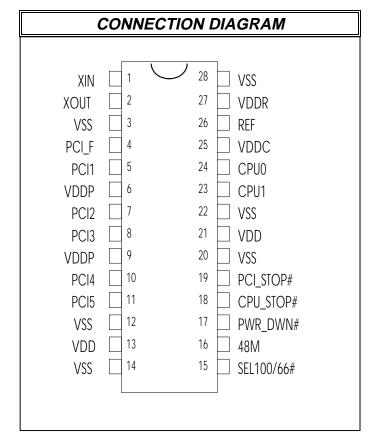


Mobile Pentium[®] Processor Application Clock Generator with SSCG, USB and Power Management Support

Approved Product


PRODUCT FEATURES

- Supports clock requirements for Mobile Pentium[®] Processor
- 2 Host and 5 PCI clocks
- Separate supply pins for mixed (3.3/2.5V) voltage application.
- <175ps skew among CPU clocks.</p>
- < 250ps skew among PCI clocks.</p>
- 48mhz for USB.
- 28-pin SSOP package for minimum board space.
- Power management capabilities

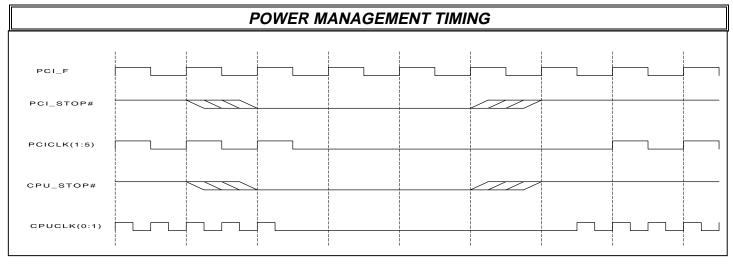
FREQUENCY TABLE							
SEL100/66#	CPU	PCI					
0	66.4 Mhz*	33.3 Mhz					
1	99.8 Mhz**	33.2 MHz					

*Down Spread 1.25% (total); **Down Spread .5% (total)

Mobile Pentium® Processor Application Clock Generator with SSCG, USB and Power Management Support

Approved Product

				PIN I	DESCRIPTION			
PIN No.	Pin Name	PWR	I/O	TYPE	Description			
1	XIN	VDD	I	OSC1	On-chip reference oscillator input pin. Requires either an external parallel resonant crystal (nominally 14.318 MHz) or externally generated reference signal			
2	XOUT	VDD	0	OSC1	On-chip reference oscillator output pin. Drives an external parallel resonant crystal. When an externally generated reference signal is used at Xin, this pin is left unconnected			
15	SEL100/66#	-	-	PADI4 PU	Frequency select input pins. See frequency select table on page 1.This pin has internal pull-up.			
23, 24	CPUCLK (0:1)	VDDC	0	BUF1	Clock outputs. CPU frequency table specified on page 1.			
4	PCI_F	VDDP	0	BUF4	Free running PCI clock. When PCI_STP# = 0, this clock doe NOT stop.			
16	48M	VDD48	0	BUF3	48 MHz fixed clock.			
5, 7, 8, 10, 11	PCI(1:5)	VDDP	0	BUF4	PCI bus clocks. See frequency select table on page 1.			
26	REF	VDDR	0	BUF3	Buffered outputs of on-chip reference oscillator.			
19	PCI_STOP#	-	I	PAD PU	When driven to a logic low level, this pin will synchronously stop all PCI clocks (except PCI_F) at a logic low level.			
18	CPU_STOP#	-	I	PAD PU	When driven to a logic low level, this pin will synchronously stop all CPU clocks at a logic low level.			
17	PWR_DWN#	-	_	PAD PU	This pin is active low. When asserted low, the device is in shutdown mode. VCO's, Crystal, and outputs are turned off.			
13, 21	VDD	-	Р	-	3.3 volt power supply for core logic.			
3, 12, 14, 20, 22, 28	VSS	-	Р	-	Ground pins for the device.			
9, 6	VDDP	-	Р	-	3.3 Volt power supply pins for PCI (1:5) and PCI_F clock output buffers.			
25	VDDC	-	Р	-	3.3 or 2.5 Volt power supply for CPUCLK (0:1) outputs.			
27	VDDR	-	Р		3.3 Volt power supply pins for reference clock output buffers and crystal circuit.			


Mobile Pentium® Processor Application Clock Generator with SSCG, USB and Power Management Support

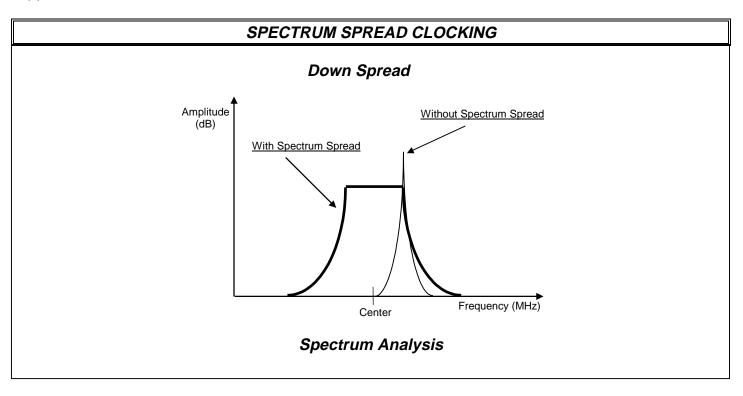
Approved Product

POWER MANAGEMENT FUNCTIONS

All PCI (excluding PCI_F) and CPU clocks can be enabled or stopped via the PCI_STOP# and CPU_STOP# input pins. All clocks are stopped in the low state. All clocks maintain a valid high period on transitions from running to stopped and on transitions from stopped to running when the chip was not powered down. On power up, the VCOs will stabilize to the correct pulse widths within 0.2 mS. The CPU and PCI clocks transition between running and stopped by waiting for one positive edge on PCI_F followed by a negative edge on the clock of interest, after which high levels of the output are either enabled or disabled.

PWR_DWN#	CPU_STOP#	PCI_STOP#	CPUCLK	PCICLK	OTHER CLKs	XTAL & VCOs
1	0	0	LOW	LOW	RUNNING	RUNNING
1	0	1	LOW	RUNNING	RUNNING	RUNNING
1	1	0	RUNNING	LOW	RUNNING	RUNNING
1	1	1	RUNNING	RUNNING	RUNNING	RUNNING
0	x (don't care)	x (don'tcare)	LOW	LOW	LOW	OFF

POWER MANAGEMENT TIMING						
		Latency				
Signal	Signal State	No. of rising edges of free running PCICLK (PCIF)				
CPU_ST0P#	0 (disabled)	1				
	1 (enabled)	1				
PCI_ST0P#	0 (disabled)	1				
	1 (enabled)	1				


NOTES:

^{1.} Clock on/off latency is defined in the number of rising edges of free running PCI CLOCK between the clock disable goes low/high to the first valid clock comes out of the device.

Mobile Pentium® Processor Application Clock Generator with SSCG, USB and Power Management Support

Approved Product

MAXIMUM RATINGS

Voltage Relative to VSS:

Voltage Relative to VDD:

Storage Temperature:

Operating Temperature:

Maximum Power Supply:

-0.3V

0.3V

-65°C to + 150°C

-40°C to +85°C

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range:

VSS<(Vin or Vout)<VDD

Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

Mobile Pentium® Processor Application Clock Generator with SSCG, USB and Power Management Support

Approved Product

ELECTRICAL CHARACTERISTICS										
Characteristic	Symbol	Min	Тур	Max	Units	Conditions				
Input Low Voltage	VIL	-	-	0.8	Vdc	-				
Input High Voltage	VIH	2.0	-	-	Vdc	-				
Input Low Current	IIL			-66	μA					
Input High Current	IIH			5	μA					
Output Low Voltage IOL = 4mA	VOL	-	-	0.4	Vdc	All Outputs (see buffer spec)				
Output High Voltage IOH = 4mA	VOH	2.4	-	-	Vdc	All Outputs Using 3.3V Power (see buffer spec)				
Tri-State leakage Current	loz	-	-	10	μA					
Dynamic Supply Current	Idd	-	-	140	mA	CPU = 66.6 MHz, PCI = 33.3 MHz				
Static Supply Current	Isdd	-	-	70	μΑ	pwr_dwn# (PIN17) = 0				
Short Circuit Current	ISC	25	-	-	mA	1 output at a time - 30 seconds				
VDD =	: VDDP=VD	DR =3.3	3V±5%.	VDDC = 2	2. 5V ±5 %	TA = -40°C to +85°C				

SWITCHING CHARACTERISTICS									
Characteristic	Symbol	Min	Тур	Max	Units	Conditions			
Output Duty Cycle	-	45	50	55	%	Measured at 1.5V			
CPU to PCI Offset	tOFF	1	3	4	ns	15 pf Load Measured at 1.5V			
Buffer out Skew All CPU and PCI Buffer Outputs	tSKEW	-	-	250	ps	15 pf Load Measured at 1.5V			
ΔPeriod Adjacent Cycles	ΔΡ	-	-	<u>+</u> 250	ps	-			
Jitter Spectrum 20 dB Bandwidth from Center	BWJ			500	KHz				

VDD = VDDP =VDDR =3.3 $V \pm 5\%$, VDDC = 2.5 $V \pm 5\%$, TA = -40 $^{\circ}$ C to +85 $^{\circ}$ C

Mobile Pentium® Processor Application Clock Generator with SSCG, USB and Power Management Support

Approved Product

BUFFER 1 CHARACTERISTICS FOR CPUCLK(0:1)									
Characteristic	Symbol	Min	Тур	Max	Units	Conditions			
Pull-Up Current Min	IOH _{min}	-27	-	-	mA	Vout = 1.0 V			
Pull-Up Current Max	IOH _{max}	-	-	-27	mA	Vout = 2.6 V			
Pull-Down Current Min	IOL_{min}	27	-	-	mA	Vout = 1.2 V			
Pull-Down Current Max	IOL _{max}	-	-	27	mA	Vout = 0.3 V			
Dynamic Output Impedance	Z _o	10	-	15	Ohms	66 and 100 MHz			
Rise Time Between 0.4 V and 2.0 V	TR	0.4	-	1.6	nS	20 pF Load			
Fall Time Between 0.4 V and 2.0 V	TF	0.5	-	1.6	nS	20 pF Load			
VDD =	VDDP= VDD	R =3.3V	/±5 %, V	DDC = 2.5	5V±5%,, T	$A = -40^{\circ}C \text{ to } +85^{\circ}C$			

BUFFER 3 CHARACTERISTICS FOR REF, 48M									
Characteristic	Symbol	Min	Тур	Max	Units	Conditions			
Pull-Up Current Min	IOH _{min}	-29	-	-	mA	Vout = 1.0 V			
Pull-Up Current Max	IOH _{max}	-	-	-23	mA	Vout = 3.135 V			
Pull-Down Current Min	IOL _{min}	29	-	-	mA	Vout = 1.95 V			
Pull-Down Current Max	IOL _{max}	-	-	27	mA	Vout = 0.4 V			
Dynamic Output Impedance	Zo	18	-	25	Ohms	66 and 100 MHz			
Rise Time Between 0.4 V and 2.4 V	TR	0.5	-	2.0	nS	20 pF Load			
Fall Time Between 0.4 V and 2.4 V	TF	0.5	-	2.0	nS	20 pF Load			

 $VDD = VDDP = VDDR = 3.3V \pm 5\%$, $VDDC = 2.5V \pm 5\%$, TA = -40°C to +85°C

Mobile Pentium[®] Processor Application Clock Generator with SSCG, USB and Power Management Support

Approved Product

BUFFER 4 CHARACTERISTICS FOR PCI_F, PCI(1:5)									
Characteristic	Symbol	Min	Тур	Max	Units	Conditions			
Pull-Up Current Min	IOH _{min}	-33	-	-	mA	Vout = 1.0 V			
Pull-Up Current Max	IOH _{max}	-	-	-33	mA	Vout = 3.135 V			
Pull-Down Current Min	IOL _{min}	30	-	-	mA	Vout = 1.95 V			
Pull-Down Current Max	IOL _{max}	-	-	38	mA	Vout = 0.4 V			
Dynamic Output Impedance	Zo	14	-	20	Ohms	66 and 100 MHz			
Rise Time Between 0.4 V and 2.4 V	TR	0.5	-	2.0	nS	30 pF Load			
Fall Time Between 0.4 V and 2.4 V	TF	0.5	-	2.0	nS	30 pF Load			

VDDP= VDDR =3.3V $\pm 5\%$, *VDDC = 2.5V* $\pm 5\%$, *TA = -40°C to +85°C*

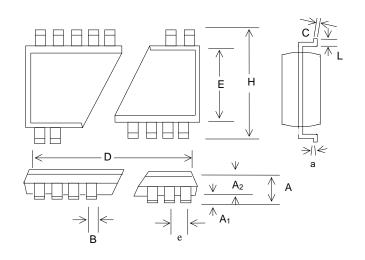
	CRYSTAL AND REFERENCE OSCILLATOR PARAMETERS									
Characteristic	Symbol	Min	Тур	Max	Units	Conditions				
Frequency	Fo	12.00	14.31818	16.00	MHz					
Tolerance	TC	-	-	+/-100	PPM	Calibration note 1				
	TS	-	-	+/- 100	PPM	Stability (Ta -10 to +60C) note 1				
	TA	-	-	5	PPM	Aging (first year @ 25C) note 1				
Mode	OM	-	-	-		Parallel Resonant				
Pin Capacitance	СР		5		pF	Capacitance of XIN and Xout pins				
DC Bias Voltage	V_{BIAS}	0.3Vdd	Vdd/2	0.7Vdd	V					
Startup time	Ts	-	-	30	μS					
Load Capacitance	CL	-	20	-	pF	note 1				
Effective Series resonant resistance	R1	-	-	40	Ohms					
Power Dissipation	DL	-	-	0.10	mW	note 1				
Shunt Capacitance	СО	-		7	pF					
X1 and X2 Load	CL		17		pF	internal crystal loading capacitors on each pin (to ground)				

For maximum accuracy, the total circuit loading capacitance should be equal to CL. This loading capacitance is the effective capacitance across the crystal pins and includes the device pin capacitance (CP) in parallel with any circuit traces, the clock generator and any onboard discrete load capacitors. Budgeting Calculations

Typical trace capacitance, (< half inch) is 4 pF, Load to the crystal is therefore 2.0 pF

Clock generator internal pin capacitance of 36 pF, Load to the crystal is therefore 18.0 pF

the total parasitic capacitance would therefore be = 20.0 pF(matching CL)


Note 1: It is recommended but not mandatory that a crystal meets these specifications.

Mobile Pentium® Processor Application Clock Generator with SSCG, USB and Power Management Support

Approved Product

PACKAGE DRAWING AND DIMENSIONS

28 PII	28 PIN SSOP OUTLINE DIMENSIONS										
		INCHES		MILLIMETERS							
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX					
Α	0.068	0.073	0.078	1.73	1.86	1.99					
A ₁	0.002	0.005	0.008	0.05	0.13	0.21					
A2	0.066	0.068	0.070	1.68	1.73	1.78					
В	0.010	0.012	0.015	0.25	0.30	0.38					
С	0.005	0.006	0.009	0.13	0.15	0.22					
D	0.397	0.402	0.407	10.07	10.20	10.33					
Е	0.205	0.209	0.212	5.20	5.30	5.38					
е	0.	0256 BSC			0.65 BS	C					
Н	0.301`	0.307	0.311	7.65	7.80	7.90					
а	0°	4°	8°	0°	4°	8°					
L	0.022	0.030	0.037	0.55	0.75	0.95					

ORDERING INFORMATION						
Part Number	Package Type	Production Flow				
IMISG559AYB	28 PIN SSOP	Commercial, -40°C to +85°C				

The ordering part number is formed by a combination of device number, device revision, package style, and Note: screening as shown below.

Marking: Example: IMI

SG559AYB

Date Code, Lot #

IMISG559AYB

B = Commercial, -40°C to + 85°C <u>Package</u> Y = SSOPRevision IMI Device Number