lookaside Buff-
er). The paging unit uses the TLB to perform the
translation of logical address to physical address,
and to check for access violations. The access pro-
tection scheme employs two levels of privilege: user
and supervisor.

The instruction cache is a two-way set-associative
memory of four Kbytes, with 32-byte blocks. It trans-
fers up to 64 bits per clock (320 Mbyte/sec at
40 MHz).

The data cache is a two-way set-associative memo-
ry of eight Kbytes, with 32-byte blocks. It transfers
up to 128 bits per clock (640 Mbyte/sec at 40 MHz).
The 860 XR microprocessor normally uses write-
back caching, i.e. memory writes update the cache
(if applicable) without necessarily updating memory
immediately; however, caching can be inhibited by
software where necessary.

The bus and cache control unit performs data and
instruction accesses for the core unit. It receives cy-
cle requests and specifications from the core unit,
performs the data-cache or instuction-cache miss
processing, controls TLB translation, and provides
the interface to the external bus. Its pipelined struc-
ture supports up to three outstanding bus cycles.

2.0 PROGRAMMING INTERFACE

The programmer-visible aspects of the architecture
of the i860 XR microprocessor include data types,
registers, instructions, and traps.
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2.1 Data Types

The i860 XR microprocessor provides operations for
integer and floating-point data. Integer operations
are performed on 32-bit operands with some support
also for 64-bit operands. Load and store instructions
can reference 8-bit, 16-bit, 32-bit, 64-bit, and 128-bit
operands. Floating-point operations are performed
on IEEE-standard 32- and 64-bit formats. Graphics
oriented instructions operate on arrays of 8-, 16-, or
32-bit pixels.

2.1.1 INTEGER

An integer is a 32-bit signed value in standard two’s
complement form. A 32-bit integer can represent a
value in the range —2,147,483,648 (—231) to
2,147,483,647 (+231 — 1). Arithmetic operations on
8- and 16-bit integers can be performed by sign-ex-
tending the 8- or 16-bit values to 32 bits, then using
the 32-bit operations.

There are also add and subtract instructions that op-
erate on 64-bit long integers.

Load and store instructions may also reference (in
addition to the 32- and 64-bit formats previously
mentioned) 8- and 16-bit items in memory. When an
8- or 16-bit item is loaded into a register, it is con-
verted to an integer by sign-extending the value to
32 bits. When an 8- or 16-bit item is stored from a
register, the corresponding number of low-order bits
of the register are used.

intgl.

Arithmetic operations are available for 32-bit ordi-
nals. An ordinal is an unsigned integer. An ordinal
can represent values in the range 0 to
4,294,967,295 (+232 — 1),

2.1.2 ORDINAL

Also, there are add and subtract instructions that op-
erate on 64-bit ordinals.

2.1.3 SINGLE- AND DOUBLE-PRECISION REAL

Figure 2.1 shows the real number formats. A single-
precision real (also called “single real’’) data type is
a 32-bit binary floating-point number. Bit 31 is the
sign bit; bits 30..23 are the exponent; and bits 22..0
are the fraction. In accordance with ANSI/IEEE
standard 754, the value of a single-precision real is
defined as follows:

1.1fe = Oand f #* 0 or e = 255 then generate a
floating-point source-exception trap when en-
countered in a floating-point operation.

2. f 0 < e < 255, then the value is (—1)8 X 1.f X
20—127,

3.1fe = Oand f = 0, then the value is signed zero.

A double-precision real (also called “double real”)
data type is a 64-bit binary floating-point number. Bit
63 is the sign bit; bits 62..52 are the exponent; and
bits 51..0 are the fraction. In accordance with ANSI/
IEEE standard 754, the value of a double-precision
real is defined as follows:
1.ife = Oand f # 0 or e = 2047, then generate a
floating-point source-exception trap when en-
countered in a floating-point operation.

2.1f0 < & < 2047, then the value is (—1)8 X 1.f X
26—1023,

31 23

Single-Precision Real

t

I— FRACTION

EXPONENT
SIGN
240296-2
Double-Precision Real
63 52 0
L - | ,
| I——FRACTIDN
b EXPONENT
- SIGN
240296-3

Figure 2.1. Real Number Formats
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3.ife = 0 and f = 0, then the value is signed zero.

The special values infinity, NaN (“Not a Number”),
indefinite, and denormal generate a trap when en-
countered. The trap handler implements IEEE-stan-
dard results.

A double real value occupies an even/odd pair of
floating-point registers. Bits 31..0 are stored in the
even-numbered floating-point register; bits 63..32
are stored in the next higher odd-numbered floating-
point register.

2.1.4 PIXEL

A pixel may be 8, 16, or 32 bits long depending on
color and intensity resolution requirements. Regard-
less of the pixel size, the i860 XR microprocessor
always operates on 64 bits worth of pixels at a time.
The pixel data type is used by two kinds of instruc-
tions:

* The selective pixel-store instruction that helps im-
plement hidden surface elimination.

e The pixel add instruction that helps implement
3-D color intensity shading.

To perform color intensity shading efficiently in a va-

riety of applications, the i860 XR microprocessor de-
fines three pixel formats according to Table 2.1.

Figure 2.2 illustrates one way of assigning meaning
to the fields of pixels. These assignments are for
illustration purposes only. The i860 XR microproces-
sor defines only the field sizes, not the specific use
of each field. Other ways of using the fields of pixels
are possible.

i860™ XR MICROPROCESSOR

Table 2.1. Pixel Formats

Pixel | Bitsof | Bitsof | Bits of %'::::
Size | Color 1 | Color2 | Color3 | .0 o
(in bits) | Intensity | Intensity | Intensity| y .\ o)
8 N (< 8} bits of intensity* 8 -N
16 6 6 4
32 8 8 8 8

The intensity attribute fields may be assigned to colors in
any order convenient to the application.

*With 8-bit pixels, up to 8 bits can be used for intensity; the
remaining bits can be used for any other attribute, such as
color. The intensity bits must be the low-order bits of the
pixel.

2.2 Register Set

As Figure 2.3 shows, the i860 XR microprocessor
has the following registers:

¢ An integer register file
« A floating-point register file

® Six control registers (psr, epsr, db, dirbase, fir,
and fsr)

* Four special-purpose registers (KR, Kl, T, and
MERGE)

The control registers are accessible only by load
and store control-register instructions; the integer
and floating-point registers are accessed by arithme-
tic operations and load and store instructions. The
special-purpose registers KR, Ki, T, and MERGE are
used by a few specific instructions.

7 5 0
8=BIT PIXEL | ¢ !
15 9 3 0
16=BIT PIXEL R G B
32-BIT PIXEL
31 23 15 7 0
R G B T

defined, not the specific use of each field.

|—intensity, R—Red intensity, G—Green intensity, B—Blue intensity, C—Color, T—Texture
These assignments of specific meanings to the fields of pixels are for iliustration purposes only. Only the field sizes are

240296-4

Figure 2.2. Pixel Format Example
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2.2.1 INTEGER REGISTER FILE

There are 32 integer registers, each 32 bits wide,
referred to as r0 through r31, which are used for
address computation and scalar integer computa-
tions. Register r0 always returns zero when read,
independently of what is stored in it.

2.2.2 FLOATING-POINT REGISTER FILE

There are 32 floating-point registers, each 32-bits
wide, referred to as f0 through 31, which are used
for floating-point computations. Registers f0 and f1
always return zero when read, independently of
what is stored in them. The floating-point registers
are also used by a set of graphics operations, pri-
marily for 3D graphics computations.

When accessing 64-bit floating-point or integer val-
ues, the i860 XR microprocessor uses an even/odd
pair of registers. When accessing 128-bit values, it
uses an aligned set of four registers (10, f4, 8, ...,
£28). The instruction must designate the lowest reg-
ister number of the set of registers containing 64- or
128-bit values. Misaligned register numbers produce
undefined results. The register with the lowest num-
ber contains the least significant part of the value.
For 128-bit values, the register pair with the lower
numbers contain the least significant 64 bits while
the register pair with the higher numbers contain the
most significant 64 bits.

2-172
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The 128-bit load and store instructions, along with
the 128-bit data path between the floating-point reg-

isters and the data cache help to sustain the extraor-
dinarily high rate of computation.

2.2.3 PROCESSOR STATUS REGISTER

The processor status register (psr) contains miscel-
laneous state information for the current process.
Figure 2.4 shows the format of the psr.

* BR (Break Read) and BW (Break Write) enabls a
data access trap when the operand address
matches the address in the db register and a
read or write (respectively) occurs.

* Various instructions set CC (Condition Code) ac-
cording to tests they perform. The branch-on-
condition-code instructions test its valus. The bla
instruction sets and tests LCC (Loop Condition
Code).

¢ |M (Interrupt Mode) enables external interrupts if
set; disables interrupts if clear.

® U (User Mode) is set when the i860 XR micro-
processor is executing in user mode; it is clear
when the i860 XR microprocessor is executing in
supervisor mode. In user mode, writes to some
control registers are inhibited. This bit also con-
trols the memory protection mechanism. See
saction 2.4.4.3 for a description of memory pro-
tection in user and supervisor modes.

PRELIMINARY I
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240296-5
Figure 2.3. Registers and Data Paths
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Figure 2.4 Processor Status Register
INTERLOCK
WRITE-PROTECT MODE
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240286-31
*Can be changed only from supervisor level.

Figure 2.5 Extended Processor Status Register

® PIM (Previous Interrupt Mode) and PU (Previous

User Mode) save the corresponding status bits
(IM and U) on a trap, because those status bits
are changed when a trap occurs. They are re-
stored into their corresponding status bits when
returning from a trap handler with a branch indi-
rect instruction when a trap flag is set in the psr.

FT (Floating-Point Trap), DAT (Data Access
Trap), IAT (Instruction Access Trap), IN (Inter-
rupt), and IT (instruction Trap) are trap flags.
They are set when the corresponding trap condi-
tion occurs. The trap handler examines these bits
to determine which condition or conditions have
caused the trap.
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e DS (Delayed Switch) is set if a trap occurs during

the instruction before dual-instruction mode is en-
tered or exited. If DS is set and DIM (Dual Instruc-
tion Mode) is clear, the i860 XR microprocessor
switches to dual-instruction mode one instruction
after returning from the trap handler. If DS and
DIM are both set, the i860 XR microprocessor
switches to single-instruction mode one instruc-
tion after returning from the trap handler.

* When a trap occurs, the i860 XR microprocessor

sets DIM if it is executing in dual-instruction
mode; it clears DIM if it is executing in single-in-
struction mode. If DIM is set after returning from a
trap handler, the 860 XR microprocessor re-
sumes execution in dual-instruction mode.
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* When KNF (Kill Next Floating-Point Instruction) is 2.2.4 EXTENDED PROCESSOR STATUS

set, the next floating-point instruction is sup-
pressed (except that its dual-instruction mode bit
is interpreted). A trap handler sets KNF if the
trapped floating-point instruction should not be
reexecuted.

SC (Shift Count) stores the shift count used by
the last right-shift instruction. It controls the num-
ber of shifts executed by the double-shift instruc-
tion.

PS (Pixel Size) and PM (Pixel Mask) are used by
the pixel-store instruction and by the graphics in-
structions. The values of PS control pixel size as
defined by Table 2.2. The bits in PM correspond
to pixels to be updated by the pixel-store instruc-
tion pst.d. The low-order bit of PM corresponds
to the low-order pixel of the 64-bit source oper-
and of pst.d. The number of low-order bits of PM
that are actually used is the number of pixels that
fit into 64-bits, which depends upon PS. If a bit of
PM is set, then pst.d stores the corresponding
pixel. Refer also to the pst.d instruction in section
8.

Table 2;2. Values of PS

Value Pixel Size Pixel Size
in bits in bytes
00 8 1
01 16 2
10 32 4
11 (undefined) (undefined)

REGISTER

The extended processor status register (epsr) con-
tains additional state information for the current pro-
cess beyond that stored in the psr. Figure 2.5 shows
the format of the epsr.

® The processor type is one for the i860 XR micro-
processor.

* The stepping number has a unique value that dis-
tinguishes among different revisions of the proc-
essor.

o |L (Interlock) is set if a trap occurs after a lock
instruction but before the load or store following
the subsequent unlock instruction. IL indicates to
the trap handler that a locked sequence has
been interrupted. When the trap handler finds IL
set, it should scan backwards for the lock in-
struction and restart at that point. The absence of
a lock instruction within 30-33 instructions of the
trap indicates a programming error.

* WP (write protect) controls the semantics of the
W bit of page table entries. A clear W bit in either
the directory or the page table entry causes
writes to be trapped. When WP is clear, writes
are trapped in user mode, but not in supervisor
mode. When WP is set, writes are trapped in both
user and supervisor modes. After the value of the
WP bit is changed, the TLB must be invalidated
by setting the ITI bit of the dirbase register, be-
fore any stores are performed.

* INT (Interrupt) is the value of the INT input pin.

® DCS (Data Cache Size) is a read-only field that
tells the size of the on-chip data cache. The num-
ber of bytes actually available is 212+DCS; there-
fore, a value of zero indicates 4 Kbytes, one indi-
cates 8 Kbytes, etc.

ADDRESS TRANSLATION ENABLE

DRAM PAGE SIZE

BUS LOCK

I=CACHE, TLB INVALIDATE

(RESERVED)

CODE SIZE 8-BIT

REPLACEMENT BLOCK

REPLACEMENT CONTROL

31

N

12 10 8

DIRECTORY TABLE BASE (DTB)

RC RB DPS

~ m

MU O +—

*

*Can be changed only from supervisor level

# oo —m

* *
240296-7

Figure 2.6. Directory Base Register
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* PBM (Page-Table Bit Mode) determines which bit
of page-table entries is output on the PTB pin.
When PBM is clear, the PTB signal reflects bit CD
of the page-table entry used for the current cycle.
When PBM is set, the PTB signal reflects bit WT
of the page-table entry used for the current cycle.

e BE (Big Endian) controls the ordering of bytes
within a data item in memory. Normally (i.e. when
BE is clear) the i860 XR microprocessor operates
in little endian mode, in which the addressed byte
is the low-order byte. When BE is set (big endian
mode), the low-order three bits of all load and
store addresses are complemented, then
masked to the appropriate boundary for align-
ment. This causes the addressed byte to be the
most significant byte. Section 2.3 discusses little
and big endian addressing.

o OF (Overflow Flag) is set by adds, addu, subs,
and subu when integer overflow occurs. For
adds and subs, OF is set if the carry from bit 31
is different than the carry from bit 30. For addu,
OF is set if there is a carry from bit 31. For subu,
OF is set if there is no carry from bit 31. Under all
other conditions, it is cleared by these instruc-
tions. OF controls the function of the intovr in-
struction. OF cannot be written in user mode us-
ing ST.C.

2.2.5 DATA BREAKPOINT REGISTER

The data breakpoint register (db) is used to gener-
ate a trap when the i860 XR microprocessor makes
a data-operand access to the address stored in this
register. The trap is enabled by BR and BW in psr.
The db register can only be changed from supervi-
sor level. When comparing, a number of iow order
bits of the address are ignored, depending on the
size of the operand. For example, a 16-bit access
ignores the low-order bit of the address when com-
paring to db; a 32-bit access ignores the low-order
two bits. This ensures that any access that overlaps
the address contained in the register will generate a
trap. The DAT occurs before the data is accessed
and prevents the load or store from completing.

2.2.6 DIRECTORY BASE REGISTER

The directory base register dirbase (shown in Figure
2.6) controls address translation, caching, and bus
options. The dirbase register can only be changed
from supervisor level. The BL bit is changed from
user level with the lock and unlock instructions.

* ATE (Address Translation Enable), when set, en-
ables the virtual-address translation algorithm.
The data cache must be flushed before changing
the ATE bit.

e DPS (DRAM Page Size) controls how many bits
to ignore when comparing the current bus-cycle
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address with the previous bus-cycle address to
generate the NENE # signal. This feature allows
for higher speeds when using static column or
page-mode DRAMs and consecutive reads and
writes access the row. The comparison ignores
the low-order 12 + DPS bits. A value of zero is
appropriate for one bank of 256K X n RAMs, 1
for 1M X n RAMS, etc. For interleaved memory,
increase DPS by one for each power of interleav-
ing—add one for 2-way, and two for 4-way, etc.

When BL (Bus Lock) is set, external bus access-
es are locked. The LOCK# signal is asserted the
next bus cycle whose internal bus request is gen-
erated after BL is set. It remains set on every
subsequent bus cycle as long as BL remains set.
The LOCK# signal is deasserted on the next
load or store instruction after BL is cleared. Traps
immediately clear BL. The lock and unlock in-
structions control the BL bit. The result of modity-
ing BL with the st.c¢ instruction is not defined.

ITI (I-Cache, TLB Invalidate), when set in the vai-
ue that is loaded into dirbase, causes all entries
in the instruction cache and address-translation
cache (TLB) to be invalidated. The IT! bit does
not remain set in dirbase. ITI always appears as
zero when reading dirbase. Section 2.5 discuss-
s flushing the data cache before invalidating the
TLB.

When CS8 (Code Size 8-Bit) is set, instruction
cache misses are processed as B-bit bus cycles.
When this bit is clear, instruction cache misses
are processed as 64-bit bus cycles. This bit can
not be set by software; hardware sets this bit at
initialization time. It can be cleared by software
(one time only) to allow the system to execute out
of 64-bit memory after bootstrapping from 8-bit
EPROM. A nondelayed branch to code in 64-bit
memory should directly foliow the st.c (store con-
trol register) instruction that clears CS8, in order
to make the transition from 8-bit to 64-bit memory
occur at the correct time. The branch instruction
must be aligned on a 64-bit boundary.

RB (Replacement Block) identifies the cache
block to be replaced by cache replacement algo-
rithms. The high-order bit of RB is ignored by the
instruction and data caches. RB conditions the
cache flush instruction flush, which is discussed
in Section 8. Table 2.3 explains the values of RB.

RC (Replacement Control) controls cache re-
placement algorithms. Table 2.4 explains the sig-
nificance of the values of RC.

DTB (Directory Table Base) contains the high-or-
der 20 bits of the physical address of the page
directory when address translation is enabled (i.e.
ATE = 1). The low-order 12 bits of the address
are zeros.
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Figure 2.7. Floating-Point Status Register
Table 2.3. Values of RB 2.2.7 FAULT INSTRUCTION REGISTER
value | _Replace Replace Instruction When a trap occurs, this register contains the ad-
TLB Block | and Data Cache Block dress of the trapping instruction (not nacessarily the
00 0 0 instruction that created the conditions that required
the trap). The fir is a read-only register. In single-in-
0 1 1 1 : . - .
1 0 2 0 struction mode, using a Id.g instruction to read the
fir anytime except the first time after a trap saves in
11 3 1 idest the address of the Id.c instruction; in dual-in-
struction mode, the address of its floating-point com-
Table 2.4. Values of RC panion (address of the Id.c — 4) is saved.
Value Meaning

00 Selects the normal replacement 2.2.8 FLOATING-POINT STATUS REGISTER

algorithm where any block in the set The floating-point status register (fsr) contains the
may be replaced on cache misses in all floating-point trap and rounding-mode status for the
caches. current process. Figure 2.7 shows its format. The fsr
01 Instruction, data, and TLB cache is writable in user level.
misses replace the block selected by o |f FZ (Flush Zero) is clear and underflow occurs,
RB. The instruction and data caches a resuit-exception trap is generated. When FZ is
ignore the high-order bit of RB. This set and underflow occurs, the result is set to zero,
mode is used for instruction cache and and no trap due to underflow occurs.
TLB testing. ¢ If TI (Trap Inexact) is clear, inexact results do not
10 Data cache misses replace the block cause a trap. If Tl is set, inexact results cause a
selected by the low-order bit of RB. trap. The sticky inexact flag (Sl) is set whenever
Instruction and TLB caches use an inexact result is produced, regardless of the
random replacement. setting of Tl.
1 Disables data cache replacement. * RM (Rounding Mode) specifies one of the four

rounding modes defined by the IEEE standard.

Instructi T . :
nstruction and TLB caches use Given a true result b that cannot be represented

random replacement.
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Table 2.5. Values of RM
Value Rounding Mode Rounding Action

00 Round to nearest or even Closer to b of a or ¢; if equally
close, select even number
(the one whose least
significant bit is zero).

01 Round down (toward — o0) a

10 Round up (toward + o0 c

1 Chop (toward zero) Smaller in magnitude of g or c.

by the target data type, the i860 XR microproces-
sor determines the two representable numbers a
and ¢ that most closely bracket b in value (a < b
< ¢). The i860 XR microprocessor then rounds
(changes) b to a or ¢ according to the mode se-
lected by RM as defined in Table 2.5. Rounding
introduces an error in the result that is less than
one least-significant bit.

The U-bit (Update Bit), if set in the value that is
loaded into fsr by a st.c instruction, enables up-
dating of the result-status bits (AE, AA, Al, AQ,
AU, MA, M|, MO, and MU) in the first-stage of the
floating-point adder and multiplier pipselines. If this
bit is clear, the result-status bits are unaffected
by a st.c instruction; st.c ignores the correspond-
ing bits in the value that is being loaded. A st.c
always updates fsr bits 21..17 and 8..0 directly.
The U-bit does not remain set; it always appears
as zero when read.

The FTE (Floating-Point Trap Enable) bit, if clear,
disables all floating-point traps (invalid input oper-
and, overflow, underflow, and inexact resuit).

SI (Sticky Inexact) is set when the last stage re-
sult of either the multiplier or adder is inexact (i.e.
when either Al or Ml is set). Sl is “sticky” in the
sense that it remains set until reset by software.
Al and M, on the other hand, can by changed by
the subsequent floating-point instruction.

SE (Source Exception) is set when one of the
source operands of a floating-point operation is
invalid; it is cleared when all the input operands
are valid. Invalid input operands include denor-
mals, infinities, and all NaNs (both quiet and sig-
naling).

When read from the fsr, the result-status bits MA,
MI, MO, and MU (Multiplier Add-One, Inexact,
Overflow, and Underflow, respectively) describe
the last stage result of the multiplier.

When read from the fsr, the result-status bits AA,
Al, AQ, AU, and AE (Adder Add-One, Inexact,
Overflow, Underflow, and Exponent, respectively)
describe the last stage result of the adder. The
high-order three bits of the 11-bit exponent of the
adder result are stored in the AE field.

The Adder Add One and Multiplier Add One bits
indicate that the absolute value of the resuilt frac-
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tion grew by one least-significant bit due to
rounding. AA and MA are not influenced by the
sign of the result.

After a floating-point operation in a given unit (ad-
der or multiplier), the result-status bits of that unit
are undefined until the point at which result ex-
ceptions are reported.

When written to the fsr with the U-bit set, the
result-status bits are placed into the first stage of
the adder and multiplier pipelines. When the
processor executes pipelined operations, it prop-
agates the result-status bits of a particular unit
(multiplier or adder) one stage for each pipelined
floating-point operation for that unit. When they
reach the last stage, they replace the normal re-
sult-status bits in the fsr. When the U-bit is not
set, result-status bits in the word being written to
the fsr are ignored.

In a floating-point dual-operation instruction (e.g.
add-and-multiply or subtract-and-multiply), both
the multiplier and the adder may set exception
bits. The result-status bits for a particular unit re-
main set until the next operation that uses that
unit.

* RR (Result Register) specifies which floating-
point register (f0-f31) was the destination regis-
ter when a result-exception trap occurs due to a
scalar operation.

* | RP (Load Pipe Result Precision), IRP (Integer
(Graphics) Pipe Result Precision), MRP (Multiplier
Pipe Result Precision), and ARP (Adder Pipe Re-
sult Precision) aid in restoring pipeline state after
a trap or process switch. Each defines the preci-
sion of the last stage result in the corresponding
pipeline. One of these bits is set when the result
in the last stage of the corresponding pipeline is
double pracision; it is cleared if the result is single
precision. These bits cannot be changed by soft-
ware.

2.2.9 KR, Kl, T, AND MERGE REGISTERS
The KR, KI, and T registers are special-purpose reg-

isters used by the dual-operation floating-point
instructions pfam, pfmam, pfsm, and pfmsm,
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which initiate both an adder (A-unit) operation and a
multiplier (M-unit) operation. The KR, Ki, and T regis-
ters can store values from one dual-operation in-

struction and supply them as inputs to subsequent
dual-operation instructions. (Refer to Figure 2.14.)

The MERGE register is used only by the graphics
instructions. The purpose of the MERGE register is
to accumulate (or merge) the results of multiple-ad-
dition operations that use as operands the color-in-
tensity values from pixels or distance values from a
Z-buffer. The accumulated results can then be
stored in one 64-bit operation.

Two multiple-addition instructions and an OR in-
struction use the MERGE register. The addition in-
structions are designed to add interpolation values
to each color-intensity field in an array of pixels or to
each distance value in a Z-buffer.

Refer to the instruction descriptions in section 8 for
more information about these registers.

2.3 Addressing

Memory is addressed in byte units with a paged vir-
tual-address space of 232 bytes. Data and instruc-
tions can be located anywhere in this address
space. Address arithmetic is performed using 32-bit
input values and produces 32-bit results. The low-or-
der 32 bits of the result are used in case of overflow.

Normally, multibyte data values are stored in memo-
ry in little endian format, i.e., with the least significant
byte at the lowest memory address. As an option,
the ordering can be dynamically selected by soft-

ware in supervisor mode. The i860 XR microproces- -

sor also offers big endian mode, in which the most
significant byte of a data item is at the lowest ad-
dress. Figure 2.8 shows the difference betwsen the
two storage modes. Big endian and little endian data
areas should not be mixed within a 64-bit data word.
lllustrations of data structures in this data sheet
show data stored in little endian mode, i.e., the low-
order byte is at the lowest memory address.

I PRELIMINARY
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Code accesses are always done with little endian
addressing. This implies that code will appear differ-
ently than documented here when accessed as big
endian data. Intel recommends that disassembiers
running in a big endian system, convert instructions
which have been read as data back to little endian
form and present them in the format documented
here.

Page directories and page tables are also accessed
in little endian mode, regardless of the value of the
BE bit.

Alignment requirements are as follows (any violation
results in a data-access trap):

* 128-bit values are aligned on 16-byte boundaries
when referenced in memory (i.e. the four least
significant address bits must be zero).

e 64-bit values are aligned on 8-byte boundaries
when referenced in memory (i.e. the three least
significant address bits must be zero).

e 32-bit values are aligned on 4-byte boundaries
when referenced in memory (i.e. the two least
significant address bits must be zero).

* 16-bit values are aligned on 2-byte boundaries
when referenced in memory (i.e. the least signifi-
cant address bit must be zero).

2.4 Virtual Addressing

When address translation is enabled, the i860 XR
microprocessor maps instruction and data virtual ad-
dresses into physical addresses before referencing
memory. This address transformation is compatible
with that of the intel386™ microprocessor and im-
plements the basic features needed for page-orient-
ed virtual-memory systems and page-level protec-
tion.

The address translation is optional. Address transla-
tion is in effect only when the ATE bit of dirbase is
set. This bit is typically set by the operating system
during software initialization. The ATE bit must be
set if the operating system is to implement page-ori-
ented protection or page-oriented virtual memory.

2-179




i860™ XR MICROPROCESSOR

'SOSSO00E UBIpUS SNl SB SWES By} Palesi) e sesseoce ueipus Biq Ng-g2| pue -y9

v 8 09 a vaoad 0 3 4 9 H 349H ¥l
3 4 9 H 349H viL v 8 2 a vaoa o€
oP LEp op £op op LEp op £9p
v 8 v 4 0L 9 H 5 H 9L
D q oXs] 2e 3 d 34 ¥'G
3 4 34 ' 2 a oQ A
9 H D H 9L v 8 vea o'l
op Lep op €op op LEp op £9p
v v 0 H H L
g g ! 5} 5] 9
0 o) z d 4 [
a a £ 3 3 14
3 3 14 a a £
4 d ] 0 o] Z
9 o) 9 a g i
H H L v v 0
oP LEp op e9p (#38) op LEP op £9p (#39)
9t4 snav.iva sejqeu3 s)Ag 914 snaviva sejqeu]y aiig
'NVION3 Oi8 TNVIGNI LI
op £9p
v80ad 349 HOAHOM
: 1 GHOM
AHOWIW NIV

‘ALON

9L ‘(0¥ I'PI
oL ‘(oMo I'p1

914 ‘(04)9 s'PI
9L ‘(ou)p spI
914 “(02)2 s°pI
9k ‘(00)o 8Py

9k1 (o)L apt
oL (o)9 apl
944 “(04)s 9Pl
9L (03 qpi
oL ‘(o) apl
911 {0z api
9k {011 a'pI
914 “(04)0 a'pI

Figure 2.8 Little and Big Endian Accesses
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31 21
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[ DR { PAGE

I OFFSET ]

Figure 2.9. Format of a Virtual Address

Address translation is disabled when the processor
is reset. It is enabled when a store to dirbase sets
the ATE bit. It is disabled again when a store clears
the ATE bit.

2.4.1 PAGE FRAME

A page frame is a 4-Kbyte unit of contiguous ad-
dresses of physical main memory. Page frames be-
gin on 4-Kbyte boundaries and are fixed in size. A
page is the collection of data that occupies a page
frame when that data is present in main memory.
The data may also occupy some location in second-
ary storage when there is not sufficient space in
main memory.

2.4.2 VIRTUAL ADDRESS

A virtual address refers indirectly to a physical ad-
dress by specifying a page table, a page within that

table, and an offset within that page. Figure 2.9
shows the format of a virtual address.

Figure 2.10 shows how the i860 XR microprocessor
converts the DIR, PAGE, and OFFSET fields of a
virtual address into the physical address by consult-
ing two levels of page tables. The addressing mech-
anism uses the DIR field as an index into a page
directory, uses the PAGE field as an index into the
page table determined by the page directory, and
uses the OFFSET field to address a byte within the
page determined by the page tabie.

2.4.3 PAGE TABLES

A page table is simply an array of 32-bit page specifi-
ers. A page table is itself a page, and therefore con-
tains 4 Kbytes of memory or at most 1K 32-bit en-
tries.

I or Jrace | orfFser |

PAGE FRAME

PHYSICAL

PAGE DIRECTORY

d ADDRESS

PAGE TABLE

PG TBL ENTRY

DIR ENTRY

DTB

240296-32

Figure 2.10. Address Translation
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Two levels of tables are used to address a page of
memory. At the higher level is a page directory. The
page directory addresses up to 1K page tables of
the second level. A page table of the second level
addresses up to 1K pages. All the tables addressed
by one page directory, therefore, can address 1M
pages (220). Because each page contains 4 Kbytes
(212 bytes), the tables of one page directory can
span the entire physical address space of the 860
XR microprocessor (220 x 212 = 232),

The physical address of the current page directory is
stored in DTB field of the dirbase register. Memory
management software has the option of using one
page directory for all processes, one page directory
for each process, or some combination of the two.

2.4.4 PAGE-TABLE ENTRIES

Page-table entries (PTES) in either level of page ta-
bles have the same format. Figure 2.11 illustrates
this format.

2.4.4.1 Page Frame Address

The page frame address specifies the physical start-
ing address of a page. Because pages are located
on 4K boundaries, the low-order 12 bits are always
zero. In a page directory, the page frame address is
the address of a page table. In a second-level page
table, the page frame address is the address of the
page frame that contains the desired memory oper-
and.

2.4.4.2 Present Bit

The P {present) bit indicates whether a page table
entry can be used in address translation. P = 1 indi-

intgl.

cates that the entry can be used. When P = 0 in
either level of page tables, the entry is not valid for
address translation, and the rest of the entry is avail-
able for software use; none of the other bits in the
entry is tested by the hardware. If P = 0 in either
level of page tables when an attempt is made to use
a page-table entry for address translation, the proc-
essor signals either a data-access fault or an in-
struction-access fault. In software systems that sup-
port paged virtual memory, the trap handler can
bring the required page into physical memory.

Note that there is no P bit for the page directory
itself. The page directory may be not-present while
the associated process is suspended, but the oper-
ating system must ensure that the page directory
indicated by the dirbase image associated with the
process is present in physical memory before the
process is dispatched.

2.4.4.3 Writable and User Bits

The W (writable) and U (user) bits are used for page-
level protection, which the i860 XR microprocessor
performs at the same time as address translation.
The concept of privilege for pages is implemented
by assigning each page to one of two levels:

1. Supervisor level (U = 0)—for the operating sys-
tem and other systems software and related data.

2. User level (U = 1)—for applications procedures
and data.

The U bit of the psr indicates whether the i860 XR
microprocessor is executing at user or supervisor
level. The i860 XR microprocessor maintains the U
bit of psr as follows:

PRESENT

WRITABLE

USER

WRITE~THROUGH
CACHE DISABLE

ACCESSED

DIRTY

(RESERVED)

31

AVAILABLE FOR SYSTEMS PROGRAM USE ‘l

12 9 7 S

PAGE FRAME ADDRESS 31..12

AVAIL X X|D]A

- —l

o0

NOTE:
X indicates Intel reserved. Do not use.

240296-34

Figure 2.11. Format of a Page Table Entry
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® The i860 XR microprocessor clears the psr U bit
to indicate supervisor level when a trap occurs

(including when the trap instruction causes the
trap). The prior value of U is copied into PU.

s The i860 XR microprocessor copies the psr PU
bit into the U bit when an indirect branch is exe-
cuted and one of the trap bits is set. If PU was
one, the 860 XR microprocessor enters user
level.

With the U bit of psr and the W and U bits of the
page table entries, the iB60 XR microprocessor im-
plements the following protection rules:

e When at user level, a read or write of a supervi-
sor-level page causes a trap.

¢ When at user level, a write to a page whose W bit
is clear causes a trap.

¢ When at user level, st.c to certain control regis-
ters is ignored.

When the i860 XR microprocessor is executing at
supervisor level, all pages are addressable, but,
when it is executing at user level, only pages that
belong to the user-level are addressable.

When the i860 XR microprocessor is executing at
supervisor level, all pages are readable. Whether a
page is writable depends upon the write-protection
mode controlied by WP of epstr:

WP =0
WP =1

All pages are writable.

A write to a page whose W bit is
clear causes a trap.

When the 860 XR microprocessor is executing at
user level, only pages that belong to user level and
are marked writable are actually writable; pages that
belong to supervisor level are neither readable nor
writable from user level.

2.4.4.4 Write-Through Bit

The i860 XR microprocessor does not implement a
write-through caching policy for the on-chip data
cache; however, the WT (write-through) bit in the
second-level page-table entry does determine inter-
nal caching policy. If WT is set in a PTE, on-chip
caching of data from the corresponding page is in-
hibited. The i860 XR CPU may place pages having
WT = 1 into the instruction cache. Future imple-
mentations of the i860 XR architecture may adhere
to a write-through data caching policy. Therefors,
they may cache pages having the WT bit of the PTE
set. If WT is clear, the normal write-back policy is
applied to data from the page in the on-chip caches.
The WT bit of page directory entries is not refer-
enced by the processor, but is reserved.

The WT bit is independent of the CD bit; therefore,
data may be placed in a second-level coherent
cache, but kept out of the on-chip caches.

I PRELIMINARY
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2.4.4.5 Cache Disable Bit

If the CD (cache disable) bit in the second-level
page-table entry is set, data from the associated
page is not placed in instruction or data caches.
Clearing CD permits the cache hardware to place
data from the associated page into caches. The CD
bit of page directory entries is not referenced by the
processor, but is reserved.

To control external caches, the i860 XR microproc-
essor outputs on its PTB pin either the CD or WT bit.
The PBM bit of epsr determines which bit is output.

2.4.4.6 Accessed and Dirty Bits

The A (accessed) and D (dirty) bits provide data
about page usage in both levels of the page tables.

The i860 XR microprocessor sets the corresponding
accessed bits in both levels of page tables before a
read or writeé operation to a page. The processor
tests the dirty bit in the second-level page table be-
fore a write to an address covered by that page table
entry, and, under certain conditions, causes traps.
The trap handler then has the opportunity to main-
tain appropriate values in the dirty bits. The dirty bit
in directory entries is not tested by the i860 XR mi-
croprocessor. The precise algorithm for using these
bits is specified in Section 2.4.5.

An operating system that supports paged virtual
memory can use these bits to determine what pages
to sliminate from physical memory when the de-
mand for memory exceeds the physical memory
available. The D and A bits in the PTE (page-table
entry) are normally initialized to zero by the operat-
ing system. The processor sets the A bit when a
page is accessed either by a read or write operation.
When a data- or instruction-access fault occurs, the
trap handler sets the D bit if an allowable write is
being performed, then re-executes the instruction.

The operating system is responsible for coordinating
its updates to the accessed and dirty bits with up-
dates by the CPU and by other processors that may
share the page tables. The i860 XR microprocessor
automatically asserts the LOCK# signal while set-
ting the A bit. If an A-bit of a PTE is found not set
during a locked sequence (created by the lock in-
struction), a trap will occur and the processor will not
update the A-bit.

2.4.4.7 Combining Protection of Both Levels of
Page Tables

For any one page, the protection attributes of its
page directory entry may differ from those of its
page table entry. The i860 XR microprocessor com-
putes the effective protection attributes for a page
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by examining the protection attributes in both the
directory and the page table. Table 2.6 shows the
effective protection provided by the possible combi-
nations of protection attributes.

2.4.5 ADDRESS TRANSLATION ALGORITHM

The algorithm below defines the translation of each
virtual address to a physical address. Let DIR,
PAGE, and OFFSET be the fields of the virtual ad-
dress; let PFA1 and PFA2 be the page frame ad-
dress fields of the first and second level page tables
respectively; DTB is the page directory table base
address stored in the dirbase register.

1. Read the PTE (page table entry) at the physical
address formed by DTB:DIR:00.

2. If Pin the PTE is zero, generate a data- or instruc-
tion-access fault.

3. If W in the PTE is zero, the operation is a write,
and either the U-bit of the PSR is set or WP = 1,
generate a data or instruction access fault.

4. If the U-bit in the PTE is zero and the U-bit in the
psr is set, generate a data or instruction access
fauit.

5.1f A in the PTE is zero, and if the TLB miss oc-
curred while the bus was locked, generate a

[ )
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data or instruction access fault. (The trap allows
software to set A to one and restart the se-
quence. This avoids ambiguity in determining

what address corresponds to a locked sema-
phore for external bus hardware use.)

6.1f A in the PTE is zero, and if the TLB miss oc-
curred while the bus was not locked, assert
LOCK#. Re-fetch and check the PTE, set A, and
store the PTE. Deassert LOCK # during the store.

7. Locate the PTE at the physical address formed by
PFA1:PAGE:00.

8. Perform the P, W, U, and A checks as in steps 2
through 6 with the second-level PTE.

9.1f D in the PTE is clear and the operation is a
write, generate a data or instruction access fault.

10. Form the physical address as PFA2:OFFSET.

The 860 XR microprocessor looks only in external
memory for Page Directories and Page Tables, in
the translation process. The data cache is not
searched. Therefore, any code which modifies Page
Directories or Page Tables must keep them out of
the cache. The tables should be kept in non-cache-
able memory, or flushed from the cache.

Table 2.6. Combining Directory and Page Protections

Page Directory Page Table Combined Protection
Entry Entry User Supervisor
Access Access
U-bit W-bit U-bit W-bit WP=X WP =0 WP =1
0 0 0 0 N R/W R
0 0 0 1 N R/W R
0 0 1 0 N R/W R
0 0 1 1 N R/W R
0 1 0 0 N R/W R
0 1 0 1 N R/W R/W
0 1 1 0 N R/W R
0 1 1 1 N R/W R/W
1 0 0 0 N R/W R
1 0 V] 1 N R/W R
1 0 1 0 R R/W R
1 0 1 1 R R/W R
1 1 0 0 N R/W R
1 1 0 1 N R/W R/W
1 1 1 0 R R/W R
1 1 1 1 R/W R/W R/W
NOTES:
N = No access allowed R/W = Both reads and writes aliowed
R = Read access only X = Don't care
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The i860 XR microprocessor expects Page Directo-
ries and Page Tables to be in litle endian format.
The operating system must maintain these tables in
little endian format by either sefting BE = 0 when

manipulating the tables or by complementing bit 2 of
the address when loading or storing entries.

2.4.6 ADDRESS TRANSLATION FAULTS

The address translation fault is one instance of the
data-access fault. The instruction causing the fault
can be re-executed upon returning from the trap
handler.

2.4.7 PAGE TRANSLATION CACHE

For greatest efficiency in address translation, the
i860 XR microprocessor stores the most recently
used page-table data in an on-chip cache called the
TLB (translation lookaside buffer). Only if the neces-
sary paging information is not in the cache must
both levels of page tables be referenced.

2.5 Caching and Cache Flushing

The i860 XR microprocessor has the ability to cache
instruction, data, and address-translation informa-
tion in on-chip caches. Caching uses virtual-address
tags. The effects of mapping two different virtual ad-
dresses in the same address space to the same
physical address are undefined.

Instruction, data, and address-translation caching on
the i860 XR microprocessor are not transparent. Be-
cause the data cache uses a write-back protocol,
writes do not immediately update memory, and
writes to memory by other bus devices do not up-
date the cache. Changes to page tables do not auto-
matically update the TLB, and changes to instruc-
tions do not automatically update the instruction
cache. Under certain circumstances, such as I/0
references, self-modifying code, page-table up-
dates, or shared data in a multiprocessing system, it
is necessary to bypass or to flush the caches. The
i860 XR microprocessor provides the following
methods for doing this:

e Bypassing Instruction and Data Caches. If
deasserted during cache-miss processing, the
KEN# pin disables instruction and data caching
of the referenced data. If the CD bit of the associ-
ated second-level PTE is set, caching of data and
instructions is disabled. The 860 XR CPU may
place pages having WT = 1 into the instruction
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cache. Future implementations of the i860 XR ar-
chitecture may adhere to a write-through data
cache policy. Thus, they may cache pages having
the WT bit of the PTE set. The value of the CD bit
or the WT bit is output on the PTB pin for use by
external caches.

Invalidating Instruction and Address-Transla-
tion Caches. Storing to the dirbase register with
the ITI bit set invalidates the contents of the in-
struction and address-translation caches. This bit
should be set when modifying a page table, when
modifying a page containing instructions, or when
changing the DTB field of dirbase or the WP bit
of the epsr. Note that in order to make the in-
struction or address-transiation caches consist-
ent with the data cache, the data cache must be
flushed before invalidating the other caches.

NOTE:

The mapping of the page containing the
currently executing instruction and the
next six instructions should not be differ-
ent in the new page tables when st.c dir-
base changes DTB or activates ITl. The
six instructions following the st.c should
be nops and should lie in the same page
as the st.c.

Flushing the Data Cache. The data cache is
flushed by a software routine using the flush in-
struction. The data cache must be flushed prior to
invalidating the instruction or address-translation
caches (as controlled by the ITI bit of dirbase) or
enabling or disabling address translation (via the
ATE bit). The data cache does not need flushing
if the program is modifying only the P, U, W, A, or
D bits of a PTE (as long as the Page Frame Ad-
dress is not changed and the PTE itself was not
in the data cache.) The i860 XR CPU does not
check these protection bits on cache line write-
back. Thus, a trap handler can service a DAT for
D-bit-zero by setting D = 1 and then ITl = 1. In
the case of setting the P or A bits active, there is
no need to invalidate or flush any caches be-
cause the processor does not ioad entries into
the TLB that have P = Q or A = 0. The i860 XR
microprocessor searches only external memory
for Page Directories and Page Tables in the
translation process. The data cache is not
searched. Therefore, Page Tables and Directo-
ries should be kept in non-cacheable memory, or
flushed from the cache by any code which ac-
cesses them.

2-185




i860™ XR MICROPROCESSOR

2.6 Instruction Set

Table 2.7 shows the complete set of instructions
grouped by function within processing unit. Refer to
Section 8 for an algorithmic definition of each in-
struction.

The architecture of the i860 XR microprocessor
uses parallelism to increase the rate at which opera-
tions may be introduced into the unit. Parallelism in
the i860 XR microprocessor is not transparent; rath-
er, programmers have complete control over paral-
lelism and therefore can achieve maximum perform-
ance for a variety of computational problems.

2.6.1 PIPELINED AND SCALAR OPERATIONS

One type of parallslism used within the floating-point
unit is “pipelining”. The pipelined architecture treats
each operation as a series of more primitive opera-
tions (called “stages”) that can be executed in par-
allel. Consider just the floating-point adder unit as an
example. Let A represent the operation of the adder.
Let the stages be represented by Ay, Ay, and Aj.
The stages are designed such that A; + 1 for one ad-
der instruction can execute in parallel with A for the
next adder instruction. Furthermore, each Aj can be
executed in just one clock. The pipelining within the
multiplier and graphics units can be described simi-
larly, except that the number of stages may be differ-
ent.

Figure 2.12 iliustrates three-stage pipelining as
found in the floating-point adder (also in the floating-
point multiplier when single-precision input operands
are employed). The columns of the figure represent
the three stages of the pipeline. Each stage holds
intermediate results and aiso (when introduced into
first stage by software) holds status information per-
taining to those results. The figure assumes that the
instruction stream consists of a series of consecu-
tive floating-point instructions, all of one type (i.e. all
adder instructions or all single-precision muitiplier in-
structions). The instructions are represented as |,
i+ 1, etc. The rows of the figure represent the states
of the unit at successive clock cycles. Each time a
pipelined operation is performed, the resuit of the
last stage of the pipeline is stored in the destination
register fdest, the pipeline is advanced one stage,
and the input operands fsrc7 and fsrc2 are trans-
ferred to the first stage of the pipeline.
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In the i860 XR microprocessor, the number of pipe-
line stages ranges from one to three. A pipelined
operation with a three-stage pipeline stores the re-
sult of the third prior operation. A pipelined operation
with a two-stage pipeline stores the result of the sec-
ond prior operation. A pipelined operation with a

one-stage pipeline stores the result of the prior oper-
ation.

There are four floating-point pipelines: one for the
multiplier, one for the adder, one for the graphics
unit, and one for floating-point loads. The adder
pipeline has three stages. The number of stages in
the multiplier pipeline depends on the precision of
the source operands in the pipeline. Single precision
has three stages and double precision has two
stages. The graphics unit has one stage for all preci-
sions. The load pipeline has three stages for all pre-
cisions.

Changing the FZ (flush zero), RM (rounding mode),
or RR (result register) bits of fsr while there are re-
sults in sither the multiplier or adder pipeline produc-
es effects that are not defined.

2.6.1.1 Scalar Mode

In addition to the pipselined execution mode, the i860
XR microprocessor also can execute floating-point
instructions in “scalar” mode. Most floating-point in-
structions have both pipelined and scalar variants,
distinguished by a bit in the instruction encoding. In
scalar mode, the floating-point unit does not start a
new operation until the previous floating-point oper-
ation is completed. The scalar operation passes
through all stages of its pipeline before a new opera-
tion is introduced, and the result is stored automati-
cally. Scalar mode is used when the next operation
depends on results from the previous few floating-
point operations (or when the compiler or program-
mer does not want to deal with pipelining).

2.6.1.2 Pipelining Status Information

Result status information in the fsr consists of the
AA, Al, AO, AU, and AE bits, in the case of the ad-
der, and the MA, MI, MO, and MU bits, in the case of
the multiplier. This information arrives at the fsr via
the pipeline in one of two ways:
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Table 2.7. instruction Set
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Core Unit Floating-Point Unit
Mnemonic [ Description Mnemonic [ Description
Load and Store instructions Register to Register Moves
Id.x Load integer fxfr I Transfer F-P to integer register
:gxy §tg'; ;‘;999' F-P Multiplier Instruction
? ftld.z iigelitned F-Pload :::Tmu::?p ;;ge?r:}e‘t(iipéyP multipty
st. -P store - -
pst.yd Pixel store ?ggﬂ%dd g'ﬁtﬁﬁtgrﬁwd F-P multiply
Register to Register Moves frepp E.p recipro{:al
ixfr Transfer integer to F-P register frsarp F-P reciprocal square root
Integer Arithmetic Instructions F-P Adder Instructions
addu Add unsigned fadd.p F-P add
adds Add signed pfadd.p Pipelined F-P add
subu Subtract unsigned famov.r F-P adder move
subs Subtract signed gﬁg‘gv" ":'ge;'l’:&‘:;tp adder move
Shift instructions pfsub.p Pipelined F-P subtract
shi Shift left pfat.p Pipelined F-P greater-than compare
shr Shift right pfeq.p Pipelined F-P equal compare
shra Shift right arithmetic fix.p F-P to integer conversion
shrd Shift right double pfix.p Pipelined F-P to integer conversion
ftrunc.p F-P to integer truncation
Logical Instructions pftrunc.p Pipelined F-P to integer truncation
and Log@cal AND ] Dual-Operation Instructions
::g: ot ll:gg:g:: ﬁmg :;gbr pfam.p Pipelined F-P add and multiply
andnoth L ogi cal AND NOT high pfsm.p Pipelined F-P subtract and multiply
ol Logical OR 9 pfmam.p | Pipelined F-P multiply with add
orh Logical OR high pfmsm.p Pipelined F-P multiply with subtract
xor Logical exclusive OR Long Integer Instructions
xorh Logical exclusive OR high fisub.z Long-integer subtract
Control-Transfer Instructions pfisub.z Pipelined long-integer subtract
wrap Software trap fiadd.z Long-integer add
add. inali int
intovr Software trap on integer overflow pfiadd.z Pipafined long-integer add
br Branch direct Graphics Instructions
bri Branch indirect fzchks 16-bit Z-buffer check
be Branch on CC pfzchks Pipslined 16-bit Z-buffer check
be.t Branch on CC taken fzchkl 32-bit Z-buffer check
bne Branch on not CC pfzchki Pipelined 32-bit Z-buffer check
bnc.t Branch on not CC taken faddp Add with pixel merge
bte Branch if equal pfaddp Pipelined add with pixel merge
btne Branch if not equal faddz Add with Z merge
bla Branch on LCC and add pfaddz Pipelined add with Z merge
call Subroutine call form OR with MERGE register
calli Indirect subroutine call pform Pipelined OR with MERGE register
System Control instructions
y Assembier Pseudo-Operations
flush Cache flush
Id.c Load from control register Mnemonic Description
st.c Store to control register mov Integer register-register move
lock Begin interlocked sequence fmov.r F-P reg-reg move
unlock End interlocked sequence pfmov.r Pipelined F-P reg-reg move
nop Core no-operation
fnop F-P no-operation
pfle.p Pipelined F-P less-than or equal
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Figure 2.12. Pipelined Instruction Execution

1. It is calculated by the last stage of the pipeline.
This is the normal case.

2. It is propagated from the first stage of the pipe-
line. This method is used when restoring the state
of the pipeline after a preemption. When a store
instruction updates the fsr and the value of the
U bit in the word being written into the fsr is set,
the store updates the result status bits in the first
stage of both the adder and muiltiplier pipelines.
When software changes the resuit-status bits of
the first stage of a particular unit (multiplier or ad-
der), the updated result-status bits are propagat-
ed one stage for each pipelined floating-point op-
eration for that unit. In this case, each stage of the
adder and multiplier pipelines holds its own copy
of the relevant bits of the fsr. When they reach
the last stage, they override the normal result-
status bits computed from the last stage result.
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At the next floating-point instruction (or at certain
core instructions), after the result reaches the last
stage, the i860 XR microprocessor traps if any of the
status bits of the fsr indicate exceptions. Note that
the instruction that creates the exceptional condition
is not the instruction at which the trap occurs.

2.6.1.3 Precision in the Pipelines

In pipelined mode, when a floating-point operation is
initiated, the result of an earlier pipelined floating-
point operation is returned. The result precision of
the current instruction applies to the operation being
initiated. The precision of the value stored in fdest is
that which was specified by the instruction that initia-
ted that operation.
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Figure 2.13. Dual-Instruction Mode Transitions

If fdest is the same as fsrc1 or fsrc2, the value being
stored in fdest is used as the input operand. In this
case, the precision of fdest must be the same as the
source precision.

The multiplier pipeline has two stages when the
source operand is double-precision and three stages
when the precision of the source operand is single.
This means that a pipelined multiplier operation
stores the result of the second previous multiplier
operation for double-precision inputs and third previ-
ous for single-precision inputs (except when chang-
ing precisions).

2.6.1.4 Transition between Scalar and Pipelined
Operations

When a scalar operation is executed, it passes
through all stages of the pipeline; therefore, any un-
stored results in the affected pipeline are lost. To
avoid losing information, the last pipslined opera-
tions before a scalar operation should be dummy
pipelined operations that unioad unstored results
from the affected pipeline.

I PRELIMINARY

After a scalar operation, the values of all pipeline
stages of the affected unit (except the last) are un-
defined. No spurious result-exception traps result
when the undefined values are subsequently stored
by pipelined operations; however, the values should
not be referenced as source operands.

For best performance a scalar operation should not
immediately precede a pipelined operation whose
fdest is nonzero.

2.6.2 DUAL-INSTRUCTION MODE

Another form of parallelism results from the fact that
the i860 XR microprocessor can execute both a
floating-point and a core instruction simultansously.
Such parallel execution is called dual-instruction
mode. When executing in dual-instruction mode, the
instruction sequence consists of 64-bit aligned in-
structions with a floating-point instruction in the low-
or 32 bits and a core instruction in the upper 32 bits.
Table 2.7 identifies which instructions are executed
by the core unit and which by the floating-point unit.
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Programmers specify dual-instruction mode either
by including in the mnemonic of a floating-point in-
struction a d. prefix or by using the Assembler direc-
tives .dual ... .enddual. Both of the specifications
cause the D-bit of floating-point instructions to be
set. If the iB60 XR microprocessor is executing in
single-instruction mode and encounters a floating-
point instruction with the D-bit set, one more 32-bit
instruction is executed before dual-mode execution
begins. If the iB60 XR microprocessor is executing in
dual-instruction mode and a floating-point instruction
is encountered with a clear D-bit, then one more pair
of instructions is executed before resuming single-in-
struction mode. Figure 2.13 illustrates two variations
of this sequence of events: one for extended se-
quences of dual-instructions and one for a single in-
struction pair.

When a 64-bit dual-instruction pair sequentially fol-
lows a delayed branch instruction in dual-instruction
mode, both 32-bit instructions are executed.

2.6.3 DUAL-OPERATION INSTRUCTIONS

Special dual-operation floating-point instructions
(add-and-multiply, subtract-and-multiply) use both
the multiplier and adder units within the floating-
point unit in parailel to efficiently execute such com-
mon tasks as evaluating systems of linear equa-
tions, performing the Fast Fourier Transform (FFT),
and performing graphics transformations.

The instructions pfam fsrc?, fsrc2, fdest (add and
multiply), pfsm fsrc1, fsrc2, fdest (subtract and mul-
tiply), pfmam fscri, fsrc2, fdest (multiply and add),
and pfmsm fsrc1, fsrc2, fdest (multiply and subtract)
initiate both an adder operation and a multiplier op-
eration. Six operands are required, but the instruc-
tion format specifies only three operands; therefore,
there are special provisions for specifying the oper-
ands. These special provisions consist of:

* Three special registers (KR, Ki, and T), that can
store values from one dual-operation instruction
and supply them as inputs to subsequent dual-
operation instructions.

1. The constant registers KR and Kl can store the
value of fsre? and subsequently supply that
value to the muiltiplier pipeline in place of fsrc7.

2. The transfer register T can store the last stage
result of the multiplier pipeline and subse-
quently supply that value to the adder pipsline
in place of fsrel.

¢ A four-bit data-path control field in the opcode
(DPC) that specifies the operands and loading of
the special registers.

1. Operand-1 of the multiplier can be KR, Kl, or
fsrel.

2. Operand-2 of the multiplier can be fsrc2 or the
last stage result of the adder pipeline.
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3. Operand-1 of the adder can be fsrc?, the

T-register, or the last stage result of the adder
pipeline.

4. Operand-2 of the adder can be fsrc2, the last
stage result of the multiplier pipeline, or the
last stage result of the adder pipeline.

Figure 2.14 shows all the possible data paths sur-
rounding the adder and muiltiplier. A DPC field in
these instructions select different data paths. Table
8.8 shows the various encodings of the DPC field.
Refer to Dual Operation Instructions section in the
i860 Microprocessor Programmer's Reference Man-
ual for pictorial description.
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ADDER UNIT
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Figure 2.14. Dual-Operation Data Paths

Note that the mnemonics pfam.p, pfsm.p,
pfmam.p, and pfmsm.p are never used as such in
the assembly language; these mnemonics are used
here to designate classes of related instructions.
Each value of DPC has a unique mnemonic associ-
ated with it.

2.7 Addressing Modes

Data access is limited to load and store instructions.

Memory addresses are computed from two fieids of

load and store instructions: /src? and isrc2.

1. isrc1 either contains the identifier of a 32-bit inte-
ger register or contains an immediate 16-bit ad-
dress offset.

2. jsrc2 always specifies a register.
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Table 2.8. Types of Traps
Type Indication Caused by
PSR,EPSR| FSR Condition Instruction
Instruction IT OF Software traps trap, intovr
Fault IL Missing unlock Any
Floating SE Floating-point source exception | Any M- or A-unit except fmlow
Point Floating-point result exception | Any M- or A-unit except fmlow, pfgt,
Fault FT AO, MO overflow and pfeq. Reported on any F-P
AU, MU underflow instruction plus pst, fst, and
Al, Ml inexact result sometimes fid, pfid, ixfr
Instruction IAT Address tranglation exception | Any
Access Fault during instruction fetch
Data Access Load/store address translation | Any load/store
Fault exception
DAT* Misaligned operand address Any load/store
Operand address matches Any load/store
db register
Interrupt IN External interrupt
Reset No trap bits set Hardware RESET signal
NOTES:

*These cases can be distinguished by examining the operand addresses.
The IL bit of the epsr must be checked by the trap handler to tell if the bus is currently in a locked sequence.

Because either isrc? or /isrc2 may be null (zero), a
variety of useful addressing modes result:

offset + register Useful for accessing fields within
a record, where register points
to the beginning of the record.
Useful for accessing items in a
stack frame, where register is
r3, the register used for pointing
to the beginning of the stack
frame.

register + register Useful for two-dimensional ar-

rays or for array access within
the stack frame.

register Useful as the end result of any
arbitrary address calculation.
offset Absolute address into the first or

last 32K of the logical address
space.

In addition, the floating-point load and store instruc-
tions may select autoincrement addressing. In this
mode /src2 is replaced by the sum of isrc? and isrc2
after performing the load or store. This mode makes
stepping through arrays more efficient, because it
eliminates one address-calculation instruction.

2.8 Traps and Interrupts

Traps are caused by exceptional conditions detect-
ed in programs or by external interrupts. Traps
cause interruption of normal program flow to exe-
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cute a special program known as a trap handler.
Traps are divided into the types shown in Table 2.8.
Interrupts and traps start execution in single instruc-
tion mode at virtual address OxFFFFFFOO in supervi-
sor level (U = 0).

2.8.1 TRAP HANDLER INVOCATION

This section applies to traps other than reset. When
a trap occurs, execution of the current instruction is
aborted. The instruction is restartable. The proces-
sor takes the following steps while transferring con-
trol to the trap handler:

1. Copies U (user mode) of the psr into PU (previous
U).

. Copies IM (interrupt mode) into PIM (previous IM).
. Sets U to zero (supervisor mode).
. Sets IM to zero (interrupts disabled).

. If the processor is in dual instruction mode, it sets
DIM; otherwise it clears DIM.

6. If the processor is in single-instruction mode and
the next instruction will be executed in dual-
instruction mode or if the processor is in dual-in-
struction mode and the next instruction will be
executed in single-instruction mode, DS is set;
otherwise, it is cleared.

7. The appropriate trap type bits in psr are set (IT,
IN, IAT, DAT, FT). Several bits may be set if the
corresponding trap conditions occur simulta-
neously.

N & WN
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8. An address is placed in the fault instruction regis-
ter (fir) to help locate the trapped instruction. In
single-instruction mode, the address in fir is the
address of the trapped instruction itself. In dual-in-
struction mode, the address in fir is that of the
floating-point half of the dual instruction. If an in-
struction or data access fauit occurred, the asso-
ciated core instruction is the high-order half of the
dual instruction (fir + 4). In dualinstruction
mode, when a data access fault occurs in the ab-
sence of other trap conditions, the floating-point
half of the dual instruction will already have been
executed.

The processor begins executing the trap handler
by transferring execution to virtual address
OxFFFFFFQO0. The trap handler begins execution in
single-instruction mode. The trap handler must ex-
amine the trap-type bits in psr (IT, IN, IAT, DAT, FT)
to determine the cause or causes of the trap.

2.8.2 INSTRUCTION FAULT

This fault is caused by any of the following condi-
tions. In all cases the processor sets the IT bit be-
fore entering the trap handler.

1. By the trap instruction. When trap is executed in
dual-instruction mode, the floating-point compan-
ion of the trap instruction is not executed before
the trap is taken. )

2. By the intovr instruction. The trap occurs only if
OF in epsr is set when intovr is executed. The
trap handler should clear OF before returning.
When intovr causes a trap in dual-instruction
mode, the floating-point companion of the intovr
instruction is completely executed before the trap
is taken.

3. By violation of lock/unlock protocol, explained be-
low. (Note that trap and intovr should not be
used within a locked sequence; otherwise, it
would be difficult to distinguish between this and
the prior cases.)

The lock protocol requires the following sequence
of activities:

1. lock

2. Any load or store instruction that misses the
cache

3. unlock

4. Any load or store instruction (regardiess of
whether it misses the cache)

There may be other instructions between any of
these steps. The bus is locked after step 2, and re-
mains locked until step 4. Step 4 must follow step 1
by 30 instructions or less, otherwise the instruction
trap occurs. In case of a trap, IL is also set. If the
load or store instruction in step 2 hits the cache, the
sequence is legal, but the bus is not locked.
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2.8.3 FLOATING-POINT FAULT

The fioating-point fault is reported on fioating-point
instructions, pst, fst, and sometimes fid, pfid, ixfr.
The floating-point faults of the i860 XR microproces-
sor support the floating-point exceptions defined by
the IEEE standard as well as some other useful
classes of exceptions. The i860 XR microprocessor
divides these into two classes: source exceptions
and result exceptions. The numerics library supplied
by Intel provides the IEEE standard default handling
for all these exceptions.

2.8.3.1 Source Exception Faults

When used as inputs to the multiplier or adder, all
exceptional operands, including infinities, denormal-
ized numbers and NaNs, cause a floating-point fault
and set SE in the fsr. Source exceptions are report-
ed on the instruction that initiates the operation. For
pipelined operations, the pipeline is not advanced.

The SE value is undsfined for faults on fid, pfid, fst,
pst, and ixfr instructions when in single-instruction
mode or when in dual-instruction mode and the com-
panion instruction is not a multiplier or adder opera-
tion.

2.8.3.2 Result Exception Faults

The class of result exceptions includes any of the
following conditions:

¢ Overflow. The absolute value of the rounded
true result would exceed the largest positive finite
number in the destination format.

* Underflow (when FZ is clear). The absolute val-
ue of the rounded true result would be smaller
than the smallest positive finite number in the
destination format.

* Inexact result (when Tl is set). The result is not
exactly representable in the destination format.
For example, the fraction 14 cannot be precisely
represented in binary form. This exception occurs
frequently and indicates that some (generally ac-
ceptable) accuracy has been lost.

The point at which a result exception is reported de-
pends upon whether pipelined operations are being
used:

¢ Scalar (nonpipelined) operations. Resuit ex-
ceptions are reported on the next floating-point,
fst.x, or pst.x (and sometimes fid, pfid, ixfr) in-
struction after the scalar operation. When a trap
occurs, the last stage of the affected unit con-
tains the result of the scalar operation.

* Pipelined operations. Result exceptions are re-
ported when the result is in the last stage and the
next floating-point, fst.x or pst.x (and sometimes
fid, pfid, ixfr) instruction is executed. When a
trap occurs, the pipseline is not advanced, and the
last stage results (that caused the trap) remain
unchanged.
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When no trap occurs (either because FTE is clear or

because no exception occurred), the pipeline is ad-
vanced normally by the new floating-point operation.

The result-status bits of the affected unit are unde-
fined until the point that result exceptions are report-
ed. At this point, the last stage result-status bits (bits
29..22 and 16..9 of the fsr) reflect the values in the
last stages of both the adder and multiplier. For ex-
ample, if the last stage result in the multiplier has
overflowed and a pipelined floating-point pfadd is
started, a trap occurs and MO is set.

For scalar operations, the RR bits of fsr specify the
register in which the result was stored. RR is updat-
ed when the scalar instruction is initiated. The trap,
however, occurs on a subsequent instruction. Pro-
grammers must prevent intervening stores to fsr
from modifying the RR bits. Prevention may take one
of the following forms:

* Before any store to fsr when a result exception
may be pending, execute a dummy floating-point
operation to trigger the result-exception trap.

® Always read from fsr before storing to it, and
mask updates so that the RR bits are not
changed.

For pipelined operations, RR is cleared and the re-
sult is in the last stage of the pipeline of the appro-
priate unit. The trap handler must flush the pipeline,
saving the results and the status bits.

In either pipelined or scalar mode, the trap handler
must then compute the trapping result. In either
case, the resuit has the same fraction as the true
result and has an exponent which is the low-order
bits of the true result. The trap handler can inspect
the result, compute the result appropriate for that
instruction (a NaN or an infinity, for example), and
store the correct result. The result is either stored in
the register specified by RR (if nonzero) or (if RR =
0) the trap handler must reload the pipsline with the
saved results and status bits.

Result exceptions may be reported for both the ad-
der and multiplier units at the same time. In this
case, the trap handler should fix up the last stage of
both pipelines.

2.8.4 INSTRUCTION ACCESS FAULT
This trap occurs during address translation for in-
struction fetches in any of these cases:

® The address fetched is in a page whose P (pres-
ent) bit in the page table is clear (not present).

* The address fetched is in a supervisor mode
page, but the processor is in user mode.

e The address fetched is in a page whose PTE has
A = 0, and the access occurs during a locked
sequence (i.e., between lock and unlock).

| PRELIMINARY

i8607™ XR MICROPROCESSOR

Note that several instructions are fetched at one
time, either due to instruction prefetching or to in-
struction caching. Therefore, a trap handler can
change from supervisor to user mode and continue
to execute instructions fetched from a supervisor
page. An instruction access trap occurs only when
the next group of instructions is fetched from a su-
pervisor page (up to eight instructions later). If, in the
meantime, the handler branches to a user page, no
instruction access trap occurs. No protection viola-
tion results, because the processor does not permit
data accesses to supervisor pages while running in
user mode. .

2.8.5 DATA ACCESS FAULT

This trap results from an abnormal condition detect-
ed during data operand fetch or store. Such an ex-
ception can be due only to one of the following caus-
es:

* An attempt is being made to write to a page
whose D (Dirty) bit is clear.

¢ A memory operand is misaligned (is not located
at an address that is a multiple of the length of
the data).

® The address stored in the db register is equal to
one of the addresses spanned by the operand.

* The operand is in a not-present page.

* An attempt is being made from user level to write
to a read-only page or to access a supervisor-lev-
el page.

® The operand was in a page whose PTE had A =
0, and the access occurred during a locked se-
quence. (i.e., between lock and unlock.)

¢ Write protection (determined by epsr bit WP = 1)
is violated in supervisor mode.

2.8.6 INTERRUPT TRAP

An interrupt is an event that is signaled from an ex-
ternal source. If the processor is executing with in-
terrupts enabled (IM set in the psr), the processor
sets the interrupt bit IN in the psr, and generates an
interrupt trap. Vectored interrupts are implemented
by interrupt controllers and software.

2.8.7 RESET TRAP

When the i860 XR microprocessor is reset, execu-
tion begins in single-instruction mode at physical ad-
dress OxFFFFFFOO0. This is the same address as for
other traps. The reset trap can be distinguished from
other traps by the fact that no trap bits are set. The
instruction cache is flushed. The bits DPS, BL, and
ATE in dirbase are cleared. CS8 is initialized by the
value at the INT pin at the end of reset. The read-
only fields of the espr are set to identify the proces-
sor, while the IL, WP, and PBM bits are cleared. The
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bits U, IM, BR, and BW in psr are cleared, as are the
trap bits FT, DAT, IAT, IN, and IT. All other bits of
psr and all other register contents are undefined.

Refer to Table 2.9 for a summary of these initial set-
tings.

Table 2.9. Register and Cache Values after Reset

Registers Initial Value
Integer Registers | Undefined
Floating-Point Undefined
Registers
psr U, IM, BR, BW, FT, DAT, IAT, IN,
IT = 0; others are undefined
epsr IL, WP, PBM, BE = 0;
Processor Type, Stepping
Number, DCS are read
only; others are undefined
db Undefined
dirbase DPS, BL, ATE = 0; others
are undefined
fir Undefined
fsr Undefined
KR, K|, T, Undefined
MERGE
Caches Initial Value
Instruction Cache | Flushed
Data Cache Undefined
TLB Flushed

The software must ensure that the data cache is
flushed and control registers are properly initialized
before performing operations that depend on the
values of the cache or registers. The data cache has
no *“validity” bits, so memory accesses before the
flush may result in false data cache hits.

Reset code must initialize the floating-point pipeline
state to zero with floating-point traps disabled to en-
sure that no spurious floating-point traps are gener-
ated.

After a RESET the i860 XR microprocessor starts
execution at supervisor level (U=0). Before branch-
ing to the first user-level instruction, the RESET trap
handler or subsequent initialization code has to set
PU and a trap bit so that an indirect branch instruc-
tion will copy PU to U, thereby changing to user level.

2.9 Debugging

The 860 XR microprocessor supports debugging

with both data and instruction breakpoints. The fea-

tures of the i860 XR architecture that support debug-

ging include:

¢ db (data breakpoint register) which permits speci-
fication of a data addresses that the i860 XR mi-
croprocessor will monitor.
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¢ BR (break read) and BW (break write) bits of the

psr, which enable trapping of either reads or
writes (respectively) to the address in db.

¢ DAT (data access trap) bit of the psr, which al-
lows the trap handler to determine when a data
breakpoint was the cause of the trap.

e trap instruction that can be used to set break-
points in code. Any number of code breakpoints
can be set. The values of the isrc? and isrc2
fields help identify which breakpoint has oc-
curred.

® [T (instruction trap) bit of the psr, which allows
the trap handler to determine when a trap in-
struction was the cause of the trap.

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

Table 3.1 identifies functional groupings of the pins,
lists every pin by its identifier, gives a brief descrip-
tion of its function, and lists some of its characteris-
tics. All output pins are tristate, except HLDA and
BREQ. All inputs are synchronous, except HOLD
and INT.

3.1.1 CLOCK (CLK)

The CLK input determines execution rate and timing
of the i860 XR microprocessor. Timing of other sig-
nals is specified relative to the rising edge of this
signal. The i860 XR microprocessor can utilize a
clock rate of 25 MHz, 33.3 MHz or 40 MHz. The
internal operating frequency is the same as the ex-
ternal clock.

3.1.2 SYSTEM RESET (RESET)

Asserting RESET for at least 16 CLK periods causes
initialization of the i860 XR microprocessor. Refer to
section 3.2 “Initialization” for more details related to
RESET.

3.1.3 BUS HOLD (HOLD) AND BUS HOLD
ACKNOWLEDGE (HLDA)

These pins are used for i860 XR microprocessor bus
arbitration. At some clock after the HOLD signal is
asserted, the i860 XR microprocessor releases con-
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Table 3.1. Pin Summary

Pin Active Input/
Name Function State Output
Execution Control Pins
CLK ClocK |
RESET System reset High 1
HOLD Bus hold High |
HLDA Bus hold acknowledge High (o]
BREQ Bus request High (0]
INT/CS8 Interrupt, code-size High [
Bus Interface Pins
A31-A3 Address bus High 0
BE7#-BEQ# Byte Enables Low O
D63-D0 Data bus High 170
LOCK # Bus lock Low (0]
W/R# Write/Read bus cycle High/Low o
NENE # NExt NEar Low o]
NA # Next Address request Low |
READY # Transfer Acknowledge Low |
ADS# ADdress Status Low 0
Cache Interface Pins
KEN # Cache ENable Low I
PTB Page Table Bit High O
Testability Pins
SHI Boundary Scan Shift input High !
BSCN Boundary Scan Enable High |
SCAN Shift Scan Path High |
Intel-Reserved Configuration Pins
CC1-CCo i Configuration I High l |
Power and Ground Pins
Vee System power
Vss System ground

A # after a pin name indicates that the signal is active when at the low voitage fevel.

trol of the local bus and puts all bus interface out-
puts (except BREQ and HLDA) into a floating state,
then asserts HLDA—all during the same clock peri-
od. It maintains this state until HOLD is deasserted.
Instruction execution stops only if required instruc-
tions or data cannot be read from the on-chip in-
struction and data caches.

The time required to acknowledge a hold request is
one clock plus the number of clocks needed to finish
any outstanding bus cycles. HOLD is recognized
even while RESET or LOCK# is asserted.

When leaving a bus hold, the i860 XR microproces-
sor deactivates HLDA and, in the same clock period,
initiates a pending bus cycle, if any.

Hold is an asynchronous input.
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3.1.4 BUS REQUEST (BREQ)

This signal is asserted when the i860 XR microproc-
essor has a pending memory request, even when
HLDA is asserted. This allows an external bus arbi-
ter to implement an “on demand only” policy for
granting the bus to the i860 XR microprocessor.
BREQ is asserted the clock after the i860 XR micro-
processor realizes an internal request for the bus. In
normal operation, BREQ goes low the clock after
ADS # goes low for the final pending bus cycle. (Re-
fer to Figure 4.10 for timing information.) During data
or instuction cache fills, however, BREQ may be
deasserted for one or more clocks, due to cache
and TLB logic.

3.1.5 INTERRUPT/CODE-SIZE (INT/CS8)

This input allows interruption of the current instruc-
tion stream. If interrupts are enabled (IM set in psr)
when INT is asserted, the i860 XR microprocessor
fetches the next instruction from address
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OxFFFFFFO0. To assure that an interrupt is recog-
nized, INT should remain asserted until the software
acknowledges the interrupt (by writing, for example,
to a memory-mapped port of an interrupt controller).
When the bus is not locked, the maximum time be-
tween the assertion of INT and the execution of the
first instruction of the trap handler is ten clocks, plus
the time for four sets of four pipelined read cycles
and two sets of four pipelined writes (instruction-
and data-cache misses and write-back cycles to up-
date memory), plus the time for twenty nonpipelined
read cycles (six TLB misses, with eight refetches
when the A-bit is zero), plus the time for eight non-
pipelined writes (updates to the A-bit).

if the bus is locked from a lock instruction, the INT
pin is ignored and the INT bit of epsr is always zero.
The lock instruction can only assert LOCK # for 30-
33 instructions before trapping.

If INT is asserted during the clock before the falling
edge of RESET, the eight-bit code-size mode is se-
lected. For more about this mode, refer to section
3.2 “Initialization”.

INT is an asynchronous input.

3.1.6 ADDRESS PINS (A31-A3) AND BYTE
ENABLES (BE7+# ~-BEO#)

The 29-bit address bus (A31-A3) identifies address-
es to a 64-bit location. Separate byte-enable signals
(BE7# -BEO#) identify which bytes should be ac-
cessed within the 64-bit location. In all noncachea-
ble read cycles (KEN# deasserted), the byte
enables match the length and address of the re-
quested data. Cacheable read cycles (KEN # assert-
ed), however, result in four 64-bit memory cycles to
fill an entire 32-byte cache line. The BEn# pins acti-
vated are those that represent the operand of the
load instruction that caused the line fill, and these
same BEn+# pins remain activated for all four cycles
of the line fill. All 64 bits must be returned for each
cycle without regard for the BEn# signals. In all
write cycles (noncacheable writes as well as cache
line write-backs) the BEn# signals indicate the
bytes that must be written.

Instruction fetches (W/R# is low) are distinguished
from data accesses by the unique combinations of
BE7#-BEO# defined in Table 3.2. For an eight-bit
code feich in eight-bit code-size (CS8) mode,
BE2# -BEO# are redefined to be A2-A0 of the ad-
dress. In this case BE7#-BE3# form the code
shown in Table 3.2 that identifies an instruction
fetch. The A2 in the table does not represent a phys-
ical pin, just a conceptual internal address line valus.
The “x”under A2 for CS8 mode means “not applica-
ble”, or “don’t care”. All other combinations of byte
enables indicate data accesses.
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The address and byte-enable pins are driven untit
either NA# or READY # is asserted.

3.1.7 DATA PINS (D63-D0)

The bus interface has 64 bidirectional data pins
(D63-D0) to transfer data in eight- to 64-bit quanti-
ties. Pins D7-D0 transfer the least significant byts;
pins D63-D56 transfer the most significant byte.

In read bus cycles, all 64 bits of the data bus are
latched, even in CS8-mode instruction fetches when
only the low-order eight bits are used.

In write bus cycles, the point at which data is driven
onto the bus depends on the type of the preceding
cycle. If there was no preceding cycle (i.e. the bus
was idle), data is driven with the address. If the pre-
ceding cycle was a write, data is driven as soon as
READY # is returned from the previous cycle. If the
preceding cycle was a read, data is driven one clock
after READY # is returned from the previous cycle,
thereby allowing time for the bus to be turned
around. Data continues to be driven until READY #
for the current cycle is returned.

3.1.8 BUS LOCK (LOCK+#)

This signal is used to provide atomic (indivisible)
read-modify-write sequences in multiprocessor sys-
tems. A multiprocessor bus arbiter must permit only
one processor a locked access to the address which
is on the bus when LOCK # first activates. The sys-
tem must maintain the lock of that location until
LOCK# deactivates.

The 860 XR microprocessor coordinates the exter-
nal LOCK# signal with the software-controlled BL
bit of the dirbase register. Programmers do not
have to be concerned about the fact that bus activity
is not always synchronous with instruction execu-
tion. LOCK# is asserted with ADS# for the address
operand of the first load or store instruction exscut-
ed after the BL bit is set by the lock instruction.
Pending bus cycles are locked according to the val-
ue of the BL bit when the instruction was executed.
Even if the BL bit is changed between the time that
an instruction generates an internal bus request and
the time that the cycle appears on the bus, the 860
XR microprocessor still asserts LOCK # for that bus
cycle.

If ADS# is active when LOCK# deactivates, then
that request should complete before the hardware
relinquishes the lock. If ADS# is not active, the lock-
ing of the location can immediately end when
LOCK# deactivates. Of course the simplest arbitra-
tion hardware can just lock the entire bus against all
other accesses during LOCK# assertion through
RDY # of the cycle in which LOCK # goes inactive.
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Table 3.2. Identifying instruction Fetches

gede | A2 | BE7# | BEG# | BES# | BE4# | BES# | BE2# | BE1# | BEO#
v ! 1 ' 1 ° 1 °
Noncse) | ! ° ! ° 1 1 1 1
hcng?je x 1 0 1 0 1 Low-order address bits

When the BL bit is deasserted with the unlock in-
struction, LOCK # is deasserted with the next load
or store but after any pending bus cycles. Between
locked sequences, at least one cycle of no LOCK#
is guaranteed by the behavior of the unlock instruc-
tion. LOCK# deassertion may occur independently
of ADS# for the case of a trap or a cache hit after
unlock.

The i860 XR microprocessor also asserts LOCK#
during TLB miss processing for updates of the ac-
cessed bit in page-table entries. The maximum time
that LOCK# can be asserted in this case is five
clocks plus the time required to perform a read-mod-
ify-write sequence. Instruction fetches do not alter
the LOCK# pin.

Between lock and unlock instructions, the INT pinis
ignored and the INT bit of epsr is zero when read by
id.c epsr. The time that interrupts are disabled is
limited by the lock protocol outlined in Section 2.8.2.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This pin specifies whether a bus cycle is a read
(LOW) or write (HIGH) cycle. It is driven until either
NA# or READY # is asserted.

3.1.10 NEXT NEAR (NENE #)

This signal allows higher-speed reads and writes in
the case of consecutive reads and writes that ac-
cess static column or page-mode DRAMs. The i860
XR microprocessor asserts NENE# when the cur-
rent address is in the same DRAM page as the pre-
vious bus cycle. The i860 XR microprocessor deter-
mines the DRAM page size by inspecting the DPS
field in the dirbase register. The page size can
range from 29 to 216 64-bit words, supporting DRAM
sizes from 256K X 1, 256K X 4, and up. NENE # is
never asserted on the next bus cycle after HLDA is
deasserted.

3.1.11 NEXT ADDRESS REQUEST (NA #)

NA# makes address pipelining possible. The sys-
tem asserts NA# for at least one clock to indicate
that it is ready to accept the next address from the
i860 XR microprocessor. NA# may be asserted be-
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fore the current cycle ends. (If the system does not
implement pipelining, NA# does not have to be acti-
vated.) The 860 XR microprocessor samples NA#
every clock, starting one clock after the prior activa-
tion of ADS#. When NA# is active, the i860 XR
microprocessor is free to drive address and bus-cy-
cle definition for the next pending bus cycle. The
i860 XR microprocessor remembers that NA# was
asserted when no internal request is pending; there-
fore, NA# can be deactivated after the next rising
edge of the CLK signal. Up to three bus cycles can
be outstanding simultaneously.

3.1.12 TRANSFER ACKNOWLEDGE (READY #)

The system must assert the READY # signal during
read cycles when valid data is on the data pins and
during write cycles when the system has accepted
data from the data pins. READY # must be asserted
for at least one clock. Sampling of READY # begins
in the clock after an ADS# or in the second clock
after a prior READY #.

3.1.13 ADDRESS STATUS (ADS#)

The 860 XR microprocessor asserts ADS# during
the first clock of each bus cycle to identify the clock
period during which it begins to assert outputs on
the address bus. This signal is held active for one
clock.

3.1.14 CACHE ENABLE (KEN#)

The 860 XR microprocessor samples KEN# to de-
termine whether the data being read for the current
cache-miss cycle is to be cached. This pin is inter-
nally NORed with the CD and WT bits to control
cacheability on a page by page basis (refer to Table
3.3).

If the address is one that is permitted to be in the
cache, KEN# must be continuously asserted during
the sampling period starting from the second rising
clock edge after ADS# is asserted, through the
clock NA# or READY # is asserted. The entire 64
bits of the data bus will be used for the read, regard-
less of the state of the byte-enable pins. Three addi-
tional 64-bit bus cycles will be generated to fill the
rest of the 32-byte cache block.
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if KEN# is found deasserted at any clock from the
clock after ADS # through the clock of the firgt NA #
or READY #, the data being read will not be cached
and two scenarios can occur: 1) if the cycle is due to
data-cache miss, no subsequent cache-fill cycles
will be generated; 2) if the cycle is due to an instruc-
tion-cache miss, additional cycle(s) will be generat-
ed until the address reaches a 32-byte boundary. To
avoid caching a line, external hardware must deas-
sert KEN# during or before the first NA# or
READY #.

3.1.15 PAGE TABLE BIT (PTB)

Depending on the setting of the PBM (page-table bit
mode) bit of the epsr, the PTB reflects the value of
either the CD (cache disable) bit or the WT (write
through) bit of the page-table entry used for the cur-
rent cycle. When paging is disabled, PTB remains
inactive.

Table 3.3. Cacheabllity based on
KEN# and CDORWT

CDORWT | KEN# Meaning
0 0 Cacheable access
0 1 Noncacheable access
1 0 Noncacheable page
1 1 Noncacheable page

3.1.16 BOUNDARY SCAN SHIFT INPUT (SHi)

This pin is used with the testability features. Refer to
section 3.3.
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3.1.17 BOUNDARY SCAN ENABLE (BSCN)

This pin is used with the testability features. Refer to
section 3.3.

3.1.18 SHIFT SCAN PATH (SCAN)

This pin is used with the testability features. Refer to
section 3.3.

3.1.19 CONFIGURATION (CC1-CC0)

These two pins are reserved by Intel. Strap both pins
LOW.

3.1.20 SYSTEM POWER (Vcc) AND GROUND
(Vss)

The i860 XR microprocessor has 48 pins for power
and ground. All pins must be connected to the ap-
propriate low-inductance power and ground signals
in the system.

3.2 Initialization

Initialization of the 860 XR microprocessor is
caused by assertion of the RESET signal for at least
16 clocks. Table 3.4 shows the status of output pins
during the time that RESET is asserted. Note that
HOLD requests are honored during RESET and that
the status of output pins depends on whether a
HOLD request is being acknowledged.

PRELIMINARY I
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Tabie 3.4. Qutput Pin Status during Reset

Pin Value
Pin Name Ht?:tn HOLD
Acknowiedged Acknowledged

ADS#, LOCK# HIGH Tri-State OFF
W/R#,PTB Low Tri-State OFF
BREQ LOW LOW
HLDA Low HIGH
D63-D0 Tri-State OFF | Tri-State OFF
A31-A3,
BE7# -BEO#, Undefined Tri-State OFF
NENE #

After a reset, the i860 XR microprocessor begins ex-
ecuting at physical address OxFFFFFFO0O0. The pro-
gram-visible state of the i860 XR microprocessor af-
ter reset is detailed in section 2.8.7.

Eight-bit code-size mode is selected when INT/CS8
is asserted during the clock before the falling edge
of RESET. While in eight-bit code-size mode, in-
struction cache misses are byte reads (transferred
on D7-D0 of the data bus) instead of eight-byte
reads. This allows the i860 XR microprocessor to be
bootstrapped from an eight-bit EPROM. For these
code reads, byte enables BE2# -BEO# are rede-
fined to be the low order three bits of the address,
so that a complete byte address is available. These
reads update the instruction cache if KEN# is as-
serted (refer to section 3.1.14) and are not pipelined
aven if NA# is asserted. While in this mode, instruc-
tions must reside in an sight-bit wide memory, while
data must reside in a separate 64-bit wide memory.
After the code has been loaded into 64-bit memory,
initialization code can initiate 64-bit code fetches by
clearing the CS8 bit of the dirbase register (refer to
section 2). Once eight-bit code-size mode is dis-
abled by software, it cannot be reenabled except by
resetting the i860 XR microprocessor.

3.3 Testability

The 860 XR microprocessor has a boundary scan
mode that may be used in component- or board-lev-
ol testing to test the signal traces leading to and
from the i860 XR microprocessor. Boundary scan
mode provides a simple serial interface that makes it
possible to test all signal traces with only a few
probes. Probes need be connected only to CLK,
BSCN, SCAN, SHi, BREQ, RESET, and HOLD.

The pins BSCN and SCAN control the boundary
scan mode (refer to Table 3.5). When BSCN is as-
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serted, the i860 XR microprocessor enters boundary
scan mode on the next rising clock edge. Boundary
scan mode can be activated even while RESET is
active. When BSCN is deasserted while in boundary
scan mode, the i860 XR microprocessor leaves
boundary scan mode on the next rising clock edge.
After leaving boundary scan mode, the internal state
is undefined; therefore, RESET should be asserted.

Table 3.5. Test Mode Selection

BSCN | SCAN Testability Mode

Lo LO No testability mode selected

LO Hi (Reserved for Intel)

Hi LO Boundary scan mode, normal

HI Hi Boundary scan mode, shift
SHI as input; BREQ as
output

For testing purposes, each signal pin has associated
with it an internal latch. Table 3.6 indentifies these
latches by name and classifies them as input, out-
put, or control. The input and output latches carry
the name of the corresponding pins.

Table 3.6. Test Mode Latches

input Output Azs::ti:;fd
Latch Latch Latch

SHi

BSCN

SCAN

RESET

D0-D63 DO-D63 DATAt

CC1-CCo
A31-A3 ADDRt
NENE # NENEt
PTB# PTBt
W/R# W/Rt
ADS# ADSt
HLDA
LOCK # LOCKt

READY #

KEN#

NA #

INT/CS8

HOLD
BE7# ~BEQ# BEt
BREQ

Within boundary scan mode the i860 XR microproc-
essor operates in one of two submodes: normal
mode or shift mode, depending on the value of the
SCAN input. A typical test sequence is . . .
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1. Enter shift mode to assign values to the latches
that correspond with the pins.

2. Enter normal mode. In normal mode the i860 XR
microprocessor transfers the latched values to
the output pins and latches the values that are
being driven onto the input pins.

3. Reenter shift mode to read the new values of the
input pins.

3.3.1 NORMAL MODE

When SCAN is deasserted, the normal mode is se-
lected. For each input pin (RESET, HOLD,
INT/CS8, NA#, READY#, KEN#, SHI, BSCN,
SCAN, CC1, and CCO), the corresponding latch is
loaded with the value that is being driven onto the
pin.

The tristate output pins (A31-A3, BE7#-BEO#,
W/R#, NENE#, ADS#, LOCK#, and PTB) are en-
abled by the control latches ADDRt (for A31-A3),
BEt, W/Rt, NENEt, ADSt, LOCKt, and PTBt. If a con-
trol latch is set, the corresponding output latches
drive their output pins; otherwise the pins are not
driven.

The 1/0 pins (D63-D0) are enabled by the control
latch DATAt, which is similar to the other control
latches. In addition, when DATAt is not set, the data
pins are treated as input pins and their values are
latched.

3.3.2 SHIFT MODE

When SCAN is asserted, the shift mode is selected.
In shift mode, the pins are organized into a boundary
scan chain. The scan chain is configured as a shift
register that is shifted on the rising edge of CLK. The
SHi pin is connected to the input of one end of the
boundary scan chain. The value of the most signifi-
cant bit of the scan chain is output on the BREQ pin.
To avoid glitches while the values are being shifted
along the chain, the tester should assert both the
RESET and HOLD pins. Then all tristate outputs are
disabled. The order of the pins within the chain is
shown in Figure 3.1.

a
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A tester causes entry into this mode for one of two
purposes:

1. To assign values to output latches to be driven
onto output pins upon subsequent entry into nor-
mal mode.

2. To read the values of input pins previously latched
in normal mode.

4.0 BUS OPERATION

A bus cycle begins when ADS# is activated and
ends when READY # is sampled active. READY # is
sampled one clock after assertion of ADS# and
thereafter until it becomes active. New cycles can
start as often as every other clock until three cycles
are outstanding. A bus cycle is considered outstand-
ing as long as READY # has not been asserted to
terminate that cycle. After READY # becomes ac-
tive, it is not sampled again for the following (out-
standing) cycle until the second clock after the one
during which it became active. READY # is assumed
to be inactive when it is not sampled.

With regard to how a bus cycle is generated by the
i860 XR microprocessor, there are two types of cy-
cles: pipelined and nonpipelined. Both types of cy-
cles can be sither read or write cycles. A pipelined
cycle is one that starts while one or two other bus
cycles are outstanding. A nonpipelined cycle is one
that starts when no other bus cycles are outstand-
ing.

4.1 Pipelining

A m-n read or write cycle is a cycle with a total cycle
time of m clocks and a cycle-to-cycle time of n
clocks (m > n). Total cycle time extends from the
clock in which ADS# is activated to the clock in
which READY # becomes active, whereas cycle-to-
cycle time extends from the time that READY # is
sampled active for the previous cycle to the time
that it is sampled active again for the current cycle.
When m = n, a nonpipelined cycle is implied; m > n
implies a pipelined cycle.

1 2 3 4
~» SHI — BSCN - SCAN — RESET -— D
70 71 72 100
¢t — cco — A1 — ... - A3
106 106 107 108 108
PTB# — W/Rt — W/R# -+ ADSt —  ADS#
114 115 116 117 118
KEN# — NA# ~— [NT/CS8 — HOLD — BEt

5 6 69

ATAt — Do - ... — D63 —_
101 102 103 104

— ADDRt — NENEt — NENE# — PTBt —>
110 i 112 113

— HWDA — LOCKt —» LOCK# — READY# -
119 126 127

— BE7# — — BEO# - BREQ —

Figure 3.1. Order of Boundary Scan Chain
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Pipelining may occur for the next bus cycle any time
the current bus cycle requires more than two clock
periods to finish (m > 2). If a bus request is pending,
the next cycle will be initiated when NA # is sampled
active, even if the current cycle has not terminated.

In this case, pipelining occurs. NA# is not recog-
nized unitl after ADS# has become inactive.

To allow high transfer rates in large memory sys-
tems, two-level pipelining is supported (i.e., there
may be up to three cycles in progress at one time).
Pipelining enables a new word of data to be trans-
ferred every two clocks, even though the total cycle
time may be up to six clocks.

4.2 Bus State Machine

The operation of the bus is described in terms of a
bus state machine using a state transition diagram.
Figure 4.1 illustrates the i860 XR microprocessor
bus state machine. A bus cycle is composed of two
or more states. Each bus state lasts for one CLK
period.

The i860 XR microprocessor supports up to two lev-
els of address pipelining. Once it has started the first
bus cycle, it can generate up to two more cycles as
long as READY # remains inactive. To start a new
bus cycle while other cycles are still outstanding,
NA# must be active for at least one clock cycle
starting with the clock after the previous ADS#.
NA# is latched internally.

States Tjand Ty, forj = {1,2,3} and k = {1,2}, are
used to describe the state of the iB60 XR microproc-
essor Bus State Machine. Index j indicates the num-
ber of outstanding bus cycles while index k distin-
guishes the intermediate states for the j-th outstand-
ing cycle. Therefore there can be up to three out-
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standing cycles, and there are two possible interme-
diate states for each level of pipelining. T is the
next state after Tj, as long as j cycles are outstand-
ing. Tjo is entered when NA+# is active but the iB60
XR microprocessor is not ready to start a new cycle.

Five conditions have to be met to start a new cycle
while one or more cycles are already pending:

1. READY # inactive

2. NA# having been active

3. An internal request pending (BREQ active)
4. HOLD not active

5. Fewer than three cycles outstanding

Note that BREQ is asserted on the clock after the
i860 XR microprocessor realizes an internal request
for the bus.

Upon hardware RESET, the bus control logic enters
the idle state T; and awaits an internal request for a
bus cycle. If a bus cycle is requested while there is
no hold request from the system, a bus cycle begins,
advancing to state Ty. On the next cycle, the state
machine automatically advances to state Ty4. If
READY # is active in state T44, the bus control logic
returns either to Ty, if no new cycle is started, or to
T4, if a new cycle request is pending internally. in
fact, if an internal bus request is pending each time
READY # is active, the state machine continues to
cycle between T4¢ and T4.

However, if READY # is not active but the next ad-
dress request is pending (as indicated by an active
NA#), the state machine advances either to state
T2 (if an internal bus request is pending, signifying
that two bus cycles are now outstanding), or to state
T12 (if no bus internal request is pending, signifying
NA# has been found active). Transitions from state
T12 are similar to those from Ty4.
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READY# DEASSERTED-
(NO REQUEST+
HOLD ASSERTED)

D-
REQUEST PENDING-

READY# DEASSERTED- HOLD DEASSERTED

(NO REQUEST+

HOLD ASSERTED)

NO REQUEST-
HOLD DEASSERTED

READY# ASSERTED-
READY# ASSERTED-

REQUEST PENDING-
HOLD DEASSERTED

HOLD DEASSERTED-
NO REQUEST

REQUEST PENDING-
HOLD DEASSERTED

HOLD ASSERTED
HOLD DEASSERTED-
NO REQUEST

2.
2
() .
(¥ S
o &
R P
% <
P, c?

HOLD ASSERTED

READY# DEASSERTED READY# DEASSERTED-

NA# DEASSERTED

READY# DEASSERTED-
NA# ASSERTED

NA;

READY# ASSERTED
6 ASSERTED-

REQUEST PENDING-

HOLD DEASSERTED

NOTES:

READY#  Once READY# has been sampled active, it is
not sampled again until two clocks later

NA # Not sampled during ADS# active clock

ADS# Active in Ty, Tp and T3

HLDA Active in Ty

HOLD HOLD in this figure is the internally synchro-
nized version of the external signal HOLD

REQUEST  Internal Bus Request Pending (BREQ assert-

ed)

240296-29

Figure 4.1. Bus State Machine

If two bus cycles are already outstanding (as indicat-
ed by Ty for k = {1,2}) and NA# is latched active
but READY # is not active, one more bus request
causes entry into state Ts. Transitions from this
state are similar to those from T,.

In general, if there is an internal bus request each
time both READY # and NA# are active, the state
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machine continues to oscillate between Ty and T;,
forj = (2,3}.

When NA# is sampled active while there is a pend-
ing bus request, ADS # is activated in the next clock
period (provided no more than two cycles are al-
ready outstanding).
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Internal pending bus requests start new bus cycles
only if no HOLD request has been recognized. Ty is
entered from the idle state T;, T1y, and Ty2. HLDA is
active in this state. There is a one clock delay to
synchronize the HOLD input when the signal meets
the respective minimum setup and hold time require-

ments. The state machine uses the synchronized
HOLD to move from state to state.

4.3 Bus Cycies

Figures 4.2 through 4.10 illustrate combinations of
bus cycles.

i860™ XR MICROPROCESSOR

4.3.1 NONPIPELINED READ CYCLES

A read cycle begins with the clock in which ADS# is
asserted. The i860 XR microprocessor begins driv-
ing the address during this clock. it samples
READY # for active state every clock after the first
clock. A minimum of two clocks is required per cycle.
Data is latched when READY # is found active when
sampled at the end of a clock period. Figure 4.2 il-
lustrates nonpipelined read cycles with zero wait
states.

CYCLE 2 CYCLE 3
NON-PIPELINED | NON-PIPELINED
READ READ
(2=-2) (2-2)

Ti

=

CYCLE 1
NON=PIPELINED
READ
(2-2)
T Tyy
CLK | l
wost (NN /7
A31=A3, W/R#,
BEn#, NENE#,
nf. Nenet, | XXX

gigigh
7 TN
XXX XXX

SN s

D 17

e | (/AN
READY# /777
D63-D0 }-----C

TR
TN

A

-C

240296-13

Figure 4.2, Fastest Read Cycles
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CYCLE 1

NON=PIPELINED
WRITE
(2-2)

T11

=

CLK

ADS#

CYCLE 2 CYCLE 3
NON=PIPELINED | NON=PIPELINED
WRITE WRITE
(2-2) (2-2)

Tt T

gigigh
p=

AZ1=A3, W/R#,
BEn#, NENE#,

=3
N\ 7|
XXX

-
N\ 7 TN
XXX

PTB

NA#

{///

o

READY#

D63~D0

X

ZHSHES

{///
/77
X XX

B

240296-14

Figure 4.3. Fastest Write Cycles

4.3.2 NONPIPELINED WRITE CYCLES

The ADS# and READY# activity for write cycles
follows the same logic as that for read cycles, as -
Figure 4.3 illustrates for back-to-back, nonpipslined
write cycles with zero wait-states.

The fastest write cycle takes only two clocks to com-

plete. However, when a read cycle immediately pre-
cedes a write cycle, the write cycle must contain a
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wait state, as illustrated in Figure 4.4. Because the
device being read might still be driving the data bus
during the first clock of the write cycle, there is a
potential for bus contention. To help avoid such con-
tention, the i860 XR microprocessor does not drive
the data bus until the second clock of the write cy-
cle. The wait state is required to provide the addi-
tional time necessary to terminate the write cycle. In
other read-write combinations, the i860 XR micro-
processor does not require a wait state.
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CYCLE 1 CYCLE 2 CYCLE 3
NON=PIPELINED NON=PIPELINED NON=PIPELINED
READ WRITE EAD
(2~2) (3=3) (2-2)
T T1s T T Tyt T T1s
oo (NN |77 TN\ \uV/4
A31=A3, W/R§,
S et (XX XXX X

we | /D D h ]

wow | [TTHTIN L7777 TN\ | /777
e - @D 1-C
240206-15
Figure 4.4. Fastest Read/Write Cycles
CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
NON=-PIPELINED PIPELINED PIPELINED PIPELINED
READ READ WRITE WRITE
(5-5) (5-2) (6-3) (6-2)
T T T2 T3 T2 T2y T34 T3 Tt

eligh gigiigigigigh
o N7 TN 7T 7T 7T T 7T
"B‘E,&’,'Jéé:%g XXX XXX NXX

YR WIIHTIN /77/- /777 /7/7

v | JTTTTTT] T NN\ 7T N\ 777

o Pregees e Oy O R

Figure 4.5. Pipelined Read Followed by Pipelined Write
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N
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=

240296-16
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CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
NON=PIPELINED PIPELINED PIPELINED PIPELINED
WRITE WRITE READ READ
(5-5) (5-2) (5-2) (5-2)
Ty T2 T2 Y T2 Toy

CLK

L

ADS#

piighl
Vg

/4

A31-A3, W/RE,

JEpEpEEENE
NW7Za\ur/g

BEn#, NENE#,
PTB

=
N\ /7|
XXX

NA#

LM/

/7]

NHP

XX (XXX
LTI\ TT]

.
[~
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READY#

SREPC

Y/

AN

LITHTN A STTHTIN (/777

D63-D0 >(

IR ==+~ D=t~

a
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Figure 4.6. Pipelined Write Followed by Pipelined Read

4.3.3 PIPELINED READ AND WRITE CYCLES

Figures 4.5 and 4.6 illustrate combinations of non-
pipelined and pipelined read and write cycles. The
following description applies to both diagrams. While
Cycle 1 is still in progress, two new cycles are initiat-
ed. By the time READY # first becomes active, the
state machine has moved through states Ty, Ty1,
Ta, T24, and T3. Cycles 3 and 4 show how activating
READY # terminates the corresponding outstanding
cycle, and yet activating NA# while there is an inter-
nal request pending adds a new outstanding cycle.

In Figure 4.5, Cycle 3 is a write cycle following a read
cycle; therefore, one wait state must be inserted.
The i860 XR microprocessor does not drive the data
bus until one clock after the read data is returned
from the preceding read cycle. During Cycles 3 and
4, the state machine oscillates between states T3
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and T3¢ maintaining full bus capacity (two levels of
pipelining; three outstanding cycles). Cycles 2, 3,
and 4 in Figure 4.6 are 5-2 cycles; i.e. each requires
a total cycle time of five clocks while the throughput
rate is one cycle every two clocks.

Figure 4.7 illustrates in a more general manner how
the NA# signal controls pipelining. Cycle 1 is a 2-2
cycle, the fastest possible. The next cycle cannot be
started any earlier; therefore, there is no need to
activate NA# to start the next cycle early. Cycle 2, a
3-3 read, is different. Cycle 3 can be started during
the third state (a wait state) of Cycle 2, and NA# is
asserted to accomplish this.

NA# is not activated following the ADS# clock of
Cycle 3, thereby allowing Cycle 3 to terminate be-
fore the start of Cycle 4. As a result, Cycle 4 is a
nonpipelined cycle.
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CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4

NON=PIPELINED NON=PIPELINED PIPELINED NON=PIPELINED | . o IDLE
READ READ READ READ
(2-2) (3-3) (3=2) (2-2)

T

w L
o5t [\ |
S venes, XXX
RV NV NV

wwov | /777 77T TN\ /77
DE3-D0 }-----C}---------C}---}-C

T11 Ti1 Ty T Ty T T

pigigiginigiginigl
N 7T 7
XXX XXX

S

XX

/A

L1
R
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Figure 4.7. Pipelining Driven by NA #

T Tyy T2 T2 T22 T2 T2 T

s N7 NN
[77]

Pr-

A31=A3, W/R#.
BEn#, NENE#,
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Figure 4.8. NA# Active with No Internal Bus Request
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Figure 4.9. Locked Cycles

When there is no internal bus request, activating
NA# does not start a new cycle; the i860 XR micro-
processor, however, remembers that NA# has been
activated. Figure 4.8 illustrates the situation where
NA# is active but no internal bus request is pending.
NA# is activated when two cycles are outstanding.
Because there is no internal request pending until
after one idle state, no new bus cycle is started dur-
ing that period.

4.3.4 LOCKED CYCLES

The LOCK # signal is asserted when the current bus
cycle is to be locked with the next bus cycle. Asser-
tion of LOCK# may be initiated by a program’s set-
ting the BL bit of the dirbase register using the lock
instruction (refer to section 2) or by the i860 XR mi-
croprocessor itself during page table updates.

In Figure 4.9, the first read cycle is to be locked with
the following write cycle. If there were idle states
between the cycles, the LOCK# signal would re-
main asserted. This is the case for a read/modify/
write operation. Cycle 3 is not locked because
LOCK# is no longer asserted when Cycle 2 starts.
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4.3.5 HOLD AND BREQ ARBITRATION CYCLES

The HOLD, HLDA, and BREQ signals permit bus ar-
bitration between the i860 XR microprocessor and
another bus master.

See Figure 4.10. When HOLD is asserted, the i860
XR microprocessor does not relinquish control of
the bus until all outstanding cycles are completed. If
HOLD were asserted one clock earlier, the last i860
XR microprocessor bus cycle before HLDA would
not be started.

HOLD is sampled at the end of the clock in which it
is activated. Recommended setup and hold times
must be met to guarantee sampling one clock after
external HOLD activation. When HOLD is sampled
active, a one clock delay for internal synchronization
follows. Likewise when HOLD is deasserted, there is
a one-clock delay for internal synchronization before
HLDA is deasserted. The outputs (except HLDA and
BREQ) fioat when HLDA is asserted.
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Figure 4.10. HOLD, HLDA, and BREQ

If, during a HOLD cycle, an internal bus request is SET. If INT/CS8 is sampled active, the i860 XR mi-
generated, BREQ is activated even though HLDA is croprocessor enters CS8 mode. No inputs (except
asserted. It remains active at least until the clock for HOLD and INT/CS8) are sampled during RESET.
after ADS# is activated for the requested cycle.
Note that, because HOLD is recognized even while
RESET is active, the HLDA output signal may also
4.4 Bus States During RESET become active during RESET. Refer to Table 3.4

“Output Pin Status during Reset”,
Figure 4.11 shows how INT/CS8 is sampled during

the clock period just before the falling edge of RE-

| = 16 Clks |
I i
Nl (el
RESET / f \
WNT/Cs8 Ocrm
i X, (
240206-22

Figure 4.11. Reset Activities
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5.0 MECHANICAL DATA

Figures 5.1 and 5.2 show the locations of pins; Tables 5.1 and 5.2 help to locate pin identifiers.
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o O O O 0 O |7
ADS# HLDA BREQ (133 b33 D50
sl O O O O O O]
LOCK#  KEN§ READY§ 3] D49 D48
s ] O O O O O O |
INT/CS8  NA# HOLD D47 D45 D46
]l O O O O O |
BES# BE7# BES# D43 D42 D44
nl o o o O O O |
BE3# BE2#§ BE4# D39 D41 D4
2]l O O O O O O |n
SH! BE1§ BEO# D37 D38 D38
sl o o o O O O ]
RESET  SCAN BSCN D38 D34 Yoo
“l 0o O 0 O O O |
Vs [ ot D33 VYec Vg5
s O O O O O OO O O O O O O O O O O O[]
Yee Vss D2 B3 o8 D7 D1t D13 D17 b21 D23 027 D29 D31 D32 Vgs Vee
sl O O O O O O O O O O O O O O O O O |
Vss Voo ¥ss Voo [ 2] 08 DIS D14 D19 . D22 D25 028 D30 Vg  Vee Vs
7O O O O O O O O O O 0 0 0O 0O O 0 O]
Vee Vss  VYee Vss Voo 08 010 D12 D6 018 D20 D24 D26 Vg Ve Vss Voo
H R Q 4 N ] L K + H [ F € [ c B A

240206-23
Figure 5.1. Pin Configuration—View from Top Side
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RESET

O O
HOLD
BE74
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BED#  BEl#
O O O
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o% 0% 03
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0% 0§ O3
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Figure 5.2. Pin Configuration—View from Pin Side
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Table 5.1. Pin Cross Reference by Location

Location Signal Location Signal Location Signal Location Signal
At Vee CO.ev D47 J5.......L D17 Q10.......... BE6#
A2 ...l Vssg C10............ D43 Jie ...l D14 Qil.......... BE4#
A3............. Vee Cit............ D39 N7 D16 Q2.......... BEO#
Ad .. ..l Vss Cl2............ D37 [ A21 Qi38.......... BSCN
A5.. ... ... ..., D56 Ci13............ D35 K2............. A18 Ql4............. D1
AB............. D52 Cla............ D33 K3............. A16 Q15............. D2
A7 ... D50 Ci5............ D32 Ki5............ D13 Q16............ Vss
AB............. D48 C16......c..... Vss Ki6............ D15 Q17 ........... Vee
A9 . ... D46 C17............ Vee K17............ D12 R1............. Vss
A10............ D44 Dl............. Vss (I I A19 R2............. Vee
At D40 D2............. Vee L2 ... A15 R3............. Vss
Al2............ D38 D3............. D62 L3............. Al4 R4............. Vee
A13....... ..., Vee Di5............ D31 LS. D1t RS .............. Ad
A4 .. Vss Di6............ D30 L16............. D8 R6......... NENE #
A5 .ol Vee D17............ Vss L7 D10 R7 ........... HLDA
Al6............ Vss S Ve Ml ..., A17 R8 .......... KEN #
A7 ... Vee E2......... CCo M2, A13 RO............ NA#
Bt ............. Vssg E3............. CC1 M3............. Al R10.......... BE7 #
B2............. Vee E15............ D29 M5 ... D7 R11.......... BE2#
B3............. Vss E16............ D28 M16 ............ D9 Ri2.......... BE1#
B4a........... D59 E17............ D26 M17 ...l D6 R13.......... SCAN
BS............. D58 [ I A31 Ni............. A12 Ri4............. DO
B6............. D54 F2............. A28 N2............. A10 R15............ Vss
B7 ..o, D53 F3.....o.e..... A30 N3.............. A9 R16............ Veo
B8............. D49 Fi5............ D27 Ni6............. D5 R17............ Vss
B9............. D45 F16............ D25 N16............. D4 St Vce
B1Oo............ D42 F17.... ... ... D24 N17.. ... ...l Vee S§2............. Vss
Bi1t............ D41 Gl............. A29 Pt............. Vss S3....l Voe
B12............ D36 G2............. A27 P2.............. A8 S4..........L Vss
B13............ D34 G3............. A26 P3. ...l A7 S5, Vee
B14............ Voo G15 ........... D23 P15............. D3 S6 .......... W/R#
Bi5............ Vss G16 ........... D22 P16............ Vee S7...l ADS #
Bi6............ Vee G17 ........... D20 P17 ..ol Vss S8 ......... LOCK#
B17............ Vss Hi............. A25 [ ) Ve S9 ........ INT/CS8
Clooiiii... Vee H2...ooaal L. A24 Q2............. Vss S10.......... BE5#
C2............. Vss H3............. A22 Q... A6 St1.......... BE3#
C3..coivinint, D60 Hi5............ D21 Q4.............. A5 S12............ SHI
Ca............. D63 H16............ D19 Q5.............. A3 S$13......... RESET
C5.. ... D61 H17............ D18 Q6 ............ PTB St4............ Vss
C6.......oall D57 N A23 Q7........... BREQ S15............ Vce
C7.....c.o...l. D55 N 7 A20 Q8........ READY # S16............ Vss
C8.......c..... D51 N K CLK Q9........... HOLD S17............ Vee
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Table 5.2. Pin Cross Reference by Pin Name

Signal Location Signal Location Signal Location Signal Location
A3 ...l Qs CLK............. J3 Dat............ B11 Vo o PR B16
Ad. ...l RS DO........cuu R14 D42............ B10 1'/0 o P C1
AS... ..., Q4 Dlvveeeinnnn.. Q4 D43............ C10 VCGevrrrernnnn. c17
AB.............. Q3 D2............. Q15 D44............ A10 '/07e TR D2
A7 o P3 D3............. P15 Da5............. B9 VOC . evvrrnennnes E1
AB .. ... P2 Da............. N16 Da6............. A9 /67 T N17
A9.............. N3 D5...coovvvn.. N15 D47 .. ....nn. ... c9 VoG oorvneenn. P16
A1D............. N2 D6 ..oonnnnn M17 D48............. Ag VGGervreerennns Qi
LN & M3 D7 ............ M15 D49 ............. B8 Veg -oiveinne Q17
A2 ... ..., N1 D8 ............. L16 D50 ............. A7 VOG-t vvereeinens R2
A13............. M2 D9 ............ M16 D51............. cs8 VoG eievnninnnn R4
A4 ... L3 D10............ L17 Ds2............. A6 VoG e vveninnnn R16
A5 ... L2 DH1..covnnnnn, L15 D53.....c.cu.nn. B7 VG eaerernnnnn St
A16............. K3 Di2............ K17 D54............. B6 VGG rvrernannns s3
A7l M1 D13............ K15 D55............. c7 VG- iorvenrnnn S5
AB............. K2 D14............ J16 D56............. A5 VCC.wreevnnnnns S15
A19 ...l L1 Di5............ K16 D57............. C6 VEC everevnnnns S17
A20 ...l J2 D16............ Ji7 D58.......cne B5 N A2
A2t ... K1 D17 .o, J15 D59............. B4 VSS . oeereannnn A4
A22............. H3 D18............ H17 D60............. Cc3 VS eivenennnnn A4
A23 ............. J DI9............ H16 D61............. c5 VS . veernnnnns A16
A24............. H2 D20 ........... G17 D62............. D3 2 B1
A25. ... ........ H1 D21............ H15 D63............. c4 VEg e v viiennenns B3
A26............. G3 D22 ........... G16 HLDA ........... R7 N B15
A27 ...l G2 D23 ........... G15 HOLD........... Q9 VS vivenvennns B17
A28 ............. F2 D2a............ F17 INT/CS8 ........ S9 VES ceveeninnnns c2
A29............. Gt Da5............ F16 KEN# .......... R8 T/ c16
A30............. F3 D26............ E17 LOCK# ......... S8 VES viveiannnn D1
A3l ...l F1 D27............ F15 NA#............ R9 VS eeeiarnnnn. D17
ADS#........... s7 D28............ E16 NENE# ......... Ré V8 eveveennnnns P1
BEO#.......... Q12 D29............ E15 PTB ............ Q6 VES rviininnnn. P17
BE1#.......... R12 D30............ D16 READY# ....... Q8 A R, Q2
BE2#.......... R11 D31............ D15 RESET......... S13 V88 ei e Q16
BE3# .......... S D32............ Ci15 SCAN.......... R13 V8BS eierenininnt R1
BE4#.......... Q1 D33............ Ci4 SHIi............ S12 VS ovvveneinnnn R3
BES# .......... S10 D34............ B13 VoG cvcvevroencns Al VS eviveennnnn R15
BE6#.......... Q10 D35............ Cc13 VOG- vvrerenvnenn A3 VS evvvevnrnnn R17
BE7#.......... R10 D36............ B12 VEG e ieevnnns A13 VS vrennnnnnn. S2
BREQ........... Q7 D37............ c12 VoG o cvrenens A15 VS vt S4
BSCN.......... Q13 D38............ A12 VOG: o vvveeeenns A7 VES . ivvniinnnas S14
CCO...ccovvnnet E2 D39............ ci VEG o eeiiianns B2 VS ovienennns S16
CCl............. E3 D40............ Al VEG-ieerrnenns B14 W/R# .......... S6
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Table 5.3. Ceramic PGA Package Dimension Symbols

Lse;t;;;r Description of Dimensions
A Distance from seating plane to highest point of body
Aq Distance between seating plane and base plane (lid)
Ay Distance from base plane to highest point of body
As Distance from seating plane to bottom of body
B Diameter of terminal lead pin
D Largest overall package dimension of length
Dy A body length dimension, outer lead center to outer lead center
84 Linear spacing between true lead position centerlines
L Distance from seating plane to end of lead
S4 Other body dimension, outer lead center to edge of body

NOTES:

1. Controlling dimension: millimeter.

2. Dimension “e¢” (“e") is non-cumulative.

3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.0430 inch.
4. Dimensions “B”, “B¢"” and “'C" are nominal.

5. Details of Pin 1 identifier are optional.
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SEATING
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Fleee @0 e
[oXoXol [cXcXe)
ee® —_ ©oe TOANE
®oe ©e6e #B (ALL PINS)
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@ee lo§oNol I =H]
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PIN C3 ®@ee @ee - SWAGGED
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: Nl L
) SWAGGED A
%REF' PIN BAS‘E che
45° CHAMFER (4 PL) PLANE
(INDEX CORNER) 24028630
Family: Ceramic Pin Grid Array Package
Symbol Millimeters Inches
Min Max Notes Min Max Notes
A 3.56 457 0.140 0.180
Aq 0.64 1.14 SOLID LID 0.025 0.045 SOLID LID
Ao 2.79 3.56 SOLID LID 0.110 0.140 SOLID LID
Ag 1.14 1.40 0.045 0.055
B 0.43 0.51 0.017 | 0.020
44.07 44.83 1.735 1.765
Dy 40.51 40.77 1.595 1.605
ey 2.29 2.79 0.090 0.110
L 2.54 3.30 0.100 0.130
168 # of Pins 168 # of Pins
S 152 | 254 0.060 | 0.100
ISSUE IWS REVX 7/15/88

Figure 5.3. 168 Lead Ceramic PGA Package Dimensions

6.0 PACKAGE THERMAL

The i860 XR microprocessor is specified for opera-

tion when Tg is within the range of 0°C-85°C. T¢
SPECIFICATIONS may be measured in any environment to determine
For this section, let: whether the i860 XR microprocessor is within speci-
_ . . fied operating range. The case temperature should
P = maximum power consumption

Tc = case temperature
Ta = ambient air temperature

be measured at the center of the top surface oppo-
site the pins.

Ta can be calculated from 8¢a (thermal resistance

8ca = thermal resistance from case to ambient air from case to ambient) with the following equation:
0yc = thermal resistance from junction to case
644 = thermal resistance from junction to ambient Ta = Tc — P*6ca

ar
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2-215



i860™ XR MICROPROCESSOR

Typical values for ca and 6y at various airflows
are given in Table 6.1 for the 1.75 sq. in., 168 pin,
ceramic PGA. 8¢ is also shown so that 8,4 can be
calculated by:

fca = 6)a — 8C

Note that 8¢ with a heatsink differs from 0,c with-
out a heatsink because case temperature is mea-
sured differently. Case temperature for 6,c with
heatsink is measured at the center of the heat fin
base. Case temperature for 8;¢c without heatsink is
measured at the center of package top surface.

intgl.

Table 6.2 shows the maximum T, allowable (without
exceeding Tg) at various airflows and operating fre-
quencies (foLk)-

Note that Tp is greatly improved by attaching “fins”
or a “heat sink” to the package. P (the maximum
power consumption) is calculated by using the maxi-
mum Igg at 5V as tabulated in the DC Characteris-
tics of section 7.

Figure 6.1 gives typical Icc derating with case tem-
perature. For more information on heat sinks, mea-
surement techniques, or package characteristics, re-
fer to Intel Packaging Handbook, order number
240800.

lec (mA)
580

Typical part at 5V with maximum load

560

550

540

40.0 MHz

530

520

510

500

490

33.3 MHz

480

470
460

450
440

25.0 MHz

430
420

410
400

0 10 20 30

40
Te (°C)

50 60 70 80 85

240296-33

Figure 6.1. Icc vs Case Temperature

Table 6.1. Thermal Resistance ("C/W) 6,¢c and 0¢ca

fca at Alrflow-ft/min (m/sec)
Sc| o | 200 | 400 | 600 | 800 | 1000
(0) | (1.01) | (2.03) | (3.04) | (4.06) | (5.07)
With
Heatsink* | 2 | M 6 4 3.2 25 22
Without
neatsink | 15| 175| 13 11 9.5 8.5 8

*Nine-fin, unidirectional heat sink (fin dimensions: 0.350" height, 0.040
width, 0.115” center-to-center spacing, 1.530” length).

2-216
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Table 6.2. Maximum Allowable Tp at Various Airflows

In°C
" Airflow-ft/min (m/sec)
oMtz | 0 [ 200 T 400 T 600 [ 800 | 1000
(0) | (1.01) | (2.03) | (3.04) | (4.06) | (5.07)
Ta with 250 [575| 70 | 75 | 77 | 788 | 795

Heat Sink* 33.3 ) 67

73 755 | 774 | 785

40.0 | 49.3 | 655 72 746 | 769 | 77.9

Tawithout | 25,0 | 413 | 525 | 575 | 61.3 | 63.8 65

52 565 | 59.5 61

40.0 | 28.1 | 428 | 493 | 541 | 574 59

. *Nine-fin unidirectional heat sink (fin
0.115” center-to-center spacing, 1.530

7.0 ELECTRICAL DATA

Inputs and outputs are TTL compatible, except for
CLK. All input and output timings are specified rela-
tive to the 1.5 volt level of the rising edge of CLK
and refer to the point that the signals reach 1.5V,

7.1 Absolute Maximum Ratings

Case Temperature Tcunder Bias ...... 0°C to 85°C
Storage Temperature .......... ~65°Cto +150°C
Voltage on Any Pin

with RespecttoGround.............. ~0.5t06.5V

7.2 D.C. Characteristics
Table 7.1. DC

dimensions: 0.350” height, 0.040 width,
" length).

NOTICE: This data sheet contains preliminary infor-
mation on new products in production. The specifica-
tions are subject to change without notice. Verify with
your local Intel Sales office that you have the latest
data sheet before finalizing a design.

*WARNING: Stressing the device beyond the “Absolute
Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond the
“Operating Conditions” is not recommended and ex-
tended exposure beyond the “Operating Conditions”
may affect device reliability.

Characteristics

Tc = 0°C 10 85°C, Voc = 5V 5%

Symbol Parameter Min Max Units Notes
ViL Input LOW Voltage -0.3 +0.8 v
ViH Input HIGH Voltage 20 Voc+0.3 \
ViLe CLK Input LOW Voltage -03 +0.8 v
ViHe CLK Input HIGH Voitage 3.0 Veg + 0.3 v
VoL Output LOW Voltage 0.45 v (Note 1)
VoH Output HIGH Voltage 2.4 " (Note 2)
Icc Power Supply Current
CLK = 25.0 MHz 500 mA Vee @5V
CLK = 33.3 MHz 600 mA Vee @5V
CLK = 40.0 MHz 650 mA Vee @5V
It Input Leakage Current +15 MA No pullup
or pulidown
Lo Output Leakage Current +15 RA
Cin Input Capacitance 15 pF (Note 3)
Co 170 or Output Capacitance 15 pF (Note 3)
Ccik Clock Capacitance 20 pF (Note 3)
NOTES:

1. This parameter is measured at 4.0 mA for A31-A3, D63-D0, BE7 # ~-BEO #; at 5.0 mA for all other outputs.
2. This parameter is measured at 1.0 mA for A31-A3, D63-D0, BE7 # —-BEO #; at 0.9 mA all other outputs.
3. These are not tested. They are guaranteed by design characterization.

I PRELIMINARY
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7.3 A.C. Characteristics

Table 7.2. A.C. Characteristics
Tc = 0°Ct085°C, Vo = 5V 5%
All timings measured at CLK = 1.5V unless otherwise specified.

25 MHz 33 MHz 40 MHz
Symbol Parameter Min | Max | Min | Max | Min | Max Notes
(ns) | (ns) | (ns) | (ns) | (ns) | (ns)
¢ CLK Period 40 125 30 125 25 125
t2 CLK High Time 6 5 3 at3v
13 CLK Low Time 8 7 5 at 0.8V
4 CLK Fall Time 7 7 7 | 3v-0.8V
t5 CLK Rise Time 7 7 7 | 0.8V-3V
t6a A31-A3, PTB, W/R#, NENE# 3.5 25 | 35 23 | 35 19 | 50 pF Load
Valid Delay
téb BEn#* Valid Delay 35 27 3.5 25 | 35 21 | 50 pF Load
t7 Float Time, All 35 40 | 35 30 | 35 25 | (Note 1)
t8 ADS#, BREQ, LOCK#, HLDA 35 22 | 35 20 | 35 15 | 50 pF Load
Valid Delay
19 D63-DO0 Valid Delay 35 38 | 35 35 3.5 31 | 50pF Load
t10 Setup Time, All Inputs 13 11 8 {Note 2)
tt1a Hold Time, All Inputs except 4 4 3 (Note 2)
DATA
t11b DATA Hold Time 5 4 3

NOTES:

1. Float condition occurs when maximum output current becomes less than I o in magnitude. Float delay is not tested.

2. INT and HOLD are asynchronous inputs. The setup and hold specifications are given for test purposes or to assure
recognition on a specific rising edge of CLK.

*n=201,.,7
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—| t5 (a— —] t4 jo—
3.0V
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1.5V t2 13
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INPUT INPUT
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0 | t11n
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17I'I‘|°X J

— “—ﬂmln

. FLOAT
oureurs [ 1)) ) ) ) ) ) ) yp====-

240296-25
Figure 7.1. CLK, Input, and Output Timings
s
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nom +15

nom +10 A}-DO

TYPICAL® OUTPUT ///

DELAY (ns) nom +5

7
-
e 1.5V ?
A31-A3, PTB, W/Rf, NENEF
E
nem ADS#, BREQ, LOCK#, HLDA
nom ~5

25 50 75 100 125 150
LOAD CAPACITANCE, C; (pf)

NOTES: -

Graphs are not linear outside the C|_range shown.

nom = nominal value given in the AC timing table.
*Typical part under worst-case conditions.

240296-26

Figure 7.2. Typical Output Delay vs Load Capacitance under Worst-Case Conditions

15 /
12 AJ—DO

TYPICAL® OUTPUT APS#, BREQ, LOCK#, HLDA
SLEW TIME (ns) 9 /‘ =
(0.8=2.0v)
6 / ]
/ AJ1-A3,|PTB, I/R#, NENEF
N BE7 #-BED#
0

25 50 75 100 125 150
LOAD CAPACITANCE, C; (pf)
NOTES:

Graphs are not linear outside the C; range shown.
*Typical part under worst-case conditions.

24029627

Figure 7.3. Typical Slew Time vs Load Capacitance under Worst-Case Conditions

700
1
600
L~
‘fg 500
8 00
L7
300
00
8 12 16 20 24 26 30 34 3840
FREQUENCY (MHz
NOTES: (z)

240296-28
Graphs are not linear outside the frequency range shown.

*Worst-case supply current at 5V.

Figure 7.4. Typical icc vs Frequency
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8.0 INSTRUCTION SET

Key to abbreviations:

For register operands, the abbreviations that describe the operands are composed of two parts. The first part
describes the type of register:

c One of the control registers fir, psr, epsr, dirbase, db, or fsr
f One of the floating-point registers: 10 through 131
i One of the integer registers: r0 through r31

The second part identifies the field of the machine instruction into which the operand is to be placed:

srcl The first of the two source-register designators, which may be either a register or a 16-bit
immediate constant or address offset. The immediate value is zero-extended for logical
operations and is sign-extended for add and subtract operations (including addu and subu)
and for all addressing calculations.

sreini Same as src7 except that no immediate constant or address offset value is permitted.

srels Same as src except that the immediate constant is a 5-bit value that is zero-extended to 32
bits.

sre2 The second of the two source-register designators.

dest The destination register designator.

Thus, the operand specifier /src2, for example, means that an integer register is used and that the encoding of
that register must be placed in the src2 field of the machine instruction.

Other (nonregister) operands are specified by a one-part abbreviation that represents both the type of operand
required and the instruction field into which the value of the operand is placed:

#const A 16-bit immediate constant or address offset that the i860 XR microprocessor sign-extends
to 32 bits when computing the effective address.

broff A signed, 26-bit, immediate, relative branch offset.

sbroff A signed, 16-bit, immediate, relative branch offset.

brx A function that computes the target address by shifting the offset (either /broff or sbroff) left

by two bits, sign-extending it to 32 bits, and adding the result to the current instruction pointer
plus four. The resulting target address may lie anywhere within the address space.

Unless otherwise specified, floating-point operations accept single- or double-precision
source operands and produce a result of equal or greater precision. Both input operands
must have the same precision. The source and result precision are specified by a two-letter
suffix to the mnemonic of the operation.

Other abbreviations include:

P Precision specification .ss, .sd, or .dd (.ds not permitted). Refer to Table 8.1.
. Precision specification .ss, .sd, .ds, or .dd. Refer to Table 8.1.
v .8d or .dd. Refer to Table 8.1.
W .88 or .dd. Refer to Table 8.1.
X .b (8 bits), .8 (16 bits), or .l (32 bits)
Yy J (32 bits), .d (64 bits), or .q (128 bits)
2 J (32 bits), or .d (64 bits)
Table 8.1. Precision Specification
Source Result
Suffix Precision | Precision
.88 single single
.sd single double
.dd double double
ds double single
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mem.x(address) The contents of the memory location indicated by address with a size of x.

PM The pixel mask, which is considered as an array of eight bits PM([7]..PM[0], where PM[0] is
the least significant bit.

8.1 Instruction Definitions in Alphabetical Order

adds ISICT, ISIC2, JOSt . . ... . e e s Add Signed
idest <« jsrc1 + isrc2
OF < (bit 31 carry # bit 30 carry)
CC set if isrc2 < —isrc1 (signed)
CC clear if isrc2 = —isrc1 (signed)

addu ISICT, ISrC2, MBSt . . . .. . . e e e Add Unsigned
idest <« isrcl + isrc2
OF < bit 31 carry
CC < bit 31 carry

and ISICT, ISIC2, IdBST ... ... . i e Logical AND
idest <« jsrc1 and isrc2
CC set if result is zero, cleared otherwise

andh #CONSE ISIC2, 1008t . . . ... o e Logicat AND High
idest «— (#const shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

andnot ISICT, ISIC2, HABSE . . . . ... e e e s Logical AND NOT
idest <— not jsrc1 and isrc2
CC set if result is zero, cleared otherwise

andnoth  #c00nst /Src2, idest ...... ... ... .. . e Logical AND NOT High
idest <— not (#const shifted left 16 bits) and isrc2
CC set if result is zero, cleared otherwise

be IOroff « .. e e e Branchon CC
IF CC =
THEN continue execution at brx(fbroff)
Fi

be.t IOroff . ... e e e Branch on CC, Taken
IF CC =

THEN execute one more sequential instruction
continue execution at brx{lbroff)

ELSE skip next sequential instruction

Fl

bla ISretni, iSre2, Sbroff . ... ..o e e Branch on LCC and Add

LCC-temp clear if isrc2 < —isrc1ni (signed)
LCC-temp set if isrc2 > —isrcini (signed)

isrc2 <— srcini + isrc2

Execute one more sequential instruction

IF LCC

THEN LCC <— LCC-temp
continue execution at brx(sbroff)

ELSE LCC < LCC-temp

Fi

bne BOrOff . ..o e e e e Branch on Not CC
IF CcC =
THEN continue execution at brx(lbroff)
Fl

bne.t TOroff . . e Branch on Not CC, Taken
iIF CC =

THEN execute one more sequential instruction
continue execution at brx(lbroff)

ELSE skip next sequential instruction

Fl
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br CMBIOff . e s Branch Direct Unconditionally
Execute one more sequential instruction.
Continue execution at brxflbroff).

br USretnd] ..o e e Branch Indirect Unconditionally
Execute one more sequential instruction
IF any trap bit in psr is set
THEN  copy PU to U, PIM to IM in psr
clear trap bits
IF DS is set and DIM is reset
THEN enter dual-instruction mode after executing one
instruction in singie-instruction mode
ELSE IF DS is set and DIM is set
THEN enter single-instruction mode after executing one
instruction in dual-instruction mode
ELSE IF DIM is set
THEN enter dual-instruction mode
for next two instructions
ELSE enter single-instruction mode
for next two instructions
Fi
FF¥
Fi
Fi
Continue execution at address in isrc1ni
(The original contents of /src7ni is used even if the next instruction
modifies isrc1ni. Does not trap if isrc7ni is misaligned.)
bte ISICIS, ISIC2, SDIOMf . . .« oottt e a s e Branch If Equal
IF isrc1s = isrc2
THEN continue execution at brx{sbroff}
Fi

btne ISICTS, ISrC2, SDIOff . . . ... et i i it i Branch If Not Equal
IF  isrcts # isrc2
THEN continue execution at brx(sbroff}
Fl

call - /2 (¢ ;SRR Subroutine Call
r1 <« address of next sequential instruction + 4 (+8 in dual modse) .
Execute one more sequential instruction
Continue execution at brx(ibroff)

calli 127 =3 /1 S indirect Subroutine Call
ri <« address of next sequential instruction + 4 (+8 in dual mode)
Execute one more sequential instruction
Continue execution at address in isrc7n/
(The original contents of /src7ni is used even if the next instruction
modifies /src7ni. Does not trap if isrc1ni is misaligned.
The register /src1ni must not be r1.)

fadd.p ISICT, PSIC2, FABSLE . . . . ... ettt et e enanenns Floating-Point Add
fdest <« fsrcl + fsrc2
faddp FSICT, ISIC2, FIBSL. . . . . . oottt et et Add with Pixel Merge

faddz TSICT, ISIC2, fOBSL . . . ..ottt ettt e e eran et eneanneas Add with Z Merge

famov.r  fSrel, faest. ... s Floating-Point Adder Move
fdest <« fsrcl
Send fsrc? through the floating-point adder. (Preserves —O0 (minus zero) when fsrc? is —0. fsrc2
must be coded as 10 by the assembler.)
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fiadd.w FSICT, STC2, FUBSL . . . . .\ e ettt et rae s sanaans Long-Integer Add
fdest <— fsrc1 + fsrc2
fisub.w fsrct, fsrc2, fdest. . . . . . e e e Long-Integer Subtract
fdest «— fsrc1 — fsrc2
fix.v ISret, fdest .. ... s Floating-Point to Integer Conversion
fdest <~ 64- bit value with low-order 32 bits equal to integer part of fsre? rounded
Floating-Point Load
fid.y ISICT(ISICE), FABSt - . ..ottt e e e (Normal)
fid.y ISICT(SIC2)+ +, FdOSt .. .ot e (Autoincrement)

fdest «— mem.y (isrc1 + isrc2d)
IF autoincrement

THEN /src2 <« isrc1 + isrc2
Fl

Cache Flush
fiush FCONSHISICDY . . . o e ettt et et st eteae s s tsenaaareoesascnnannaseaanns {Normal)
fiush FCONSHISICD) + T oottt i it (Autoincrement)

Replace block in data cache with address (#const + isrc2).
Contents of block undefined.

IF autoincrement

THEN /src2 < #const + isrc2

Fl

tmlow.dd fSrCT, fS1C2, fdBSt . . . . . oo e e Floating-Point Muitiply Low
fdest <— low-order 53 bits of fsrc? mantissa X fsrc2 mantissa
fdest bit 53 <— most significant bit of mantissa

fmov.r FSICT, ABSE . ... .o i it iii s Floating-Point Reg-Reg Move
Assembler pseudo-operation
fmov.ss fsrcl, fdest = fladd.ss fsrct, 10, fdest
fmov.dd fsrc!, fdest = fladd.dd fsrc?, 10, fdest
fmov.sd fsrct, fdest = famov.sd fsrc1, fdest
fmov.ds fsrct, fdest = famov.ds fsrc1, fdest

fmul.p 1SrCt, fSrC2, fdBSt . .. ..o\t Floating-Point Multiply
fdest <« fsrc1 X fsrc2
117 < Floating-Point No Operation

Assembler pseudo-operation
fnop = shrd r0, r0, r0

form I 0 (- - SR OR with MERGE Register
fdest «— fsrc1 OR MERGE
MERGE < 0
frcp.p FSIC2, fABSE . . . . et e Floating-Point Reclprocal
fdest <— 1/fsrc2 with maximum mantissa error < 2-7
frsqr.p fSre2, fdest ....... ... i Floating-Point Reclprocal Square Root
fdest «— 1/SQRT (fsrc2) with maximum mantissa error < 2-7
Floating-Point Store
fat.y FABSE, ISTCT(ISIC) . v e e ettt ettt et a it caccaananaasoanasenaness (Normal)
fst.y fdest, iSrCTUSICE) + + <ttt e (Autoincrement)
mem.y (isrc2 + isrcl) «— fdest
IF autoincrement
THEN /src2 < isrc1 + isrc2
Fl
fsub.p FSICT, FSIC2, FAOSE. . . . .. e e Floating-Point Subtract
fdest «— fsrcl — fsrc2
flrunc.y ol fdest . ... e Floating-Point to Integer Conversion
fdest <— 64-bit value with low-order 32 bits equal to integer part of fsrc?
fxfr et I e - 1 S Transfer F-P to Integer Register

idest <« fsrcl
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fzchkl ISret, ISrC2, fdest . ... e e 32-Bit Z-Buffer Check
Consgider fsrct, fsrc2, and fdest as arrays of two 32-bit
fields fsrc7(0)..fsrc1(1), fsrc2(0)..fsrc2(1), and fdes{(0)..fdesH1)
where zero denotes the least-significant field.
PM <« PM shifted right by 2 bits
FORi=0to 1
DO
PM [i + 6] <« fsrc2(i) < fsrc1(j) (unsigned)
fdest(i) <— smaller of fsrc2(i) and fsrc1(j)

MERGE « 0

fzchks 1Sret, 1SrC2, faBSt .. ... o 16-Bit Z-Buffer Check
Consider fsrc1, fsrc2, and fdest as arrays of four 16-bit
fields fsrc1(0)..fsrc1(3), fsrc2(0)..fsrc3), and fdesH0)..fdest(3)
where zero denotes the least-significant field.
PM <« PM shifted right by 4 bits
FORi=0103
(570) .
PM [i + 4] « fsre2() < fsret(i) (unsigned)
fdest(i) < smaller of fsrc2(i) and fsrci(i)

oD
MERGE <« 0

Intovr ... e Software Trap on Integer Overflow
If OF in epsr = 1, generate trap with IT set in psr. :

ixtr ISICIN, FdESt ... i i i Transfer Integer to F-P Register
fdest < isrcini

ld.c csrc2, idest. . . . .. e et i Load from Control Register
idest <— csrc2

id.x ISICT(USIC2), HUBSE . . . . ..o oottt et et aanoteanneaaanas Load Integer
idest <— mem.x (isrc1 + isrc2)

JOOK ..o e e e Begin Interlocked Sequence

Set BL in dirbase. The next load or store that misses the cache locks that location.
Disable interrupts until the bus is unlocked.

mov ISTCE, IABSE . ... . et e e Register-Register Move
Assembler pseudo-operation
mov isrc2, idest = shl 10, isrc2, idest
mov CONSIBZ IHBSE . . . .o oot e e Constant-to-Register Move
Assembler pseudo-operation

adds /%const32, r0, idest
... when const32 < 0x8000

orh h%const32, r0, idest
or /%const32, idest, idest
... when const32 > 0x8000

T« P Core-Unit No Operation
Assembler pseudo-operation
nop = shi r0, r0, r0
or ISICT, ISIC, IABSE . . . . . . .o oot e et et e e e Logical OR

idest <— isrc1 OR isrc2
CC set if result is zero, cleared otherwise
orh #OONSLISICZ, IAOST ... ... s Logical OR High
idest <— (# const shifted left 16 bits) OR /src2
CC set if result is zero, cleared otherwise
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pladd.p  fsrctl, fsrc2 fdest ............. . .. . Pipelined Floating-Point Add
fdest <— last stage Adder result
Advance A pipeline one stage
A pipeline first stage <«— fsrc? + fsrc2

pfaddp fsret, fsrc2, fdest ... Pipelined Add with Pixel Merge
fdest <— last stage Graphics result
last stage Graphics resuit «— fsrc7 + fsrc2
Shift and load MERGE register from last stage Graphics result as defined in Table 8.2

pfaddz Isret, fre2, fdest. ... ... Pipelined Add with Z Merge
fdest <«— last stage Graphics result
last stage Graphics result «— fsrc? + fsrc2
Shift MERGE right 16 and load fields 31..16 and 63..48 from last stage Graphics result

pfam.p feret, fsre2, fdest ......... ... ... ... .o i Pipelined Floating-Point Add and Multiply
fdest <— last stage Adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-op1 + A-op2
M pipeline first stage <— M-op1 X M-op2
pfamov.r  fsrcl, fdest ... ... Plpelined Floating-Point Adder Move
fdest <«— last stage Adder resuit
Advance A pipeline one stage
A pipeline first stage «— fsrc?

pfeq.p fercl, fsre2, fdest . ................c v, Pipelined Floating-Point Equal Compare
fdest <— last stage Adder result
CC set if fsre1 = fsrc2, else cleared
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs

pfot.p fsrct, fsre2, fdest ........................ Pipelined Floating-Point Greather-Than Compare
(Assembler clears R-bit of instruction)
fdest < last stage Adder result
CC set if fsrc1 > fsrc2, else cleared
Advance A pipeline one stage
A pipeiine first stage is undefined, but no result exception occurs

pfladd.w fsrct, fsrc2 fdest ........... ... ..., Pipelined Long-Integer Add
fdest <— last stage Graphics result
last stage Graphics result «— fsrc? + fsrc2

pfisubw fsret, fsre2 fdest ... ... Pipelined Long-Integer Subtract
fdest <— last stage Graphics result
last stage Graphics result «— fsrc1 — fsrc2

pfix.v fsref, fdest ........... ... ... ... Pipelined Floating-Point to integer Conversion
fdest <— last stage Adder resuit
Advance A pipeline one stage
A pipeline first stage <— 64-bit value with low-order 32 bits
equal to integer part of fsrc? rounded

Pipeiined Fioating-Point Load
pfid.z ISICT(SIC), FUOST .. .. .o {Normal)
pfid.z ISrCTUSIe2)+ +,0dest . . ... (Autoincrement)

fdest <— mem.z (third previous ptid's (isrc? + isrc2)
(where .z is precision of third previous pfid.z)

If autoincrement

THEN jsrc2 <« isrct1 + isrc2

Fl

pfle.p fsrel, fsre2, fdest . ..............c.. ... Pipelined F-P Less-Than or Equal Compare
Assembler pseudo-operation, identical to pfgt.p except that
assembler sets R-bit of instruction.
fdest <— last stage Adder result
CC clear if fsre1 < fsrc2, else set
Advance A pipeline one stage
A pipeline first stage is undefined, but no result exception occurs
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ptmam.p fsrcl, fsrc2, fdest .............. .. ... .. ... Pipelined Floating-Point Add and Muitiply
fdest <— last stage Multiplier result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage <— A-op1 — A-op2
M pipeline first stage <« M-op1 X M-op2

ptmovirr  fsrel, fdest............ i Pipelined Floating-Point Reg-Reg Move
Assembler pseudo-operation
pimov.ss fsrcl, fdest = pfiadd.ss fsrc1, 10, fdest
pfmov.dd fsrc?, fdest = pfiadd.dd fsrc1, 10, fdest
pfmov.sd fsrc?, fdest = ptamov.sd fsrc1, fdest
pfmov.ds fsrc1, fdest = pfamov.ds fsrc?, fdest

ptmsm.p fsrel, fsre2 fdest ........................... Pipelined Floating-Point Subtract and Multiply
fdest <« last stage Multiplier result '
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage «— A-op1 — A-op2
M pipeline first stage <— M-op1 X M-op2

ptmul.p Sretl, Isrc2, fdest . ... i Pipelined Floating-Point Multiply
fdest <«— last stage Multiplier result 2
Advance M pipeline one stage
M pipeline first stage <«— fsrc? X fsrc2

pImuld.dd fsrct, fsrc2 fdest. ... ... e Three-Stage Pipelined Muiltiply
fdest <— last stage Multiplier result
Advance 3-Stage M pipeline one stage
M pipeline first stage «— fsrc? X fsrc2

pform fsrcl, fdest ....................... e Pipelined OR to MERGE Register
fdest < last stage Graphics result
last stage Graphics result «— fsrc/ OR MERGE
MERGE « 0

ptsm.p fsrcl, fsre2, fdest ........................... Pipelined Floating-Point Subtract and Muitiply
fdest <«— last stage Adder result
Advance A and M pipeline one stage (operands accessed before advancing pipeline)
A pipeline first stage €«— A-op1 — A-op2
M pipeline first stage <~ M-op1 X M-op2

pisub.p  ferct, fsrc2, fdest ............... i Pipelined Floating-Point Subtract
fdest <— last stage Adder resuit
Advance A pipeline one stage
A pipeline first stage <— fsre? + fsre2

pftruncv fsrcl, fdest ................. il Pipelined Floating-Point to integer Conversion
fdest «— last stage Adder result
Advance A pipeline one stage
A pipeline first stage <«— 64-bit value with low-order 32 bits
equal to integer part of fsrc7

pfzchkl ISICT, ISIC2, FdBSt . . ... ..o e Pipelined 32-Bit Z-Buffer Check
Consider fsrc1, fsrc2, and fdest, as arrays of two 32-bit
fields fsrc1(0)..fsrc (1), fsrc20)..fsrc2(1), and fdesH0)..fdesK1)
where zero denotes the least significant field.
PM <« PM shifted right by 2 bits
FORi= 0to1
DO

PM i + 6] <« fsrc2(i) < fsrc(i) (unsigned)

fdest(i) <— last stage Graphics result

last stage Graphics result <— smaller of fsrc2(i) and fsre (i)
oD
MERGE < 0
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pfzchks  fsrct,fsrc2, fdest ...t Pipelined 16-Bit Z-Buffer Check
Consider fsrcl, fsrc2, and fdest, as arrays of four 16-bit
fields fsrc1(0)..fsrc1(3), fsrc2(0)..fsre2(3), and fdest(0)..fdesK(3)
where zero denotes the least significant field.
PM <« PM shifted right by 4 bits
FORi=0to3
DO
PM [i + 4] <« fsrc2(i) < fsrci(i) (unsigned)
fdesi{j) <«— last stage Graphics result
last stage Graphics result <— smaller of fsrc2(j) and fsrc1(j)

oD

MERGE <« 0
pst.d FOBSt, #CONSHISICE) . . . oottt ettt ittt eanaanaas Pixel Store
pst.d fdest, #constlisrc2)+ + ... ...t i Pixel Store Autoincrement

Pixels enabled by PM in mem.d (isrc2 + #consf) <— fdest
Shift PM right by 8/pixel size (in bytes) bits

IF autoincrement

THEN isrc2 <~ #const + isrc2

Fi

shi ISICT, ISIC2, JdBST . .. .. ettt ettt i Shift Left
idest «— isrc2 shifted left by isrc? bits

shr ISICT, ISTC2,4TBSE . . . . .o oottt e s i Shift Right

SC (in psr) <« isrct
idest < isrc2 shifted right by isrc7 bits

shra ISICT, ISIC2, i8St . . . ..o o e e e Shift Right Arithmetic
idest «— isrc2 arithmetically shifted right by isrc? bits

shrd JSICT, ISIC2, JHBST . . . .o v et et ettt ettt anasaseraiaasanteaieennerenns Shift Right Double
idest <— low-order 32 bits of isrc1:isrc2 shifted right by SC bits

st.c JSTCTME, CSICZ .« oot it ie et e aiaa et eneennn Store to Control Register
csrc2 <« jsrcini

st.x ISICTNE, #CONSHISICE) ..o oottt e ararar s cecnreaens Store Integer
mem.x (isrc2 + #consf) <« isrcini

subs isrcl, isrc2 idest ... ............... e ettt Subtract Signed

idest < isrc1 — isrc2

OF <« (bit 31 carry # bit 30 carry)
CC set if isrc2 > isrc1 (signed)

CC clear if isrc2 < isrc1 (signed)

subu ISICT, ISTC2, i0BSE . .. ..o i e Subtract Unsigned
idest <— isrci1 — isrc2
OF <«— NOT (bit 31 carry)
CC <« bit 31 carry
(i.e. CC set if isrc2 < isrc1 (unsigned)
CC clear if isrc2 > isrc1 (unsigned)

trap ISICTNEISIC2, JHBSE ... ..o\ttt it it e i Software Trap
Generate trap with IT set in psr

UNIOCK ... i e End Interlocked Sequence
Clear BL in dirbase. The next load or store unlocks the bus.
Enable interrupts after bus is uniocked.

xor ISICT, ISIC2, IIBSE . . . .« o oo oottt ettt e ieie i e Logical Exclusive OR
idest <— isrc1 XOR isrc2
CC set if result is zero, cleared otherwise

xorh FOONSL ISIC2, IUOST . . . .o ettt e e Logical Exclusive OR High
idest <«— (#const shifted left 16 bit) XOR isrc2
CC set if result is zero, cleared otherwise
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Table 8.3. Register Encoding

Pixel Flelds Loaded From Right Shift Register Encoding
Sze | ResutintoMERGE | Ameunt 0 0
(trom PS) (Fleld Size)
8 |63..56, 47..40, 31..24, 15.8 8
16 63..58, 47..42, 31..26, 15..10 6 . .
32 63..56, 31.24 8 r31 31
fo 0
8.2 Instruction Format and Encoding
All instructions are 32 bits long and begin on a four- : y
byte boundary. When operands are registers, the 131 31
register encodings shown in Table 8.3 are used. Fault Instruction 0
There are two general core-instruction formats,
REG-format angi CT R.L-fpnnat, as well as a separate gf:;:;’rss;:;us ;
format for floating-point instructions. Data Breakpoint 3
Floating-Point Status 4
8.2.1 REG-FORMAT INSTRUCTIONS Extended Process Status 5

Within the REG-format are several variations as
shown in Figure 8.1. Table 8.4 gives the encodings
for these instructions. One encoding is an escape
code that defines yet another variation: the core es-
cape instructions. Figure 8.2 shows the format of
this group, and Table 8.5 shows the encodings.

In these instructions, the src2 field selects one of
the 32 integer registers (most instructions) or five
control registers (st.c and ld.c). Dest selects one of
the 32 integer registers (most instructions) or float-
ing-point registers (fid, fst, pfid, pst, ixfr). For in-
structions where src7 is optionally an immediate val-
ue, bit 26 of the opcode (I-bit) indicates whether src?1
is an immediate. If bit 26 is clear, an integer register
is used,; if bit 26 is set, src7 is contained in the low-
order 16 bits, except for bte and btne instructions.
For bte and btne, the five-bit immediate value is
contained in the src7 field. For st, bte, btne, and
bla, the upper five bits of the offset or broffsat are
contained in the dest field instead of src7, and the
lower 11 bits of offset are the lower 11 bits of the
instruction.

I PRELIMINARY

For Id and st, bits 28 and zero determine operand

size as follows:

Bit2s Bit0 Operand Size
0 0 8-bits
0 1 8-bits
1 0 16-bits
1 1 32-bits

When src1 is an immediate and bit 28 is set, bit zero
of the immediate value is forced to zero.

For fid, fst, pfid, pst, and flush, bit 0 selects autoin-
crement addressing if set. For fid, fst, pfld, and
pst, bits one and two select the operand size as
foilows:

Bit 1 Bit 2 Operand Size
0 0 64-bits
0 v 1 128-bits
1 0 32-bits
1 1 32-bits

When src1 is an immediate value, bits zero and one
of the immediate value are forced to zero to main-
tain alignment. When bit one of the immediate value
is clear, bit two is also forced to zero.

For flush, bits one and two must be zero.
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31

25

General Format

15

OPCODE/I

SRC2

DEST

SRC1

IMMEDIATE, OFFSET, OR NULL

31

25

16-Bit Immediate Variant (except bte and btne)

20

15

OPCODE SRC2 DEST IMMEDIATE
st, bla, bte, and btne
31 25 20 15 10 0
OFFSET SRC1
OPCODE/I SRC2 HIGH SRCIS OFFSET LOW
bte and btne with 5-Bit Inmediate
31 25 20 15 10 0
OPCODE SRC2 °:’I:GSET IMMEDIATE OFFSET LOW
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Table 8.4. REG-Format Opcodes
31 26
Id.x Load Integer 0 0 0 L 0 !
st.x Store Integer 0 0 0 L 1 1
Intr integer to F-P Reg Transfer 0 0 0 0 1 0
(reserved) 0 0 0 1 1 0
fid.x, fst.x Load/Store F-P 0 0 1 0 LS i
flush Flush 0 0 1 1 0 1
pstd Pixel Store 0 0 1 1 1 1
id.c, st.c Load/Store Control Register 0 0 1 1 LS 0
bri Branch Indirect 0 1 0 0 0 0
trap Trap 0 1 0 0 0 1
(Escape for F-P Unit) 0 1 0 0 1 0
(Escape for Core Unit) 0 1 0 0 1 1
bte, btne Branch Equal or Not Equal 0 1 0 1 E I
pfidy Pipelined F-P Load 0 1 1 0 0 |
_ (CTRL-Format Instructions) 0 1 1 X X X
addu, -s, subu, -8, Add/Subtract 1 0 0 SO AS |
shi, shr Logical Shift 1 0 1 0 LR |
shrd Double Shift 1 0 1 1 0 0
bla Branch LCC Set and Add 1 0 1 1 0 1
shra Arithmetic Shift 1 0 1 1 1 !
and(h) AND 1 1 0 0 H |
andnot(h) ANDNOT 1 1 0 1 H |
or(h) OR 1 1 1 0 H |
xor(h) XOR 1 1 1 1 H ]
{reserved) 1 1 X X 1 0
Integer Length AS  Add/Subtract
0 —8bits 0 —Add .
1 —16 or 32 bits (selected by bit 0) 1 —Subtract
LS Load/Store LR Left/Right
0 —load 0 —Left Shift
1 —Store 1 —Right Shift
SO Signed/Ordinal E  Equal
0 —Ordinal 0 —Branch on Not Equal
1 —Signed 1 —Branch on Equal
High I Immediate
0 —and, or, andnot, xor 0 -—srct is register
1 —andh, orh, andnoth, xorh 1 —sret is immediate
31 26 15 10 5 0
0100 11 reserved* SRC1 reserved* OPCODE
*reserved (must be set to zero by assembilers)
Figure 8.2. Core Escape Instruction Format
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Table 8.5. Core Escape Opcodes

4 0

(reserved) 0 0 0 0 0

lock Begin Interlocked Sequence ofojo]|oO 1
calli Indirect Subroutine Call 0 0 0 1 0
(reserved) 0 0 0 1 1

intovr Trap on integer Overflow o| O 1 0| o
(reserved) 0 0 1 0 1

(reserved) 0 0 1 1 0

uniock End Interlocked Sequence 0 0 1 1 1
(reserved) 0 1 X X X

(reserved) 1 o] X X X

(reserved) 1 1 X X X

8.2.2 CTRL-FORMAT INSTRUCTIONS

The CTRL instructions do not refer to registers, so instead of the register fields, they have a 26-bit relative
branch offset. Figure 8.3 shows the format of these instructions and Table 8.6 defines the encodings.

N 28 25 0

of1]1 OPC BROFFSET

BROFFSET is a signed 26-bit relative branch offset.

Figure 8.3. CTRL Instruction Format
Table 8.6. CTRL-Format Opcodes

28 26
(reserved) 0 0 0
(reserved) 0 0 1
br Branch Direct 0 1 0
call Call 0 1 1
be(.t) Branch on CC Set 1 0 T
bne(.t)  Branch on CC Clear 1 1 T
T Taken
0 —bcorbnc

1 —bc.torbne.t
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8.2.3 FLOATING-POINT INSTRUCTIONS

The floating-point instructions also constitute an escape series. All these instructions begin with the bit se-
quence 010010, Figure 8.4 shows the format of the floating point instructions, and Table 8.7 gives the encod-
ings. Within the dual-operation instructions is a subcode DPC whose values are given in Table 8.8 along with
the mnemonic that corresponds to each.

31 25 20 15 7 0

o1 0 0 1 0 SRC2 DEST SAC1 P|D|S|R OPCODE

SRC1, SRC2 —Source; one of 32 floating-point registers

DEST —Destination register
(instructions other than fxfr) one of 32 floating-point registers
(txtr) one of 32 integer registers

P Pipelining S Source Precision

1 —Pipelined instruction mode 1 —Double-precision source operands

Q —Scalar instruction mode 0 —Single-precision source operands 2
D Dual-Instruction Mode R Result Precision

1 —Dual-instruction mode 1 —Double-precision result

0 —Single-instruction mode 0 -—Single-precision result

Figure 8.4. Floating-Point Instruction Encoding
Table 8.7. Floating-Point Opcodes

6 0
pfam Add and Multiply*
pfmam Multiply with Add* 0 0 0 DPC
pfsm Subtract and Multiply* "o 0 DPC
pimsm Multiply with Subtract*
(p)tmul Muitiply 0 1 0 0 0 0 0
tfmiow Multiply Low 0 1 0 0 0 0 1
frep Reciprocal 0 1 0 0 0 1 0
freqr Reciprocal Square Root 0 1 0 0 0 1 1
ptmuld.dd 3-Stage Pipelined Muitipiy 0 1 0 0 1 0 0
{p)fadd Add 0 1 1 ) 0 0 0
{p)isub Subtract o 1 1 0 0 0 1
{p)ix Fix 0 1 1 0 0 1 0
(p)famov Adder Move 0 1 1 0 0 1 1
pigt/pfie** Greater Than o] 1 1 0 1 0 0
pfeq Equal 0 1 1 0 1 0 1
(p)ftrunc Truncate 0 1 1 1 0 1 0
fxtr Transfer to Integer Register 1 0 0 0 0 0 0
(p)tiadd Long-integer Add 1 0 0 1 0 0 1
(p)tisub Long-Integer Subtract 1 0 0 1 1 0 1
(p)tzchki Z-Check Long 1 0 1 0 1 1 1
(p)fzchks 2Z-Check Short 1 0 1 1 1 1 1
(p)faddp Add with Pixel Merge 1 0 1 0 0 0 0
(p)taddz Add with Z Merge 1 0 1 0 0 ] 1
{p)form OR with MERGE Register 1 0 1 1 0 1 0

*pfam and pfsm have P-bit set; pfmam and pfmsm have P-bit clear.
**pigt has R bit cleared; pfie has R bit set.

NOTE:
All opcodes not shown are reserved.
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Table 8.8. DPC Encoding

]

intal.
The following table shows the opcode mnemonics that generate the various encodings of DPC and explains
each encoding.

DPC PFAM PFSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic op1 op2 op1l op2 Load Load*
0000 r2p1 r2st KR src2 src M resuit No No
0001 r2pt r2st KR src2 T M result No Yes
0010 r2ap1 r2asi KR src2 srcl A result Yes No
0011 r2apt r2ast KR src2 T Aresult Yeos Yes
0100 i2p1 i2s1 Ki src2 src1 M result No No
0101 i2pt i2st Ki src2 T M resuit No Yes
0110 12ap1 i2as1 Ki src2 srci A result Yes No
0111 i2apt 2ast Kl src2 T A result Yes Yes
1000 ratip2 ratis2 KR A result srcl src2 Yes No
1001 m1i2apm m1i2asm srct src2 A result M result No No
1010 raip2 rais2 KR A result srcl src2 No No
1011 mi2ttpa m12ttsa srci src2 T A result Yes No
1100 latip2 iat1s2 Ki A result srct src2 Yes No
1101 mi2tpm mi2tsm srcl src2 T M result No No
1110 iatlp2 ia1s2 Kl A result srcl src2 No No
1111 mi2tpa m1i2tsa srci src2 T A result No No
DPC PFMAM PFMSM M-Unit M-Unit A-Unit A-Unit T K
Mnemonic Mnemonic opt . op2 op1 op2 Load | Load*

0000 mr2p1 mr2s1 KR src2 srel M result No No
0001 mr2pt mr2st KR src2 T M result No Yes
0010 mr2mp1 mr2ms1 KR src2 srcl M result Yes No
0011 mr2mpt mr2mst KR src2 T M result Yes Yes
0100 mi2p1 mi2s1 Kl src2 srct M resulit No No
0101 mi2pt mi2st Kl src2 T M resuit No Yes
0110 | mi2mp1 mi2ms1 Kl src2 srcl M resuit Yes No
0111 mi2mpt mi2mst Ki src2 T M result Yes Yes
1000 | mrmtip2 mrmtis2 KR M result srct src2 Yes No
1001 mm12mpm mmi2msm srct src2 M result M resuit No No
1010 | mrm1p2 mrmis2 KR M result srcl src2 No No
1011 mm12ttpm mm1i2ttsm srcl1 src2 T A result Yes No
1100 mimtip2 mimtis2 Kl M result srci sre2 Yes No
1101 mm12tpm mm12tsm srcl src2 T M result No No
1110 mim1ip2 mim1is2 Kl M result srcl src2 No No
1114 Intel-Reserved

*If K-load is set, KR is loaded when operand-1 of the mulitipiier is KR; Kl is loaded when operand-1 of the multiplier is KI.
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8.3 Instruction Timings

i860 XR microprocessor instructions take one clock
to execute unless a freeze condition is invoked.
Freeze conditions and their associated delays are

1860™ XR MICROPROCESSOR

shown in the table below. Freezes due to multiple
simultaneous cache misses result in a delay that is
the sum of the delays for processing each miss by
itself. Other multiple freeze conditions usually add
only the delay of the longest individual freeze.

Freeze Condition

Delay

Instruction-cache miss

Reference to destination of Id instruction that
misses

fid miss

call, calil, ixfr, fxfr, id.c, or st.c and data cache
load miss processing in progress

Id/st/pfid/fid/fst and data cache load miss
processing in progress

Reference to dest of Id, call, calli, fxfr, or id.c in
the next instruction. (Dest of call and calliis r1.)

Number of clocks to read instruction (from ADS
clock to first READY # clock) plus time to last
READY # of block when jump or freeze occurs
during miss processing plus two clocks if data-
cache being accessed when instruction-cache
miss occurs.

One plus number of clocks to read data (from
ADS # clock to first READY # clock) minus number
of instructions executed since load (not counting
instruction that references load destination)

One plus number of clocks until first READY #
returned (for 32- or 64-bit read cycles) or until
second READY # returned (for 128-bit fid.q read
cycles)

One plus number of clocks until first READY #
returned (for 64-bit read cycles) or until second
READY # returned (for 128-bit fid.q read cycles)

One plus number of clocks until last READY #
returned

One clock

I PRELIMINARY
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Freeze Condition

intgl.

Reference to dest of fid/pfld/ixfr in the next two
instructions

be/bne/be.t/bne.t following addu/adds/subu/
subs/pfeq/pfie/pigt

Fsrc1 of multiplier operation refers to result of
previous operation

Floating-point operation or graphics-unit

instruction or fst, and scalar operation in progress
other than frep or frsqr

Multiplier operation preceded by a double
precision mulitiply

TLB miss

pfld when three pfld’s are outstanding

pfid hits in the data cache

st, pst or fst miss, Id miss, or flush with modified
block when store path fuli (iwo stores or one 256-
bit write-back internally waiting for bus plus
external bus pipeline full)

Id, fid, pfid, st, pst, or fst when address path full
(one address internally waiting for bus plus
external bus pipsline full)

ld/fid following st/fst hit

Two clocks in the first instruction; one in the
second instruction

One clock

One clock

If the scalar operation is fadd, fix, fmiow, fmul.ss,
fmul.sd, ftrunc, or fsub, two minus the number of
instructions (or dual-mode pairs) already executed
after the scalar operation. If the scalar operation is
fmul.dd, three minus the number of instructions
(or dual-mode pairs) executed after it. Add one if
sither or both of these two situations occur:

1. There is an overlap between the result register
of the previous scalar operation and the source
of the floating-point operation, and the
destination precision of the scalar operation is
different than the source precision of the
floating-point operation.

2. The floating-point operation is pipelined and its
destination is not 10.

There is no delay if the result is negative.

One clock

Five plus the number of clocks to finish two reads
plus the number of clocks to set A-bits (if
necessary)

One plus the number of clocks to return data from
first pfid

Two plus the number of clocks to finish all
outstanding accesses

One plus the number of clocks until READY #
active on next 64-bit write cycle or second
READY # of next 128-bit write cycle.

Number of clocks until next nonrepeated address
can be issued (i.e., an address that is not the 2nd—-
4th cycle of a cache fill, the 2nd—8th cycle of a
CS8 mode instruction fetch, nor the 2nd cycle of a
128-bit write)

One clock
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Freeze Condition Delay

Delayed branch not taken One clock

Nondelayed branch taken:

be, bne One clock

bte, btne Two clocks
Indirect branch bri or call calii One clock
st.c Two clocks
Result of graphics-unit instruction (other than One clock

fmov.dd) used in next instruction when the next
instruction is an adder- or multiplier-unit instruction

Result of graphics-unit instruction used in next One clock 2
instruction when the next instruction is a graphics-
unit instruction

flush foliowed by flush Three clocks minus the number of instructions
between the two flush instructions. There is no
delay if the result is negative.

fst or pst followed by pipelined floating-point One clock
operation that overwrites the register being stored

8.4 Instruction Characteristics The instruction access fault IAT and the interrupt
trap IN are not shown in the table because they

The following table lists some of the characteristics can occur for any instruction.

of each instruction. The characteristics are: e Performance notes. These comments regarding

* What processing unit executes the instruction. optimum performance are recommendations
The codes for processing units are: only. If these recommendations are not followed,
A Floating-point adder unit the 860 XR microprocessor automatically waits
E Core execution unit the necessary number of clocks to satisfy internal
G Graphics unit hardware requirements. The following notes de-
M Floating-point muitiplier unit fine the numeric codes that appear in the instruc-

* Whether the instruction is pipelined or not. A P tion table:
indicates that the instruction is pipelined. 1. The following instruction should not be a con-

e Whether the instruction is a delayed branch in- ditional branch (be, bne, be.t, or bne.).
struction. A D marks the delayed branches. 2. The destination should not be a source oper-

* Whether the instruction changes the condition and of the next two instructions.

code CC. A CC marks those instructions that
change CC.

* Which faults can be caused by the instruction.
The codes used for exceptions are:

IT Instruction Fault

SE Floating-Point Source Exception

RE  Floating-Point Result Exception, including
overflow, underfiow, inexact result

DAT Data Access Fauit

Note that this is not the same as specifying at
which instructions faults may be reported. A re-
sult exception is reported on the subsequent
floating-point instruction, pst, fst, or sometimes
fid, pfid, and ixfr.

I PRELIMINARY

3. A load should not directly follow a store that is
expected to hit in the data cache.

4. When the prior instruction is scalar, fsrc?
should not be the same as the fdest of the
prior operation.

5. The fdest should not reference the destination
of the next instruction if that instruction is a
pipelined floating-point operation.

6. The destination should not be a source oper-
and of the next instruction. (For call and calli,
the destination is r1.)
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7. When the prior operation is scalar and multipli-
er opl is fsrci, fsrc2 should not be the same
as the fdest of the prior operation.

8. When the prior operation is scalar, fsrc? and
fsrc2 of the current operation should not be the
same as fdest of the prior operation.

9. A pfid should not immediately follow a pfid.

Programming restrictions. These indicate combi-
nations of conditions that must be avoided by
programmers, assemblers, and compilers. The
following notes define the alphabstic codes that
appear in the instruction table:

a. The sequential instruction following a delayed
control-transfer instruction may not be another
control-transfer instruction (except in the case
of external interrupts), nor a trap instruction,
nor the target of a control-transfer instruction.

b. When using a brl to return from a trap handler,
programmers should take care to prevent traps
from occurring on that or on the next sequen-
tial instruction. IM should be zero (interrupts
disabled) when the bri is executed.

c. If fdest is not zero, fsrc1 must not be the same
as fdest.

d. When fsrct goes to the multiplier op?, KR, or
Kl, fsre1 must not be the same as fdest.
e. If fdest is not zero, fsret and fsre2 must not be
the same as fdest.
f. isrc? must not be the same as /isrc2 for the
autoincrementing form of this instruction.
g. /src1 must not be the same as isrc2.
Core and Floating-Point Instruction Interaction in
Dual-Instruction Mode
1. If one of the branch-on-condition instructions
be or bne is paired with a floating-point com-
pare, the branch tests the value of the condi-
tion code prior to the compare.
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. If an ixfr, fid, or pfld loads the same register

as a source operand in the floating point in-
struction, the floating-point instruction refer-
ences the register value before the load up-
dates it.

. An fst or pst that stores a register that is the

destination register of the companion pipe-
lined floating-point operation will store the re-
sult of the companion operation.

. When the core instruction sets CC and the

floating-point instruction is pfgt, pfie, or pfeq,
CC is set according to the result of pigt, pfie,
or pfeq.

. When a trap instruction causes a trap in dual-

instruction mode, the fioating-point instruction
has neither completed execution nor has up-
dated the FT bit or any result status bits. This
is not a problem when the trap is inserted by a
debugger, because the trap is replaced by the
original instruction, and the dual-mode pair is
reexecuted. However, when the trap is pro-
grammed, the trap handler must avoid reexe-
cuting the trap by returning to user code at
the address in fir + 8. In this case, the trap
handler must emulate the floating-point in-
struction before returning to the user code.
Emulation of the instruction must include all
side-effects (for example, the effect of its
D-bit, effect on the pipelines, and effect on FT
and result-status bits), just as if the instruction
had been executed by the processor in the
original context.

. In dual-instruction mode, when the intovr in-

struction causes a trap, the floating-point com-
panion instruction has completely finished ex-
ecution before the trap is taken.
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® Programming Restrictions for Dual-Instruction
Mode

1.

The result of placing a core instruction in the
low-order 32 bits or a floating-point instruction
in the high-order 32 bits is not defined (except
for shrd r0, r0, r0 which is interpreted as
fnop).

. A floating-point instruction that has the D-bit

set must be aligned on a 64-bit boundary (i.e.,
the three least-significant bits of its address
must be zero). This applies as well to the initial
32-bit floating-point instruction that triggers
the transition into dual-instruction mode, but
does not apply to the following instruction.

. When the floating-point operation is scalar

and the core operation is fst or pst, the store
should not reference the result register of the
floating-point operation. When the core opera-
tion is pst, the floating-point instruction can-
not be (p)fzchks or (p)tczhkl.

. When the core instruction of a dual-mode pair

is a control-transfer operation and the previ-
ous instruction had the D-bit set, the floating-
point instruction must also have the D-bit set.
In other words, an exit from dual-instruction
mode cannot be initiated (first instruction pair
without D-bit set) when the core instruction is
a control-transfer instruction.

. When the core operation is a Id.c or st.c, the

floating-point operation must be d.fnop.

. When the floating-point operation is fxfr, the

core instruction cannot be Id, Id.c, st, st.c,
call ixfr, or any instruction that updates an in-
teger register (including autoincrement index-
ing). Furthermore, the core instruction cannot
be a fid, fst, pst, or pfld that uses as isrc? or
isrc2 the same. register as the idest of the
fxfr. Additionally, in dual instruction mode,

I PRELIMINARY
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fxfr may not be used in a branch delay slot if
its destination register is referenced by the
preceding branch instruction.

. A bri must not be executed in dual-instruction

mode if any trap bits are set.

. When the core operation is be.t or bne.t, the

floating point operation cannot be pfeq or
pfgt. The floating-point operation in the se-
quentially following instruction pair cannot be
pfeq or pfgt, either.

A transition to or from dual-instruction mode
cannot be initiated on the instruction following
a bri.

10. An ixfr, fld, or pfld cannot update the desti-

1.

nation of the companion floating-point in-
struction (unless the destination is f0 or t1)
or of the following pipelined floating-point in-
struction (regardless of its destination regis-
ter). No overlap of register destinations is
permitted; for example, the following instruc-
tions must not be paired:

// Illegal case 1
d.fmul.ss £9, f£10, £5
f£ld.d address, f4
; Overlaps f5

// Illegal case 2
d.fmul.ss f0, f0, £3
fld.q address, f0
; Overlaps f£3

// Illegal case 3
d.fmul.ss £9, £10, fll
f1d.1 address, f£5
d.pfadd.ss fx, fx, f4
s Overlaps f5, if last
stage result is double-
precision

During a locked sequence, a transition to or
from dual-instruction mode is not permitted.
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Table 8.9 Instruction Characteristics
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Instruction

Execution
Unit

Pipelined?
Delayed?

Sets
CC?

Fauits

Performance
Notes

Programming
Restrictions

adds
addu
and
andh
andnot

E

1
1

andnoth
be

be.t

bla

bnc

a,4g

bne.t
br
bri
bte
btne

ab

call
calli
fadd.p
faddp
faddz

SE,RE

famov.r
fiadd.z
fisub.z
fix.p
fid.y

SE, RE

SE, RE
DAT

2,3

flush
fmlow.p
frul.p
form
frepp

SE,RE

SE, RE

E-N

@ b

frsqr.p
fst.y
fsub.p
ftrunc.p
fxfr

SE, RE
DAT
SE, RE
SE, RE

fzchkl
fzchks
intovr
ixfr
Id.c

Id.x

or

orh
pfadd.p
pfaddp

GrmmmimmMmMEeAO|E>>>mMIT|(TOTTMM> 00> |O00>mMmmMmMmMmMmMMmMMMMMMMIMMMM

CC
cC

DAT

SE, RE
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Table 8.9 Instruction Characteristics (Continued)

Execution Plpelined? Sets Performance Programming
Instruction Unit Delayed? cCc? Faults Notes Restrictions
pfaddz G P 8 e
pfam.p A&M P SE, RE 7 d
pfamov.r A P SE, RE
pfeq.p A P CcC SE 1
pfgt.p A P cC SE 1
pfiadd.z G P 8 e
pfisub.z G P 8 e
ptix.p A P SE, RE
pfid.z E P DAT 2,9 f
pfmam.p A&M P SE, RE 7 d
pfmsm.p A&M P SE, RE 7 d
pfmul.p M P SE, RE 4 c
pfmul3.dd M P SE, RE 4 c
pform G P 8 e
pfsm.p A&M P SE, RE 7 d
pfsub.p A P SE, RE
pftrunc.p A P SE, RE
pfzchki G P 8
pfzchks G P 8
pst.d E DAT f
shi E
shr E
shra E
shrd E
st.c E
st.x E DAT
subs E CcC 1
subu E cC 1
trap E IT
xor E cC
xorh E CC
9.0 FUNCTIONAL o; me c?aragterist\ilsz.liﬁtecti pertains to orf;e c:r (;nore
of the steppings. Which steppings are affected ap-
CHARACTERISTICS pears in the Igﬂ hand columns gbefore the number
The fo"owing characteristics of the 80860XR Micro- and title of each functional characteristic and are de-

processor are additions to revision 2 of the i860™ fined as follows:

Microprocessor Family Programmers Reference X indicates that the characteristic is affected the
Manual, Intel order number 240875-002. This docu- given stepping.

ment will also appear in the 1993 revision of the F
Multimedia and Supercomputing Processors data
book, Intel order number 272084-002.

indicates that the characteristic was fixed in the
given stepping and no workaround is required.

— indicates that the erratum was fixed in a previous
Four steppings of the 80860XR Microprocessor are stepping and no workaround is required.
covered in this document; B2, B3, C1 and DO. Each
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Stepping
Description
B2 | B3| Ct1| DO
X X F — | 1. Trap Handler User/Supervisor Fault

Problem: When returning from the trap handler, a false data access trap may
occur on the Id following the brl. This can happen in either of the two following
situations:

1. The target of the brl is an I-cache hit; the instruction after the target is an
l-cache and TLB miss; and the page from which Id is loading is a supervisor-
level page. .

2. HOLD is asserted after the instruction fetch for the bri target is begun and
before the external bus cycle for the Id begins.

Workaround: The page on which the trap handler saves the registers must be
made readabie in User mode, i.e. both levels of page tables entries for that page
must have U = 1.

X X F — | 2. HOLD/HLDA in Multi-Transfer Stores

Problem: If HOLD is asserted between the first and second transfers of a 128-bit
store or between any transfers of a cache writeback to memory, then upon
leaving the bus hold, the data for the next write cycle is issued on the bus one
clock after ADS # is driven low for that write cycle.

Workaround: Since the write data lags ADS# by one clock cycle, systems
should not use HOLD with zero-wait-state write cycles.

X X F — | 3. Flush with Paging after (1) Id

Problem: In systems using paging, if an (f) Id causes a data cache writeback with
a TLB miss and the next data access instruction is a flush instruction, then the
data in the cache block being flushed will be corrupted and the processor may
hang.

NOTE:

For more errata relating to the flush instruction see errata #23 and #43.

Workaround: If the workaround for Erratum # 43 (flush with HOLD) is used, no

workaround for this erratum is necessary, even if flush with paging is used.

If the workaround for Erratum #43 is not used, both of the two following

workarounds are required:

1. In order to prevent an (f) Id-induced cache writeback from immediately
preceding the flush instruction, systems using paging must execute the last
{f) Id before the flush instruction twice. Thus, if that (f) Id were to cause a
writeback, the writeback will be executed at the first of the two (f) Ids and not
at the (f) Id immediately preceding the flush.

2. Also, in order to prevent this problem from occurring when returning from the
trap handler to the flush routine, the (f) id in the delay slot of the brl at the
ond of the trap handier must be executed twice. However, since the bri only
has one delay slot, the first of the two (f) Ids from that address must precede
the bri and must be discarded to r0 so as not to prematurely restore r1, which
would corrupt the destination of the bri.

The following is an example of the last few instructions of an appropriately

modified trap handler:

[

*

L

ld.1 stack.area, r0
bri rl

1d.1 stack_area, rl
L J
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Stepping
B2 | B3| C1| DO

Description

X X F -

4. NENE# Incorrectly Asserted After Incomplete HOLD

Problem: If HOLD is asserted and then deasserted before HLDA is asserted,
then HLDA can be asserted for one clock cycle; on the following bus cycle,
NENE# will be incorrectly asserted if that cycle would have been next-near
given no hold state interruption. Although NENE # will usually still be valid at this
point (depending on memory system design), its assertion does not follow the
correct protocol, which specifies that NENE # should not be asserted on the
next bus cycle after HLDA is deasserted.

Workaround: Do not assert and then deassert HOLD before HLDA is asserted,
and do not reassert HOLD until HLDA is deasserted for the previous HOLD.

5. Multiprocessor A-bit Settings Cause Address Corruption

Problem: In systems using paging, the correct protocol for setting the A-bit
(Accessed bit) during TLB miss processing is as follows:

1. Fetch PTE from memory with LOCK # deasserted and check the A-bit status.
2. If the A-bit is clear, then refetch PTE with LOCK # asserted.

3. Write PTE back to memory with the A-bit set and LOCK # deasserted.
However, if between steps 1 and 2 the A-bit is set by another processor, then the
TLB address transformation will be corrupted and the processor may hang.
Workaround: In multiprocessor systems, the A-bits in shared page table entries

must be set to 1 when the pages are allocated in order to avoid locked read/
write A-bit set cycles for these pages.

6. Incorrect Floating Point Result Trap in Multiplier Unit

Problem: When a sequence of pipelined single-precision multiplier operations is
followed by a pipelined double-precision muitiplier operation, the next-to-last
single-precision operation may cause a result exception trap even though the
result will be correctly discarded. This erroneous trap will only occur if the
instruction executed immediately after the first double-precision multiply
operation is 1) fst; 2) pst; 3) fid, pfid, or ixfr into a register or register set
overlapping the rdest of the first double-precision multiplier instruction; or 4) any
floating point instruction other than a multiplier operation,

Workaround: In the situation described above, the instruction immediately
following the first double-precision multiply operation must not be 1) fst; 2) pst;
3) fid, pfid, or Ixfr into a register or register set overlapping the rdest of

the first double-precision multiplier instruction; or 4) any floating point instruction
other than a multiplier operation. In addition, if the instruction cache is enabled,
then programs must not use a delayed branch whose delay slot instruction is the
first pipelined double-precision multiplier operation when the first instruction at
the target address is an fst, pst, fid, pfid, ixfr, or fioating point instruction which
could cause the spurious floating point trap.
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Stepping

B2

B3

C1

Do

Description

X

F

7. Ixfr Result Exception Trap Corrupts Destination Register

Problemn: An txfr that reports a result exception may corrupt its destination
register before controt is transferred to the trap handler. In DIM, if either source
of the core operation paired with the fxfr is the same as the fxfr’s destination
register, then when the program returns from the trap handler, the core operation
paired with the fxfr will use the incorrect value in that register. Also, in both SIM
and DIM, if the fxfr is used in the delay slot of a bri, calli, or bla which
references the same register as the fxfr’s destination, then upon returning from
the trap handler, the branch will use the corrupted vaiue in that register.
Note that when this erratum is fixed, it will be permissible to use fxfr in the delay
slot of a branch which references the fxfr’s destination in SIM, but it will still be
illegal to use it in such a delay slot in DIM.
Workaround: in DIM neither of the sources of a core operation paired with an
fxfr may be the same as the fxfr’s destination register. In both SIM and DIM the
fxfr instruction must not be used in the delay slot of a brl, calli, or bla which
references the fxtr’s destination register. For example,

bri 5

fxfr f2,r5
must not be used.

8. pfladd.ss/pfisub.ss/pfmov.ss Results Corrupted by other Pipelined
Graphics Instructions

Problem: When the next graphics unit instruction after a ptiadd.ss, pfisub.ss, or
pfmov.ss is a pfzchkli, pfzchks, pfaddp, pfaddz, or pform, the result of

the pfiadd.ss, pfisub.ss, or pfmov.ss may be incorrect. Note that this problem
only occurs with single precision pfiadd, pfisub, and pfmov instructions.

Workaround: Flush the graphics unit pipeline between a pfiadd.ss, pfisub.ss,
or pfmov.ss and a following pfzchkl, pfzchks, pfaddp, pfaddz, or pform with a
pfiadd.ss 10, 10, fn.

9. Multiplier Pipeline Result Not Discarded at Precision Transition

Problem: In correct execution, when a sequence of pipelined single-precision
multiplier operations is followed by a pipelined double-precision multiplier
operation, the result of the next-to-last single-precision muitiply is discarded.
However, if a floating point trap is reported during the two clocks after the first
pipslined double-precision multiply, then the result of the next-to-last pipelined
single-precision multiply may not be discarded, and the multiplier pipeline may
not advance correctly. As a result, the next two double-precision pipelined
multiplies or three single-precision pipelined multiplies after the first pipelined
double-precision multiply may receive incorrect data.

Workaround: Any one of the following workarounds is sufficient:

1. Flush the pipeline with two pfmul.ss £0,10,fn instructions between the single-
and double-precision multiplier operations.

2. Disable floating point traps after the last pipelined single-precision mulitiply;
enable them again after the first pipelined double-precision muiltiply.

3. Ensure that the two instructions (or two pairs of instructions, in DiM) following
the first pipelined double-precision multiply are instructions which cannot
report a floating point trap. Those which cannot report floating point traps are
all core instructions except for fst, pst, and an fid, pfid, or ixfr whose
destination register (or register set) overlaps the destination of the first
pipelined double-precision muitiply.
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X X F — | 10. flush with Paging May Corrupt Memory Data
Problem: in systems using paging, if a flush routine writeback or instruction fetch
causes a TLB miss, then modified data at the target address of one flush
instruction may also be written to the target address of the next fiush instruction,
and the chip may hang.
Workaround: If the workaround for Erratum # 43 (flush with HOLD) is used, no
workaround for this erratum is necessary, even if flush with paging is used. If the
workaround for Erratum #43 is not used, all three of the foliowing workarounds
must be implemented:
1. The old flush inner loop:
D_FLUSH_LOOP
bla Rx,Ry,D_FLUSH_LOOP
flush 32 (Rw) ++
must be replaced with a new flush inner loop:
D_FLUSH_LOOP:
ixfr r0,£0
bla Rx,Ry,D.FLUSH_LOOP
flush 32(Rw)++
ixfr r0,f0
In addition, floating point traps must be disabled during execution of the Ixfrs.
2. The D_FLUSH__LOOP label must be aligned on a 32-byte boundary by
preceding the label with the .align 32 assembler directive.
3. External interrupts must be disabled before entering the flush routine and
reenabled after exiting the routine by clearing and setting the IM bit of the
PSR.

X X F — | 71. KNF, DIM, DS, BW, and BR Bits Not Write Protected

' Problem: The KNF, DIM, DS, BW, and BR bits of the PSR are not write protected
in user mode.

Workaround: Software should not assume write protection of these bits in user
mode.

X X F — | 12. TLB Miss Processing Address Corrupted After ld.c from epsr

Problem: If a TLB miss resulting from an instruction fetch or cache writeback
cycle follows a Id.c from the epsr, the address for the TLB miss processing may
be corrupted.

Workaround: Every Id.c epsr, r should be immediately preceded by an ixfr r0,
10, and floating point traps must be disabled during execution of the ixfr. In
addition, the Ixfr must be aligned on a 32 byte boundary by preceding it with the
assembiler directive .align 32.

Description
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X | X | F | — | 13. fmlow.dd Incorrectly Causes Floating Point Traps

Problem: Although fmlow.dd is not supposed to causs floating point traps or update
the result-status bits of the FSR, it can trigger a floating point trap in the following
case:

fmlow.dd fx,fy,fz //Causes result underflow or overflow

L ]

. //Any sequence of non-pfmul instructions
L ]

pfmul.xx fa,fb,fc //Any precision pfmul
L]

e //Any sequence of non-pfmul instructions
L ]
pfmul.dd fl,fm,fn //Double precision pfmul only
pfadd.ss fd,fe,ff //Reports erroneous floating point trap
//{(Any FP trap-reporting instruction)

The instruction immediately following the ptmul.dd 1, fm, fn which reports the trap
can be any floating point trap-reporting instruction other than another multiplier unit
instruction.

Although a trap will be reported and the FT bit will be set (FT = 1) in the PSR, no
floating point result status bits will be set in the FSR.

Workaround: If the trap handler finds FT set in the PSR but no result-status bits set in
the FSR, then it should just return back to user code.

X | X | F | — | 14. Byte Enable Code Wrong on First Fetch in C58 Mode

Problem: During the first CS8 mode instruction byte fetch of a sequence of fetches
within a 32 byte block boundary, the byte enable pattern BE7 #:BEO # is hex FF rather
than hex AF as it should be.

Workaround: Interpret the byte enable code hex FF to indicate the first instruction byte
fetch in a CS8 mode instruction fetch sequence.

X | X | F | — | 15. frop, frsqr Aftsr pfmul May Corrupt Data

Problem: If a ptmul.ss or pfmul.sd immediately precedes an frcp or frsqr which in
turn is immediately foliowed by a scalar floating point instruction other than a graphics
unit instruction, then the result of the scalar floating point instruction may be corrupted.

Note that the pfmul.ss/pfmul.sd preceding the frep/frsqr could reside in the delay

slot of a branch.

Workaround: Either one of the following two workarounds will suffice:

1. Separate the frcp/frsqr from the preceding pfmul.ss/pfmul.sd with a nop or
other instruction.

2. Replace the pfmul.ss/pfmul.sd immediately preceding the frcp/frsqr with a
pfmul.dd. The replacement will not affect any resuit, since the pfmul data entering
the multiplier pipeline should be discarded because the frcp/frsqr is scalar.
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X X F — | 16. KNF (Kill Next Floating-point) Ineffective With bri/callf in DIM

Problem: When an instruction pair containing a bri or calli is executed in dual
mode with the KNF bit set in the PSR, the floating point instruction paired with
the bri or calli is executed, although it should not be.

Workaround: Either one of the following two workarounds will suffice. The first is
a trap-handler workaround, whereas the second is implemented in the compiler.
1. The trap handler should not return to a dual pair containing a bri or calli with

KNF set in the PSR. Instead, if the floating point operation paired with the bri/

calll should not be reexecuted, then the trap handler should execute the bri/

calll in single instruction mode before transitioning to dual mode on the next
pair if appropriate. The following two rules implement this workaround:

a. If the trap handler finds the DIM bit set and the DS bit clear, then it should
clear DIM, set DS, and return to the instruction at the address in fir +4
with KNF clear. ?

b. If the trap handler finds both the DIM and DS bits set, then it should clear
both bits and return to the instruction at the address in fir + 4 with KNF
clear.

2. In dual instruction mode, pair every bri or calll with an fnop or a graphics unit
instruction. Since the bri or calll cannot cause a data-access fault and the
fnop or graphics unit instructions cannot cause a source exception, these
dual pairs will never require the use of KNF.

X X F — | 17. fid/pfld/ixfr May Not Report Floating Point Result Exception

Problem: In correct operation an fid, pfid, or ixfr whose destination register (or
register set) overlaps the destination of a preceding scalar instruction which
caused a floating point result exception (RE) should always report that RE,
unless a floating-point operation, pst, or fst has already done so. However, if a
trap other than a floating-point trap occurs between the RE-causing instruction
and the fid/pfid/ixfr, the fid/pfid/ixfr may not report

the RE. Instead, the trap will be reported by the next floating point operation, fst,
or pst after the fid/pfid/ixfr. The problem only occurs if the trap handier uses
any floating point or graphics operations to handie the trap that occurred
between the RE-causing instruction and the fid/pfld/ixfr. If the trap handler
does not use floating point or graphics operations to handle the non-floating
point trap, then execution will be correct. For example:

fmul.dd fx,fy,fs // Causes an FP result exception
L

L]

*

<any non-floatirg point trap to trap handler requiring
floating point pipeline manipulations>

L ]

L]

£ld.1 0 (r0),fz // Should report RE but may not

®

*

fmul.ss £0,f£0,f0 // Will report the result exception 1t
// £l1d.l1 does not, even though fz has
// been overwritten by the fld.l
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17. (Continued)

Workaround: If floating point traps are enabled (FTE = 1) and the trap handler
uses any floating point or graphics operations to handle traps, then when
handling any trap, the trap handler should check the result status bits of the FSR
register. (The Id.c fsr which saves the resuilt status bits of the FSR register must
occur on the third or later instruction of the trap handler.) If any of the FSR resulit
status bits is set, indicating a floating point RE, then the trap handler should
handle the floating point RE as well as the other trap that caused the branch to
the trap handler routine.

18. pfld With HOLD May Corrupt Data

Problem: in systems using HOLD, if a pfid miss is followed by a pfid hit and the
bus cycle for the pfld miss is delayed due to a HOLD request and acknowledge,
then the pfid hit data fetch is completed before the pfld miss data fetch. As a
result the data FIFO receives data out of order, and the data is corrupted. Note
that this problem can only occur if pfid data has already been loaded into the
data cache with fid.

Workaround: Either one of the following two workarounds will suffice:
1. Do not use pfid with systems which use HOLD.
2. Only use pfid on data which cannot reside in the data cache. This

workaround may be implemented by making pages containing pfid data
noncacheable.

19. Core Operation May Overwrite CC Bit Set by pfgt/pfle/pfeq in DIM

Problem: In correct operation, if a pfgt, pfle, or pfeq is paired with an ALU or
logical core instruction in dual instruction mode, then the CC bit should be set
according to the result of the pfgt/pfie/pfeq, and not according to the result of
the ALU or logical core instruction. However, if a floating point source exception
is reported on the pfgt/pfle/pfeq, then the trap handler will update the CC bit
for the pfgt/pfie/pteq, return to the user cods, and reexecute the dual pair with
KNF set. The ALU/logical core instruction may then modify the CC bit from its
correct value.

Workaround: Either one of the following two workarounds will suffice. The first is
a trap-handler workaround, whereas the second is implemented in the compiler.

1. After handling a pfgt/pfle/pfeq floating point source exception, the trap
handler should not return with KNF set to.a dual pair containing an ALU or
logical core operation. Instead, it should emulate the core operation, except
for the update of the CC bit, and then return to the next instruction pair with
KNF clear and the DIM and DS bits modified according to the rules below. If
the dual pair containing the pfgt/pfle/pfeq is in the delay slot of a delayed
branch, then the trap handler must resume at the branch target.

Rules for modifying DIM and DS upon returning to the subsequent instruction

pair:

a. If the trap handler finds the DIM bit set, the DS bit clear, and the D-bit of
the floating point instruction set, then it should leave both the DIM and DS
bits as they are and return to the next instruction pair.

b. If the trap handler finds the DIM bit set, the DS bit clear, and the D-bit of
the floating point instruction clear, then it should leave the DIM bit set, set
the DS bit, and return to the next instruction pair.

c. If the trap handler finds both the DIM and DS bits set, then it should clear
both bits and return to the next instruction pair.

2. In dual instruction mode do not pair a pfgt/pfle/pfeq with a core instruction
that can modify the CC bit, i.e. an ALU or logical operation.
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X | X | F | — | 20. Register Bypass of f1 Does Not Work

Problem: If a single precision floating point instruction discards data into destination
register #1 and the same instruction (in pipelined mode) or next instruction (in scalar
mode) references f1 as a source, then the data being discarded into 1 will be
mistakenly bypassed to the instruction using f1 as a source. Since f1is supposed to
be a read-only register whose value is zero, incorrect program execution may resuit.
Example 1
fmul.ss fa,fb,fl
fadd.ss fl,fc,fd // op-1 will be fa*fb, rather than O

// £d4 = (fa*tb)+fc, rather than fc
Example 2
pfmul.ss fa,fb,fx
pfmul.ss fe,ff,fx
pfmul.ss fe,ff,fx
pfmul.ss fe,f1,fl // op.2 will be fa*fb, rather than O
pfmul.ss fe,ff,fx
pfmul.ss fe,ff,fx
pfmul.ss fe,ff,fk // fk = fa*fb*fc, rather than 0
Workaround- Do not use f1 as the destination register when discarding a resuit.
Discard the result to register f0 instead.

X | X | X | F |21. Multiplier Pipeline Not Cleared of Result Exception by frep/frsqr
Problem: |f a result exception is in the first stage of the multiplier pipeline and a frsqr/
frep is executed, the result exception should be cleared from the pipe butis not. As a
consequence, a result exception with no result-status bits set will occur.
Exampie:

pfmul.dd f£2,f2,£f8 // Causes result exception

frsqr.dd f4,f6

pfmul.dd f£x,fx,fy

pfmul.dd fa,fb,fc

pfiadd.dd fq,fr,fs // Triggers RE reporting
Workaround: if the trap handler finds FT set in the PSR but no result-status bits set in
the FSR, then it should just return back to user code.

X | X | F | — | 22. Short HOLD/HLDA Sequences With Paging Can Cause Data Corruption

Problem: in systems using HOLD and paging, internal data corruption may occur if

HLDA is asserted for 3 clocks or fewer. This problem can only occur if all of the

following conditions are met:

1. HOLD is asserted during the 1st, 2nd, or 3rd fetch of an instruction fetch sequence.

2. The last bus cycle before HLDA is asserted is an instruction fetch of a store
instruction which causes a TLB hit and a data-access fault.

3. HOLD is deasserted on the 1st, 2nd, or 3rd clock during which HLDA is asserted.

Workaround: Either HOLD must never be asserted during an instruction fetch

sequence, or HOLD must remain asserted for at least four clocks after HLDA is
asserted.

I PRELIMINARY 2.249



L]
1860™ XR MICROPROCESSOR InU R

Steppin
iditl Description
B2 | B3 | C1| Do
X X F — | 28. Sticky Inexact Bit of FSR May Be Incorrectly Set

Problem: Scalar multiply operations may incorrectly set the Si bit of the FSR
when the muitiply unit has a data-dependent rounding freeze. If the Sl bit is set,
then the processor may or may not have encountered an inexact result.

Workaround: Do not use the Si bit.

X X F — | 24. Floating Point Underflow Trap May Occur When FZ Set

Problem: In correct operation, when the FZ bit in the FSR is set, no floating point
traps are reported on underflow results, although the MU (or AU) bit is set.
However, if during floating point pipeline resumption MU (or AU) is restored to
the multiplier (or adder) pipeline by setting the U (Update) bit of the FSR, then a
false underflow trap may occur even though FZ is set. This false underflow trap
may occur upon execution of the first floating point trap-reporting instruction
after the MU (or AU) bit has propagated to the third stage of the pipeline.

Workaround: When restoring a floating point pipeline by setting the U bit in the
FSR, the trap handler must clear the MU (or AU) bit whenever the FZ bit is set.
X X X F | 25. AA Bit Not Set Correctly

Problem: The (p) fix and (p) ftrunc instructions may not set the AA bit of the
FSR correctly. Specifically, the AA bit may report that the conversion of an exact
non-positive number to an integer value involved an upward rounding, when in
fact it did not. Note that the AA bit is not IEEE defined.

Workaround: Disregard the AA bit when using (p) fix or (p) ftrunc. The
conversion result will still be correct.

X X F — | 26. famov and pfamov Erroneously Normalize Negative Denormals

Problem: famov and pfamov (which is used in the trap handler to restore the
adder pipeline) erroneously normalize negative denormals.

Workaround: If fsrc1 of a (p) famov is a negative denormal as defined in PRM
Table 2-2, then the (p) famov must be replaced by a (p) fadd whose fsrc2is
negative zero or by a (p) fsub whose fsrc2 is positive zero.

X X X F | 27. Pipeline Precision Transition May Cause False Result Exception

Problem: If both of the following conditions are met, a false result exception can

be reported. However, the result exception bits in the FSR due to this result

exception will be cleared by the time the processor branches to the trap handler.

1. When the multiplier pipeline transitions from single- to double-precision
pipelined mode, the second-to-last single precision pipelined instruction
causes a result exception trap and a multiplier rounding freeze.

2. A floating point trap-reporting instruction is decoded during the muitiplier
freeze.

Workaround: Either one of the following two workarounds will suffice:

1. Flush the multiplier pipeline when switching source precision. (This
workaround is preferred.)

2. If the trap handler finds FT set in the PSR but no result-status bits set in the
FSR, then it should just return back to user code.
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X X X F 28. Flush Instruction on 16-Byte Boundary Corrupts Data

Problem: If the address referenced by a flush instruction is aligned on a 16-byte
boundary rather than a 32-byte boundary, data corruption may result. The datain
the upper half of the cache line will be written back both to its corresponding
address in memory and also to the memory address corresponding to the lower
16 bytes of that cache line.

Workaround: Either one of the following two workarounds will suffice:

1. Align all addresses referenced by the flush instruction on 32-byte boundaries.
Flushing on 32-byte boundaries causes both cache line halves to be written
back to the correct memory location as needed, and clears the modified bit of
the lower half of the cache line.

2. If flushing on a 16-byte boundary is necessary (for example, to clear the
modified bit of the upper half of the cache line), a flush to the 32-byte
boundary immediately below that 16-byte boundary must immediately
precede the flush to the upper half of the cache line. This first flush changes
the tag address for that line to indicate the reserved flush area; the
subsequent flush on the 16-byte boundary will then cause an erroneous
writeback to the flush area. However, the erroneous writeback will not corrupt
system data because it does not affect the valid copy of the cache line which
has already been written back to the correct memory address for that data.

X X F — | 29. External Interrupts Ignored While Data = Lock Opcode During Read

Problem: During a read cycle, external interrupts are ignored while the opcode
for the lock instruction appears on the data bus before READY # is asserted.
External interrupt acknowledgment resumes normally when this data pattern is
changed. This situation is only a problem for sites using multiple processors in
lock-step; even then, there is no functional difference between the two
processors as far as code execution is concerned.

Workaround: When running multiple processors in lock-step, ensure that both
processors always see the same data patterns.

X X F — | 30. flush with HOLD May Corrupt Data or Hang Processor

Problem: In systems using HOLD/HLDA with flush, the bus cycle for a writeback
caused by a flush instruction can be “lost”, causing the writeback data to be
stuck in the internal write buffers. This condition will cause data corruption and
may cause the processor to hang. The problem occurs only when both of the
following conditions are met:

1. The data cache has at least two cache line entries which have been half
modified (EITHER the upper or lower half is modified, but not both).
2. HOLD is asserted during the flush routine.

Workaround. For systems using HOLD/HLDA with flush, the following
procedures are recommended for flushing the data cache and should be used in
place of the one specified in the PRM. Upon RESET the data cache must be
initialized using the flush instruction. To flush the data cache subsequently, the
fld instruction must be used in the flush loop. The data cache initialization and
flush routines require an 8 KB reserved cacheable flush memory area. The
reserved area must be hardware (KEN#) and page table (CD/WT) cacheable.

NOTE:
If this workaround is used, no workarounds for Errata # 10 and #23 are
necessary, even if flush with paging is used.

Description
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X | X | F | —]30. (Continued)

Data cache initialization at RESET
The following procedure should be used to initialize the data cache at RESET:

.data
flush_area::
.byte [8192] O // Using method of your choice, reserve
// 8 KB of writable, cacheable memory.
text

reset initialization::

ld.c dirbase, Rv // Save dirbase
adds -1, r0, Rx // Loop decrement
or 127, r0, Ry // Loop counter

or 1%flush_area-32, r0, Rt // Beginning virtual addr
orh h%flush_area-32, Rt, Rt // minus 32B (to allow for
// autoincrement)

// Initialize the first half of the cache

andnot 0xF00, Rv, Rw // Clear RC, RB; put result in Rw
or x0800, Rw, Rw // Set MSB of RC

bla Rx, Ry, 1initl // One time to initialize LCC

st.c Rw, dirbase // Store dirbase; RC =2, RB=0
initl:
bla Rx, Ry, initl // Loop for 128 iterations to
flush 32(Rt)++ // initialize 1st 4 KB block

// Now initialize the other half by changing RB
or 0x900, Rw, Rw // Set RC=2and RB=1

or 127, r0, Ry // Reset loop counter

bla Rx, Ry, init2 // One time to initialize LCC
st.c Rw, dirbase // RC=2, RB=1

init2:

bla Rx, Ry, init2 // Loop for 128 iterations to
flush 32(Rt)++ // initialize 2nd 4 KB block

bri rl // Return to calling procedure
st.¢c Rv, dirbase // Restore original dirbase
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Data cache flush other than at RESET
The following procedure should be used to flush the D-cache at any time other than at

RESET:
flush::
ld.¢ dirbase, Rv // Save dirbase
adds ~1, r0, Rx // Loop decrement
or 127, r0, Ry // Loop counter
or 1%flush_area=32, r0, Rt // Beginning virtual addr

orh h%flush_area-32, Rt, Rt // minus 32B (toc allow for
// autoincrement)

// Flush 1lst half of cache (with writeback if modified)
andnot OxFQ0, Rv, Rw // Clear RC, RB; put result in Rw
or 0x800, Rw, Rw // Set MSB of RC

bla Rx, Ry, flushl // One time to initialize LCC
st.c Rw, dirbase // Store dirbase; RC =2, RB =0

flushl:
bla Rx, Ry, flushl // Loop for 128 iterations to
fld.d 32(Rt)++, fO // load from each addr, causing
// writebacks from modified lines

// Now flush second half of the cache

or 0x900, Rw, Rw // Set RC = 2 and RB =1

or 127, r0, Ry // Reset loop counter

bla Rx, Ry, flush2 // One time to initialize LCC
st.c Rw, dirbase // RC=2, RB=1

flush2:
bla Rx, Ry, flush2 // Loop for 128 iterations to
f£1d.d 32(Rt)++, £0 // load from each addr, causing
// writebacks from modified lines

bri rl // Return to calling procedure
st.¢ Rv, dirbase // Restore original dirbase

X | X | X | F |31. pfmul3.dd Can Modify CC Bit

Problem: The pfmul3.dd instruction, which is intended primarily for use in the trap
handler, can erroneously modify the CC bit in the PSR. This modification may result in
code execution errors if an instruction which follows the pfmul3.dd tests the CC bit.

Workaraund: If an instruction following a pfmul3.dd tests the CC bit, save the value of
the CC bit before the pfmuli3.dd and restore it after that instruction.

I PRELIMINARY 2.253



i860™ XR MICROPROCESSOR "Ttel R

Stepping

B2

B3

C1

Do

Description

X

X

32. /L Bitls Not Set on DAT after UNLOCK

Problem: When a data access trap occurs on the first load or store after an unlock
instruction, the IL bit of the EPSR is not set. Thus, the trap handler returns to that load
or store instruction instead of returning to the lock instruction as it should. This
problem also occurs if the address of the first load or store after the unlock instruction
matches the data breakpoint (DB) register.

Workaround: Both of the following workarounds must be implemented:

1. Move the load or store that follows the unlock instruction prior to the unlock
instruction, and replicate that load or store as a dummy load or store to the same
address after the unlock instruction. This guarantees that the unlocking dummy
load or store will not trap.

2. Do not permit a data breakpoint register trap to occur on the unlocking ioad or
store.

33. pfid after Multicycle Write Cycle with HOLD May Corrupt Dala
Problem: If all the following conditions are met, pfid data may be corrupted.

1. Ald- or fld-induced cache line writeback or a fst.q generates data in the write-back
buffers to be written out to memory in a multicycle write cycle. A multicycle write
cycle is any write cycle which requires more than one address issued to complete
the bus cycle. (The flush instruction may also cause the probiem, but only if itis
used as a general purpose instruction, rather than in the flush loop. As stated in the
Programmer’s Reference Manual, such a usage has undefined resuits.)

2. The multicycie write cycle is interrupted by HOLD and HLDA, allowing another bus
master on the bus between the writes of the multicycle write cycle.

3. When HOLD is asserted, there are no internal requests for bus cycles pending
(other than for the cycles of the multicycle write described in section 1 above).

4. A pfid hits the data cache before all cycles of the muiticycle write cycle have
completed. The data at the address of this pfld may be corrupted. This data will be
written to the fdest of the third pfid later.

Workaround: Any one of the foliowing three workarounds will suffice:

1. Only use pfld on data which cannot reside in the data cache. This workaround may
be implemented by making pages containing pfld data noncacheable.

2. Do not use pfld with systems that use HOLD.

3. For systems that use HOLD and allow pfld to access cacheable data, insert a
dummy store that is guaranteed to be a data cache miss between each Id or fld
and a following pfid.

34. /L Bit Mistakenly Set on Trap Before Lock

Problem: If the instruction executed immediately prior to a lock instruction traps on a

DAT, IT, or FT, the trap handler will find the IL (interlock) bit of the EPSR set,

mistakenly indicating that a locked sequence is in progress. Note that this problem can

occur either in sequential execution or when the trapping instruction is in the delay slot

of a branch or call whose target is a lock instruction.

Workaround: Either one of the following two workarounds will suffice:

1. Put a nop before every lock instruction. In addition, if the lock is a branch target,
change the branch target address to the nop before the lock.

2. Ensure that the instruction preceding a lock instruction can never trap.
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Stepping
B2 B3| C1| D0

X | X | X | F | 85. /ncorrect Address Translation on st.c Setting IT! after D-cache Miss/TLEB Hit

Problem: If a data access instruction [(f) id, (f) st, pst, or pfid]which is a data cache
miss/TLB hit is followed by a 8t.c which sets the IT| bit of dirbase, then an incorrect
or extra address translation may occur. The st.c does not need to immediately follow
the data access instruction in order to cause the problem; any number of instructions
may intervene.

Workaround: Execute an ixfr r0, f0 immediately before a st.c which sets the ITl bit,
and follow the st.c immediately with six nops, as specified in the Programmer’s
Reference Manual. Floating point traps must be disabled during execution of the ixfr.

X | X | X | F |36. DAT in DIM with Paging May Cause FP Pipeline Corruption

Problem: If all of the following conditions are met, a floating point pipeline may be
corrupted as described.
IF:
1. Paging is enabled.
2. Instruction caching is enabled both in hardware and in software.
3. Ald instruction that does not reside in the delay slot of a branch or call causes a
data access trap (DAT).
4. The DAT-causing id, which may occur either in single or dual instruction mode
(DIM), is followed by a DIM pair.
5. The DIM pair which follows the Id instruction has:
a) a scalar floating point half (i.e. not fnop, fxfr, or a pipelined instruction).
b) an integer half which causes a freeze because one of its source operands
overlaps with the Id’s destination.
THEN:
After trapping on the DAT, the first pipelined FP operation in the trap handler may
corrupt its corresponding pipeline. For example, if the first pipelined FP operation in
the trap handler is a pfmul, the muitiplier pipeline may be corrupted.

Workaround: Either one of the following two workarounds will suffice:

1. In DIM or a DIM transition, if the destination register of a Id instruction is referenced
as a source in the integer half of the next dual pair, then the floating point
instruction of that pair must be non-scalar (i.e. fnop, fxfr, or a pipelined instruction).

2. On any trap, the trap handler should first save the register state (but not the
pipeline state) of the CPU and then determine whether a Id has caused a DAT
while DIM and/or DS is set. If not, the trap should be handied normally, but if so, it
should check whether the Id is in the delay slot of a branch or call. If it is, the trap
should be handled normally, but if not, the trap handler should examine the next
instruction or instruction pair in user code after the trapping instruction.

If the Id is followed by a DIM pair in which the FP half is a scalar adder, multiplier, or
graphics operation, then the first FP operation performed in the trap handler after
saving register state should be a pipelined adder, multiplier, or graphics unit instruction
respectively. Otherwise, the trap should be handied normally.

X | X | X | F | 37. BL Bit Not Set Immediately After lock Instruction

Problem: A Id.c dirbase, rx immediately after a lock instruction may show the BL bit
not set, although it should be. However, if any other instruction intervenes between the
lock and the Id.c dirbase, rx, the BL bit will appear correctly set.

Workaround: Ensure that there is at least one instruction between a lock and a
following Id.c dirbase, rx.

Description
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B2

B3
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DO

Description

X

X

38. First 32-byte Block of Trap Handler Code May Execute Incorrectly

Problem: Under certain rare conditions, requiring paging, caching and a trap, the
CPU may skip or execute twice any of the instructions on the first 32-byte block
of the trap handler code.

Workaround: For systems using paging and caching, place eight nops as the first
eight instructions of the trap handier code (at address OxFFFFFF00).

38. INTOVR May Trap Incorrectly

Problem: The OF bit is unreliable in the trap handler during a DAT, SE or RE that
is followed by an adds/addu/subs/subu instruction. In dual instruction mode, if
the intovr instruction is followed by an adds/addu/subs/subu

instruction, and the floating point instruction paired with the intovr traps, intovr
may trap incorrectly upon returning from the trap handler. The adds/addu/
subs/subu instruction can set the OF bit by the time the floating point trap is
taken. When the trap handler returns to the intovr pair, the OF bit is set in the
EPSR, and the intovr instruction causes an instruction trap (IT). Consider the
following example:

// OF=0
A: d.fop // FP operation reports an SE or RE
intovr // Should not report an overflow trap
B: d.fop // Another FP operation
addu // Sets OF

The Intovr instruction should not trap since OF is clear. However, the OF bit is
set by the addu instruction before an SE or RE is taken. When the trap handler
returns to pair A, the intovr instruction now traps because OF is set, even
though it should not trap.

Workaround: In single instruction mode, the trap handler should ignore the OF
bit.

In dual instruction mode, if a floating point trap occurs, and the instruction at

FIR + 4 (core half of the pair) is the intovr instruction, the trap handler must set
the OF bit (EPSR) to the value of the IT bit (PSR). This will guarantee

that the OF bit is set correctly upon return to the dual pair. If the intovr
instruction trapped (IT = 1 and FIR contains Intovr), then OF should be set to 1.
If the intovr instruction didn't trap (IT = 0 and FIR contains intovr), then OF
should be set to 0.

NOTE:

This workaround must be placed in the section before the normal intovr
handling in the trap handler.

40. Id.c fsrin DIM May Return the Wrong Value
Problem: In dual instruction mode, if Id.c fsr is followed by a pipelined floating
point instruction, then this pipelined floating point instruction may update the fsr
early. The Id.c may return the updated fsr value from the execution of the
pipelined floating point instruction.

NOTE:
This problem does not occur in single instruction mode.

Workaround: in dual instruction mode, do not follow the Id.c fsr instruction with a
pipelined floating point instruction.

2-256

PRELIMINARY I



intel.

i860™ XR MICROPROCESSOR

Stepping
escription
B2 | B3(C1| DO Descriptio
X | X | X | X | 41. PFLD Pjpeline May Return Corrupted Data

Problem: Under the following conditions the PFLD pipeline can lose synchronization,
resulting in corrupted data. Once the pipeline is out of synchronization, it will remain
out of synchronization until the chip is reset. All of the conditions listed below must be
present in order for the error to occur.
1. A pfld instruction is near the end of an instruction cache line.

and;
2. The next instruction to be fetched is both an instruction cache miss and a TLB

miss.

and;
3. Data for the pfid resides on the same page as the instruction cache miss.
Workaround: Ensure that pfld data resides on non-instruction pages.

NOTE:
The following procedure may be used during a context switch to test for pfid pipeline
corruption. This allows the problem to be detected and localized to a single user. If the
test fails then the pipeline is corrupted and the 80860XR must be RESET in order to
use pfid instructions again.

// pfld PIPELINE TEST ROUTINE.

// Mem_addr is the address of three consecutive double word
// memory locations that have been initlalized with some

// pfld load test data.

// Save_.Stagel, Save.Stage2 and Save_Stage3 are memory

// locations used as temporary storage for pipeline data.
// Rx is an integer register and Fx, Fy, Fz are floating

// point registers used in the test.

// The test data is '1', '2', and '3' in this example.

test_pipes:
or 1%Mem.addr, r0, Rx // Set Rx pointer to memory
orh h#Mem_addr, Rx, Rx // addr containing test data.

pfld.d O(Rx), Fx // Load values from memory into
pfld.d 4(Rx), Fy // pipeline and save current
pfld.d 8(Rx), Fz // pipeline data to Fx, Fy, Fz.

fst.d Fx, Save_Stagel(r0) // Save old Stagel data
fst.d Fy, Save_Stage2(rQ) // Save old Stage2 data
fst.d Fz, Save_Stage3(r0) // Save old Stage3 data

pfld.d Save.Stagel(r0), Fx// Fx <= '1' and restore Stagel
pfld.d Save._Stage2(r0), Fy// Fy <= '2' and restore Stage2
pfld.d Save_Stage3(r0), Fz// Fz <- '3' and restore Staged

fst.d Fx, Save.Stagel(r0) // Memory (Save_Stagel) <- Fx
fst.d Fy, Save_Stage2(r0) // Memory (Save_Stage2) <- Fy
fst.d Fz, Save.Stage3(r0) // Memory (Save_Stage3) <- Fz

1d.1 Save.Stagel(r0), Ry // Ry <- Memory(Save.Stagel)

btne 1, Ry, test_fail // Test for (Ry = '1'")

1d.1 Save._Stage2(r0), Ry // Ry <~ Memory(Save_Stage2)

btne 2, Ry, test fail // Test for (Ry = '2')

1d.1 Save_Stage3(r0), Ry // Ry <~ Memory{Save_Stage3)

bte 3, Ry, test_pass // Test for (Ry = '3'")
test_fail:

// Insert a branch to HALT the system or RESET the 80860XR.
test_pass:

// pfld pipeline is not corrupted - Continue
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B2 | B3| Ct | DO
X X F — | 42. Multiple Sequential Transfers between the Integer and Floating Point Units

can Result in Corrupted Data

Problem: When executing a very tight loop resulting in large numbers of transfers
between the integer and floating point units, data can become corrupted. All of
the following conditions listed below must be present in order for the error to
oceur.
1. High Temperature (>70°C T¢ase)

and;
2. Low Voltage (<50V)

and;
3. Avery long (> 109), tight loop involving transfers between the integer and

floating point units.

The loop length required to cause failure differs with temperature and voltage.

Workaround: No feasible workaround in B2/B3 steppings.

X X X X | 43. LOCK Protocol Failure at Page Boundary

Problem: An Instruction Access Trap (IAT) may be incorrectly reported, and the
access (A) bit of a Page Table or Page Directory Entry may be updated without
assertion of the LOCK +# pin, when all of the following conditions occur.

1. A LOCK sequence finishes near the end of a page (the st instruction
following the unlock instruction is one of the last four instructions on the
page)
and;

2. Paging is enablied
and;

3. The access (A) bit is not set in the following page.

Workaround: Any one of the following four workarounds will suffice:

1. Disable Paging

2. Set the A bit in all Page Table (and Page Directory) Entries to 1.

3. Finish lock sequences before the last four instructions of the current page.

4. Ignore IATs signaled by the processor when none of the following valid IAT
conditions is present:

a) Present bit not set in PTE or PDE (PTE.P=0)
b) Supervisor Page Protection Violation (PSR.PU=1 AND PTE.U=0)

c) Access Bit not set in PTE during a lock sequence (PTE.A=0 AND
PSR.IL=1)

NOTE:

If workaround #4 is used, the A bit of the following page may be set by the
processor without the LOCK # pin asserted.
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DATA SHEET REVISION REVIEW

The following list represents the key differences be-
tween version 002 and version 001 of the 860 XR
Microprocessor Data Sheet.

1.

2,

Big-endian description in section 2.3 has been
expanded.

Bit 17 of the Extended Processor Status Regis-
ter (EPSR) is the INT bit which reflects the value
on the interrupt pin (INT), as described in sec-
tion 2.2.4 entitled “EXTENDED PROCESSOR
STATUS REGISTER". This is a documentation
update only.

The cacheability of a page is controiled by
NOR'ing the value of the CD, WT bits and the
KEN# input pin, as described in section 2.5 en-
titled “Caching and Cache Flushing” and sec-
tion 3.1.14 entitled “Cache Enable (KEN#)”.
This is a documentation update only.

The NOTE section in section 2.5 entitled “Cach-
ing and Cache Flushing” has been updated to
clarify the paging requirement on changing the
DTB field in the dirbase register.

Information on register encoding is added in
section 8.2 entitled “Instruction Format and En-
coding”. This is a documentation update only.

The following list represents the key differences be-
tween version 003 and version 002 of the i860 XR
Microprocessor Data Sheet.

Specification Changes:

1.

2.

Specification changes for improved AC perform-
ance are in section 7.3.

HOLD is acknowledged during locked bus cy-
cles. See section 3.1.8.

Additional paths have been added to the bus
state diagram to allow direct transitions from
states T12 and T11 to state TH. See Figures 4.1
and 4.10.

Two new instructions, (p)famov.r, have been
added. These replace (p)fadd.ds and
(p)fadd.sd in the assembler pseudo-ops
(p)fmov.r. These changes are in section 8.1
and tables 2.7, 8.7, and 8.9.

Documentation Changes:

1.

2.

Big and little endian description has been ex-
panded in sections 2.2.2, 2.3, and Figure 2.8.

The actions and explanations of the lock, un-

“lock, and st.c dirbase changing the BL bit have

been updated in sections 2.2.4, 3.1.5, 3.1.8,
4.3.4,4.3.5, and 8.1.

The explanation of the AA and MA bits of the
fpsr have been expanded in section 2.2.8.
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10.

11,

12

13.

14.
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The explanation of the WT bit of the Page Table
Entries has been expanded in sections 2.4.4.4
and 2.5.

A change concerning the locking of the bus dur-
ing address translation is explained in sections
2.4.5 and 2.8.5.

A further explanation on when to flush the data
cache is given in section 2.5.

The explanation of the floating point muitiplier
pipeline has been expanded in section 2.6.1.

The explanation of BREQ has been expanded
in section 3.1.4 and Figure 4.1.

The explanation of result exceptions has been
expanded in sections 2.8 and 3.2.

Instruction fetch identification has been clarified
in section 3.1.6 and table 3.2.

Bus cycle diagrams in Figures 4.7, 4.8, and 4.10
have been clarified/corrected.

Precision specification .r has been added to
section 8.0 and table 8.1.

In section 8.4, performance note 9 has been
added, programming restriction d has been
changed, and programming restriction f has
been added. Table 8.9 has been updated to re-
flect these changes.

The description of testability has changed in
sections 3.3. and 3.3.2. RESET and HOLD must
be asserted by the tester to force the chip out-
puts to float (tri-state).

The following list represents the major differences
between version 004 and version 003 of the i860 XR
Microprocessor Data Sheet:

Section 2.2.4 The explanation of the WP bit of the

espr has been expanded.

Section 2.8.2 More information on the instruction

trap has been added.

Section 2.8.4 The instruction access trap has been

clarified.

Section 2.8.7 The values of registers after a reset

trap have been specified.

Section 3.1.4 BREQ timing has been clarified.
Section 3.1.5 The calculation of interrupt latency

has bee corrected.

Section 3.1.6 The description of the byte-enable

signals has been expanded.

Section 3.1.8 The relation between the lock instruc-

Section 6.0

tion and the LOCK# signal has been
clarified. The BL bit should no longer
be changed by writing to the dirbase
register.

The thermal specifications have been
updated.
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Section 7.3

Section 7.3

Section 8.0

Section 8.2.1

Section 8.3

The A.C. Characteristics for CLK have
changed.

Advance timing information for the 50
MHz clock rate has been added.
These timings are subject to change
without notice.

The operand naming conventions
have improved.

The encoding of the flush instruction
has been corrected.

The data-dependent multiplier freeze
has been eliminated. Other freeze
conditions have been corrected or
clarified.

The following list represents the major differences
between version 005 and version 004 of the i860 XR
Microprocessor Data Sheet.

Section 2.2.4 OF bit is writable only in supervisor

Section 3.1.1
Section 5.0
Section 6.0

Section 6.0

2-280

mode using ST.C.

CLK rate has been updated.

Figure 5.3 has been corrected.

More information on measuring case
temperature has been added.

Figure 6.1 has been updated to in-
clude 25 MHz.

Section 6.0
Section 6.0

Section 7.2

Section 7.3

Section 7.3
Section 7.3

Section 7.3
Section 8.3

Section 8.4

-
intgl.
Table 6.1 has been corrected.
Table 6.2. has been updated to in-
clude 25 MHz.

The D.C. Characteristics have been
updated to include 25 MHz power
supply current. ‘

The A.C. Characteristics for CLK have
been changed.

50 MHz clock rate has been deleted.

25 MHz A.C. Specifications have
been added.

Figure 7.1 has been corrected.

The data-dependent multiplier round-
ing freeze has been eliminated.

Programming restrictions for dual-in-
struction mode are added.

The following list represents the differences be-
tween version 005 and version 006 of the 80860XR
Microprocessor data sheet.

Section 9.0 Functional Characteristics section add-

ed.
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