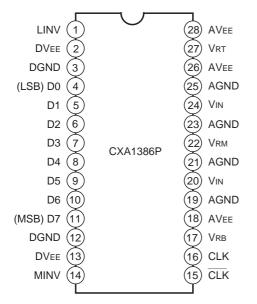
SONY

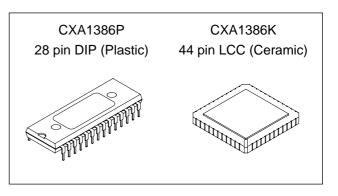
CXA1386P/K

8-bit 75MSPS Flash A/D Converter

Description

The CXA1386P/K are 8-bit high-speed flash A/D converter ICs capable of digitizing analog signals at the maximum rate of 75MSPS. The digital I/O levels of these A/D converters are compatible with the ECL 100K/10KH/10K.

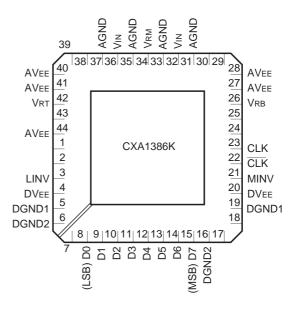

The CXA1386P/K is pin-compatible with the earlier models CXA1056P/K, CXA1016P/K, respectively. They can be replaced by the CXA1386P/K without any design changes, in most cases. Compared with the earlier models, these new models have been greatly improved in performance, by incorporating advanced process, new circuit design and carefully considered layout.


Features

- Differential linearity error: ±1/2LSB or less
- Integral linearity error: ±1/2LSB or less
- High-speed operation with maximum conversion rate of 75MSPS (Min.)
- Wide analog input bandwidth: 150MHz (Min. for full-scale input)
- Low Power consumption: 580mW (Typ.)
- Single power supply: -5.2V
- Low input capacitance: 17pF (Typ.)
- Built-in integral linearity conpensation circuit
- Low error rate
- Operable at 50% clock duty cycle
- · Good temperature characteristics
- Capable of driving 50Ω loads

Pin Configuration

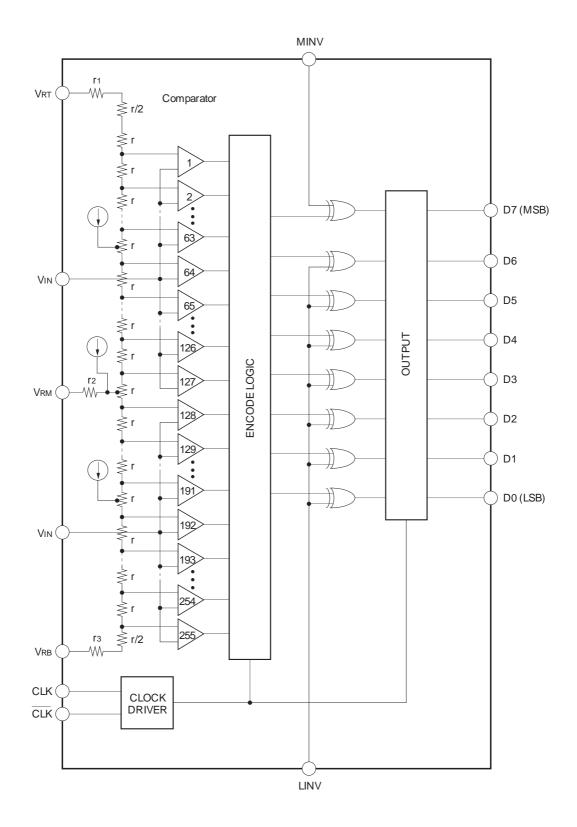
Pins with name are NC pins (not connected).



Structure

Bipolar silicon monolithic IC

Applications


- Digital oscilloscopes
- HDTV (high-definition TVs)
- Other apparatus requiring high-speed A/D conversion

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Absolute Maximum Ratin	igs (Ta = 25°C)					
 Supply voltage 	• Supply voltage AVEE, DVEE			to +0.5	V	
 Analog input voltage 	Vin		-2.7	-2.7 to +0.5		
 Reference input voltage 	Vrt, Vrb, Vrm		-2.7	to +0.5	V	
	I Vrt – Vrb I			2.5	V	
 Digital input voltage 	CLK, CLK, MINV,	LINV	-4 1	to +0.5	V	
	I CLK – CLK I			2.7	V	
• VRM pin input current	• Vrм pin input current Ivrм			to +3	mA	
 Digital output current 	ID ₀ to ID ₇		-3	0 to 0	mA	
 Storage temperature 	Tstg		-65	to +150	°C	
Recommended Operating	g Conditions	Min.	Тур.	Max.	Unit	
 Supply voltage 	AVEE, DVEE	-5.5	-5.2	-4.95	V	
	AVEE – DVEE	-0.05	0	+0.05	V	
	AGND – DGND	-0.05	0	+0.05	V	
 Reference input voltage 	Vrt	-0.1	0	+0.1	V	
	Vrb	-2.2	-2.0	-1.8	V	
 Analog input voltage 	Vin	Vrb		Vrt		
 Pulse width of clock 	TPW1	6.6			ns	
	TPW0	6.6			ns	
 Operating temperature 	Tc (CXA1386K)	-20		+100	°C	
	Ta (CXA1386P)	-20		+75	°C	

Block Diagram

Pin Description and I/O pin Equivalent circuit

Pin	No	Symbol	I/O	Standard voltage	Equivalent circuit	Description
LCC	DIP	Symbol	1/0	level		Description
31, 33, 35, 37	19, 21, 23, 25	AGND	_	0V		Anlog GND. Used as GND for input buffers and latches of comparators. Isolated from DGND or DGND 1/2.
27, 28, 40, 41, 44	18, 26, 28	AVee		-5.2V		Analog VEE -5.2V (Typ.). Internally connected with DVEE (resistance: 4 to 6Ω). Ceramic chip capacitors of at least 0.1μ F should be used to connect to AGND and be placed near the pins.
23	16	CLK			DGND (DGND1)	CLK input
22	15	CLK	I	ECL	LK C C C C C C C C C C C C C C C C C C C	Input complementary to CLK. With open connection, kept at threshold voltage (–1.3V). Device is operable without CLK input, but use of complementary inputs of CLK and CLK is recommended to obtain the stable high- speed operation.
_	3, 12	DGND	_	0V		Digital GND (Used for internal circuits and output transistors)
5, 19		DGND1	_	0V		Digital GND (Used for internal circuits)
6, 16		DGND2		0V		Digital GND (Used for output buffers)

Pin	No	Ourseland	1/0	Standard		Description
LCC	DIP	Symbol	I/O	voltage level	Equivalent circuit	Description
4, 20	2, 13	DVee		-5.2V		Digital VEE Internally connected with AVEE (resistance: 4 to 6Ω) Ceramic chip capacitors of at least 0.1µF should be used to connect to DGND and be placed near the pins.
8	4	D0			DGND (DGND2)	LSB of data outputs. External pull-down resistor is required.
9	5	D1				
10	6	D2				
11	7	D3	0	ECL		Data outputs. External pull-down
12	8	D4	Ũ			resistors are required.
13	9	D5				
14	10	D6				
15	11	D7			DVEE	MSB of data outputs. External pull-down resistor is required.
3	1	LINV	I	ECL	DGND (DGND1)	Input pin for D0 (LSB) to D6 output polarity inversion (see output code table). With open connection, kept at "L" level.
21	14	MINV	I	ECL	MINV r -1.3V DVEE r C	Input pin for D7 (MSB) output polarity inversion (see output code table). With open connection, kept at "L" level.

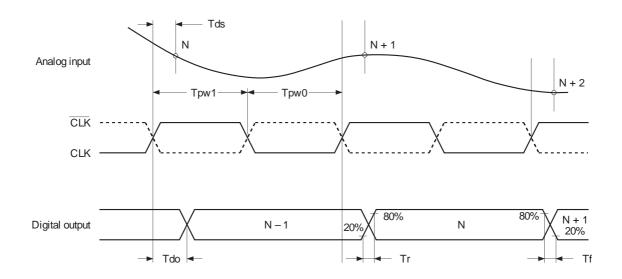
Pin	No.	Symbol	I/O	Standard voltage	Equivalent circuit	Description
LCC	DIP	Oymbol	10	level		Description
32, 36	20, 24	Vin	I	Vrt to Vrb	AGND VIN VIN VIN VIN VIN VIN VIN VIN VIN VIN	Analog input pins. These two pins must be connected externally, since they are not internally connected. See Application Note for precautions.
26	17	Vrb	I	-2V	VRT r1	Reference voltage (bottom) Typically $-2V$ A ceramic capacitor of at least 0.1μ F and a tantalus capacitor of at least 10μ F should be used to connect to AGND and be placed near the pins.
34	22	Vrm	Ι	Vrb/2	V _{RM} r ₂ Comparator 127 • W F Comparator 128	Reference voltage mid point be used as a pin for integral linearity compensation
42	27	Vrt	I	ov	r Comparator 129 r Comparator 130 r Comparator 255 VRB r3 r/2	Reference voltage (top) Typically 0V When a voltage different from AGND is applied to this pin, a ceramic capacitor of at least 0.1μ F and a tantalus capacitor of at least 10μ F should be used to connect to AGND and be placed near the pins.
1, 2, 7, 17, 18, 24, 25, 29, 30, 38 39, 43		NC		_		Unused pins No internal connections have been made to these pins. Connecting them to AGND or DGND on PC board is recommended.

Electrical Characteristics

 $(Ta = 25^{\circ}C, AVee = DVee = -5.2V, Vrt = 0V, Vrb = -2V)$

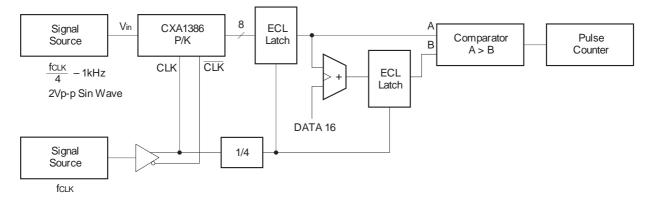
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Resolution	n			8		bits
DC characteristics Integral linearity error Differential linearity error	Eil Edl	Fc = 75MSPS Fc = 75MSPS		±0.3 ±0.3	±0.5 ±0.5	LSB LSB
Analg input Analog input capacitance Analog input resistance Input bias current	Cin Rin Iin	$V_{IN} = -1V + 0.07Vrms$ $V_{IN} = -1V$		17 390	200	pF kΩ μA
Reference inputs Reference resistance Offset voltage VRT VRB	Rref Еот Еов		75 8 0	110 18 10	155 32 24	Ω mV mV
Digital inputs Logic H level Logic L level Logic H current Logic L current Input capacitance	Vih Vil Iih Iil	Input connected to –0.8V Input connected to –1.6V	-1.13 0 -50	7	-1.50 50 50	V V μA μA pF
Switching characteristics Maximum conversion rate Aperture jitter Sampling delay Output delay H pulse width of clock L pulse width of clock	Fc Taj Tds Tdo TPW1 TPW0	Error rate 10 ⁻⁹ TPS ^{*1}	75 4.0 6.6 6.6	10 3.0 6.5	9.0	MSPS ps ns ns ns ns
Digital outputs Logic H level Logic L level Output rising time Output falling time	Vон Vol Tr Tf	RL = 620Ω to DVEE RL = 620Ω to DVEE RL = 620Ω to DVEE, 20% to 80% RL = 620Ω to DVEE, 80% to 20%	-1.03	0.9 2.1	-1.62	V V ns ns
Dynamic characteristics Input bandwidth S/N ratio		$V_{IN} = 2Vp-p$ Input frequency at -3dB $\begin{cases} Input = 1MHz, FS \\ Clock = 75MHz \\ Input = 18.75MHz, FS \\ Clock = 75MHz \end{cases}$	150	46 40		MHz dB dB
Error rate Differential gain error Differential phase error	DG DP	$ \begin{cases} Input = 18.749MHz, FS \\ Error > 16LSB \\ Clock = 75MHz \\ NTSC 40IRE mod. ramp, \\ Fc = 75MSPS \end{cases} $		1.0 0.5	10 ^{_9}	TPS*1 % deg
Power supply Supply current Power consumption* ²	lee Pd		-150	-104 580		mA mW

*1 TPS: Times Per Sample

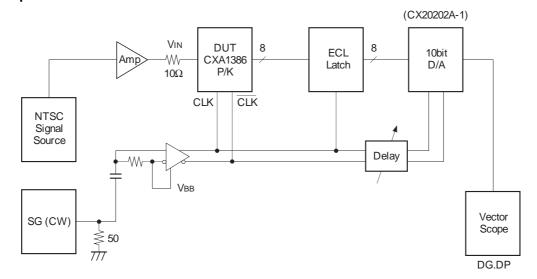

*2 Pd = IEE · VEE +
$$\frac{(V_{RT} - V_{RB})^2}{R_{REF}}$$

Output Code Table

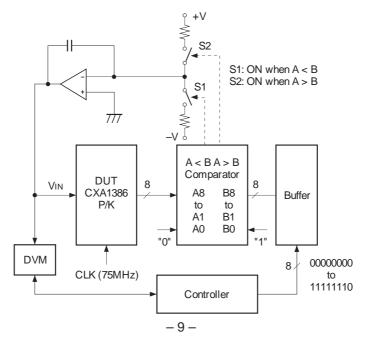
Vin*	Step	MINV 1 LINV 1	0 1	1 0	0 0
		D7 D0	D7 D0	D7 D0	D7 D0
0V		0 0 0 0 0	1 0 0 0 0	0 1 1 1 1	11111
	0	0 0 0 0 0	10000	0 1 1 1 1	11111
	1	0 0 0 0 1	1 0 0 0 1	01110	11110
		:	:	:	:
		:	:	:	:
-1V	127	01111	11111	0 0 0 0 0	10000
	128	10000	00000	11111	01111
		:	:	:	:
		:	:	:	:
	254	11110	01110	1 0 0 0 1	0 0 0 0 1
	255	11111	0 1 1 1 1	1 0 0 0 0	00000
_2V		1 1 1 1 1	0 1 1 1 1	1 0 0 0 0	0 0 0 0 0

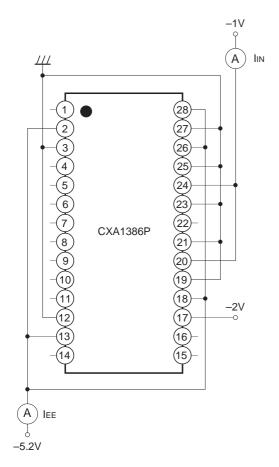

* Vrt = 0V, Vrb = -2V

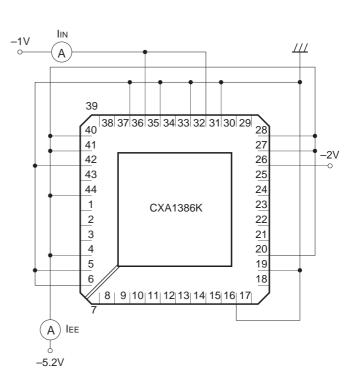
Timing diagram



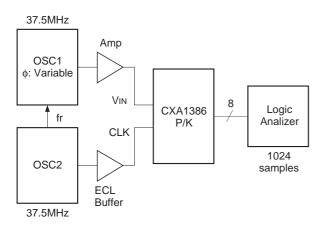
Electrical Characteristics Test Circuit


Maximum conversion rate test circuit

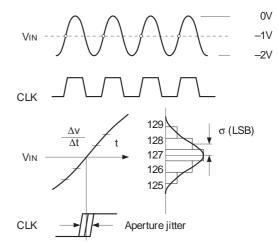

Differential gain error test circuit Differential phase error test circuit



Integral linearity error test circuit Differential linearity error test circuit



Power Supply Current Test Circuit Analog input bias current test circuit



Sampling delay test circuit Aperture jitter test circuit

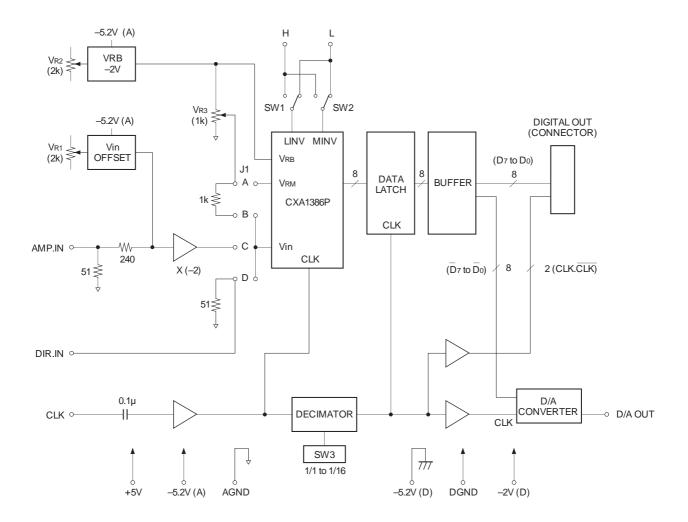
Aperture jitter test method

Aperture jitter is defined as follows:

$$\label{eq:Taj} \text{Taj} = \sigma / \frac{\Delta \upsilon}{\Delta t} = \sigma / (\frac{256}{2} \times 2\pi f \),$$

Where σ (unit: LSB) is the deviation of the output codes when the input frequency is exactly the same as the clock and is sampled at the largest slew rate point.

8bit 75MSPS ADC and DAC Evaluation Board


It is necessary to equip "the CXA1396D/P EVALUATION BOARD WITH DAC" with "A1396D – A1386P ADAPTER" in order to evaluate CXA1386P.

In addition to indispensable features such as the reference voltage generator, this tool equips two sets of analog inputs (the direct input and the buffer amplifier input), the input voltage offset generator, the clock decimator, the output data latches, the 10-bit high-speed DAC, and the 20-pin cable connector for digital outputs. This evaluation board provides full performance of the CXA1386P and it is designed to facilitate evaluation.

Features

Resolution: 8bits Maximum conversion rate: 75MSPS Supply voltage: +5.0V, -5.2V, -2.0V Two analog inputs (Direct input, buffer amplifier input) Clock level converter: Sine wave to ECL level signal Reference voltage adjustment circuit for the A/D converter Built-in clock frequency decimation circuit: (1/1 to 1/16)

Fig. 1. Block Diagram

Supply Current

Item	Min.	Тур.	Max.	Unit
-5.2V		0.85	1.0	Α
+5.0V		15	30	mA
-2.0V		0.45	0.6	A

(Note: Supply current -2.0V is the value when Rn10, Rn11 and Rn12 are not mounted.)

Analog Input (DIR. IN, AMP. IN)

Item	Min.	Тур.	Max.	Unit
Input voltage (DIR. IN) (AMP. IN) ^{*1} Input impedance	-2.0 -0.5	50	0 +0.5	V V Ω

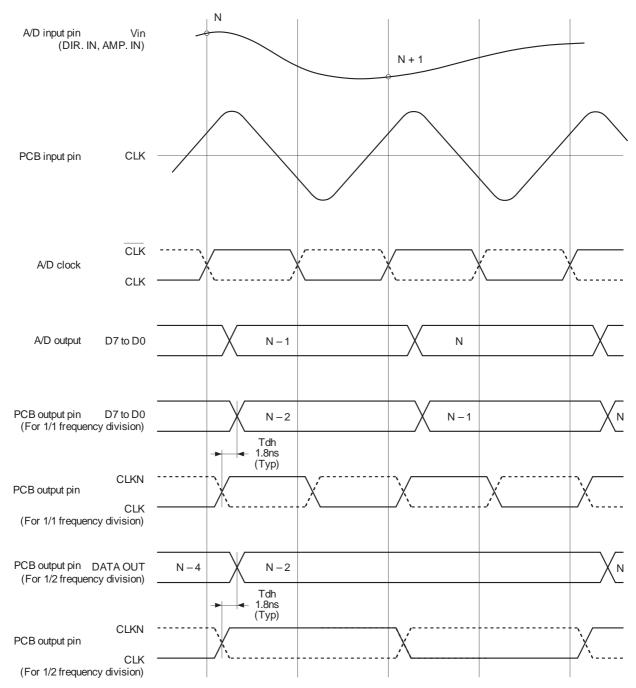
(*1: Adjustable by VR1)

Clock Input (CLK)

Item	Min.	Тур.	Max.	Unit
Input voltage (Peak to Peak)		2.0		Vp-р
Input impedance		50		Ω

Digital Output (D0 to D7)

ECL 10KH level


Clock Output

ECL 10KH level, complementary output

Output Code Table

	MINV	0	0	1	1
	LINV	0		0	I
	0V	11111	10000	01111	00000
	:	11110	10001	01110	0 0 0 0 1
	:	:	:	:	:
	:	:	:	:	:
Vin	:	10000	11111	00000	01111
VIN	:	0 1 1 1 1	00000	11111	10000
	:	:	:	:	:
	:	:	:	:	:
	:	0 0 0 0 1	01110	10001	11110
	-2V	0 0 0 0 0	0 1 1 1 1	10000	11111

Fig. 2. Timing Chart

Adjustment Methods and Notes on Operation

1) Vin Offset (VR1)

The volume to adjust the signal range (0V center assumed) with the A/D converter input range when a waveform is input through AMP. IN.

2) A/D Full Scale (VR2)

The volume to adjust A/D converter VRB voltage.

3) Linearity (VR3)

The volume to adjust VRM (linearity) voltage.

4) D/A Full Scale (VR4)
 The volume to adjust D/A output full scale (-1V)

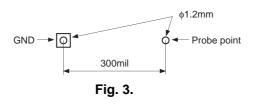
5) J1 (input selection)	[Jumper Poisition at shipment]
A: Shorts to adjust VRM voltage.	J1
B: Shorts to supply DC voltage to Vin.	ΑΟΟ
C: Shorts to select AMP.IN input.	BOO
D: Shorts to select DIR. IN input.	COO
	DOO

6) SW1

The switch for LINV High/Low

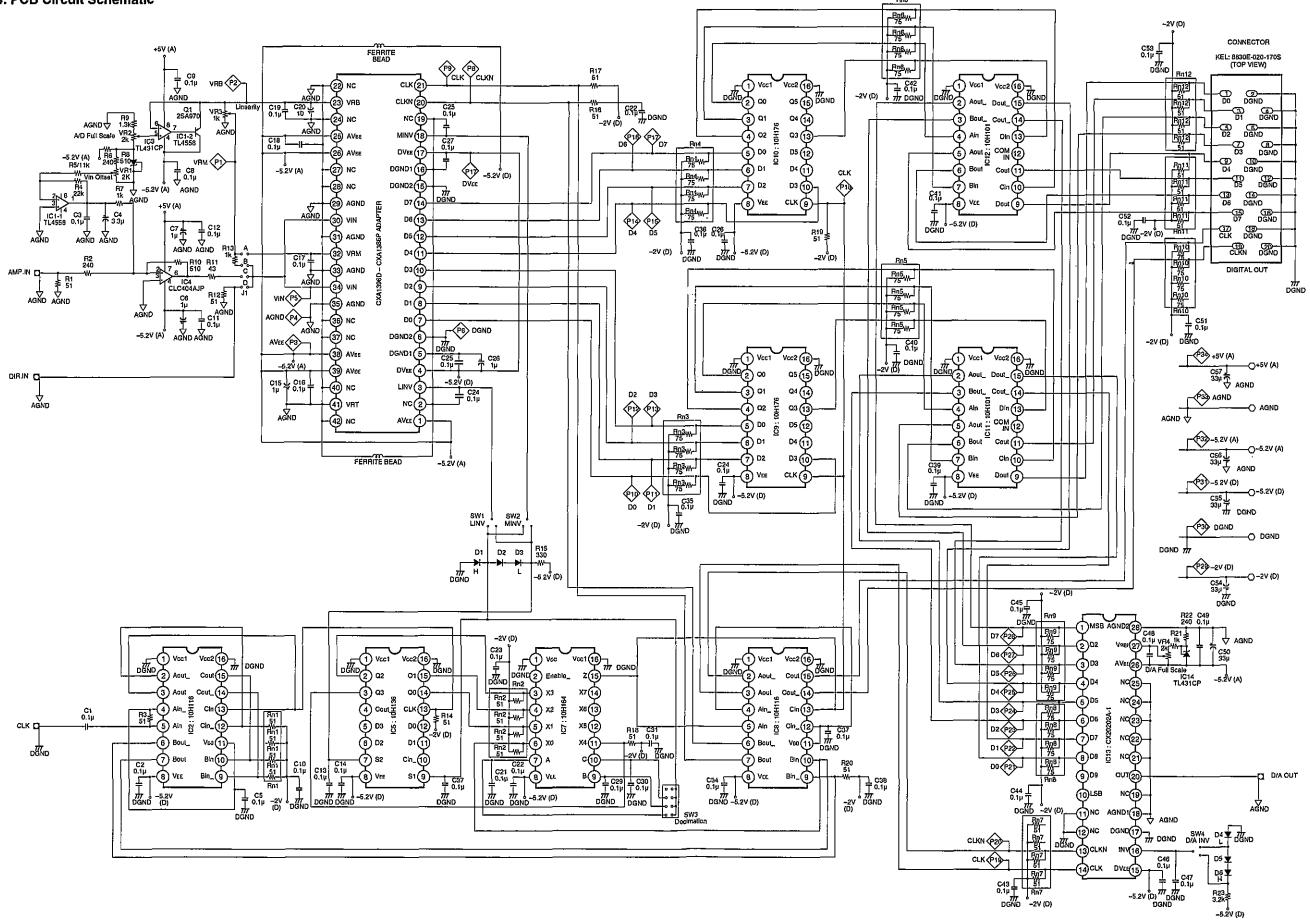
7) SW2

The switch for MINV High/Low

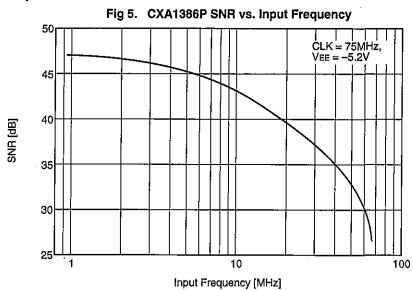

8) SW3 (Decimation)

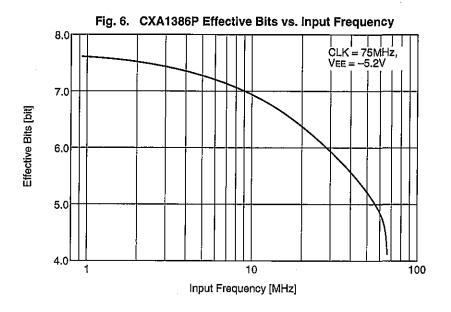
The switch to select clock frequency decimation.

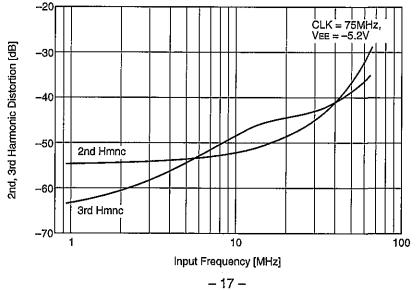
- Switch position: decimation ratio
- 0: 1/1
- 1: 1/2
- 2: 1/4
- 3: 1/8
- 4: 1/16
- 9) SW4 (D/A INV)


The switch for D/A converter output inversion.

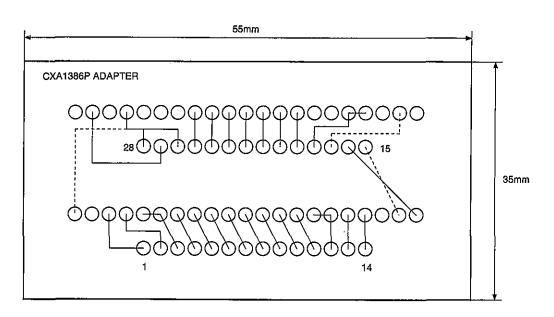
- 10) Rn10, Rn11 and Rn12 are not mounted at shipment. They are not required during evaluation.
- 11) Waveform probe pins P5 and P8 through P28 are devised to facilitate GND connection in order to reduce the distortion. As shown in the diagram below, the distance between the probe point and the GND is 300 mils, and there is \u03c61.2mm throughhole at each. The signal and GND locations are suit for a Tektronix GND tip (part number 013-1185-00).

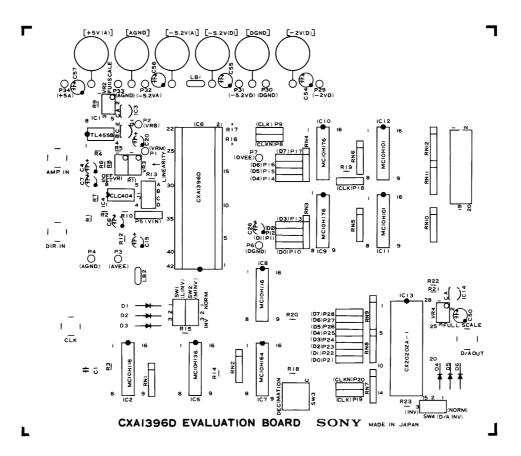

- 12) D/A converter (IC13) input data (waveform probe pins P21 through P28) are the complementary signals of the decimated A/D converter outputs. Those are inverted again in the D/A converter so that the direction of reproduced waveform can agree with the A/D input signal converter.
- 13) The part number of the digital output connector is KEL 8830E-020-170S. A corresponding connector and cable assembly is JUNKOSHA KB0020MCG50BI.


Fig. 4. PCB Circuit Schematic

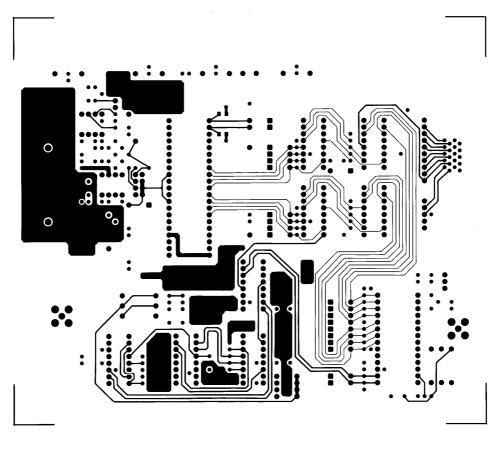

- 16 --

Characteristics Graphs

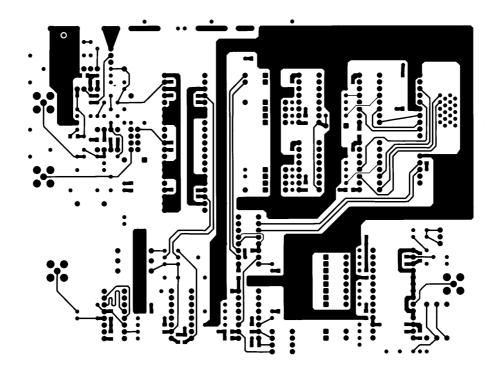


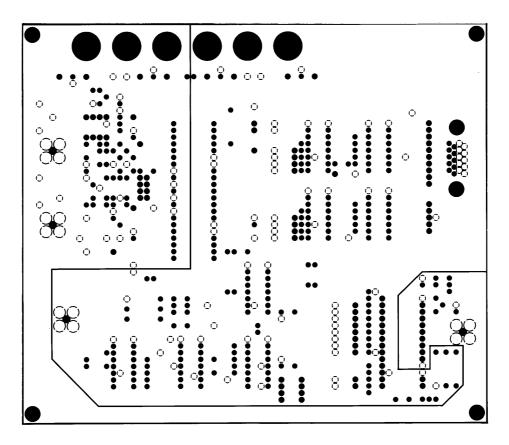


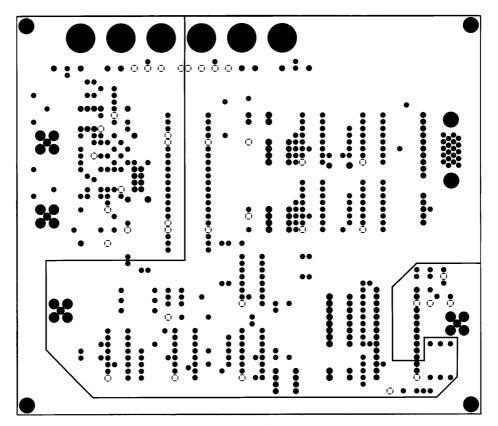
CXA1396D - CXA1386P ADAPTER (SCALE = 2/1)



TOP VIEW

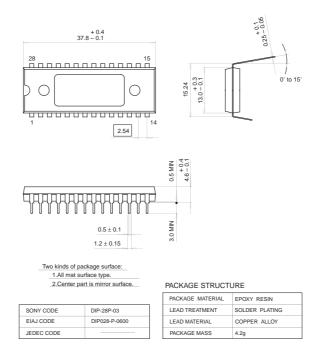

Parts Layout


Printed Pattern

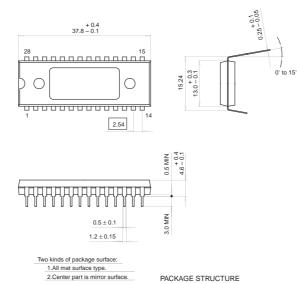

1st layer Component plane (Top View)

4th layer Solder plane (Top view)

2nd layer GND plane (Top View)



3rd layer Power supply plane (Top View)


Package Outline Unit: mm

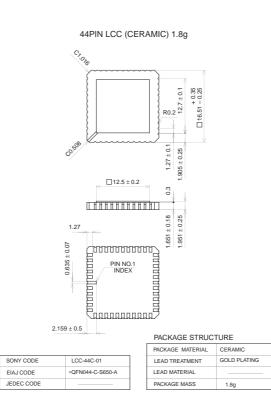
CXA1386P

28PIN DIP (PLASTIC)

28PIN DIP (PLASTIC)

		PACKAGE MATE
SONY CODE	DIP-28P-03	LEAD TREATMEN
EIAJ CODE	DIP028-P-0600	LEAD MATERIAL
JEDEC CODE		PACKAGE MASS

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATIN


LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	4.2g

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt%
PLATING THICKNESS	5-18µm

Package Outline Unit: mm

CXA1386K

