

MOS INTEGRATED CIRCUIT $\mu PD160061A$

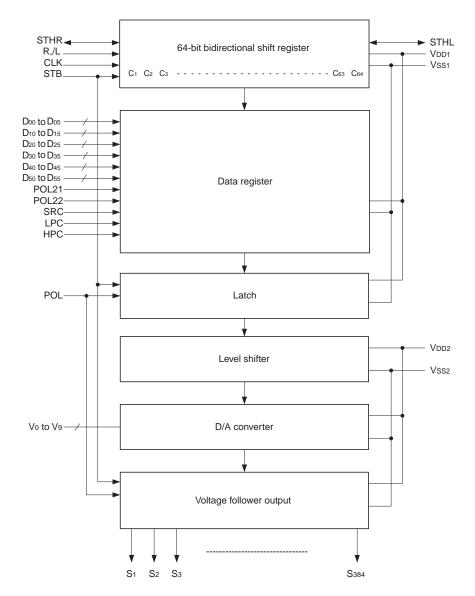
384-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

DESCRIPTION

The μ PD160061A is a source driver for TFT-LCDs capable of dealing with displays with 64-gray scales. Data input is based on digital input configured as 6 bits by 6 dots (2 pixels), which can realize a full-color display of 260,000 colors by output of 64 values γ -corrected by an internal D/A converter and 5-by-2 external power modules. Because the output dynamic range is as large as Vss₂ + 0.2 V to V_{DD2} – 0.2 V, level inversion operation of the LCD's common electrode is rendered unnecessary. Also, to be able to deal with dot-line inversion, n-line inversion and column line inversion when mounted on a single side, this source driver is equipped with a built-in 6-bit D/A converter circuit whose odd output pins and even output pins respectively output gray scale voltages of differing polarity. Assuring a maximum clock frequency of 65 MHz when driving at 2.7 V, this driver is applicable to XGA-standard TFT-LCD panels and SXGA TFT-LCD panels.

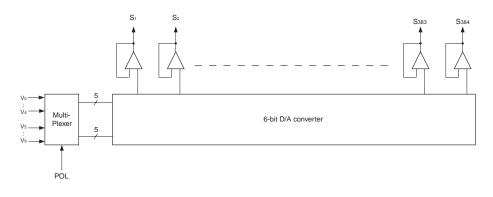
FEATURES

- CMOS level input (2.3 to 3.6 V)
- 384 outputs
- Input of 6 bits (gray-scale data) by 6 dots
- Capable of outputting 64 values by means of 5-by-2 external power modules (10 units) and a D/A converter (R-DAC)
- Logic power supply voltage (VDD1): 2.3 to 3.6 V
- Driver power supply voltage (VDD2): 7.5 to 9.5 V
- High-speed data transfer: fcLK = 65 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.7 V) 40 MHz MAX. (internal data transfer speed when operating at VDD1 = 2.3 V)
- Output dynamic range: Vss2 + 0.2 V to VDD2 0.2 V
- Apply for dot-line inversion, n-line inversion and column line inversion
- Output voltage polarity inversion function (POL)
- Input data inversion function (capable of controlling by each input port) (POL21, POL22)
- Apply for heavy load, light load
- Semi slim-chip shaped

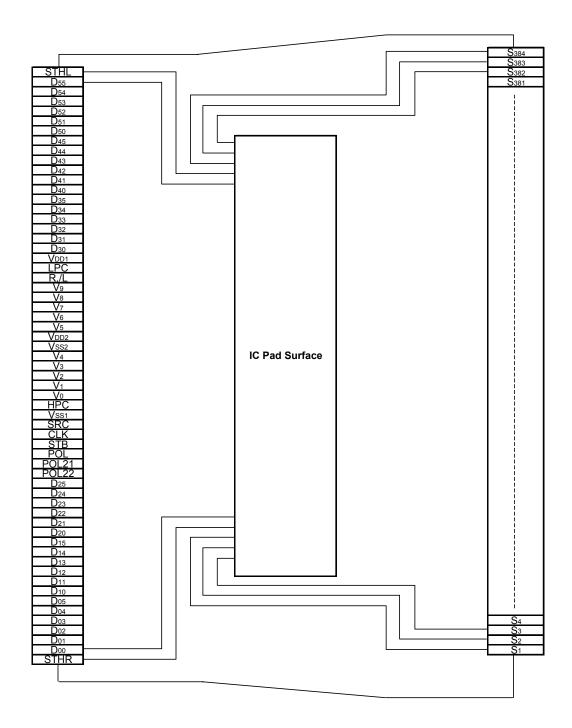

ORDERING INFORMATION

Part Number	Package
μPD160061AN-xxx	TCP (TAB package)
μPD160061ANL-xxx	COF (COF package)

Remark The TCP's external shape is customized. To order the required shape, so please contact one of our sales representatives.


The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

1. BLOCK DIAGRAM


Remark /xxx indicates active low signal.

2. RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER

3. PIN CONFIGURATION (Copper foil surface: Face-up)

(µPD160061AN-xxx: TCP (TAB package) / µPD160061ANL-xxx: COF (COF package))

Remark This figure does not specify the TCP or COF package.

(1/2)

4. PIN FUNCTIONS

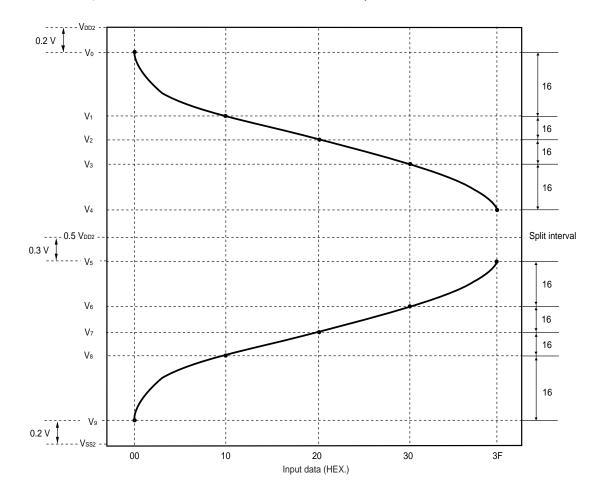
Pin Symbol	Pin Name	I/O	Description
S1 to S384	Driver output	Output	The D/A converted 64-gray-scale analog voltage is output.
Doo to Do5	Display data input	Input	The display data is input with a width of 36 bits, viz., the gray scale data (6 bits) by 6 dots (2
D10 to D15			pixels).
D20 to D25			Dx0: LSB, Dx5: MSB
D30 to D35			
D40 to D45			
D50 to D55			
R,/L	Shift direction control	Input	These refer to the start pulse I/O pins when driver ICs are connected in cascade.
			Fetching of display data starts when H is read at the rising edge of CLK.
			R,/L = H (right shift): STHR input, S1→S384, STHL output
			R,/L = L (left shift): STHL input, S₃₃→S₁, STHR output
STHR	Right shift start pulse	I/O	These refer to the start pulse I/O pins when driver ICs are connected in cascade.
	input/output		Fetching of display data starts when H is read at the rising edge of CLK.
			When right shift: STHR input, STHL output
STHL	Left shift start pulse		When left shift: STHL input, STHR output
	input/output		A high level should be input as the pulse of one cycle of the clock signal.
			If the start pulse input is more than 2CLK, the first 1CLK of the high-level input is valid.
CLK	Shift clock input	Input	Refers to the shift register's shift clock input. The display data is incorporated into the data
			register at the rising edge. At the rising edge of the 64th after the start pulse input, the start
			pulse output reaches the high level, thus becoming the start pulse of the next-level driver. If
			66th clock pulses are input after input of the start pulse, input of display data is halted
			automatically. The contents of the shift register are cleared at the STB's rising edge.
STB	Latch input	Input	The contents of the data register are transferred to the latch circuit at the rising edge. And, at
			the falling edge of the STB, the gray scale voltage is supplied to the driver. When STB = H
			period, driver output level is Hi-Z (High impedance).
			It is necessary to ensure input of one pulse per horizontal period.
POL	Polarity input	Input	POL = L: The S_{2n-1} output uses V_0 to V_4 as the reference supply. The S_{2n} output uses V_5 to
			V ₉ as the reference supply.
			POL = H: The S_{2n-1} output uses V_5 to V_9 as the reference supply. The S_{2n} output uses V_0 to
			V ₄ as the reference supply.
			S_{2n-1} indicates the odd output, and S_{2n} indicates the even output. Input of the POL signal is
			allowed the setup time (tPOL-STB) with respect to STB's rising edge.
POL21,	Data inversion input	Input	Data inversion can invert when display data is loaded.
POL22			POL21: Doo to Do5, D10 to D15, D20 to D25, data inversion can invert display data
			POL22: D ₃₀ to D ₃₅ , D ₄₀ to D ₄₅ , D ₅₀ to D ₅₅ , data inversion can invert display data
			POL21, POL22 = H: Data inversion loads display data after inverting it.
			POL21, POL22 = L: Data inversion does not invert input data.
LPC,	Bias current control	Input	Please refer to panel loads and driver power supply voltage (V_{DD2}), when set up these pins.
HPC	input		Refer to 10. BIAS CURRENT CONTROL BY LPC AND HPC . LPC pin is pulled down to the
			V_{SS1} inside the IC, HPC pin is pulled up to the V_{DD1} inside the IC.

(2/2)

Pin Symbol	Pin Name	I/O	Description
SRC	High driving time	Input	This pin is set up to high drive time of the output amplifier. Please decide the pin setting refer
	control		to panel loads and one horizontal period. SRC pin is pulled up to the V_{DD1} inside the IC.
			SRC = H or open: High drive time 64 CLK (Normally period mode)
			SRC = L: High drive time 128 CLK (Long time mode)
			Refer to 9. SRC AND HIGH DRIVE TIME.
Vo to V9	γ -corrected power	-	Input the γ -corrected power supplies from outside by using operational amplifier.
	supplies		Make sure to maintain the following relationships. During the gray scale voltage output, be
			sure to keep the gray scale level power supply at a constant level.
			$V_{DD2} - 0.2 \ V \ge V_0 > V_1 > V_2 > V_3 > V_4 \ge 0.5 \ V_{DD2}$
			$V_{DD2} - 0.3 \ V \ge \ > V_5 > V_6 > V_7 > V_8 > V_9 \ \ge V_{SS2} + 0.2 \ V$
VDD1	Logic power supply	_	2.3 to 3.6 V
Vdd2	Driver power supply	_	7.5 to 9.5 V
Vss1	Logic ground	-	Grounding
Vss2	Driver ground	-	Grounding

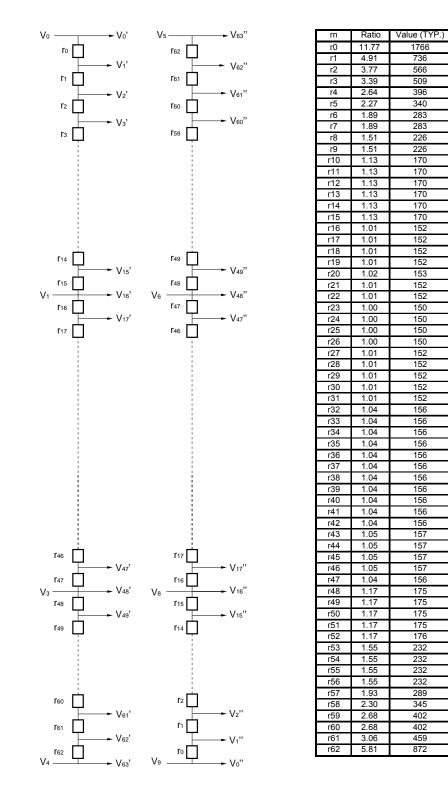
- Cautions 1. The power start sequence must be VDD1, logic input, and VDD2 & V0 to V9 in that order. Reverse this sequence to shut down.
 - 2. To stabilize the supply voltage, please be sure to insert a 0.1 μ F bypass capacitor between V_{DD1} to V_{SS1} and V_{DD2} to V_{SS2}. Furthermore, for increased precision of the D/A converter, insertion of a bypass capacitor of about 0.01 μ F is also recommended between the γ -corrected power supply terminals (V₀, V₁, V₂,...., V₉) and V_{SS}.

5. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE


The μ PD160061A incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode voltage. The D/A converter consists of ladder resistors and switches.

The ladder resistors (r0 to r62) are designed so that the ratio of LCD panel γ -compensated voltages to V₀' to V₆₃' and V₀'' to V₆₃'' is almost equivalent, resistor ratio is shown in Figure 5–2. For the 2 sets of five γ -compensated power supplies, V₀ to V₄ and V₅ to V₉, respectively, input gray scale voltages of the same polarity with respect to the common voltage. When fine-gray scale voltage precision is not necessary, there is no need to connect a voltage follower circuit to the γ -compensated power supplies V₁ to V₃ and V₆ to V₈.

Figure 5–1 shows the relationship between the driving voltages such as liquid-crystal driving voltages V_{DD2} and V_{SS2} , common electrode potential V_{COM} , and γ -corrected voltages V_0 to V_9 and the input data. Be sure to maintain the voltage relationships of below.


$$\begin{split} V_{DD2} &- 0.2 \ V \geq V_0 > V_1 > V_2 > V_3 > V_4 \geq 0.5 \ V_{DD2} \\ 0.5 \ V_{DD2} &- 0.3 \ V \geq V_5 > V_6 > V_7 > V_8 > V_9 > V_{SS2} + 0.2 \ V_8 > V_{SS2} + 0.2 \ V_{SS2$$

Figures 5–2 indicates γ -corrected voltages and ladder resistors ratio. Figures 5–3 indicates the relationship between the input data and output voltage.

Figure 5–1. Relationship between Input Data and γ - corrected Power Supplies

Data Sheet S16041EJ2V0DS

Figure 5–2. γ - corrected Voltages and Ladder Resistors Ratio

Cautions1. There is no connection between V₄ and V₅ terminal in the IC.

2. The resistance ratio is a relative ratio in the case of setting the resistance minimum value to 1.

Figure 5–3. Relationship between Input Data and Output Voltage (POL21, POL22 = L) Output Voltage 1: $V_{DD2} - 0.2 V \ge V_0 > V_1 > V_2 > V_3 > V_4 \ge 0.5 V_{DD2}$

Output Voltage 2: 0.5 VDD2 – 0.3 V \ge V5 > V6 > V7 > V8 > V9 \ge VSS2 + 0.2 V

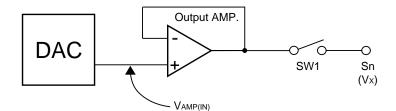
Input		Output Vo	oltage 1			Output Vo	oltage 2	
00H	Vo'	V ₀	4505 /	0054	Vo"	V9	4700	0054
01H	V1' V2'	$V_1+(V_0-V_1)\times$	4585 /	6351	V1"	$V_9+(V_8-V_9)\times$	1766 /	6351
02H	V2' V3'	V1+(V0-V1)× V1+(V0-V1)×	3849 /	6351	V2" V3"	$V_9+(V_8-V_9)\times$	2502 /	6351
03H		. ,	3283 /	6351		V9+(V8-V9)×	3068 /	6351
04H	V4'	V1+(V0-V1)×	2774 /	6351	V4"	V9+(V8-V9)×	3577 /	6351
05H	V5'	V1+(V0-V1)×	2378 /	6351	V5"	V9+(V8-V9)×	3973 /	6351
06H	V6'	V1+(V0-V1)×	2038 /	6351	V6"	V9+(V8-V9)×	4313 /	6351
07H	V7'	V1+(V0-V1)×	1755 /	6351	V7"	V9+(V8-V9)×	4596 /	6351
08H	V8'	V1+(V0-V1)×	1472 /	6351	V8"	V9+(V8-V9)×	4879 /	6351
09H	V9'	V1+(V0-V1)×	1246 /	6351	V9"	V9+(V8-V9)×	5105 /	6351
0AH	V10'	V1+(V0-V1)×	1020 /	6351	V10"	V9+(V8-V9)×	5331 /	6351
0BH	V11'	V1+(V0-V1)×	850 /	6351	V11"	V9+(V8-V9)×	5501 /	6351
0CH	V12'	V1+(V0-V1)×	680 /	6351	V12"	V9+(V8-V9)×	5671 /	6351
0DH	V13'	V1+(V0-V1)×	510 /	6351	V13"	V9+(V8-V9)×	5841 /	6351
0EH	V14'	V1+(V0-V1)×	340 /	6351	V14"	V9+(V8-V9)×	6011 /	6351
0FH	V15'	V1+(V0-V1)×	170 /	6351	V15"	V9+(V8-V9)×	6181 /	6351
10H	V16'	V1			V16"	V8		
11H	V17'	V2+(V1-V2)×	2273 /	2425	V17"	V8+(V7-V8)×	152 /	2425
12H	V18'	V2+(V1-V2)×	2121 /	2425	V18"	V8+(V7-V8)×	304 /	2425
13H	V19'	V2+(V1-V2)×	1969 /	2425	V19"	V8+(V7-V8)×	456 /	2425
13H	V20'	V2+(V1-V2)×	1817 /	2425	V20"	V8+(V7-V8)×	608 /	2425
14H	V20 V21'	V2+(V1-V2)×	1664 /	2425	V20 V21"	V8+(V7-V8)×	761 /	2425
16H	V21 V22'	V2+(V1-V2)×	1512 /	2425	V21 V22"	V8+(V7-V8)×	913 /	2425
17H	V22 V23'	$V_{2+}(V_{1-}V_{2})$ ×	1360 /	2425	V22 V23"	V8+(V7-V8)×	1065 /	2425
18H	V23 V24'	V2+(V1-V2)×	1210 /	2425	V23 V24"	V8+(V7-V8)×	1215 /	2425
19H	V24 V25'	V2+(V1-V2)×		2425	V 24 V25"	V8+(V7-V8)×	1365 /	2425
19H	V 25 V26'	V2+(V1-V2)×	1060 / 910 /	2425	V 25 V26"	V8+(V7-V8)×	1505 /	2425
1BH	V 20 V27'	V2+(V1-V2)×	760 /	2425	V 20 V27"	V8+(V7-V8)×	1665 /	2425
	V27 V28'	V2+(V1-V2)×			V27 V28"	V8+(V7-V8)×		
1CH	V 28' V29'	. ,	608 /	2425 2425	V 28" V29"	,	1817 /	2425
1DH	V 29' V 30'	$V_2+(V_1-V_2)\times$	456 /		V29" V30"	$V_8+(V_7-V_8)\times$	1969 /	2425
1EH		$V_2+(V_1-V_2)\times$	304 /	2425		V8+(V7-V8)×	2121 /	2425
1FH	V31'	V2+(V1-V2)×	152 /	2425	V31"	V8+(V7-V8)×	2273 /	2425
20H	V32'	V2	0044 /	0500	V32"	V7	450 /	0500
21H	V33' V34'	$V_3+(V_2-V_3)\times$	2344 /	2500	V33"	V7+(V6-V7)×	156 /	2500
22H		V3+(V2-V3)×	2188 /	2500	V34"	V7+(V6-V7)×	312 /	2500
23H	V35' V36'	$V_3+(V_2-V_3)\times$	2032 /	2500	V35" V36"	V7+(V6-V7)×	468 /	2500
24H	V 36' V37'	$V_3+(V_2-V_3)\times$	1876 /	2500	V 36" V37"	V7+(V6-V7)×	624 /	2500
25H		V3+(V2-V3)×	1720 /	2500		V7+(V6-V7)×	780 /	2500
26H	V38'	V3+(V2-V3)×	1564 /	2500	V38"	V7+(V6-V7)×	936 /	2500
27H	V39'	V3+(V2-V3)×	1408 /	2500	V39"	V7+(V6-V7)×	1092 /	2500
28H	V40'	V3+(V2-V3)×	1252 /	2500	V40"	V7+(V6-V7)×	1248 /	2500
29H	V41'	V3+(V2-V3)×	1096 /	2500	V41"	V7+(V6-V7)×	1404 /	2500
2AH	V42'	V3+(V2-V3)×	940 /	2500	V42"	V7+(V6-V7)×	1560 /	2500
2BH	V43'	V3+(V2-V3)×	784 /	2500	V43"	V7+(V6-V7)×	1716 /	2500
2CH	V44'	V3+(V2-V3)×	627 /	2500	V44"	V7+(V6-V7)×	1873 /	2500
2DH	V45'	V ₃ +(V ₂ -V ₃)×	470 /	2500	V45"	V7+(V6-V7)×	2030 /	2500
2EH	V46'	V3+(V2-V3)×	313 /	2500	V46"	V7+(V6-V7)×	2187 /	2500
2FH	V47'	V3+(V2-V3)×	156 /	2500	V47"	V7+(V6-V7)×	2344 /	2500
30H	V48'	V3			V48"	V6		
31H	V49'	V4+(V3-V4)×	4398 /	4573		V6+(V5-V6)×	175 /	4573
32H	V50'	V4+(V3-V4)×	4223 /	4573	V50"	V6+(V5-V6)×	350 /	4573
33H	V51'	V4+(V3-V4)×	4048 /	4573	V51"	V6+(V5-V6)×	525 /	4573
34H	V52'	V4+(V3-V4)×	3873 /	4573	V52"	V6+(V5-V6)×	700 /	4573
35H	V53'	V4+(V3-V4)×	3697 /	4573	V53"	V6+(V5-V6)×	876 /	4573
36H	V54'	V4+(V3-V4)×	3465 /	4573	V54"	V6+(V5-V6)×	1108 /	4573
37H	V55'	V4+(V3-V4)×	3233 /	4573	V55"	V6+(V5-V6)×	1340 /	4573
38H	V56'	V4+(V3-V4)×	3001 /	4573	V56"	V6+(V5-V6)×	1572 /	4573
39H	V57'	V4+(V3-V4)×	2769 /	4573	V57"	V6+(V5-V6)×	1804 /	4573
3AH	V58'	V4+(V3-V4)×	2480 /	4573	V58"	V6+(V5-V6)×	2093 /	4573
3BH	V59'	V4+(V3-V4)×	2135 /	4573	V59"	V6+(V5-V6)×	2438 /	4573
3CH	V60'	V4+(V3-V4)×	1733 /	4573	V60"	V6+(V5-V6)×	2840 /	4573
3DH	V61'	V4+(V3-V4)×	1331 /	4573	V61"	V6+(V5-V6)×	3242 /	4573
3EH	V62'	V4+(V3-V4)×	872 /	4573	V62"	V6+(V5-V6)×	3701 /	4573
3FH	V63'	V4		-	V63"	V 5		-
B					-			

6. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format : 6 bits x 2 RGBs (6 dots) Input width : 36 bits (2-pixel data)

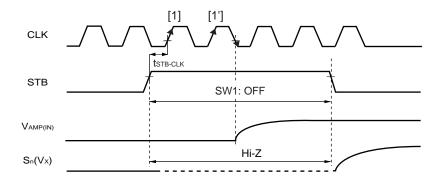
(1) $R_{J}/L = H$ (Right shift)

Output	S1	S ₂	S₃	S4	 S527	S ₃₈₄
Data	Doo to Dos	D10 to D15	D20 to D25	D30 to D35	 D40 to D45	D50 to D55


(2) R,/L = L (Left shift)

Output	S1	S2	S3	S4	 S527	S384
Data	Doo to Dos	D10 to D15	D20 to D25	D30 to D35	 D40 to D45	D50 to D55

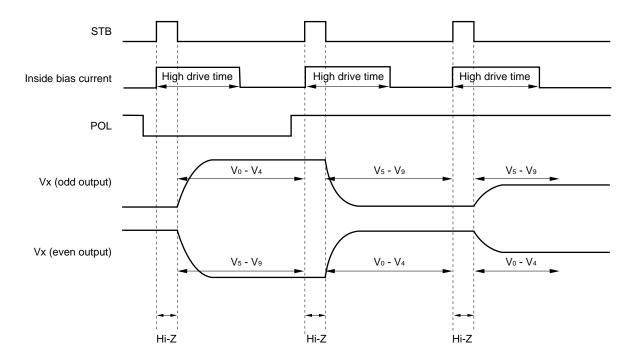
POL	Note S _{2n-1}	Note S2n
L	V_0 to V_4	V5 to V9
Н	V5 to V9	V_0 to V_4


Note S2n-1 (Odd output), S2n (Even output)

7. RELATIONSHIP BETWEEN STB CLK AND OUTPUT WAVEFORM

Figure 7–1. Input Circuit Block Diagram

Figure 7–2. Output Circuit Timing Waveform

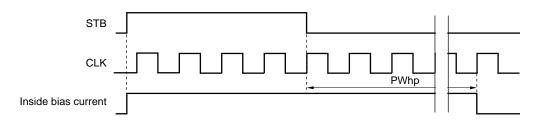


STB = H is loaded with the rising edge of CLK[1]. However, when not satisfying the specification of $f_{STB-CLK}$, STB = H is loaded with the rising edge of the next CLK[1']. Latch operation of display data is completed with the falling edge of the next CLK which loaded STB = H. Therefore, in order to complete latch operation of display data, it is necessary to input at least 2 CLK in STB = H period. Besides, after loading STB=H to the timing of [1], it is necessary to continue inputting CLK.

8. RELATIONSHIP BETWEEN STB, POL AND OUTPUT WAVEFORM

When the STB is high level, all outputs became Hi-Z and the gray-scale voltage is output to the LCD in synchronization with the falling edge of STB.

Therefore, high drive time of the output amplifier as below is determined by the CLK number of the required SRC pin setting. Be sure to avoid using such as extremely changing the CLK frequency (ex. CLK stop).

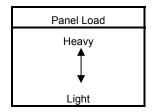


9. SRC AND HIGH DRIVE TIME

The μ PD160061A can control high drive time of the output amplifier by SRC pin logic (refer to below figure).

SRC = H or open (high drive time: standard mode): High drive time (PWhp) of the output amplifier is in 64 CLK period from falling edge of the STB.

SRC = L (high drive time: long-term mode): High drive time (PWhp) of the output amplifier is in 128 CLK period from falling edge of the STB.



We recommend a thorough simulation of the output amplifier in advance when set the SRC pin.

10. BIAS CURRENT CONTROL BY LPC AND HPC

The µPD160061A can control the bias current of the output amplifier in high drive period and low drive period.

Bias Current	LPC	HPC
High	Н	L
Middle	H or open	L
Normal	L or open	H or open
Low	Н	H or open

We recommend a thorough simulation of the output amplifier in advance, when set the LPC and HPC pins. Refer to the table below for the example of the combination of setting level and panel load, with driver part supply voltage.

	Example of Condition	LPC	HPC	SRC
Example 1	Load: R∟ = 5 kΩ, C∟ = 75 pF	L or open	L	H or open
	Driver part supply voltage: VDD2 = 7.5 V	Bias current mode:		
Example 2	Load: R∟ = 5 kΩ, C∟ = 75 pF	L or open	H or open	H or open
	Driver part supply voltage: V _{DD2} = 9.0 V	Bias current mode: Normal		
Example 3	Load: R∟ = 40 kΩ, C∟ = 80 pF	н	L	L
	Driver part supply voltage: VDD2 = 9.0 V	Bias current mode: High		

11. ELECTRICAL SPECIFICATIONS

Parameter	Symbol	Rating	Unit
Logic Part Supply Voltage	VDD1	-0.5 to +4.0	V
Driver Part Supply Voltage	VDD2	-0.5 to +10.0	V
Logic Part Input Voltage	VI1	-0.5 to V _{DD1} + 0.5	V
Driver Part Input Voltage	VI2	-0.5 to V _{DD2} + 0.5	V
Logic Part Output Voltage	V ₀₁	-0.5 to V _{DD1} + 0.5	V
Driver Part Output Voltage	V ₀₂	-0.5 to V _{DD2} + 0.5	V
Operating Ambient Temperature	TA	–10 to +75	°C
Storage Temperature	Tstg	–55 to +125	°C

Absolute Maximum Ratings (T_A = 25°C, V_{SS1} = V_{SS2} = 0 V)

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

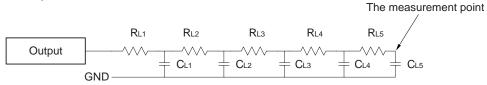
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic Part Supply Voltage	V _{DD1}		2.3		3.6	V
Driver Part Supply Voltage	V _{DD2}		7.5	8.5	9.5	V
High-Level Input Voltage	VIH		0.7 VDD1		VDD1	V
Low-Level Input Voltage	VIL		0		0.3 Vdd1	V
γ -Corrected Voltage	Vo to V4	$7.5~V \leq V_{\text{DD1}} \leq 9.5~V$	0.5 VDD2		V _{DD2} – 0.2	V
	V5 to V9	$7.5 \text{ V} \le \text{V}_{\text{DD1}} < 8.5 \text{ V}$	0.2		0.5 Vdd2 - 0.3	V
		$8.5 \text{ V} \leq V_{\text{DD1}} \leq 9.5 \text{ V}$	0.2		0.5 Vdd2	V
Driver Part Output Voltage	Vo		0.2		VDD2 - 0.2	V
Clock Frequency	fclк	$2.3 \text{ V} \le \text{V}_{\text{DD1}} < 2.7 \text{ V}$			40	MHz
-		$2.7 \text{ V} \leq V_{\text{DD1}} \leq 3.6 \text{ V}$			65	MHz

Recommended Operating Range (T_A = -10 to +75°C, Vss1 = Vss2 = 0 V)

	(/	
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input Leak Current	l⊫	Except LPC, HPC, SRC			±1.0	μA
		LPC, HPC, SRC			±150	μA
High-Level Output Voltage	Vон	STHR (STHL), Іон = 0 mA	Vdd1 - 0.1			V
Low-Level Output Voltage	Vol	STHR (STHL), lo∟ = 0 mA			0.1	V
γ -Corrected Resistance	Rγ	V_0 to $V_4 = V_5$ to $V_9 = 4.0$ V, $V_{DD2} = 8.5$ V	7.9	15.8	23.7	kΩ
Driver Output Current	Іvон	$V_{DD2} = 8.0 V$, $V_X = 7.0 V$, $V_{OUT} = 6.5 V$ Note1			- 20	μA
	IVOL	$V_{DD2} = 8.0 V$, $V_X = 1.0 V$, $V_{OUT} = 1.5 V$ Note1	20			μA
Output Voltage Deviation	ΔVo	T _A = 25°C,		±10	±20	mV
Output Swing Difference Deviation	ΔV_{P-P}	V _{DD1} = 3.3 V, V _{DD2} = 8.5 V, V _{OUT} = 2.0 V, 4.25 V, 6.5 V		±3	±15	mV
Logic Part Dynamic Current Consumption ^{Note2, 3, 4}	IDD1	V _{DD1}		4	12	mA
Driver Part Dynamic Current Consumption ^{Note2, 4}	Idd22	V _{DD2} , with no load		3.5	8	mA

* Elec	ctrical Characteristics	(T _A = −10 to +75°C,	V _{DD1} = 2.3 to 3.6 V, \	V _{DD2} = 7.5 to 9.5 V, V	$V_{SS1} = V_{SS2} = 0 V$
--------	-------------------------	---------------------------------	------------------------------------	------------------------------------	---------------------------

Notes1. Vx refers to the output voltage of analog output pins S1 to S384. Vout refers to the voltage applied to analog output pins S1 to S384.

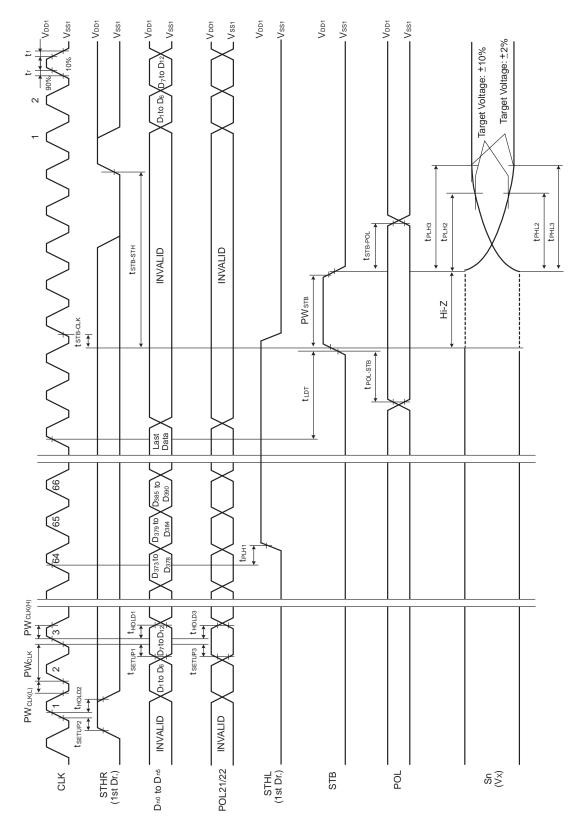

- **2.** Specified at $f_{STB} = 65 \text{ kHz}$ and $f_{CLK} = 54 \text{ MHz}$.
- **3.** The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
- **4.** Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (8 units).

Switching Characteristics (T_A = -10 to +75°C, V_{DD1} = 2.3 to 3.6 V, V_{DD2} = 7.5 to 9.5 V, V_{SS1} = V_{SS2} = 0 V)

Parameter Symbol		Condition	MIN.	TYP.	MAX.	Unit
Start Pulse Delay Time	t _{PLH1}	C_L = 15 pF, 2.3 V $\leq V_{\text{DD1}} < 2.7$ V			20	ns
		C_{L} = 10 pF, 2.7 V \leq V_{\text{DD1}} \leq 3.6 V			10.5	ns
	t _{PLH1}	C_{L} = 10 pF, 2.3 V \leq V_{\text{DD1}} $<$ 2.7 V			20	ns
		C_{L} = 10 pF, 2.7 V \leq V_{\text{DD1}} \leq 3.6 V			10.5	ns
Driver Output Delay Time	tPLH2	C∟ = 75 pF, R∟ = 5 kΩ,			5	μs
	tрынз	LPC = L or open,			8	μs
	tPHL2	HPC = H or open,			5	μs
	t _{PHL3}	SRC = H or open			8	μs
Input Capacitance	CI1	Logic input of exclude STHR (STHL),			10	pF
		T _A = 25°C				
	CI2	STHR (STHL), T _A = 25°C			5	рF

<Measurement condition>

$$R_{Ln} = 1 k\Omega$$
, $C_{Ln} = 15 pF$


Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWclk	$2.3~V \leq V_{\text{DD1}} < 2.7~V$	25			ns
		$2.7~V \leq V_{\text{DD1}} \leq 3.6~V$	15			ns
Clock Pulse High Period	PWCLK(H)	$2.3~V \leq V_{\text{DD1}} < 2.7~V$	6			ns
		$2.7~V \leq V_{\text{DD1}} \leq 3.6~V$	4			ns
Clock Pulse Low Period		$2.3~V \leq V_{\text{DD1}} < 2.7~V$	6			ns
		$2.7~V \leq V_{\text{DD1}} \leq 3.6~V$	4			ns
Data Setup Time	tSETUP1		4			ns
Data Hold Time	thold1		0			ns
Start Pulse Setup Time	tsetup2		4			ns
Start Pulse Hold Time	thold2		0			ns
POL21, POL22 Setup Time	tsetup3		4			ns
POL21, POL22 Hold Time	thold3		0			ns
STB Pulse Width	PWstb		2			CLK
Last Data Timing	t ldt		2			CLK
STB-CLK Time	tstb -clk	STB $\uparrow \rightarrow$ CLK \uparrow	9			ns
Time Between STB and Start Pulse	tsтв-sтн	$STB \uparrow \rightarrow STHR(STHL) \uparrow$	2			CLK
POL-STB Time	tpol-stb	POL \uparrow or $\downarrow \rightarrow$ STB \uparrow	-5			ns
STB-POL Time	tstb-pol	STB $\downarrow \rightarrow$ POL \downarrow or \uparrow	6			ns

Timing Requirements (T_A = -10 to $+75^{\circ}$ C, V_{DD1} = 2.3 to 3.6 V, V_{SS1} = 0 V, t_r = t_f = 5.0 ns)

Remark Unless otherwise specified, the input level is defined to be $V_{IH} = 0.7 V_{DD1}$, $V_{IL} = 0.3 V_{DD1}$.

SWITCHING CHARACTERISTICS WAVEFORM (R,/L= H)

Unless otherwise specified, the input level is defined to be VIH = 0.7 VDD1, VIL = 0.3 VDD1.

12. RECOMMENDED MOUNTING CONDITIONS

The following conditions must be met for mounting conditions of the μ PD160061A.

For more details, refer to the **Semiconductor Device Mount Manual**

(http://www.necel.com/pkg/en/mount/index.html).

Please consult with our sales offices in case other mounting process is used, or in case the mounting is done under different conditions.

μPD160061AN - XXX: TCP (TAB package)

Mounting Condition	Mounting Method	Condition
Thermocompression Soldering		Heating tool 300 to 350°C, heating for 2 to 3 seconds, pressure 100 g (per solder)
	ACF (Adhesive Conductive Film)	Temporary bonding 70 to 100°C, pressure 3 to 8 kg/cm ² , time 3 to 5 seconds. Real bonding 165 to 180°C, pressure 25 to 45 kg/cm ² , time 30 to 40 seconds. (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo Bakelite, Ltd.)

Caution To find out the detailed conditions for mounting the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more mounting methods at a time.

NOTES FOR CMOS DEVICES -

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference Documents

NEC Semiconductor Device Reliability/Quality Control System (C10983E) Quality Grades On NEC Semiconductor Devices (C11531E)

- The information in this document is current as of July, 2003. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.
- NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of a customer's equipment shall be done under the full responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure features.
- NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and "Specific".

The "Specific" quality grade applies only to NEC Electronics products developed based on a customerdesignated "quality assurance program" for a specific application. The recommended applications of an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to determine NEC Electronics' willingness to support a given application.

(Note)

- (1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its majority-owned subsidiaries.
- (2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as defined above).