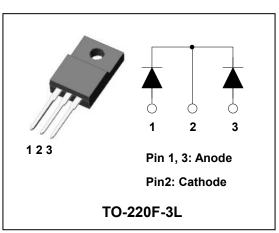
KODENSHI AUK

SDB3045PI

Schottky Barrier Rectifier


DUAL COMMON CATHODE SCHOTTKY RECTIFIER

Features

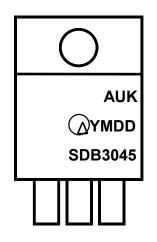
- Low forward voltage drop and leakage current
- Low power loss and High efficiency
- High surge capacity
- Dual common cathode rectifier
- Full lead (Pb)-free and RoHS compliant device

Applications

- Power supply Output rectification
- Converter
- Free-wheeling
- Reverse battery protection
- Power inverters

Product Characteristics

I _{F(AV)}	2 X 15A		
V _{RRM}	45V		
V _{FM} at 125℃	0.58V		
I _{FSM}	210A		


Description

The SDB3045PI has two schottky barriers arranged in a common cathode configuration. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

Ordering Information

Device	Marking Code	Package	Packaging
SDB3045PI	SDB3045PI SDB3045		Tube

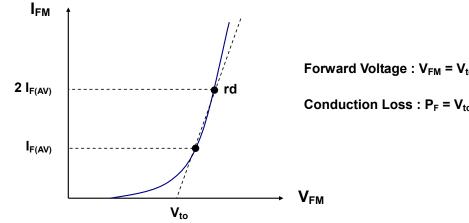
Marking Information

AUK = Manufacture Logo Δ = Control Code of Manufacture YMDD = Date Code Marking -. Y = Year Code -. M = Monthly Code -. DD = Daily Code SDB3045 = Specific Device Code

Absolute Maximum Ratings (Limiting Values, Per diode)

Characteristic		Symbol	Value	Unit	
Maximum repetitive reverse voltage Maximum working peak reverse voltage Maximum DC blocking voltage		V _{RRM} V _{RWM} V _R	45	V	
Movimum overage forward regified ourrept	per diode	1	15	A	
Maximum average forward rectified current	total device	I _{F(AV)}	30		
Peak forward surge current 8.3ms single half sine-wave superimposed on rated load per diode		I _{FSM}	210	A	
Storage temperature range		T _{stg}	-45℃ to +150℃	°C	
Maximum operating junction temperature		Tj	150	°C	

Thermal Characteristics


Characteristic		Symbol	Value	Unit
Maximum thermal registence junction to poop	per diode	D	4.0	°C/W
Maximum thermal resistance junction to case	total device	R _{th(j-c)}	3.4	

Electrical Characteristics (Per Diode)

Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
Peak forward voltage drop	${\sf V_{FM}}^{(1)}$	I _{FM} = 15A	T j =25 ℃	-	-	0.65	V
			Tj=125℃	-	0.55	0.58	V
Reverse leakage current	$I_{RM}^{(1)}$	$V_{R} = V_{RRM}$	T j =25 ℃	-	-	0.5	mA
			Tj=125℃	-	-	50	mA

Note : (1) Pulse test : $t_P \le 380 \ \mu$ s, Duty cycle $\le 2\%$

To evaluate the conduction losses use the following equation (Fig 4.) : $P_F = 0.35 \times I_{F(AV)} + 0.012 I_{F}^{2}_{(RMS)}$

Forward Voltage : $V_{FM} = V_{to} + rd I_{FM}$

Conduction Loss : $P_F = V_{to} I_{F(AV)} + rd I_{F}^{2}(RMS)$

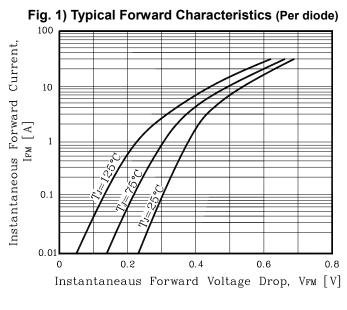
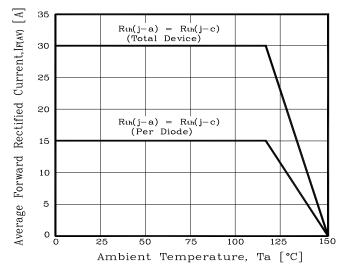
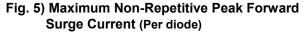
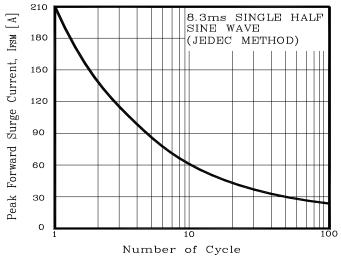





Fig. 3) Maximum Forward Derative Curve

100 Tj=125°C 10 Leakage Current,IRM [🖉 Reverse 1 . Tj=75°Ċ Instantaneous 0.1 Tj=25°0 0.01 0.001 5 10 15 20 25 30 35 40 45 0

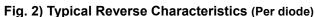
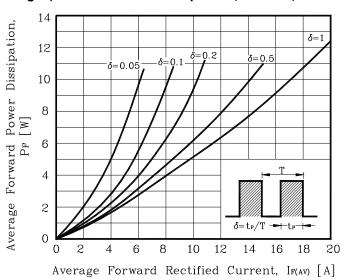
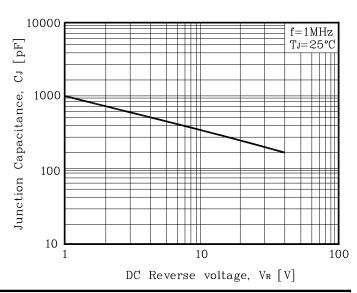
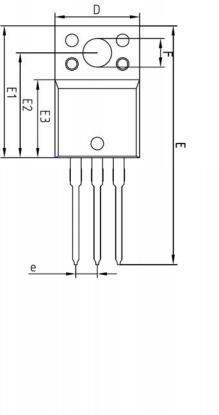
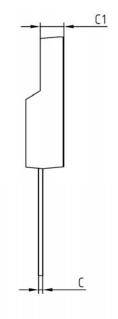
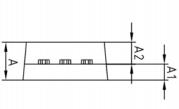


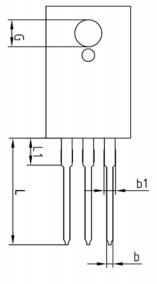
Fig. 4) Forward Power Dissipation (Per diode)

Instantaneous Reverse Voltage, VR [V]


Fig. 6) Typical Junction Capacitance (Per diode)




KSD-D00028-002

Package Outline Dimension

	MILLIMETERS			NOTE
SYMBOL	MINIMUM	NOMINAL	MAXIMUM	NOTE
Α	-	-	4.60	
A1	2.45	2.50	2.55	
A2	1.95	2.00	2.05	
b	0.65	0.75	0.85	
b1	1.07	1.27	1.47	
С	0.40	0.50	0.60	
C1	2.70	2.80	2.90	
D	9.90	10.00	10.10	
E	28.00	-	28.60	
E1	15.50	15.60	15.70	
E2	12.30	12.40	12.50	
E3	9.15	9.20	9.25	
F	3.30	3.40	3.50	
G	3.10	3.20	3.30	
е	2.54 BSC			
L	12.40		13.00	
L1				

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.