International TOR Rectifier

ADVANCED ANALOG RADIATION TOLERANT DC/DC CONVERTERS

Description

The AMR28XXS series of DC/DC converter modules has been specifically designed for operation in moderate radiation environments supplementing the higher radiation performance available in the Advanced Analog ART2815T converter series. Environments presented to space vehicles operating in low earth orbits, launch boosters, orbiting space stations and similar applications requiring a low power, high performance converter with moderate radiation hardness performance will be optimally served by the AMR28XXS Series.

The physical configuration of the AMR28XXS series permits mounting directly to a heat conduction surface without the necessity of signal leads penetrating the heat sink surface. This package configuration permits greater independence in mounting and more secure mechanical attachment than traditional radially leaded packages. Advanced Analog's rugged ceramic seal pins are used exclusively in the package thereby assuring long term hermeticity.

The AMR28XXS has been designed for high density using chip and wire hybrid technology that complies with the class H requirements of MIL-PRF-38534. Finished product are fabricated in a facility fully qualified to MIL-PRF-38534. The standard processing adopted for the AMR2805S meets the requirements of MIL-PRF-38534 for class H but with enhanced screening steps and includes element evaluation. Applicable generic lot qualification test data including radiation performance can be made available on request. Consult Advanced Analog for special requirements.

AMR28XXS SERIES 28V Input, Single Output

Features

- 30 Watts Output Power
- Available in 3.3, 5, 12 and 15 Volt Outputs
- 18 40 VDC Input Range (28 VDC Nominal)
- Total Ionizing Dose > 25KRads (Si)
- No SEE to LET > 60 MeV-cm²/mg
- -55°C to +125°C Operating Range
- Indefinite Short Circuit Protection
- External Synchronization
- Shutdown from External Signal
- Flexible Mounting
- Fully Isolated Input to Output and to Case
- Complimentary EMI Filter Available
- Electrical Performance Similar to ATR28XXS Series

International

TOR Rectifier

Specifications

Absolute Maximum Ratings

Input Voltage Range -0.5V to +50VDC (Continuous), 80V (100ms)

Soldering Temperature 300°C for 10 seconds Storage Case Temperature 65°C to +135°C

Recommended Operating Conditions

Input Voltage Range +16V to +40VDC

Output Power Less than or equal to 30W

Operating Case Temperature -55°C to +125°C

$\textbf{Static Characteristics} \quad \text{-55}^{\circ}\text{C} \leq \text{T}_{CASE} \leq \text{+125}^{\circ}\text{C}, \ V_{IN} = 28 \ V_{DC} \ \pm 5\%, \ C_{L} = 0, \ \text{unless otherwise specified}.$

Group A	Toot				
Subgroups		Min	Nom	Max	Unit
	Conditions				
		16	28	40	V
	lout=0				
1		3.25	3.30	3.35	V
1		4.95	5.00	5.05	V
1		11.88	12.00	12.12	V
1		14.85	15.00	15.15	V
2, 3		3.20		3.40	V
2, 3		4.90		5.10	V
2, 3		11.70		12.30	V
2, 3		14.60		15.40	V
	Vin = 18, 28, 40 Volts				
1, 2, 3	15, 25, 15 15			7500	mA
				6000	mA
				2500	mA
1, 2, 3				2000	mA
	4000/ 1 1				
1 0 0	100% load			0.5	147
					W
1, 2, 3				30	W
	Vin = 18, 28, 40 Volts				
1, 2, 3	BW = 20 Hz to 2 MHz			60	mV_PP
1, 2, 3				60	mV_PP
1, 2, 3				60	mV_PP
1, 2, 3				75	mV_{PP}
	Vip = 18, 28, 40 Volts				
1.2.3			+10	+30	mV
	100t = 0, 50 /o, and 100 /o 10au		_		mV
					mV
					mV
			±40	±/5	
			±10	±50	mV
			±10	±50	mV
			±50	±120	mV
1, 2, 3			±50	±150	mV
	1 1 1 1 2, 3 2, 3 2, 3 2, 3 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3	Subgroups Conditions	Subgroups Conditions Min 1 16 1 3.25 1 4.95 1 11.88 1 11.88 1 11.88 1 11.88 1 11.85 2 3 2 3 2 3 1 1.2.3 1 1.2.3 1 1.2.3 1 1.2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3 1 2.3	Subgroups Conditions Min Nom 1 16 28 1 3.25 3.30 4.95 5.00 11.88 12.00 1 14.85 15.00 2, 3 3.20 4.90 15.00 2, 3 4.90 11.70 14.60 1, 2, 3 1, 2, 3 11.70 14.60 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.2, 3 1.2, 3 1, 2, 3 1, 2, 3 1.	Subgroups Conditions Min Nom Max

For Notes to Specifications, refer to page 4

International **IOR** Rectifier

AMR28XXS Series

 $\textbf{Static Characteristics} \ \, \text{(Continued)} \quad \text{-55°C} \leq \text{T}_{CASE} \leq \text{+125°C}, \, \text{V}_{IN} = 28 \, \text{V}_{DC} \, \pm 5\%, \, \text{C}_{L} = 0, \, \text{unless otherwise specified}.$

Para	meter	Group A Subgroups	Test Conditions	Min	Nom	Max	Unit
			Conditions		Ittom	mux	Ome
Input Current No Load	AMR2803R3S AMR2805S AMR2812S AMR2815S	1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3	lout=0, Inhibit =open		20 20 20 20	50 50 75 100	mA mA mA mA
Inhibited	All	1, 2, 3	Inhibit shorted to input return		8	18	mA
Input Ripple Cur	rent ²	1, 2, 3	Vin = 16, 28, 40 Volts, 100% load, BW = 20 Hz to 2 MHz			50	mA _{PP}
Efficiency	AMR2803R3S AMR2805S AMR2812S AMR2815S AMR2803R3S AMR2805S AMR2812S AMR2815S	1 1 1 1 2, 3 2, 3 2, 3 2, 3 2, 3	100% load	74 76 80 79 70 72 75 75			% % % % %
Isolation		1	Input to output or any pin to case (except case ground pin) at 500Vdc	100			МΩ
Capacitive Load	4, 5	4	No effect on dc performance			500	μF
Short Circuit Po	wer Dissipation	1, 2, 3				19	watts
Switching Frequ	iency	4, 5, 6	100% load	500	550	600	KHz
Sync Frequency	Range	4, 5, 6	100% load	500		700	KHz
MTBF			MIL-HDBK-217F, N2 SF @ Tc = 35°C	940			Khrs
Weight						68	g

 $\textbf{Dynamic Characteristics} \quad \text{-55°C} \leq \text{T}_{CASE} \leq \text{+125°C}, \ \text{V}_{IN} = 28 \ \text{V}_{DC} \ \pm 5\%, \ C_{L} = 0, \ \text{unless otherwise specified}.$

Parameter	Group A Subgroups	Test Conditions	Min	Nom	Max	Unit
Output Response To Step Transient Load Changes ⁷ AMR2803R3S AMR2805S AMR2812S	4, 5, 6 4, 5, 6	Load step 50%⇔ 100%	-500 -500 -800		+500 +500 +800	mV pk mV pk mV pk
AMR2815S AMR2803R3S AMR2805S AMR2812S AMR2815S	4, 5, 6 4, 5, 6 4, 5, 6 4, 5, 6	Load step 8% ⇔ 50%	-500 -500 -500 -1000 -1000		+1000 +500 +500 +1000 +1000	mV pk mV pk mV pk mV pk mV pk
Recovery Time, Step Transient Load Changes ^{7, 8}	4, 5, 6	Load step 50%⇔ 100% or Load step 8% ⇔ 50%			200	μs
Output Response Transient Step Line Changes 5,9 AMR2803R3S AMR2805S AMR2812S AMR2815S	4, 5, 6 4, 5, 6 4, 5, 6 4, 5, 6	Input step from/to 18 to 40Vdc, 100% load	-500 -500 -1200 -1500		+500 +500 +1200 +1500	mV pk mV pk mV pk mV pk
Recovery Time Transient Step Line Changes ^{5, 8, 9}	4, 5, 6	Input step from/to 18 to 40Vdc, 100% load			10	ms
Turn On Overshoot AMR2803R3S AMR2805S AMR2812S AMR2815S	4, 5, 6 4, 5, 6 4, 5, 6 4, 5, 6	0% load to 100% load			500 500 800 1000	mV pk mV pk mV pk mV pk
Turn On Delay ¹⁰	4, 5, 6	0% load to 100% load			25	ms
Short Circuit Recovery 5, 10	4, 5, 6				25	ms

Notes to Specifications

- 1 Parameter guaranteed by line and load regulation tests.
- 2 Bandwidth guaranteed by design. Tested for 20 KHz to 2 MHz.
- 3 Output voltage measured at load with remote sense leads connected across load.
- 4 Capacitive load may be any value from 0 to the maximum limit without compromising dc performance. A capacitive load in excess of the maximum limit will not disturb loop stability but may interfere with the operation of the load fault detection circuitry, appearing as a short circuit during turn on.
- 5 Parameter shall be tested as part of design characterization and after design or process changes. Parameters shall be guaranteed to the limit specified in Electrical Specifications.
- 6 Load step transition time between 2 and 10 microseconds.
- Recovery time is measured from the initiation of the transient to where V_{OUT} has returned to within ±1 % of V_{OUT} at 50 percent load.
- 8 Input step transition time between 2 and 10 microseconds.
- 9 Turn on delay time measurement is for either a step application of power at the input or the removal of a ground signal from the inhibit pin while power is applied to the input.

AMR28XXS Series

AMR28XXS Block Diagram

Application Information

Inhibit Function

Connecting the inhibit input to input common will cause the converter to shut down. It is recommended that the inhibit pin be driven by an open collector device capable of sinking at least 400 μA of current. The open circuit voltage of the inhibit input is 10.0 +1 $V_{\text{DC}}.$

EMI Filter

An optional EMI filter is available (AFH461) that will reduce the input ripple current to levels below the limits imposed by MIL-STD-461 CE03.

Device Synchronization

When multiple DC/DC converters are utilized in a single system, significant low frequency noise may be generated due to a small difference in the switching frequency of the converters (beat frequency noise). Because of the low frequency nature of this noise (typically less than 10 KHz), it is difficult to filter out and may interfere with proper operation of sensitive systems (communication, radar or telemetry). Advanced Analog provides synchronization of multiple AMR type converters to match switching frequency of the converter to the frequency of the system clock, thus eliminating this type of noise.

MTBF vs Case Temperature for AMR2803R3S

International

Rectifier

AMR28XXS Series

Standard Process Screening for AMR28XXS Series

Requirement	MIL-STD-883 Method	EM Limits	Flight Limits (CH +)
Temperature Range		-55°C to +125°C	-55°C to +125°C
Element Evaluation		None	MIL-PRF-38534, for Class H
Internal Visual	2017	AA Standards	Yes
Temperature Cycle	1010	-	Condition C
Constant Acceleration	2001	-	Condition A, (3000g)
PIND	2020	-	Condition A
Burn-in @ 125ºC	1015	48 Hrs	160 hrs
Interim Electrical		N/A	Group A,Subgroup 1
Burn-in	1015	N/A	160 hrs @ +125°C
Final Electrical (Group A) Read & Record Data	MIL-PRF-38534	-55°C, +25°C, +125°C	-55°C, +25°C, +125°C
PDA (25°C, interim to final)		N/A	2%
Radiographic Inspection	2012	N/A	Yes
Fine & Gross Leak	1014	Cond C	Condition A, C
External Visual	2009	AA Standards	Yes

Radiation Specification

Parameter	Conditions	Min	Тур	Max	Unit
Total Ionizing Dose	MIL-STD-883, Method 1019.4 Operating bias applied during exposure	30			KRads (Si)
Heavy Ion (Single event effects)	BNL Dual Van de Graf Generator	60			MeV•cm² /mg

AMR28XXS Series

AMR28XXS Case Outline

Pin Designation

Pin No.	Designation
1	Positive Input
2	Input Return
3	Enable
4	_
5	Case
6	Return Sense
7	Output Return
8	Positive Output
9	Positive Sense
10	Synchronization Input

Part Numbering

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 ADVANCED ANALOG: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500 Visit us at www.irf.com for sales contact information.

Data and specifications subject to change without notice. 07/03